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Abstract

We construct an index theorem for smooth infinite economies with

separable utilities that shows that generically the number of equilbria

is odd. As a corollary, this gives a new proof of existence and gives

conditions that guarantee global uniqueness of equilibria.
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1 Introduction

Models of competitive markets have a consumption space which may be

infinite dimensional. Many authors have addressed the problem of studying

if equilibrium prices are locally unique in infinite dimensions, including the

earlier work of Araujo [2] and also the papers of Kehoe, Levine, Mas-Colell

and Zame [10], Chichilnisky and Zhou [5], Shannon [12], Shannon and Zame

[13] and Covarrubias [6]. In all these cases it has become clear that there is

a trade-off between the generality of the consumption space, the generality

of utility functions and the existence and differentiability of the individual

demand functions.

However, an area that still remains largely unexplored in any such case

is that of counting the numer of equilibria. When the consumption space

is finite dimensional, Dierker [8] gave the first solution to this problem, and

constructed an index theorem that showed that the number of equilibria is

generically odd. He does this by interpreting the excess demand function

as a vector field on the space of prices, and noticing that equilibria are the

zeros of this vector field. He defines the notion of index of an equilibrium

price system and shows that the sum of these indices is constant and equal

to 1. Since the number of equilibria is generically odd, in particular it can

never be zero and so Dierker’s index theorem gives a new proof of existence

of equilibria. Additionally, if the index at each equilibrium price is > 0 then

the index theorem also gives conditions for global uniqueness of equilibria.
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In infinite dimensions, one of the few results on uniqueness has been

provided by Dana [7] taking into consideration a model of a pure exchange

economy where the agents’ consumption space is Lp
+(µ) and agents have

additively separable utilities which fulfil the (RA) assumption that agents’

relative risk aversion coefficients are smaller than one. In this case, Dana

shows that one can work with the space of utility weights to avoid using the

demand approach that may not be well defined. Dana finally shows that

if utilities fulfil the (RA) assumption then the excess utility map is gross

substitute which in turn implies existence and uniqueness of equilibrium.

In this paper, it is our aim to also consider separable utilities as in [7]

but to construct an infinite dimensional analogue of Dierker’s result: that

the number of equilibria of smooth infinite economies is odd and hence to

study conditions that guarantee global uniqueness of equilibria. We present

an analytical notion that has not appeared in the economic literature which

is that of a Z-Rothe vector field. When the aggregate excess demand function

defines a Z-Rothe vector field, it allows us to construct an index theorem on

the normalized infinite dimensional price space.

In section 2 we set the market and define aggregate excess demand func-

tions in our setting; as usual, we will interpret them as vector fields on the

space of prices. In section 3 we review the basic definitions of Fredholm the-

ory, which is needed to extend differential topology to infinite dimensions.

In section 4 we review the determinacy results obtained in [6] showing that

most excess demand functions have isolated zeros; that is, that equilibria are
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locally unique. This guarantees that it makes sense to actually count the

number of equilibria.

In section 5 we review the notion of Z-Rothe vector fields as developed

by Tromba [15]. When an excess demand function is Z-Rothe, we can define

a suitable index of equilibrium prices, that is, an index of zeros of a vector

field. Then, in section 6, we construct an index theorem for smooth infinite

economies. We show that the sum of indices of equilibrium prices is constant

and equal to 1. Finally in section 7, we give a corollary to the index theorem

analogous to [8], giving a new proof of existence of equilibrium and analyzing

what condition an excess demand function needs to fulfill to give rise to a

globally unique equilibrium.

2 The Market

We assume, following [5], that the commodity space is a subset of C(M, Rn),

where M is any compact (Riemannian) manifold. For more general commod-

ity spaces we refer to [4].

Example 1: In growth models a utility function on C(M, Rn) is a

continuous-time version of a discounted sum of time-dependent utilities. Here

M represents time.

Example 2: In finance, when the underlying parameters follow a dif-

fusion process, a utility function on C(M, Rn) is the expectation of state-

dependent utilities where M is the state space.
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This commodity space is also mathematically convenient because in order

to use differential techniques, we would like it to be a separable topological

vector space for which the interior of its positive cone (the consumption

space) is non-empty.

The consumption space is then X = C++(M, Rn), the positive cone

of C(M, Rn). Strictly speaking, prices are in the positive cone of the dual

of C(M, Rn). However, it is shown in [5] that with separable utilities only a

small subset of this space can support equilibria and we can actually consider

the price space to be S = {P ∈ C++(M, Rn) : ‖P‖ = 1} where ‖P‖ =

supt∈M ‖P (t)‖Rn with the standard metric ‖ · ‖Rn on Rn.

We denote by 〈·, ·〉 the inner product on C(M, Rn) so that if f, g ∈

C(M, Rn) then

〈f, g〉 =

∫
M

〈f(t), g(t)〉Rndt

with the standard inner product 〈·, ·〉Rn in Rn.

We consider a finite number I of agents. An exchange economy is

parametrized for each agent i = 1, . . . , I by their initial endowments ωi ∈ X

and their individual demand functions fi : S × (0,∞) → X. The maps

fi(P (t), w) are solutions to the optimization problem

max
〈P (t),y〉=w

Wi(y)

where Wi(x) is a separable utility function, i.e., it can be written as
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Wi(x) =

∫
M

ui(x(t), t)dt

We assume ui(x(t), t) : Rn
++ × M → R is a strictly monotonic, concave,

C2 function where {y ∈ Rn
++ : ui(y, t) ≥ ui(x, t)} is closed. In [5] is shown

that this implies that Wi(x) is strictly monotonic, concave and twice Fréchet

differentiable.

In this paper we assume that the individual demand functions are fixed,

so that the only parameters defining an economy are the initial endowments.

Denote ω = (ω1, . . . , ωI) ∈ Ω = XI . For a fixed economy ω ∈ Ω the ag-

gregate excess demand function is a map Zω : S → C(M, Rn) defined

by

Zω(P ) =
I∑

i=1

(fi(P, 〈P, ωi〉)− ωi)

We also define Z : Ω× S → C(M, Rn) by the evaluation

Z(ω, P ) = Zω(P )

It satisfies 〈P, Zω(P )〉 = 0 for all P ∈ S.

Definition 1. We say that P ∈ S is an equilibrium of the economy ω ∈ Ω

if Zω(P ) = 0. We denote the equilibrium set

Γ = {(ω, P ) ∈ Ω× S : Z(ω, P ) = 0}
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3 Fredholm Index Theory

We wish to explore the structure of aggregate excess demand functions and

since we will be using tools of differential topology in infinite dimensions, we

would like our maps to be Fredholm as introduced by Smale [14].

A (linear) Fredholm operator is a continuous linear map L : E1 → E2

from one Banach space to another with the properties:

1. dim ker L < ∞

2. range L is closed

3. coker L = E2/rangeL has finite dimension

If L is a Fredholm operator, then its index is dim kerL − dim cokerL,

so that the index of L is an integer.

A Fredholm map is a C ′ map f : M → V between differentiable man-

ifolds locally like Banach spaces such that for each x ∈ M the derivative

Df(x) : TxM → Tf(x)V is a Fredholm operator. The index of f is defined

to be the index of Df(x) for some x. If M is connected, this definition does

not depend on x.

In our previous work [6] we have shown that the excess demand function

Zω : S → C(M, Rn) of economy ω ∈ Ω is a Fredholm map of index zero.
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4 Determinacy of equilibria

Since we would like to count the number of price equilibria of an economy,

the first result that we need to establish is that generically equilibria will be

isolated. Below we remind the reader the notion of a regular economy and

of a regular price system.

Definition 2. We say that an economy is regular (resp. critical) if and

only if ω is a regular (resp. critical) value of the projection pr : Γ → Ω .

Definition 3. Let Zω be the excess demand of economy ω. A price system

P ∈ S is a regular equilibrium price system if and only if Zω(P ) = 0

and DZω(P ) is surjective.

In our previous work [6] we showed the relation between regular economies

and regular equilibrium prices.

Proposition 1. [6] The economy ω ∈ Ω is regular if and only if all equilib-

rium prices of Zω are regular.

Proposition 2 showed that for most economies, its aggregate excess de-

mand function will have isolated zeros. Hence, it makes sense to try to count

them.

Proposition 2. [6] Almost all economies are regular. That is, the set of

economies ω ∈ Ω that give rise to an excess demand function Zω with only

regular equilibrium prices, are residual in Ω.
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Since we haven shown that for most excess demand functions Zω will have

isolated zeros, we will drop the explicit dependence on ω and will simply write

Z.

5 Z-Rothe vector fields

Knowing that the excess demand function is a vector field on the price space,

and that is a Fredholm map for which we know its index, we would like to

give it the structure of a Z-Rothe vector field as developed by Tromba [15].

In section 6 it will become clear that we need a vector field that is outward

pointing, so we insist −Zω to be Z-Rothe.

Let E be any Banach space and L(E) be the set of linear continuous

maps from E to itself. Denote by GL(E) the general linear group of E; that

is, the set of invertible linear maps in L(E). Let C(E) be the linear space of

compact linear maps from E to itself.

We write S(E) ⊂ GL(E) to denote the maximal starred neighborhood of

the identity in GL(E). Formally,

S(E) = {T ∈ GL(E) : (αT + (1− α)I) ∈ GL(E),∀α ∈ [0, 1]}

The Rothe set of E is defined as

R(E) = {A : A = T + C, T ∈ S(E), C ∈ C(E)}
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and its invertible members by GR(E) = R(E) ∩GL(E).

A C1 vector field X on a Banach manifold M is Z-Rothe if whenever

X(p) = 0, DX(P ) ∈ R(TP M)

Proposition 3. The negative of the excess demand function, −Z : S → TS

is a Z-Rothe vector field.

Proof. If we want −Z to be a Z-Rothe vector field, we need to check that

whenever Z(P ) = 0, DZ(P ) ∈ R(TP S). That is, we need to write DZ(P )

as the sum of an element of S(TP S) and an element of C(TP S).

Chichilnisky and Zhou [5] have shown that for each agent i, his individual

demand function Dfi can be written as the sum of the finite rank operator

−λ〈P (t), (ui
xx)

−1DP (t)〉+ 〈DP (t), fi〉
〈P (t), (ui

xx)
−1P (t)〉

(ui
xx)

−1P (t) (1)

and the invertible operator

(ui
xx)

−1P (t)

〈P (t), (ui
xx)

−1P (t)〉
Dw + λ(ui

xx)
−1DP (t) (2)

Adding over agents in equation (1), define ZC be the sum of the finite

rank operators, that is,

ZC =
I∑

i=1

−λ〈P (t), (ui
xx)

−1DP (t)〉+ 〈DP (t), fi〉
〈P (t), (ui

xx)
−1P (t)〉

(ui
xx)

−1P (t) (3)

Then ZC has finite rank, and hence ZC ∈ C(TP S). Now add over agents

in equation (2) and define ZR to be
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ZR =
I∑

i=1

(ui
xx)

−1P (t)

〈P (t), (ui
xx)

−1P (t)〉
Dw + λ(ui

xx)
−1DP (t) (4)

The matrix (ui
xx) is negative definite, and every negative definite matrix is

invertible and its inverse is also negative definite. So ZR has to be invertible

and hence ZR ∈ GL(TP S)

All we need to show then is that ZR ∈ S(TP S), that is, that

α

[
−

I∑
i=1

[
(ui

xx)
−1P (t)

〈P (t), (ui
xx)

−1P (t)〉
Dw − λ(ui

xx)
−1DP (t)

]]
+ (1− α)I

is invertible for all α ∈ [0, 1]. But this sum is just a homotopy of positive-

definite operators.

6 The Index Theorem of Smooth Infinite Econ-

omies

Knowing that most economies are regular we need to find a right way of

counting the number of equilibria. With an excess demand function that

is a Fredholm map, we may use tools from infinite-dimensional differential

topology that resembles the finite dimensional case.

Below we review the notion of index of a zero of a Z-Rothe vector field.
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We also review the Euler characteristic, which is the topological invariant

that we would like our index theorem to be equal to.

6.1 Euler Characteristic

A zero P of a vector field X is nondegenerate if DX(P ) : TP M → TP M is

an isomorphism.

Suppose that a Z-Rothe vector field X has only nondegenerate zeros, and

let P be one of them. Then, DX(P ) ∈ GR(TP M). Tromba [15] shows

that GR(TP M) has two components; GR+(E) denotes the component of

the identity. Define

sgnDX(P ) =


+1, if DX(P ) ∈ GR+(TP M)

−1, if DX(P ) ∈ GR−(TP M)

The Euler characteristic is then given by the formula

χ(X) =
∑

P∈Zeros(X)

sgnDX(P )

Tromba also shows that this Euler characteristic is invariant under ho-

motopy of vector fields. All we have to do is to construct a vector field on S

that has only one singularity and that is homotopic to the aggregate excess

demand Z.
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6.2 The Index Theorem of Smooth Infinite Economies

Suppose that the excess demand satisfies the ‘boundary assumption’ of Dierker

[8], namely that if Pn ∈ S and Pn → P ∈ ∂S, then ‖Z(Pn)‖ → ∞. Suppose

also that Z is bounded below. Then −Z is an outward-pointing vector field.

Finally, assume that there are only finitely many zeros.

We are now ready to introduce our main result.

Proposition 4. Suppose that an aggregate excess demand function Z is

bounded from below and that it satisfies the boundary assumption. Suppose

also that Z has only finitely many singularities and that they are all nonde-

generate. Then,

∑
P∈ZerosZ

sgn [−DZ(P )] = 1

Proof. For any fixed Q ∈ C++(M, Rn) define the vector field ZQ : S̄ → TS

given by

ZQ(P ) =

[
Q(t)

〈P (t), Q(t)〉

]
− P (t)

By construction, ZQ(P ) has only one zero and is inward-pointing. Its

derivative DZQ
(P ) : T S̄ → T (TS) is given by

DZQ
(P )(h) = −Q〈h,Q〉

〈P, Q〉2
− h

where h → −Q〈h,Q〉
〈P,Q〉2 is compact and h → −h is invertible; then DZQ ∈
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R(TP S). Now let

−Q〈h,Q〉
〈P, Q〉2

− h = h′ (5)

We need to solve for h. Then,

Q〈h,Q〉+ h〈P, Q〉2 = −h′〈P, Q〉2

Acting Q on both sides we get,

〈Q,Q〉〈h,Q〉+ 〈h,Q〉〈P, Q〉2 = −〈h′, Q〉〈P, Q〉2

Solving for 〈h,Q〉 we get

〈h,Q〉 =
−〈h′, Q〉〈P, Q〉2

〈Q, Q〉+ 〈P, Q〉2

where the denominator never vanishes since Q ∈ C++(M, Rn). Substi-

tuting 〈h,Q〉 in 5 we then get

h = h′ +
Q

〈P, Q〉2

[
〈h′, Q〉〈P, Q〉2

〈Q,Q〉+ 〈P, Q〉2

]
This shows that DZQ is invertible and therefore DZQ ∈ GR(TP S). Fur-

thermore, since it is not in the same component of the identity it has to be

in GR−(TP S) and its only zero has index -1. The vector field ZQ is inward

pointing so reversing orientation will make outward poiting with index of +1.
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7 Concluding Remarks

We conclude from Proposition 4 that the number of equilibria of smooth

infinite economies generically is odd. In particular, it can never be zero so

this gives a new proof of existence.

Also, as a corollary of Proposition 4, we can also provide an infinite

dimensional analogue of [8]; Dierker shows

Proposition 5. [8] If the Jacobian of the excess supply function is positive

at all Walras equilibria, then there is exactly one equilibrium.

We show that:

Proposition 6. If the sign of the derivative of the excess supply function is

positive at all Walras equilibria, then there is exactly one equilibrium.

References

[1] Abraham, R. and Robbin, J. Transversal Maps and Flows. Benjamin,

New York, 1967.

[2] Araujo, A. The Non-Existence of Smooth Demand in General Banach

Spaces. Journal of Mathematical Economics 17 (1988) 309-319.

[3] Balasko, Y. Foundations of the Theory of General Equilibrium Academic

Press Inc., 1988.

16



[4] Chichilnisky, G. and Zhou, Y. Nonlinear functional analysis and market

theory. Working paper (1995) Columbia University. December.

[5] Chichilnisky, G. and Zhou, Y. Smooth Infinite Economies. Journal of

Mathematical Economics 29 (1998) 27-42.

[6] Covarrubias, E. Determinacy of equilibria of smooth infinite economies.

Working Paper (2008) University of Edinburgh.

[7] Dana, R.A. Existence and uniqueness of equilibria when preferences are

additively separable. Econometrica 61 (1993) 953-957.

[8] Dierker, E. Two Remarks on the Number of Equilibria of an Economy.

Econometrica 40 (1972) 951-953.

[9] Dierker, E. Regular Economies. Handbook of Mathematical Economics,

vol.2, edited by K.J. Arrow and M.D. Intriligator. North-Holland Pub-

lihing Company, 1982.

[10] Kehoe, T.J., Levine, D.K., Mas-Colell, A. and Zame, W.R. Determinacy

of Equilibrium in Large-Scale Economies. Journal of Mathematical Eco-

nomics 18 (1989) 231-262.

[11] Mas-Colell, A. The Theory of General Economic Equilibrium: A Dif-

ferentiable Approach Econometric Society Monographs 9, Cambridge

University Press,1985.

17



[12] Shannon, C. Determinacy of competitive equilibria in economies with

many commodities. Economic Theory 14 (1999) 29-87.

[13] Shannon, C. and Zame, W.R. Quadratic Concavity and Determinacy of

Equilibrium. Econometrica 70 (2002) 631-662.

[14] Smale, S. An Infinite Dimensional Version of Sard’s Theorem. American

Journal of Mathematics 87 (1965) 861-866.

[15] Tromba, A.J. The Euler characteristic of Vector Fields on Banach Man-

ifolds and a Globalization of Leray-Schauder Degree Advances in Math-

ematics 28 (1978) 148-173.

[16] Varian, H.L. A Third Remark on the Number of Equilibria of an Econ-

omy Econometrica 43 (1975) 985-986.

18


