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1. Introduction 

Let be n points in R
p
: X

(1)
,…, X

(n)
. The orthogonal linear variety of the dimension k 

(0<k<p) is that linear variety with the minimum sum of the squares of Euclidean distances. 

We know (see [4]) that this linear variety is generated by the eigenvectors of the sample 

covariance matrix corresponding to the first maximum k eigenvalues, and contains the gravity 

center of the given n points. These eigenvectors are called principal components, and for that 

the orthogonal regression is called also principal components regression (PCR).  The principal 

components analysis is used in [5] to simplify the computations in the discriminant analysis 

by using the Kolmogoroff distance. 

For n points from R
p
 we can find the orthogonal regression linear variety of the 

dimension k (we use the first k principal components). But in this case all the n points are in 

the same class. A modality to classify n points from R
p
 in k classes is to use the k-means 

algorithm (see [2]). First each class has only one point, which represents the class. The other 

points are introduced next into the class represented by the nearest point (the center of gravity 

of the points from the given class), and we compute the new center of gravity of this class. 

The next step is to check for each point if the distance to the center of gravity of its class is 

minimum. Otherwise we move the point from the current class such that the distance becomes 

minimum. We compute the centers of gravity for the source class and destination class, and 

the algorithm stops when no point is moved from its class. 

 

2. The k-means algorithm and principal components regression 

In the k-means algorithm the classes are given by their gravity centers kiYi ,1, = . These 

points minimize the sum 

                                                                  ( )2
11

iij

n

j

k

i

YX
i

−∑∑
==

,                                                       (1) 

 

where iij njX ,1, =  are the ni points from R
p
 that are classified into the class i by the k-means 

algorithm. 

In the same manner we can classify paterns from R
p
 using principal components 

regression, more exactly the first j with 0<j<p principal components. In this case each class 

has at least j+1 points, initially exactly j+1 points. The other points are classified first in the 
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class with the less Euclidean distance. 

After the first classification, we take each point and if we have a distance less than those 

to the current class, we move the point to the new class. The algorithm stops when all the 

points are not moved. 

When we add a point to a class we compute again the orthogonal linear variety for this 

class. If we move a point from a class to another one, we have to compute again the 

orthogonal linear variety for both classes (those from we move and those in which we move 

the point). 

For this algorithm we have to compute the sample covariance matrices for the classes, 

and their eigenvectors and eigenvalues are computed using the Jacobi rotations method. 

 

3. A financial application 

For the following application X1 is the annual interest for an account without term, X2 is 

the annual interest for an account with the term one month, X3 is the annual interest for an 

account with the term 3 months, X4 is the annual interest for an account with the term 6 

months, X5 is the annual interest for an account with the term 9 months and X6 is the annual 

interest for an account with the term one year. Consider 29 banks as follows. 

 
                     Bank X1 X2 X3 X4 X5 X6 

ABN-Ambro Romania 0.25% 3.5% 3.75% 3.75% 0 3.75% 

AlphaBank 0.1% 6.25% 6.5% 7% 7% 7.25% 

Banc Post 0 7.25% 7.25% 7.15% 0 7.15% 

Banca Comercială Carpatica 1% 7.5% 7.55% 7.6% 7.75% 7.8% 

BCR 0.25% 6% 6.25% 6.5% 6.75% 7.5% 

Banca Italo-Romena 0 5.5% 5.75% 6% 6.15% 6.25% 

Banca Românească 0.75% 7.3% 7.75% 8.05% 8.1% 8.1% 

Banca Transilvania 0.25% 7.5% 7.5% 7.5% 7.75% 7.75% 

Bank Leumi Romania 0.25% 7.5% 7.5% 7.75% 7.75% 8% 

Blom Bank Egypt 0.1% 6% 6.5% 6.5% 6.75% 7% 

BRD-Groupe Société Générale 0.25% 5.5% 5.6% 5.65% 5.65% 5.75% 

C.R. Firenze Romania 0.1% 6.5% 6.75% 7% 7.25% 7.5% 

CEC 0.25% 7% 7% 7.25% 0 7.25% 

Citibank Romania 1% 4.28% 4.28% 4.28% 3.87% 3.46% 

Emporiki Bank 0.5% 6.75% 7% 7.25% 7% 7% 

Finansbank 0.1% 7.5% 8% 8% 8% 8.5% 

HVB-łiriac Bank 0.1% 6.4% 6.3% 6.2% 6.1% 6.1% 

ING Bank 6.85% 5.5% 5.75% 6% 6.25% 6.5% 

Libra Bank 0 8% 8.1% 7.6% 7.6% 8.5% 

Mind Bank 0.25% 7% 7% 7.25% 7.5% 7.75% 

OTP Bank 0.25% 6.25% 6.5% 7% 7% 7.25% 

Piraeus Bank 0.5% 7% 7.1% 7.25% 7.1% 7.35% 

Pro Credit Bank 7% 7.5% 7.65% 7.7% 0 7.85% 

Raiffeisen Bank 0.25% 4% 4.25% 4.5% 4.6% 4.75% 

Romanian International Bank 0.25% 6.5% 6.75% 7% 7.5% 7.75% 

Romexterra 0.25% 7.5% 7.75% 7.75% 8.1% 8.1% 

San Paolo IMI Bank 0.1% 6.5% 6.7% 6.8% 7% 7.2% 

Uni Credit Romania 0.1% 5% 5% 5.25% 5.5% 5.5% 

Wolksbank 0.1% 4.5% 4.75% 4.5% 3.5% 3.25% 

 

The orthogonal regression line is  

d:{0.04837+0.00197X1+0.53627X2 0− .79983X3 0+ .26942X4+0.00536X5 0− .0085X6=0, 

0− .40228 0− .00842X1 0− .48134X2 0− .03852X3 0+ .83753X4 0− .00819X5 0− .26124X6=0, 

0− .71162+0.03716X1+0.48786X2+0.35302X3 0+ .05034X4+0.06596X5 0− .79316X6=0, 

1.64803+0.82789X1 0− .21195X2 0− .19145X3 0− .16583X4+0.42717X5 0− .1518X6=0, 
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6− .64018+0.54586X1+0.34282X2+0.33464X3 0+ .32816X4 0− .48029X5+0.36627X6=0} and 

the error is 191.00977. 

If we consider 2 classes we obtain the orthogonal regression lines 

d1:{0.03475 0+ .00086X1 0+ .41303X2 0− .79344X3 0+ .44436X4 0− .02473X5 0− .04238X6=0, 

0− .24446 0− .0014X1 0− .62098X2 0+ .10689X3 0+ .74741X4 0− .01053X5 0− .2103X6=0, 

1− .69801 0+ .05743X1 0+ .52864X2 0+ .41568X3 0+ .17852X4 0− .07815X5 0− .71167X6=0, 

2− .53695 0+ .05594X1 0+ .2102X2 0+ .25308X3 0+ .25662X4 0− .78251X5 0+ .45877X6=0, 

0− .52383 0+ .9967X1 0− .03907X2 0− .03287X3 0− .01913X4 0+ .0563X5 0+ .02123X6=0} and 

d2:{ 5− .55656 0− .03768X1 0+ .63086X2 0− .24548X3 0+ .67669X4 0− .02752X5 0− .28577X6=

0, 1− .2405 0− .00603X1 0− .10724X2 0+ .77483X3 0+ .12312X4 0+ .00681X5 0− .61065X6=0, 

1− .87204 0− .042X1 0− .64434X2 0− .01971X3 0+ .70703X4 0− .04215X5 0− .23416X6=0, 

12− .70244 0− .12386X1 0+ .38094X2 0+ .57381X3 0+ .13034X4 0− .14573X5 0+ .68706X6=0, 

5− .17038 0+ .94024X1 0+ .05545X2 0+ .08592X3 0+ .09078X4 0+ .2912X5 0+ .11155X6=0}, 

the classes C1={ABN Ambro Romania, Alpha Bank, BCR, Banca Italo-Romena, Blom Bank 

Egypt, BRD-Groupe Société Générale, C.R. Firenze Romania, Citibank Romania, Emporiki 

Bank, HVB-łiriac Bank, ING Bank, Mind Bank, OTP Bank, Piraeus Bank, Raiffeisen Bank, 

Romanian International Bank, San Paolo IMI Bank, Uni Credit Romania, Volksbank} and 

C2={Banc Post, Banca Comercială Carpatica, Banca Românească, Banca Transilvania, 

Bank Leumi Romania, CEC, Finansbank, Libra Bank, Pro Credit Bank, Romexterra} and the 

error 84.49813.  

If we consider 5 classes we obtain the orthogonal regression lines 

d1:{ 2− .30278 0− .01425X1 0− .62292X2 0+ .59308X3 0+ .30341X4 0− .27928X5 0+ .29994X6=

0, 0− .20254 0+ .93486X1 0+ .05054X2 0+ .25055X3 0− .07438X4 0+ .04281X5 0− .23096X6=0, 

3− .67379 0− .11524X1 0+ .62336X2 0+ .50028X3 0− .33188X4 0− .42384X5 0+ .24098X6=0, 

3− .23606 0+ .2531X1 0+ .27791X2 0− .40285X3 0+ .62327X4 0− .41266X5 0− .37103X6=0, 

1− .20155 0− .22007X1 0+ .23705X2 0+ .28491X3 0+ .5425X4 0− .08105X5 0− .71467X6=0}, 

d2:{X5=0, 0− .12781 0+ .01422X1 0+ .7146X2 0− .69939X3 0+ .00108X4 0+ .00138X6=0, 9− .04924 

0− .08943X1 0+ .14685X2 0+ .1497X3 0+ .97363X4 0− .00869X6=0, 8− .60955 0− .10667X1 

0+ .13211X2 0+ .13467X3 0− .04172X4 0+ .97534X6=0, 6− .7629 0− .0409X1 0+ .66957X2 

0+ .68257X3 0− .21146X4 0− .19846X6=0}, d3:{ 3− .10123 0− .32265X1 0+ .01865X2 0+ .03342X3 

0+ .02148X4 0+ .93412X5 0− .14623X6=0, 1− .21571 0− .01912X1 0+ .90218X2 0− .35507X3 

0− .2439X4 0− .00779X5 0− .00946X6=0, 1− .05915 0− .37093X1 0− .10422X2 0− .18675X3 

0− .12004X4 0+ .02357X5 0+ .89538X6=0, 0− .82081 0− .07122X1 0− .00005X2 0− .56058X3 

0+ .82377X4 0− .029X5 0− .03523X6=0, 6− .71939 0− .31954X1 0+ .39497X2 0+ .70794X3 

0+ .45481X4 0− .13435X5 0+ .12576X6=0}, d4:{ 1− .9058 0+ .078X1 0+ .00401X2 0− .00456X3 

0− .57944X4 0+ .81123X5 0− .00656X6=0, 1− .87683 0− .00754X1 0− .00069X2 0+ .00025X3 

0− .38536X4 0− .26737X5 0+ .88315X6=0, 3− .14662 0− .02419X1 0− .00226X2 0+ .95173X3 

0− .22277X4 0− .15259X5 0− .14388X6=0, 11− .18819 0− .03841X1 0+ .96176X2 0+ .08416X3 

0+ .18495X4 0+ .13249X5 0+ .12122X6=0, 6.39659 0+ .80545X1 0+ .18929X2 0− .15124X3 

0− .34991X4 0− .33115X5 0− .24586X6=0} and d5:{ 0− .07787 0− .28138X1 0+ .19615X2 

0− .55873X3 0+ .62899X4 0− .39359X5 0+ .14366X6=0, 0.04796 0+ .47872X1 0+ .52896X2 

0− .52138X3 0− .38659X4 0+ .12704X5 0+ .23152X6=0, 0− .20828 0− .54277X1 0+ .28241X2 

0− .23547X3 0− .06916X4 0+ .57523X5 0− .48428X6=0, 0− .49119 0+ .62627X1 0− .14361X2 

0− .1017X3 0+ .51736X4 0+ .27532X5 0− .48306X6=0, 0.4072 0+ .0693X1 0+ .61565X2 0+ .37429X4 

0− .49283X5 0− .48213X6=0}, the classes C1={ABN Ambro Romania, Alpha Bank, BCR, Blom 

Bank Egypt, C.R. Firenze Romania, OTP Bank, Romanian International Bank}, C2={Banc 

Post, CEC, Pro Credit Bank}, C3={Citibank Romania, ING Bank, Volksbank}, C4={Banca 

Comercială Carpatica, Banca Românească, Banca Transilvania} and C5={Banca Italo-

Romena, Bank Leumi Romania, BRD-Groupe Société Générale, Emporiki Bank, Finansbank, 
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HVB-łiriac Bank, Libra Bank, Mind Bank, Piraeus Bank, Raiffeisen Bank, Romexterra, San 

Paolo IMI Bank, Uni Credit Romania} and the error 3.09442.  

The orthogonal regression hyper-plane is H: 0.04837+0.00197X1+0.53627X2 0− .79983X3 

+0.26942X4+0.00536X5 0− .0085X6 and the error is 0.23192.  

If we consider 2 classes we obtain H1: 0− .32534 0− .0064X1 0− .65531X2+0.75341X3 

0− .05268X4 0− .01057X5 0− .00293X6=0 and H2: 0− .0803 0− .40475X1 0− .20348X2 

0− .15505X3+0.71788X4+0.15299X5 0− .48164X6=0, the classes C1={ABN Ambro Romania, 

Alpha Bank, Banc Post, Banca Comercială Carpatica, BCR, Banca Italo-Romena, CEC, 

Emporiki Bank, ING Bank, Libra Bank, OTP Bank, Piraeus Bank, Pro Credit Bank, 

Romanian International Bank, Volksbank} and C2={Banca Românească, Banca Transilvania, 

Bank Leumi Romania, Blom Bank Egypt, BRD-Groupe Société Générale, C.R. Firenze 

Romania, Citibank Romania, Finansbank, HVB-łiriac Bank, Mind Bank, Raiffeisen Bank, 

Romexterra, San Paolo IMI Bank, Uni Credit Romania}, and the error 0.03317.  

If we consider 4 classes we obtain H1: 0− .38315+0.08054X1 0− .66972X2+0.73788X3 

0− .00026X4 0− .0167X5 0− .0154X6=0, H2:0.09818+0.4909X1+0.23129X2 0− .11737X3 

0− .5868X4 0− .14256X5+0.57191X6=0, H3: 1− .04913+0.07788X1 0− .08447X2+0.88105X3 

0− .23123X4 0− .0201X5 0− .39583X6=0 and H4: 0− .32802+0.34105X1 0− .48925X2+0.59427X3 

0− .44424X4+0.3X5+0.06173X6=0, the classes C1={ABN Ambro Romania, Alpha Bank, Banc 

Post, Banca Comercială Carpatica, BCR, Banca Italo-Romena, Romanian International 

Bank, Volksbank}, C2={Banca Românească, Banca Transilvania, Bank Leumi Romania, 

Blom Bank Egypt, BRD-Groupe Société Générale, C.R. Firenze Romania, San Paolo IMI 

Bank, Uni Credit Romania}, C3={CEC, Citibank Romania, Emporiki Bank, Finansbank, 

HVB-łiriac Bank, ING Bank, Romexterra} and C4={Libra Bank, Mind Bank, OTP Bank, 

Piraeus Bank, Pro Credit Bank, Raiffeisen Bank} and the error 0.00115. 

  

4. Conclusions 

The applied k-means algorithm finds the minimum of error because there exists a finite 

number of classifications, and when we move a point to another class we obtain a smaller 

error. The error is smaller even if we only move the point and we consider the same 

orthogonal regression linear varieties.  

We can also remark that if we increase the number of classes the error decrease. We can 

explain this as follows. Suppose that at a given moment we have k optimal classes given by 

their orthogonal regression linear varieties of the dimension d. From some classes with at 

least d+2 points we can move d+1 points to a new class given by the linear variety of the 

dimension d containing these points. Even if we consider the previous k classes given by the 

same linear varieties, the error decrease.  

If we increase the dimension d the error decrease due to the fact that the orthogonal 

regression linear variety with the dimension d is included in those with the dimension d+1,  

and the three perpendiculars theorem. 
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