MPRA
 Munich Personal RePEc Archive

Pattern classification using principal components regression

Ciuiu, Daniel
Technical University of Civil Engineering, Bucharest,
Romania, Romanian Institute for Economic Forecasting

January 2008

Online at http://mpra.ub.uni-muenchen.de/15360/ MPRA Paper No. 15360, posted 21. May 2009 / 16:13

PATTERN CLASSIFICATION USING PRINCIPAL COMPONENT REGRESSION

Daniel CIUIU
Technical University of Civil Engineering, Bd. Lacul Tei, no. 124, Bucharest, Romania
E-mail:dciuiu@yahoo.com

Abstract

In this paper we will classify patterns using an algorithm analogous to the k-means algorithm and the principal components regression ($P C R$).

We will also present a financial application in which we apply $P C R$ if the points represent the interests for accounts with different terms.

Mathematics Subject Classification (2000): 62J05, $62 \mathrm{H} 25,68 \mathrm{~T} 10$
Keywords: Principal components regression, pattern classification, k-means

1. Introduction

Let be n points in $\mathbf{R}^{\mathrm{p}}: X^{(1)}, \ldots, X^{(\mathrm{n})}$. The orthogonal linear variety of the dimension k $(0<k<p)$ is that linear variety with the minimum sum of the squares of Euclidean distances. We know (see [4]) that this linear variety is generated by the eigenvectors of the sample covariance matrix corresponding to the first maximum k eigenvalues, and contains the gravity center of the given n points. These eigenvectors are called principal components, and for that the orthogonal regression is called also principal components regression $(P C R)$. The principal components analysis is used in [5] to simplify the computations in the discriminant analysis by using the Kolmogoroff distance.

For n points from \mathbf{R}^{p} we can find the orthogonal regression linear variety of the dimension k (we use the first k principal components). But in this case all the n points are in the same class. A modality to classify n points from \mathbf{R}^{p} in k classes is to use the k-means algorithm (see [2]). First each class has only one point, which represents the class. The other points are introduced next into the class represented by the nearest point (the center of gravity of the points from the given class), and we compute the new center of gravity of this class. The next step is to check for each point if the distance to the center of gravity of its class is minimum. Otherwise we move the point from the current class such that the distance becomes minimum. We compute the centers of gravity for the source class and destination class, and the algorithm stops when no point is moved from its class.

2. The k -means algorithm and principal components regression

In the k-means algorithm the classes are given by their gravity centers $Y_{i}, i=\overline{1, k}$. These points minimize the sum

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(X_{i j}-Y_{i}\right)^{2}, \tag{1}
\end{equation*}
$$

where $X_{i j}, j=\overline{1, n_{i}}$ are the n_{i} points from \mathbf{R}^{p} that are classified into the class i by the k-means algorithm.

In the same manner we can classify paterns from \mathbf{R}^{p} using principal components regression, more exactly the first j with $0<j<p$ principal components. In this case each class has at least $j+1$ points, initially exactly $j+1$ points. The other points are classified first in the
class with the less Euclidean distance.
After the first classification, we take each point and if we have a distance less than those to the current class, we move the point to the new class. The algorithm stops when all the points are not moved.

When we add a point to a class we compute again the orthogonal linear variety for this class. If we move a point from a class to another one, we have to compute again the orthogonal linear variety for both classes (those from we move and those in which we move the point).

For this algorithm we have to compute the sample covariance matrices for the classes, and their eigenvectors and eigenvalues are computed using the Jacobi rotations method.

3. A financial application

For the following application X_{1} is the annual interest for an account without term, X_{2} is the annual interest for an account with the term one month, X_{3} is the annual interest for an account with the term 3 months, X_{4} is the annual interest for an account with the term 6 months, X_{5} is the annual interest for an account with the term 9 months and X_{6} is the annual interest for an account with the term one year. Consider 29 banks as follows.

Bank	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
ABN-Ambro Romania	0.25%	3.5%	3.75%	3.75%	0	3.75%
AlphaBank	0.1%	6.25%	6.5%	7%	7%	7.25%
Banc Post	0	7.25%	7.25%	7.15%	0	7.15%
Banca Comercială Carpatica	1%	7.5%	7.55%	7.6%	7.75%	7.8%
BCR	0.25%	6%	6.25%	6.5%	6.75%	7.5%
Banca Italo-Romena	0	5.5%	5.75%	6%	6.15%	6.25%
Banca Românească	0.75%	7.3%	7.75%	8.05%	8.1%	8.1%
Banca Transilvania	0.25%	7.5%	7.5%	7.5%	7.75%	7.75%
Bank Leumi Romania	0.25%	7.5%	7.5%	7.75%	7.75%	8%
Blom Bank Egypt	0.1%	6%	6.5%	6.5%	6.75%	7%
BRD-Groupe Société Générale	0.25%	5.5%	5.6%	5.65%	5.65%	5.75%
C.R. Firenze Romania	0.1%	6.5%	6.75%	7%	7.25%	7.5%
CEC	0.25%	7%	7%	7.25%	0	7.25%
Citibank Romania	1%	4.28%	4.28%	4.28%	3.87%	3.46%
Emporiki Bank	0.5%	6.75%	7%	7.25%	7%	7%
Finansbank	0.1%	7.5%	8%	8%	8%	8.5%
HVB-Tiriac Bank	0.1%	6.4%	6.3%	6.2%	6.1%	6.1%
ING Bank	6.85%	5.5%	5.75%	6%	6.25%	6.5%
Libra Bank	0	8%	8.1%	7.6%	7.6%	8.5%
Mind Bank	0.25%	7%	7%	7.25%	7.5%	7.75%
OTP Bank	0.25%	6.25%	6.5%	7%	7%	7.25%
Piraeus Bank	0.5%	7%	7.1%	7.25%	7.1%	7.35%
Pro Credit Bank	7%	7.5%	7.65%	7.7%	0	7.85%
Raiffeisen Bank	0.25%	4%	4.25%	4.5%	4.6%	4.75%
Romanian International Bank	0.25%	6.5%	6.75%	7%	7.5%	7.75%
Romexterra	0.25%	7.5%	7.75%	7.75%	8.1%	8.1%
San Paolo IMI Bank	0.1%	6.5%	6.7%	6.8%	7%	7.2%
Uni Credit Romania	0.1%	5%	5%	5.25%	5.5%	5.5%
Wolksbank	0.1%	4.5%	4.75%	4.5%	3.5%	3.25%

The orthogonal regression line is
$d:\left\{0.04837+0.00197 X_{1}+0.53627 X_{2}-0.79983 X_{3}+0.26942 X_{4}+0.00536 X_{5}-0.0085 X_{6}=0\right.$,
$-0.40228-0.00842 X_{1}-0.48134 X_{2}-0.03852 X_{3}+0.83753 X_{4}-0.00819 X_{5}-0.26124 X_{6}=0$,
$-0.71162+0.03716 X_{1}+0.48786 X_{2}+0.35302 X_{3}+0.05034 X_{4}+0.06596 X_{5}-0.79316 X_{6}=0$,
$1.64803+0.82789 X_{1}-0.21195 X_{2}-0.19145 X_{3}-0.16583 X_{4}+0.42717 X_{5}-0.1518 X_{6}=0$,
$\left.-6.64018+0.54586 X_{1}+0.34282 X_{2}+0.33464 X_{3}+0.32816 X_{4}-0.48029 X_{5}+0.36627 X_{6}=0\right\} \quad$ and the error is 191.00977.

If we consider 2 classes we obtain the orthogonal regression lines $d_{1}:\left\{0.03475+0.00086 X_{1}+0.41303 X_{2}-0.79344 X_{3}+0.44436 X_{4}-0.02473 X_{5}-0.04238 X_{6}=0\right.$, $-0.24446-0.0014 X_{1}-0.62098 X_{2}+0.10689 X_{3}+0.74741 X_{4}-0.01053 X_{5}-0.2103 X_{6}=0$, $-1.69801+0.05743 X_{1}+0.52864 X_{2}+0.41568 X_{3}+0.17852 X_{4}-0.07815 X_{5}-0.71167 X_{6}=0$, $-2.53695+0.05594 X_{1}+0.2102 X_{2}+0.25308 X_{3}+0.25662 X_{4}-0.78251 X_{5}+0.45877 X_{6}=0$, $\left.-0.52383+0.9967 X_{1}-0.03907 X_{2}-0.03287 X_{3}-0.01913 X_{4}+0.0563 X_{5}+0.02123 X_{6}=0\right\}$ and $d_{2}:\left\{-5.55656-0.03768 X_{1}+0.63086 X_{2}-0.24548 X_{3}+0.67669 X_{4}-0.02752 X_{5}-0.28577 X_{6}=\right.$ $0,-1.2405-0.00603 X_{1}-0.10724 X_{2}+0.77483 X_{3}+0.12312 X_{4}+0.00681 X_{5}-0.61065 X_{6}=0$, $-1.87204-0.042 X_{1}-0.64434 X_{2}-0.01971 X_{3}+0.70703 X_{4}-0.04215 X_{5}-0.23416 X_{6}=0$, $-12.70244-0.12386 X_{1}+0.38094 X_{2}+0.57381 X_{3}+0.13034 X_{4}-0.14573 X_{5}+0.68706 X_{6}=0$, $\left.-5.17038+0.94024 X_{1}+0.05545 X_{2}+0.08592 X_{3}+0.09078 X_{4}+0.2912 X_{5}+0.11155 X_{6}=0\right\}$, the classes $C_{1}=\{A B N$ Ambro Romania, Alpha Bank, BCR, Banca Italo-Romena, Blom Bank Egypt, BRD-Groupe Société Générale, C.R. Firenze Romania, Citibank Romania, Emporiki Bank, HVB-Țiriac Bank, ING Bank, Mind Bank, OTP Bank, Piraeus Bank, Raiffeisen Bank, Romanian International Bank, San Paolo IMI Bank, Uni Credit Romania, Volksbank\} and $C_{2}=\{$ Banc Post, Banca Comercială Carpatica, Banca Românească, Banca Transilvania, Bank Leumi Romania, CEC, Finansbank, Libra Bank, Pro Credit Bank, Romexterra\} and the error 84.49813.

If we consider 5 classes we obtain the orthogonal regression lines $d_{1}:\left\{-2.30278-0.01425 X_{1}-0.62292 X_{2}+0.59308 X_{3}+0.30341 X_{4}-0.27928 X_{5}+0.29994 X_{6}=\right.$ $0,-0.20254+0.93486 X_{1}+0.05054 X_{2}+0.25055 X_{3}-0.07438 X_{4}+0.04281 X_{5}-0.23096 X_{6}=0$, $-3.67379-0.11524 X_{1}+0.62336 X_{2}+0.50028 X_{3}-0.33188 X_{4}-0.42384 X_{5}+0.24098 X_{6}=0$, $-3.23606+0.2531 X_{1}+0.27791 X_{2}-0.40285 X_{3}+0.62327 X_{4}-0.41266 X_{5}-0.37103 X_{6}=0$, $\left.-1.20155-0.22007 X_{1}+0.23705 X_{2}+0.28491 X_{3}+0.5425 X_{4}-0.08105 X_{5}-0.71467 X_{6}=0\right\}$, $d_{2}:\left\{X_{5}=0,-0.12781+0.01422 X_{1}+0.7146 X_{2}-0.69939 X_{3}+0.00108 X_{4}+0.00138 X_{6}=0,-9.04924\right.$ $-0.08943 X_{1}+0.14685 X_{2}+0.1497 X_{3}+0.97363 X_{4}-0.00869 X_{6}=0, \quad-8.60955-0.10667 X_{1}$ $+0.13211 X_{2}+0.13467 X_{3}-0.04172 X_{4}+0.97534 X_{6}=0, \quad-6.7629-0.0409 X_{1}+0.66957 X_{2}$ $\left.+0.68257 X_{3}-0.21146 X_{4}-0.19846 X_{6}=0\right\}, \quad d_{3}:\left\{-3.10123-0.32265 X_{1}+0.01865 X_{2}+0.03342 X_{3}\right.$
$+0.02148 X_{4}+0.93412 X_{5}-0.14623 X_{6}=0$, $-0.2439 X_{4}-0.00779 X_{5}-0.00946 X_{6}=0$, $-0.12004 X_{4}+0.02357 X_{5}+0.89538 X_{6}=0$, $+0.82377 X_{4}-0.029 X_{5}-0.03523 X_{6}=0$, $\left.+0.45481 X_{4}-0.13435 X_{5}+0.12576 X_{6}=0\right\}$, $-0.57944 X_{4}+0.81123 X_{5}-0.00656 X_{6}=0$, $-0.38536 X_{4}-0.26737 X_{5}+0.88315 X_{6}=0$, $-0.22277 X_{4}-0.15259 X_{5}-0.14388 X_{6}=0$, $+0.18495 X_{4}+0.13249 X_{5}+0.12122 X_{6}=0$, $-0.34991 X_{4}-0.33115 X_{5}-0.24586 X_{6}=0$ $-0.55873 X_{3}+0.62899 X_{4}-0.39359 X_{5}+0.14366 X_{6}=0$, $-0.52138 X_{3}-0.38659 X_{4}+0.12704 X_{5}+0.23152 X_{6}=0$, $-0.23547 X_{3}-0.06916 X_{4}+0.57523 X_{5}-0.48428 X_{6}=0$, $-0.1017 X_{3}+0.51736 X_{4}+0.27532 X_{5}-0.48306 X_{6}=0,0.4072+0.0693 X_{1}+0.61565 X_{2}+0.37429 X_{4}$ $\left.-0.49283 X_{5}-0.48213 X_{6}=0\right\}$, the classes $C_{1}=\{A B N$ Ambro Romania, Alpha Bank, BCR, Blom Bank Egypt, C.R. Firenze Romania, OTP Bank, Romanian International Bank $\}, C_{2}=\{$ Banc Post, CEC, Pro Credit Bank $\}, C_{3}=\{$ Citibank Romania, ING Bank, Volksbank $\}, C_{4}=\{$ Banca Comercială Carpatica, Banca Românească, Banca Transilvania $\}$ and $C_{5}=\{$ Banca ItaloRomena, Bank Leumi Romania, BRD-Groupe Société Générale, Emporiki Bank, Finansbank,

HVB-Țiriac Bank, Libra Bank, Mind Bank, Piraeus Bank, Raiffeisen Bank, Romexterra, San Paolo IMI Bank, Uni Credit Romania\} and the error 3.09442.

The orthogonal regression hyper-plane is $H: 0.04837+0.00197 X_{1}+0.53627 X_{2}-0.79983 X_{3}$ $+0.26942 X_{4}+0.00536 X_{5}-0.0085 X_{6}$ and the error is 0.23192 .

If we consider 2 classes we obtain $H_{1}:-0.32534-0.0064 X_{1}-0.65531 X_{2}+0.75341 X_{3}$ $-0.05268 X_{4}-0.01057 X_{5}-0.00293 X_{6}=0$ and $H_{2}:-0.0803-0.40475 X_{1}-0.20348 X_{2}$ $-0.15505 X_{3}+0.71788 X_{4}+0.15299 X_{5}-0.48164 X_{6}=0$, the classes $C_{1}=\{A B N$ Ambro Romania, Alpha Bank, Banc Post, Banca Comercială Carpatica, BCR, Banca Italo-Romena, CEC, Emporiki Bank, ING Bank, Libra Bank, OTP Bank, Piraeus Bank, Pro Credit Bank, Romanian International Bank, Volksbank $\}$ and $C_{2}=\{$ Banca Românească, Banca Transilvania, Bank Leumi Romania, Blom Bank Egypt, BRD-Groupe Société Générale, C.R. Firenze Romania, Citibank Romania, Finansbank, HVB-Țiriac Bank, Mind Bank, Raiffeisen Bank, Romexterra, San Paolo IMI Bank, Uni Credit Romania\}, and the error 0.03317.

If we consider 4 classes we obtain $H_{1}:-0.38315+0.08054 X_{1}-0.66972 X_{2}+0.73788 X_{3}$ $-0.00026 X_{4}-0.0167 X_{5}-0.0154 X_{6}=0, \quad H_{2}: 0.09818+0.4909 X_{1}+0.23129 X_{2}-0.11737 X_{3}$ $-0.5868 X_{4}-0.14256 X_{5}+0.57191 X_{6}=0, \quad H_{3}:-1.04913+0.07788 X_{1}-0.08447 X_{2}+0.88105 X_{3}$ $-0.23123 X_{4}-0.0201 X_{5}-0.39583 X_{6}=0$ and $H_{4}:-0.32802+0.34105 X_{1}-0.48925 X_{2}+0.59427 X_{3}$ $-0.44424 X_{4}+0.3 X_{5}+0.06173 X_{6}=0$, the classes $C_{1}=\{A B N$ Ambro Romania, Alpha Bank, Banc Post, Banca Comercială Carpatica, BCR, Banca Italo-Romena, Romanian International Bank, Volksbank $\}, C_{2}=\{$ Banca Românească, Banca Transilvania, Bank Leumi Romania, Blom Bank Egypt, BRD-Groupe Société Générale, C.R. Firenze Romania, San Paolo IMI Bank, Uni Credit Romania\}, $C_{3}=\{C E C$, Citibank Romania, Emporiki Bank, Finansbank, HVB-Ţiriac Bank, ING Bank, Romexterra $\}$ and $C_{4}=\{$ Libra Bank, Mind Bank, OTP Bank, Piraeus Bank, Pro Credit Bank, Raiffeisen Bank\} and the error 0.00115.

4. Conclusions

The applied k-means algorithm finds the minimum of error because there exists a finite number of classifications, and when we move a point to another class we obtain a smaller error. The error is smaller even if we only move the point and we consider the same orthogonal regression linear varieties.

We can also remark that if we increase the number of classes the error decrease. We can explain this as follows. Suppose that at a given moment we have k optimal classes given by their orthogonal regression linear varieties of the dimension d. From some classes with at least $d+2$ points we can move $d+1$ points to a new class given by the linear variety of the dimension d containing these points. Even if we consider the previous k classes given by the same linear varieties, the error decrease.

If we increase the dimension d the error decrease due to the fact that the orthogonal regression linear variety with the dimension d is included in those with the dimension $d+1$, and the three perpendiculars theorem.

References

[1] Ciucu, G. and Craiu, V.: Statistical Inference, Didactic and Pedagogic Publishing House, Bucharest, 1974 (Romanian).
[2] Dumitrache, I., Constantin, N. and Drăgoicea, M.: Neural Networks, Matrix Rom, Bucharest, 1999 (Romanian).
[3] Petrehus, V. and Popescu, A.: Probabilities and Statistics, UTCB Publishing House, Bucharest, 1997 (Romanian).
[4] Saporta, G.: Probabilités, analyse des donées et statistique, Editions Technip, Paris, 1990.
[5] Mahjoub, S. and Saporta, G.: Une méthode de discrimination non paramétrique, Revue de Statistique Appliquée, Vol. XLII, No. 2 (1994), 99-113.

