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Continuous—Time Financial Econometrics

MANUEL ARAPIS AND JI1TI GAO!, The University of Western Australia, WA 6009, Australia

Abstract

This study applies the nonparametric estimation procedure to the diffusion pro-
cess modeling the dynamics of short-term interest rates. This approach allows us to
operate in continuous-time, estimating the continuous-time model, despite the use of
discrete data. Three methods are proposed. We apply these methods to two important
financial data. After selecting an appropriate bandwidth for each data set, empirical
comparisons indicate that the specification of the drift has a considerable impact upon
the pricing of derivatives, through its effect on the diffusion function. Indeed, this
impact is more substantial than that reported in the literature.

KEY WORDS: Diffusion process, drift function, kernel density estimation, stochas-
tic volatility.

1. INTRODUCTION

The application of continuous-time mathematics to the field of finance dates back to 1900
when Louis Bachelier wrote a dissertation on the theory of speculation. Since Bachelier, the
continuous-time approach to pricing assets such as derivative securities has evolved into a
fundamental finance tool. The recent rapid expansion of asset pricing theory may be largely
attributable to the seminal work of Merton (1973) and Black and Scholes (1973). Their
work changed the way in which finance and asset valuation was viewed by practitioners,
consequently laying the foundation for the theory of pricing derivative securities. Many
papers have since been written on the valuation of derivatives, creating important extensions
to the original model.

A time series model used extensively in finance is the continuous-time diffusion, or It6
process. In modeling the dynamics of the short-term riskless rate process {r;}, for example,
the applicable diffusion process is:

dry = p(ry)dt + o(r:)dBy (1.1)

where p(-) = u(-,0) and o(-) = o(-,0) are the drift and volatility functions of the process
respectively, and can be indexed by 6, a vector of unknown parameters, and By is the standard
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Brownian motion. The diffusion function is also referred to as the instantaneous variance.
The model developed by Merton specified the drift and diffusion functions as constant. This
assumption has since been relaxed by most researchers interested in refining the model in
order to describe the behavior of interest rates. The prices generated by such modified
models are generally believed to better reflect those observed in the market.

A vast array of models has been put forward in an attempt to explain the aberrant
behavior of the short-term riskless rate, which is one of the fundamental prices determined

in practice today. Some of the most popular models developed are shown below:

dr = «(f—r)dt+ odB, (1.2)
dr = B —r)dt+ or'/?dB, (1.3)
dr = a8 —r)dt+ ordB, (1.4)
dr = r{k—(0? - ka)r}dt+ or’?dB, (1.5)
dr = k(a—r)dt+ or’dB, (1.6)
dr = (a_ir™' + ag + oqr + apr?)dt + or*/2dB. (1.7)

Model (1.2) was used by Vasicek (1977) to derive a discount bond price model. Unlike the
model developed by Merton (1973) and Black and Scholes (1973), whose respective process
follow Brownian motion with drift and Geometric Brownian Motion (GBM), Vasicek utilizes
the Ornstein-Uhlenbeck process. This model has the feature of mean-reversion, where the
process tends to be pulled to its long-run trend of g with force . This force is proportional
to the deviation of the interest rate from its mean. This model specifies the volatility of the
interest rate as being constant. By definition, the volatility function generates the erratic
fluctuations of the process around its trend. Cox, Ingersoll and Ross (CIR) (1985) utilize
model (1.3) to model term-structure. It is the square root process. Not only does the drift
have mean-reversion, but the model also implies the volatility o(-), of the process increases
at a rate proportional to /7. Thus the diffusion increases at a rate proportional to 7. Model
(1.4) (see Brennan and Schwartz 1980) was developed to price convertible bonds. It not only
possesses the mean-reversion property, but the model also implies that the instantaneous
variance o2(-) of the process increases at a rate proportional to r2. Model (1.5) is the inverse
of the CIR process discussed in Ahn and Gao (1999) and then Ait-Sahalia (1999). Model
(1.6) is the constant elasticity of volatility model proposed in Chan, Karolyi, Longstaff and
Sanders (1992). The nonlinear drift model (1.7) was proposed in Ait-Sahalia (1996a).

As well as the recent developments made in the application of continuous-time diffu-
sion processes to the finance world, there has also been much work done in the adoption
of statistical methods for the estimation of these continuous-time models. The main es-
timation techniques encountered in the majority of the literature (see Sundaresan 2001)

include maximum likelihood (ML), generalized method of moments (GMM) and, more re-
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cently, nonparametric approaches. ML and GMM both require us to firstly parameterize the
underlying model of interest. That is, we apply these methods to estimate the parameters
of the diffusion process, such that they are consistent with the restrictions we have imposed
on the model by the parameterizations. This is comparable to fitting a linear regression to
nonlinear phenomena for reasons of convenience. It thus seems reasonable that we look for
an approach which places the least restrictions on models so that we have empirical rather
than analytical tractability.

Empirical researchers have recently shown a preference for nonparametric alternatives.
Its only prerequisite is that accurate data is used. Such an approach is useful when approx-
imating very general distributions, and has the additional advantage of not requiring the
functional form specification of the drift and diffusion functions in our model of the short-
term riskless rate (1.1). By leaving the diffusion process unspecified, the resulting functional
forms specified by this method should result in a process that follows asset price data closely.
This method requires a smooth density estimator of the marginal distribution 7(-) and uti-
lization of a property of (1.1), similar to that of a normal random variable whose distribution
is explained entirely by its first two moments, to characterize the marginal and conditional
densities of the interest rate process. The first two moments of the normal distribution are
its mean and variance. For the case of the diffusion process, they are the drift and diffusion
functions. Thus, the functions are formed such that they are consistent with the observed
distribution of the available data.

Ait-Sahalia (1996a) was among the first to pioneer the nonparametric approach. The
paper notes, as with Chan, et al (1992) and Ahn and Gao (1999) that one of the most
important features of the process given by (1.1) in its ability to accurately model the term
structure of interest rates, is the specification of the diffusion function o%(-). By qualifying
the restriction on the drift function u(-), to the linear parametric class u(ry; 0) = B(a — 1),
which is consistent with the majority of prior research, the form of the diffusion function is left
unspecified and estimated nonparametrically. Jiang and Knight (1997), however, argue that
this is effectively a semiparametric approach because of the linear restriction imposed on the
drift function. Jiang and Knight (1997) were able to develop an identification and estimation
procedure for both the drift and diffusion functions of a general It6 diffusion process. They
too have used nonparametric kernel estimators of the marginal density function based on
discretely sampled data and the property of the Ito diffusion process, analogous to that
used by Ait-Sahalia (1996a). In contrast to Ait-Sahalia (1996a), the drift function is left
unspecified. Jiang and Knight (1997) suggest that the diffusion term can be identified first
because it is of lower order than the drift. It is noted that the diffusion term is of order v/dt
whereas the drift term is of order dt. These estimators as with that of Ait-Sahalia (1996a) are
shown to be pointwise consistent and asymptotically normal. Other important approaches
include Stanton (1997), Pritsker (1998), Chapman and Pearson (2000), Chen, Hirdle and



Li (2003), Fan and Zhang (2003), Gao and King (2003, 2004), Chen and Gao (2004, 2005),
Durham (2004), Hong and Li (2004), Jones (2004), and Li, Pearson and Poteshman (2004).

Unlike the work by Ait-Sahalia (1996a) and Jiang and Knight (1997), in order to avoid
undersmoothing we propose an improved and simplified nonparametric approach to the
estimation of both the drift and diffusion functions, and then establish the mean integrated
square error (MISE) of each nonparametric estimator for the case where the bandwidth is still

~1/5 where T is the number of the data under consideration. We then apply

proportional to T’
the proposed nonparametric approach to (i) the Federal Funds rate data, sampled monthly
between January 1963 and December 1998 and (ii) the Eurodollar deposit rates, bid-ask
midpoint and sampled daily from June 1, 1973 to February 25, 1995. Three nonparametric
methods for estimating the drift and diffusion functions are established. For each data set,
we compute these estimators. We see that bandwidth selection is both difficult and critical
to the application of the nonparametric approach. After empirical comparisons we then
suggest for each given set of data, the best fitting model and bandwidth which produces the
most acceptable results. We see that the imposition of the linear mean-reverting drift does
in fact affect the estimation of the diffusion function. Differences between the three diffusion
estimators suggest the drift function may have a greater effect on pricing derivatives than
what is quoted in the literature.

We also propose a novel test on both sets of data and their subsets to reinforce our
conclusions regarding nonlinearity in the drift. The proposed test itself is novel method-
ologically in the following aspects. First, we establish that the size of the proposed test is
asymptotically correct under any model in the null. Second, we also show that the test is
asymptotically consistent when the null is false. Third, the implementation of the proposed
test uses a range of bandwidth values instead of using an estimation optimal value based
on a cross—validation selection criterion. Fourth, the implementation of the proposed test
is based on a simulated P—value rather than an asymptotic critical value of the standard
normal distribution

The paper is organized as follows. In Section 2, we describe the approach taken in
estimating nonparametrically the unknown functions of (1.1). We develop our own three
different estimators for the drift and diffusion functions. Section 3 proposes a novel test
and establishes some asymptotic results. Section 4 includes the application of the proposed
estimators to the two sets of data, drawing empirical comparisons with the three methods.
In Section 5, remarks on the comparisons and analyses are offered, with some direction for

further research. Mathematical details are relegated to the appendix.

2. NONPARAMETRIC ESTIMATION

The nonparametric approach to density estimation allows modeling of data where no
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priori ideas about the data exist. A given specification of the diffusion process can be
accepted or rejected based on a comparison of the densities implied by the parametric model
with its nonparametric density estimates (Ait-Sahalia 1996b). Then it is conceivable to
work in the reverse, through density matching, so that a model may be developed by first
estimating the density such that the model cannot be rejected. Given T discrete interest rate
observations with sampling interval (equivalently the time between successive observations)
A, the kernel density estimate of the marginal density is given by

#(r) = %;%K (7";”) (2.1)

where K(-) is the kernel function and h is the kernel bandwidth. The bandwidth is a

smoothing or scaling parameter. It can be seen as a contraposing measure of the amount

of information one wishes to attain. Large values of A tend to oversmooth the estimate and
thus hide structure while small values of h tend to undersmooth and thus might produce
excessive and confusing modes. As yet, we have not been provided with a definite form
or value for h that should be employed for use in this analysis (this is a topic in its own
right, needing further research). By comparing the nonparametric marginal density, drift
and diffusion estimates acquired by use of some existing ‘good’ bandwidth values, we can
suggest the most appropriate bandwidth to use for each of our two different sets of financial
data. Whereas bandwidth selection is critical for optimal results, the selection of the kernel
does not have a significant bearing on the overall result. We therefore utilize the normal
kernel function K(z) = J%? exp{—%} throughout this paper. Our nonparametric marginal
density estimate is,

#(r) = th Zexp { - ”) } . (2.2)

We now state the first result of this paper.

Proposition 2.1. Assume that Assumptions A.1, A.2 and A.3(i) listed in the appendiz
hold. Then

ol [0 e} = o Lo B [ o () + ot
1l b= o

= [2\6/%%—1—4/(7?"(7“))2&] T™5 +0(T—%)

when h = ¢T~3 for some ¢ > 0.

The proof of Proposition 2.1 is relegated to the appendix.

Before proposing estimators for the drift and diffusion functions in (1.1), we consider a

nonparametric time series model of the form:

}/t:f(Xt)"_g(Xt)eta t:152a"'aT (23)
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where f(-) and g(-) > 0 are unknown functions defined on R' = (—o0, 0), and {(X;,Y;)}
and {e;} are strongly stationary time series with E[e;|X;] = 0 and E[e?|X;] = 1. It is well
known that f(-) can be estimated by

foy e Vi K ()
f(x) - z— Xt -

Yo K (55)
Similarly, the conditional variance ¢*(z) = E[(Y; — f(X}))?|X; = z] can be estimated by
S (Y = f(0)°K (55)
Yoo K (25)

These estimators of f(-) and ¢g?(-) are known as the Nardaraya-Watson estimators. This

(2.4)

§*(x) = (2.5)

methodology is the basis for the derivation of the estimators fi;(-) and 6%(-) of Method 1
below. The remaining two methods rely on relationships between the drift, diffusion and
marginal density functions which alternatively describe the usual diffusion process.

From the Fokker-Planck equation (see (2.2) of Ait-Sahalia 1996a), we can obtain

d? d
@ )m(r) = 25 () (). (2.6)

Integrating and rearranging (2.6) yields

W) = 5o gy [ 0)m(0)] (2.7

Or alternatively, integrating (2.6) twice yields

2 _i ' T)miax)axr
o (r) = )/Ou()()d- (2.8)

7(r

These equations allow us to estimate the drift, u(-) given a specification of the diffusion,
0?(-) and marginal density, 7(-), or the diffusion term given the drift and marginal density

estimates.
2.1 Method 1

The drift and diffusion functions can be alternatively interpreted as

. T —T
plr) = LmE [7“55 t|rt}. (2.9)
12
oX(r) = lmE [Mm} , 0<t< o0 (2.10)
6—0 1)

Stanton (1997) refers to these estimators as first order approximations for u(-) and o?(-).
The author constructs a family of approximations to the drift and diffusion functions, and

estimates the approximations nonparametrically.
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Equations (2.9) and (2.10) suggest using an approximate form of model (1.1) below:
Ta+na — Tia = p(ria) A+ o(ria) - (Bugya — Bia), t=1,2,---, (2.11)

where A is the time between successive observations. In practice, A is small but fixed, as
most continuous-time models in finance are estimated with monthly, weekly, daily, or higher
frequency observations.

Now, (2.4) and (2.9) suggest estimating u(-) by

;‘F:_llK (’"*}:m) (’"(t+1)§—’"m>
Y K ()
Multiplying the numerator and denominator by 5 glves
T-1 _
st S K(752) (rema — )

Th Zt 1 (7‘ TtA)

r—"ra
- AT}m (r) ZK ( ) Ter)a = Tia)

(2.12)

fu(r) =

T-1
1 (r—rm)2>
_ Y exp (- ). —ria), 2.13
AThi(r)V/2m 4 eXp( 212 (rerna = ria) (2.13)

when K(z) = \/% exp{—%}. Similarly, by (2.5) and (2.10) we estimate o2(-) by

o 1 C(r=ma)*\ . )2
61(r) = ATh #(r)v/2r ZGXP< o2 ) ((t+1)A tA) . (2.14)

Let 7y (r) = fu(r)a(r), m(r) = p(r)n(r), Vi(r) = 62(r)a(r), and V(r) = o(r)a(r).

Since 1(()) and fi; () have the same asymptotic property for the MISE, we only establish the

MISE for 71 (r) below. The same reason applies to explain why 171(7“) has been introduced.
We now have the following propositions and their proofs are relegated to the appendix.

Proposition 2.2. Assume that Assumptions A.1, A.2 and A.3(iii) listed in the appendiz
hold. Then

E{/[ml(r)—m(r)]zdr} = Tih-#/(,uz(r)#—a?(r)A_ ) m(r )dr+h£ (m"(r))” dr
+ o (?Z) +o(h™%).

(i) When A is fized but h = ¢ T3 for some ¢ > 0, we have

{/[ml (r)]? dr }_ g—h+02h4 Cy-T 3 +0(T1). (2.15)
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(ii) When A =c¢; h? and h = ¢y T-7 for some ¢y > 0 and co > 0, we have

{/[Tm ()]’ dr} leA W =Dy-T#+0(T 7). (216)

Proposition 2.3. Assume that Assumptions A.1, A.2 and A.3(iii) listed in the appendiz
hold. Then

E{/ [Vl(r)—V(r)rdr} - = 2\[/ P) + 304 (A2 + 62(r)0* (A n(r )dr+o(T1h>
+ /(AH2( ym(r) + A—2h2( 2(r)m(r))” + hzv"( )>2d7‘+0(h4)_

(i) When A is fized but h = d T~5 for some d > 0, we have

. 2 C .
E {/ [Vl(r) - V(T)} dr} = Tth + CoA? + C3h* = O T75 + CoA%. (2.17)

(ii) When A = d; h? and h = d T-7 for some di > 0 and dy > 0, we have

E{/ [Va(r) —V(r)rdr} TfN +GAT+ ot = DT +0(T7H). (218)

Propositions 2.2 and 2.3 show that while 7y (r) attains the optimal MISE rate of 75,
V1 (r) normally cannot attain the optimal MISE rate. When the drift of model (1.1) vanishes
(i.e. u(r) = 0), however, the optimal MISE rate of 75 can be achieved for V;(r).

By making use of the conditional expectation expression and the nonparametric marginal
density estimator 7(-), we can forego the prior necessities of having to specify either of the

otherwise unknown functions, yu(-) and o?(-) in order to calculate the other.
2.2 Method 2

This method adopts a similar approach to that taken by Jiang and Knight (1997). They
have estimated o?(-) by

— T -r 2
5 TE (") [rasnar — mia]
~9 _
5k (r) = pe py— , (2.19)
Zt:l NK (T)

which is comparable to 67(-), where T is the number of interest rates observed, N is the

time length, Ay depends on T and Ar — 0 as T'— oo. Jiang and Knight (1997) estimate
the drift by

T 1 1 [ TtAp—T
) 1 [ dé%.(r) . Yo n K h
NJK(T) —_ JK( )+ 2 ( ) ( )

Gk (r (2.20)
2 JK T T —r ’
dr Zt:l K ( tA/f )




but as we shall see, this is unnecessarily complicated and can be simplified further by making
use of the normal kernel and the estimators of Method 1.
Multiplying 62(-) by our marginal density estimate 7 (-), and differentiating we obtain

1

T-1

~ ~ r—r

[U%(T)W(T)} = ThQA KI ( 3 tA) (T(H»l)A — TtA)2 (221)
t=1

because % = h™'K'(z/h). Now, using (2.7) and K'(z) = —zK (), we have

fia(r) = Qﬁl(T)% [63(r)7(r)]
1 = r—rin)? ,
B 27 (r)ATh2v/27h tzleXp (_%) (ria — 1) (resya — 12a) " - (2.22)

As can be seen from (2.22) with (2.20), the form of fi(r) is much simpler than that of
fyk(r). Now to estimate the diffusion function, we utilize (2.8) and fi;(-), as well as the

information contained in the marginal density, 7 (-). So

52 - 2 iy u)m(u)du
#B0) = =05 [ i

T-1
2 r w— oA
T #(NATh > [rerna —real / K ( - ) du
t=1 0
2 S ' u—r uU—T
= _ K — TtA — TtA
#()AT 75:21 [7+1)a — Tial /0 ( - ) d ( ;
2 — T T r
= — Ay A7 ‘ B
= ﬁ'(T)AT = |:q) < h ) ) ( A >:| I:T('H—l)A TtA:I , (223)

where ®(-) is the cumulative distribution function of the standard Normal random variable.

Equation (2.23) provides an explicit and computationally straightforward estimator for
o%(r). Let rig(r) = fio(r)a(r) and Va(r) = 62(r)# (). We now have the following propositions
and their proofs are relegated to the Appendix.

Proposition 2.4. Assume that Assumptions A.1, A.2 and A.3(iii) listed in the appendiz
hold. Then
30t(r)

E{/[mQ(r) —m(r)]%zr} = %#[ <M4(r)+ ), ﬁ“z(ri‘fz(”))w(r)dmo (Tih)

2 73 2
/ @%W(r)w(rn+%%[Au2<r)w<r>+a2<r)w<r>1+0<h2)) &




(i) When A is fized but h = d T for some d > 0, we have

E {/ [1g () — m(r)]? dr} = Ti}i?’ + CyA? 4+ C3h* = DT 5 + DyA?.

(ii) When A =c h? and h=d T~7 for some ¢ > 0 and d > 0, we have

E {/ [mQ(T) - m("')]Q dT‘} = Ti]i?’ + 02A2 + 03h4 = D3T_$. (224)

Proposition 2.5. Assume that Assumptions A.1, A.2 and A.3(iii) listed in the Appendiz
hold. Then

E{/[Vz(r)—V(r)]zdr} = %/ (/ [“2(3”01(8)]2 [@ (’“;5) —@(—%)]2w(s)ds> dr

+opf / ( Or%[u(x)w(w)]da:)2dr+o(h4).

(i) When A is fized but h=d T~5 for some d > 0, we have

E {/ [172(7«) - V(r)r dr} = T%z +Coht =T +0 (T*%) . (2.25)

(ii) When A =c¢ h? and h=d T=7 for some ¢ > 0 and d > 0, we have

E {/ [172(7«) - V(r)]2 dr} - TCAIQ +Cht= DT % 40 (T—%) . (2.26)

Overall, we suggest using

o h=d T s when A is fixed; and

e A=ch?and h=dT-7 when A — 0.

However, one may need to consider the pairs (my, V5) and (g, V]) separately, since V5
is constructed using mq, and My is based on V.

Therefore, we may also suggest using

e A=chand h=dT s for Propositions 2.2 and 2.5. In this case, the resulting rates

are

E { / (i (r) — m(r)]? dr} _ort, (2.27)
E { / [Va(r) v dr} _ o1t (2.28)
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e A=ch?and h=d T 5 for Proposition 2.3, and the resulting rate is
. 2
E {/ [Vl(r) — V(r)] dr} = CyT 5; (2.29)
e A=ch?>and h=d T 7 for Proposition 2.4, and the resulting rate is

E { / [a(r) — m(r)]? dr} — o1t (2.30)

Theoretically, we suggest using the pair (ji1(r),55(r)). The empirical comparisons in
Section 3 show that the pairs (ji1(r),5%(r)) and (fio(r), 55(r)) are both appropriate for the
two data sets. By considering both the theoretical properties and empirical comparisons of
the proposed estimators, however, we would suggest using the pair (fi1(r), 53(r)) for the two
sets of data.

2.3 Method 3

The estimators of the previous two methods rely on various alternative interpretations
of the diffusion process. Neither of them place any restrictions on the drift nor the diffusion
functions. For this method, we construct the diffusion function after placing the common
mean-reverting parameterization u(r;6) = B(a — r) on the drift, similar to the approach
taken by Ait-Sahalia (1996a). This restriction will allow us to see how the diffusion function
is affected when compared to the previous methods’ estimators.

The parameters § and « are estimated by ordinary least squares (OLS) estimation, and

denoted by /3’ and &, respectively. This suggests estimating u(r; @) by
fis(r) = u(rs ) = B(a — 7). (2.31)
The estimated mean-reverting drift term can now be substituted into (2.8) together with
the normal kernel density estimator for 7(-) to construct our diffusion term 62(-). Below we
state the final estimator. More complete mathematical details of this derivation are relegated
to the appendix.
From (2.8) and (2.31), we define a semiparametric estimator of o2(r) of the form

52 = 2 " w)7(u u:i ' w0 (u)du
52(r) = /Oug()()d )/Ou(,m()d

7(r

+ %HXT: {eXp (—%) — exp <—;§—A2 } } (2.32)
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As can be seen, 62(r) has an explicit and computationally straightforward expression
due to the use of the standard Normal kernel function. Let Vi(r) = 62(r)a(r). For the
nonparametric estimator 1732 (r), we establish the following proposition. Its proof is relegated

to the Appendix.

Proposition 2.6. Assume that Assumptions A.1, A.2 and A.3(ii) listed in the appendiz
hold. Then

E {/ [%3r) - V(r)]2dr} - % (/0 /OT(a —u)a—v)L (%) w(v)dvdu) dr
+ 4h* / ( /0 Tﬂ(a—u)w”(u)du>2dr.

When h=c T~3 for some ¢ > 0, we have

E {/ [173(7«) - V(r)rdr} = % YO =D T 340 (T*%) . (2.33)

Propositions 2.1-2.6 show that the MISEs of all the estimators except mq(r) attain the
minimum when A is fixed but h is proportional to T 5. Therefore, it is justified to use
h = c¢-T~5 with ¢ to be specified later in the empirical comparisons in Section 3 below.
In order to compare our empirical results with existing results, we also consider using the

theoretical optimum value h, = hf(—“T)T_% used in Ait-Sahalia (1996a) for the Euro data.

3. TESTING FOR LINEARITY

To formally determine whether the assumption on linearity in the drift in Method 3 is

appropriate for a given set of data, we consider testing

Ho: p(r) = u(r;6p) = Bo(ag — 1) versus Hi: u(r) # Bla—r) (3.1)

for some 0y = (v, By) € © and all § = (a, B) € ©, where O is a parameter space in R?.
We approximate the semiparametric continuous-time diffusion model dry = f(a—r)dt+

o(r;)dBy by a semiparametric time series model of the form

Y = Bla—ra) + o(ra)es, (3.2)
where Y, = “HDAT2 5(.) > 0 is unknown nonparametrically, and e, = M ~
N (0,A71).

We initially suggest a specification test of the form:
y sugg
T T _ .
ZSZI thl,t#s K (TtA hTSA) €s€t

== b
T T _ O A
V2XL S K2 (ragren) e

12
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where K (-) is the standard normal density function, h is the bandwidth parameter, and
& =Y, — f13(rsa).

As argued in Li and Wang (1998), and Gao and King (2003), the test statistic L has two
main features: (i) the test appears to be more straightforward computationally, and (ii) it is
not required to get a consistent estimator of the conditional variance involved. This implies
that the applicability of the test for testing the drift does not depend on the structure of
the conditional variance. Therefore, it is proper to apply the test to our case study once the
bandwidth is appropriately chosen.

As shown in the appendix, Ly (h) converges in distribution to the standard normality
when T — oo. Our own experience and others show that the finite sample performance of
Lz(h) is not good in particular when A is chosen based on an optimal estimation procedure,
such as the cross—validation criterion. The main reasons are as follows: (a) the use of an
estimation based optimal value may not be optimal for testing purposes; and (b) the rate
of convergence of Ly (h) to the asymptotic normality is quite slow even when {e;} is now a
sequence of normally distributed errors. In order to improve the finite sample performance
of Ly(h), we impose the following two measurements. We first propose using an adaptive
version of Lr(h) over a set of all possible bandwidth values. Second, we use a simulated
critical value for computing the size and power values of the adaptive version of Ly (h) instead
of using an asymptotic value of [y o5 = 1.645 at the 5% level. To the best of our knowledge,
both the measurements are novel in this kind of testing for linearity in drift under such a
semiparametric setting.

We then propose using an adaptive test of the form

L = fnax Ly(h), (3.4)
where Hy = {h = hmax@® 1 B> i, £=0,1,2,.. .}, in which 0 < Apin < Amax, and 0 <
a < 1. Let Jr denote the number of elements of Hp. In this case, Jr < log; /a(hmax /Pmin)-

Simulation Scheme: We now discuss how to obtain a simulated critical value for L*. The
exact a—level critical value, I} (0 < a < 1) is the 1 — « quantile of the exact finite-sample
distribution of L*. Because both the distribution of {e;} and 6, are unknown, [’ cannot be
evaluated in practice. We therefore suggest approximating [ by a simulated a-level critical

value, [, using the following simulation procedure:

1. For each t = 1,2,...,T, generate Y;* = [i3(r:a) + J3(r:a )€}, where {e;} is sampled

randomly from N (0, A™") for A to be specified as A = % for the monthly data and

A = o for the daily data, which fi3(r) and 63(r) are as defined in (2.31) and (2.32),
respectively. In practice, a kind of truncation procedure may be needed to ensure the

positivity of 63(-).
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2. Use the dataset {Y;*: ¢t =1,2,...,T} to re-estimate 6. Denote the resulting estimate
by 0*. Compute the statistic L* that is obtained by replacing Y; and 0 with Y and 0
on the right-hand side of (3.4).

3. Repeat the above steps M times and produce M versions of L* denoted by ﬁ;“n for
m = 1,2,...,M. Use the M values of [A,fn to construct their empirical distribution
function, that is, F*(u) = +; 2%21 I(L¥, < u). Use the 1 —a quantile of the empirical

distribution function to estimate the simulated a—level critical value, [,.

We now state the following results and their proofs are relegated to the appendix.

Proposition 3.1. Assume that Assumptions A.1, A.2 and A.4 hold. Then under H,

lim P(L* > 1,) = o

T—00

The main result on the behavior of the test statistic L* under H, is that [, is an asymp-

totically correct a—level critical value under any model in H,.

Proposition 3.2. Assume that the conditions of Proposition 3.1 hold. Then under H,

lim P(L* > 1) = 1.

T—o0

Proposition 3.2 shows that a consistent test will reject a false Hy with probability ap-
proaching one as T — oc.

To implement Propositions 3.1 and 3.2 to real data analysis, we need to compute the

P-value of the test for each given set of data as follows:

1. For each data set, compute
L* = max Ly (h), (3.5)

heHr

where Hy = {h = hmax@® : h > huin, k=0,1,2,...}, in which 75 = Amin < hmax =
1.1 (loglogT) ™", and a = 0.8 based on some preliminary calculations of the size and

power values of Ly (h) for a range of bandwidth values.

2. Compute é; = Y; — fi3(r:a) and then generate a sequence of bootstrap resamples {€;}
using the wild bootstrap method (see Hirdle and Mammen 1993) from {¢}.

3. Generate 2* = fi3(r¢a) + €. Compute the corresponding version L* of L* based on
{¥y}.

4. Repeat the above steps N times to find the bootstrap distribution of L* and then
compute the proportion that L* < L*. This proportion is a simulated P—value of L*.
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With the three methods now constructed, it is of interest to see how they compare.
More precisely, how the restriction placed on the drift function affects the estimation of the
diffusion. A number of studies note that the prices of derivatives are crucially dependent
on the specification of the diffusion function (see Ait-Sahalia 1996a), therefore qualifying
parametric restrictions on the drift function. The test statistic L* is also applied to formally

test linearity in the drift using the simulated P-value.

4. EMPIRICAL COMPARISONS

4.1 The data

We now apply the three pairs of estimators constructed previously to two different fi-
nancial data. A conclusion regarding which method best fits each data set will be offered.
Also suggested here is an optimal bandwidth, based on both the theoretical properties of
the MISEs in Propositions 2.1-2.4 and a comparison a number of common forms used in the
literature.

To analyze the effect the sampling frequency (interval) has on the results, we use both
monthly (low frequency) and daily (high frequency) sampled data. The three-month Trea-
sury Bill rate data given in Figure 1 below are sampled monthly over the period from Jan-
uary 1963 to December 1998, providing 432 observations (i.e. 7" = 432; source: H-15 Federal
Reserve Statistical Release). The number of working days in a year (excluding weekends
and public holidays) are assumed to be 250 (and 20 working days per month). This gives
A= %. Chan, et al. (1992) offer evidence that the Fed rates are stationary by showing that
the autocorrelations of month-to-month changes are neither large nor consistently positive

or negative.

‘Figure 1 near here‘

‘Figure 2 near here‘

The second data set used in this analysis to compare and contrast the primary results is
the high frequency seven—day Eurodollar deposit rate. The data are sampled daily from 1
June 1973 to 25 February 1995. This provides us with 7" = 5505 observations. Just as for the
Fed data, holidays have not been treated and Monday is taken as the first day after Friday
as there are no obvious weekend effects (Ait-Sahalia 1996b). Thus, our sampling interval
A = 5. The data are plotted in Figure 2 above. Ait-Sahalia (1996a) rejects the null
hypothesis of nonstationarity on this data based on results of an augmented Dickey-Fuller

nonstationarity test.

4.2 Bandwidth selection
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The choice of bandwidth or smoothing parameter is critical in any application of nonpara-
metric kernel density and regression estimation. Propositions 2.1-2.6 provide some kind of
guidance on how to choose the bandwidth in practice. Overall, we suggest using h = d T3
when A is fixed; and A = ¢ A2 and h = d T~7 when A — 0. As we deal with the fixed A
in this paper, the forms of the bandwidth selectors used are listed below.

h2 - 1—0 X T__
1
h3 = Z X T__
hi = 1.06x SS x T 5 (4.1)

where T is the number of observations and SS is the standard deviation of the data. Thus
hy and hy4 can, in this sense, be regarded as ’data-driven’ bandwidth choices. Pritsker (1998)
states that h4 is the MISE-minimizing bandwidth assuming the data came from a normal
distribution with variance SS?. As can be seen from Propositions 2.1-2.4, the second and
third bandwidths can be written as h = ¢ - Tfé, where c is a constant chosen to minimige
the asymptotic MISE of the estimator involved. For example, when 7(r) = \/%UW e_(T;tl:é: : ,
it follows from Proposition 2.1 that the theoretically optimum value of h is 255, T 5.
Thus, both hy and hs are attainable with a suitable choice of o,. We then selected the

bandwidth that gave, not only a smooth and informative marginal density estimate (see

Figure 3 below), but one that possessed the greatest consistency between the three drift
and diffusion estimators (see Figures 4 and 5 below for the Fed data and Figures 6 and 7
below for the Euro data). For the Euro data, we also borrowed bandwidth choices used by
Ait-Sahalia (1996a, 1996b), as he has also used this data set.

4.3 Results and comparisons

‘Figure 3 near here‘

For the Fed data, we ‘plugged-in’ the bandwidths A, hs, hs, hy of 0.00949,0.0297,0.0743
and 0.01 respectively, and estimated the marginal density, drift and diffusion functions. It
was found that the optimal bandwidth refers to hy (0.0297). The density estimate produced
for hy shown in Figure 3(A), appears to contain sufficient information. It is apparent with this
choice of bandwidth, even though the high rate period of 1980-82 is included in the sample,
the amount of information retained has produced a less accentuated right tail. Its shape and
symmetry about 0.055 closely resembles that of a Gaussian density. The densities produced
with the smaller bandwidths were overly informative while larger bandwidths resulted in
smooth, quadratic like curves. An in-depth comparison for the bandwidths h; and hs has

also been done and plots are available upon request.
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Figures 4 and 5 near here

Comparisons of the drift and diffusion estimators give similar results. The three drift
and diffusion estimators constructed using our optimal bandwidth choice are superimposed
for comparative purposes in Figure 4. The best estimators for the Fed data are given in
Figure 5. The drift functions f;(-) and fia(-) inherit similar nonlinearity for interest rates
over the entire range of r. The best linear mean-reverting drift estimate is plotted in the
bottom of Figure 4 and then Figure 5. The ordinary least squares method gave estimates
for the parameters e and S of fi3(+), of 0.07170 and 0.2721, respectively.

Looking now at the diffusion estimators we see 67(-) and &2(-) especially, are very similar.
They closely resemble one another over the entire range of 7 in both shape and magnitude (see
Figures 4 and 6). The curvature of 62(-) and 62(-) is close to that of a quadratic. This gives
some support for the process of Brennan and Schwartz (1980) whose instantaneous variance
increased at a rate proportional to 72 and to Chan, et al. (1992) who found o oc r49,

The best estimator 62(-) (see the bottom of Figure 4 and then Figure 7) is comparable
to 62(-) and &2(-) for low to moderate rates (i.e. rates below 12%). It lies above 67(-) and
65(-) for a greater (negative) mean-reverting force (fi3(-) < fi1(-), fia(-)). It appears to be a
linearly increasing function of the level of r (as in CIR 1985) for rates below 14% and this
is apparent in the bottom of Figure 4 and then Figure 5.

Given that the two nonparametric drift estimators are unlike the linear mean-reverting
specification (with their respective diffusion estimates 6%(-) and 63(-) differing from 62(-)),
we suggest here that the mean-reverting function is not appropriate for this data. Thus,
fi3(-) does indeed affect the estimation of the diffusion function and hence the pricing of
derivative securities. Based on the above, for the monthly sampled Federal funds rate data,
we believe that fi3(-) imposes an unnecessary restriction which results in the misspecification
of the diffusion function. Either of the pair (fi1(-),5%(-)) or (jiz(+),52(+)) is recommended for
this set of data.

The specification test L* proposed in Section 3 was then applied in order to formally
reject linearity in the drift. The null hypothesis Hy : u(r) = B(a — r) of linearity is rejected
at the 5% significance level. We obtain a simulated p-value of P < 0.001, which is much

smaller than the 5% significance level.

Figures 6 and 7 near here

Now to the Euro data. The forms of hq,..., hs were applied to this data. In this case,
because we have 5505 observations, the bandwidths were respectively 0.006413,0.01786,0.044,
and 0.0068. We also consider the bandwidth h, = 0.01347 used by Ait-Sahalia (1996a) for the
same data. The best estimators for the Euro data are given in Figures 6 and 7. Surprisingly,

our optimal bandwidth for the Euro data also corresponds to hy = % x T~5. Similar to the
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Fed data analysis where we concluded h; and h4 severely undersmooth the density estimate,
we infer similar results for the Euro data. With the Euro data consisting of 5505 observations,
it is clear we would obtain a much smaller sample variance than the Fed data (consisting
of 432 observations). Our best marginal density estimate, drift and diffusion estimators for
the Euro data are reported in Figures 3(B) and 6 above. The drift and diffusion estimators
are superimposed for comparative purposes in Figure 7 above. It is apparent that the two
unrestricted drift estimators, fi;(-) and fio(-) inherit very similar nonlinearity over the entire
range of r (see Figure 7). Both estimators seem to exhibit mean reversion for r > 15%,
while our linear mean-reverting drift estimator fi3(-) (see also Figure 7) is unexpectedly
comparable to fi1(-) and fo(-) for 7 < 20%. The diffusion functions constructed using the
unrestricted drift closely resemble one another, and are practically indistinguishable for the
entire range of r. They both increase somewhat linearly for r < 11%, both increase at a
greater rate than r for r > 11% and possess a ‘hump’ at » = 15% where the instantaneous
variance jumps (see Figure 7).

For the Euro data, the best OLS estimates of a and 3 are 0.08308 and 1.596 respectively,
which are analogous to the first step OLS estimates computed by Ait-Sahalia (1996a). We
see the Euro data has stronger mean-reversion than the Fed data (8 = 0.2721) which is most
likely the result of more frequent sampling. Ait-Sahalia (1996a) also found /3 to be larger for
shorter-maturity proxies (seven-day Eurodollar vs. three-month T-bill). We see from Figure
7 above that the similarity of the three drift estimators may suggest the mean-reverting
specification for drift is applicable (at least for r < 20%). The similarity of the two diffusion
functions 67(-) and 62(-) and the deviation of 6%(-) from these two estimators may however,
suggest otherwise.

The proposed test L* was run on the data. Our simulation returns a simulated p-value
of P < 0.001, which directs us to strongly reject the null hypothesis of linearity at the 5%
significance level. A likely explanation for this result is that as we have a long and frequently
sampled data set, the use of even the slightest deviant from the actual drift will result in a
compounded error effect or deviation of the specified model from the actual process. Thus, we
suggest the mean-reverting drift function specification is not appropriate for high frequency
data (more strongly than for the monthly sampled Fed data). To determine whether the
high rate period of 1980-82 was responsible for the strong rejection of linearity, we also
ran the test on the sub-sample and calculated p—value. The result suggests that linearity
in the drift is also rejected for the sub-sample. Not only did we run the linearity test on
the sub-sample of the Euro data, but we also estimated the drift and diffusion estimators
for this set. Here, we‘plugged-in’ the bandwidth value of hy; = 0.01653 which Ait-Sahalia
(1996a) reported was optimal for this sub-sample. The two unrestricted drift estimators
exhibit similar nonlinearities for r < 10% with mean-reversion for r > 10% while their

corresponding diffusion estimators resemble the quadratic diffusion specification of Brennan
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and Schwartz (1980). The diffusion estimator 63(-) appears to be comparable to the constant
volatility specification of Vasicek (1977) for » < 12%. Such a difference in form is evidence

against the linear mean-reverting drift function.

5. CONCLUSION

Many different specifications for the drift and diffusion functions of the common It
diffusion process have opened up a new area of research. Some recently published papers
empirically compare the plethora of proposed models.

In this study, we adopted a similar nonparametric approach as Ait-Sahalia (1996a) and
Jiang and Knight (1997) to estimate the diffusion process. We used two popular short rates:
the three—month Treasury Bill and the seven—day Eurodollar deposit rates. Based on our
analysis, we suggested the use of the bandwidth h = 11—0 x T=5 for both sets of data. We
then demonstrated how the bandwidth choice can have a dramatic effect on the drift and
diffusion estimates. We rejected linearity in the drift despite theoretic economic justification,
both empirically and more formally with the specification test L. Overall, we would suggest
using the pair (j11(r), 52(r)) for the two sets of data.

The nonparametric specification of the diffusion function of Method 3 is seen to differ
significantly from the diffusion function estimates of Methods 1 and 2. We thus conclude
that restrictions on the drift have a greater effect on the volatility than what is suggested
in the literature. Our empirical comparisons suggest 63(-) is misspecified primarily as a
result of the assumptions imposed on it. That is, the assumption of a linear mean-reverting
drift has a substantial effect on the final form of the diffusion. We suggest relaxing the
drift assumption. The unrestricted drift estimates indicate that the fitting of a second order
polynomial may be more appropriate. It would be interesting to regenerate these estimators
but with a quadratic restriction on the drift. The results could then be compared with the
diffusion function estimates generated by Method 1 and 2. Such an exercise is deferred to
future research.

Extended research in this area should include a comparison of the nonparametric density,
drift and diffusion estimators with those implied by some of the popular parametric models
(see Alt-Sahalia 1999). In particular, to consider our nonparametrically estimated marginal
density with say, the Gamma density of CIR (1985) applied to the Eurodollar data. Or, to
review how the unrestricted diffusion estimators actually compare to the diffusion specifica-
tions of CIR (1985), Brennan and Schwartz (1980) and Chan, et al. (1992). Additionally, it
would be useful to apply both the popular existing parametric models and our nonparametric
estimates to price derivatives (e.g. bond options) in an attempt to determine the accuracy

of the prices computed.

19



In this study, we selected our optimal bandwidth based on comparing the density, drift
and diffusion estimators computed for a number of different bandwidths. That is, we used
the ‘plug-in’ method and as such only approximated the optimum value. This procedure was
selected because other interval based error-minimizing techniques requires one to discretize
our continuous—time model. However, this is impractical for our case for numerous reasons.

Further work is needed to select a bandwidth based on some minimization function.
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APPENDIX

A.1 Assumptions

Assumption A.1. (i) Assume that the process {r:} is strictly stationary and a-mixing with the
mixing coefficient a(t) = Cpa! defined by

a(t) =sup{|P(ANB) - P(A)P(B)|: AcQf,B € O,

for all s,t > 1, where 0 < Cy < o0 and 0 < a < 1 are constants, and Qz denotes the o-field
generated by {r; : i <t < j}.
(ii) The bandwidth parameter h satisfies that
lim h=0 and lim Th® = co.
T—o0 T—o0
Assumption A.2. (i) The density function m(r) is three times continuously differentiable in r.
(ii) The drift and the diffusion functions u(r) and o?(r) are three times continuously differen-
tiable in 7 € RT = [0, 00), and o(r) > 0on R™.
(iii) The integral of f(v) = a2(v exp( [2 u(z) d:v) converges at both boundaries of RY,

o2(x)

where 7 is fixed in RT.
(iv) The integral of s(v) = exp ( [724 5 (z dx) diverges at both boundaries of R*.

Assumption A.3. (i) The second derivative of 7(r), "’ (r), is square integrable.

20



(ii) The following functions are integrable:

(re'(r))? and ( /0 ' w"(u)du)Z.
for i = 1,2.

(iii) The following functions are integrable:

w0, () (o) . (Eremen)

for+ =1,2,3, and
r d2 2
( / @[u(w)ﬁ(w)]dw) .

Assumption A.4. (i) For 9(r) = o%(r) or o(r), ¥(r) satisfies the Lipschitz type condition:
9 (r + v) — ()| < ¥(r)|v| for v € S (any compact subset of R') and E [¥?(r)] < oc.

(ii) Assume that the set Hp has the structure of (3.4) with cmax (loglogT)_1 = hmax > Pmin >
T~ for some constant y such that 0 < v < %

Remark A.1. Assumptions A.1-A.4 are quite natural in this kind of problem. Assumption
A.1(i) assumes the a—mixing condition, which is weaker than the f—mixing condition. Assumption

1/5 can be used. Assumption A.2

A.1(ii) ensures that the theoretically optimum value of h = ¢- T~
is equivalent to Assumption Al of Ait-Sahalia (1996a), requiring the existence and uniqueness of
a strong solution to model (1.1). Assumption A.3 basically requires that all the integrals involved
in Propositions 2.1-2.6 do exist. Assumption A.4 is only used for the establishment and proof of
Propositions 3.1 and 3.2. Similar conditions have been assumed in Assumptions 2 and 6 of Horowitz

and Spokoiny (2001), and Assumption A.2 of Chen and Gao (2004).
A.2 Proof of Propositions 2.1-2.6

As there are some similarities among the proofs of Propositions 2.1-2.6, we only provide the
proof of Propositions 2.4 and 2.5 in some detail. However, the details of the other proofs are

available upon request.
Recall that Y; = W and observe that

Y = pu(Xy) + o(Xyp)e,

B —BiA
where X; = r;a and ¢, = —HH2 12

We now have

o) = i) = o : St (B
Y T_: =0 g (<20 o) + 42000 + o2(X)€)
- A TZ: = () wxoxie



Thus, a Taylor expansion implies that as h — 0

—-A r—sK<T—s

Bl = g [ K (D) ) + oe)edin(s)ds

= — [ zK(z) [p*(r — zh) + o*(r — ha)o}]| n(r — hz)dz

= o (w0 + K [ SR )

= SH0)+ ZoO R + o),

where 02 = E[e?] = AL, p(r) = p%(r) + 0%(r)o?, and £ lies between r — hz and 7.
This implies

Ad

Elin@)] = m)+ 5 p2e)er)] + oD @h + olh?).
Let
72, — (Xth— r) ® (_Xth_ r) W(X)o(Xy)er
and
W, — (Xth—T> K (_Xth—?") |:/J2(Xt) +02(Xt)€?] _
Similarly,
A T N
ma(r) — E [fa(r)] = T2 Z Zy + ITHE Z (W — E[Wy))
t=1 t=1

= It + bor.

Analogous to (A.1), we obtain that as h — 0

}ﬂ

-1 1

Y E[Z,Z)

1 s=1,#t
- (1+o(1))§§/(3;’“>21{2 (%) 12(s)02 (s)m(s)ds
A2 2 2.2

= (1+0(1)) T;O q(r)/w2K2(:v)dx+ AT—;‘L()q"(T)/w4K2($)d$,

A2 T-1
Bl = (o) Y B[] +
t=1 t

Il

where ¢(r) = p%(r)o?(r)n(r).
Similarly, we can show that as h — 0
A2
4Th3

E[I22T] =

Equations (A.1)—(A.4) then imply Proposition 2.4.
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Observe that

o 54529
J L x (5 pormcora]
= 2 [ )dU+h2/0d2[u()()]du

v+ [ mldu-+ o) (A5)

SN SN

using a Taylor expansion.
Let T(X;) = ® (*52t) — @ (=¢). Similar to (A.3) and (A.4), one can obtain that as T — oo

A.3 Proofs of Propositions 3.1 and 3.2

To prove Propositions 3.1 and 3.2, we need only to verify certain conditions of Theorems 3.1 and
3.2 of Chen and Gao (2004). As this paper is only concerned with the specification of linearity in the
conditional mean in the form of (3.2), Assumption A.1 of Chen and Gao (2004) holds automatically.
As the estimate 6 involved in (2.31) is the least-squares estimator, Assumption A.1 of Chen and
Gao (2004) also holds automatically. In addition, various parts of Assumption A.2 of Chen and
Gao (2004) also hold trivially, since {e;} in (3.2) is a sequence of independent normal errors and
also independent of {r;a}. Note that Assumption A.1(i) of this paper is the same as Assumption
A.1(ii) of Chen and Gao (2004). Thus, all the corresponding conditions of Theorems 3.1 and 3.2
of Chen and Gao (2004) can be satisfied. We therefore omit the detailed proofs of Propositions 3.1

and 3.2. However, the details are available from the authors upon request.

A.4 Proof of Equation (2.32)

Keeping in mind that K(z/h) = f exp{— 2h2} and #(r) = 7 S K (=F2), we now derive

our estimator, 63(-). Recall equation (2.8)

52(r) = —2 TAU'Afruu
#30) = =03 | At

Now, evaluating the integral on the right of this identity,
/T (u: By (u)du = /TB (6 - ZK 712 ) g
o piu; = . Th
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Figure 1: Three-month T-Bill rate, January 1963 to December 1998.

27



The Eurodollar Deposit Rate Data: 1973-1995
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Figure 2: Seven-Day Eurodollar Deposit rate, 1 June 1973 to 25 February 1995.
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Figure 3: A: Nonparametric kernel density estimator for the Fed data with hy = 0.0297. B:
Nonparametric kernel density estimator for the Euro data with hy = 0.01786.
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Figure 4: Nonparametric drift and diffusion estimators for the Fed data with hy = 0.0297.
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Drift functions (I),(11) & (111)
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Figure 5: The best estimators for the Fed data with hy = 0.0297. The (o) refers to ji; and
62, (+) to jiz and 63 and (x) to ji3 and &3.
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Figure 6:
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Nonparametric drift and diffusion estimators for the Euro data with hy = 0.01786.
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Figure 7: The best estimators for the Euro data with hy = 0.01786. The (o) refers to fi; and
62, (+) to jiz and 63 and (x) to ji3 and &3.
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