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On the (Non-)Lattice Structure of the Equilibrium Set

in Games With Strategic Substitutes

Abstract

This paper studies models where the optimal response functions under consideration are non-
increasing in endogenous variables, and weakly increasing in exogenous parameters. Such
models include games with strategic substitutes, and include cases where additionally, some
variables may be strategic complements. The main result here is that the equilibrium set in
such models is a non-empty, complete lattice, if, and only if, there is a unique equilibrium.
Indeed, for a given parameter value, a pair of distinct equilibria are never comparable. There-
fore, with multiple equilibria, some of the established techniques for exhibiting increasing
equilibria or computing equilibria that use the largest or smallest equilibrium, or that use
the lattice structure of the equilibrium set do not apply to such models. Moreover, there are
no ranked equilibria in such models. Additionally, the analysis here implies a new proof and
a slight generalization of some existing results. It is shown that when a parameter increases,
no new equilibrium is smaller than any old equilibrium. (In particular, in n-player games of
strategic substitutes with real-valued action spaces, symmetric equilibria increase with the
parameter.)



1 Introduction

As is well-known, games with strategic complements and strategic substitutes are found in

many areas of economics.2 Although the structure of the equilibrium set and comparative

statics results for general games with strategic complements are well-developed,3 results of

similar generality are less commonly available for games with strategic substitutes, or for

games in which the functions under consideration are not increasing in endogenous variables.

One result is available for strictly quasi-concave games with strategic substitutes (where best

responses of endogenous variables are weakly decreasing functions). As shown by Villas-Boas

(1997), in such games, equilibria do not decrease when the exogenous parameter increases.

Related earlier papers include Corchón (1994) and Dacic (1981), which explores existence

and uniqueness of equilibrium for decreasing maps.4

2Such games are defined in Bulow, Geanakoplos, and Klemperer (1985), and as they show, models of

strategic investment, entry deterrence, technological innovation, dumping in international trade, natural

resource extraction, business portfolio selection, and others can be viewed in a more unifying framework

according as the variables under consideration are strategic complements or strategic substitutes. Additional

classes of examples are provided by Cournot oligopolies, bargaining games (Nash demand game), and as

described in Dubey, Haimanko, and Zapechelnyuk (2006), games of team projects with complementary or

substitutable tasks, and tournaments.
3Some of this work can be seen in Topkis (1979), Lippman, Mamer, and McCardle (1987), Sobel (1988),

Vives (1990), Milgrom and Roberts (1990), Zhou (1994), Milgrom and Shannon (1994), Milgrom and Roberts

(1994), Shannon (1995), Villas-Boas (1997), Edlin and Shannon (1998), Echenique (2002), and Echenique

and Sabarwal (2003), among others. Extensive bibliographies are available in Topkis (1998) and in Vives

(1999).
4Additionally, some aspects of non-monotone mappings that are increasing in some variables and decreas-

ing in others are explored in Roy (2002).
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This paper considers models where the product of best response correspondences under

consideration are never increasing in endogenous variables, and weakly increasing in exoge-

nous parameters.5 Thus, it includes models in which endogenous variables are strategic

substitutes for each other, and includes cases where additionally, some endogenous variables

may be strategic complements.

The main result shows that for such models, the equilibrium set is a non-empty, com-

plete lattice, if, and only if, there is a unique equilibrium. Indeed, for a given parameter

value, a pair of distinct equilibria are never comparable. Therefore, in contrast to games

with strategic complements, with multiple equilibria, some of the established techniques for

exhibiting increasing equilibria or for computing equilibria that use the largest or smallest

equilibrium, or that use the lattice structure of the equilibrium set do not apply to such

models. This result also shows that there are no ranked equilibria, and therefore, even with

multiple equilibria, these models do not have inefficiencies that arise purely from existence

of ranked equilibria. In particular, this result implies that in n-player games of strategic

substitutes with real-valued strategy spaces, if a symmetric equilibrium exists, then it is

unique.

Additionally, the analysis here implies a new proof and a slight generalization of some

5As formalized below, a never increasing correspondence is a generalization of a not-increasing function,

where a not-increasing function (on a partially ordered set) is defined as x ≺ y ⇒ g(x) 6� g(y). Notice that

the term not-increasing is used here to mean the negation of increasing. This also serves to distinguish this

term from the case of non-increasing functions, which are sometimes viewed as functions that are decreasing

or constant. In particular, not-increasing functions allow for images that are not comparable. A weakly

increasing correspondence is a generalization of a weakly increasing function, which is defined, on a partially

ordered set, as usual, by x � y ⇒ g(x) � g(y).
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existing results. It generalizes to the case of never increasing correspondences the result

by Villas-Boas (1997) for the case of weakly decreasing functions; that is, in such cases,

when a parameter increases, no new equilibrium is smaller than any old equilibrium. In the

particular case of n-player games with strategic substitutes, with real-valued action spaces,

symmetric equilibria increase with the parameter.

The paper proceeds as follows. Section 2 presents the main results in three sub-sections.

The first sub-section presents the model, the second sub-section presents the main results

on the non-lattice structure of equilibrium sets. The third sub-section applies these results

to provide a new proof and a slight generalization of some existing results.

2 Model and Results

2.1 Model

Suppose (X,�) is a partially ordered set, and A and B are subsets of X. Then A is weakly

smaller than B, if for every a ∈ A, there is b ∈ B such that a � b, and for every b ∈ B,

there is a ∈ A such that a � b. A correspondence g : X ։ X is weakly increasing, if for

every x, y ∈ X with x � y, it is the case that g(x) is weakly smaller than g(y).

A correspondence g : X ։ X is never increasing, if for every x, y ∈ X with x ≺ y, for

every x′ ∈ g(x), and for every y′ ∈ g(y), it is the case that x′ 6� y′. In other words, g is never

increasing, if regardless of which point (y′) we choose in the image of a higher point (y),

this point is not higher than any point (x′) in the image of a lower point (x). Notice that

when g is a function, this definition coincides with that of a not-increasing function; that
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is, x ≺ y ⇒ g(x) 6� g(y), and moreover, for partially ordered spaces where the partial order

is complete, or equivalently, a linear order,6 this definition coincides with that of a strictly

decreasing function.

Notice that if g(·, t) is a decreasing function, then it is not-increasing. In games of

strategic substitutes, the product of best response functions is weakly decreasing. Therefore,

the results here apply to games with strategic substitutes. Moreover, not-increasing functions

allow for some complementarity as well. An example of a game in which the product of best

response functions is not decreasing, but it is not-increasing is given below.

Example 1. Suppose a project has to be completed to reap a reward.7 There are three

players; players 1 and 2 are capable of completing the project on their own, but player 3

needs to work with either player 1 or player 2 to complete the task. Successful players share

a parameterized reward r(t) among themselves.8 Thus, if only player 1 (or 2) succeeds, he

gets r(t) for sure, if players 1 and 2 succeed, (or if players 1 and 3 succeed, or if players 2 and

3 succeed,) each gets r(t)
2

, and if all three succeed, each gets r(t)
3

. Each player chooses effort

xi ∈ [0, 1], with probability of success xi. The quadractic cost of effort is
cix

2

i

2
. Expected

6To avoid confusion between complete partial orders and complete lattices, this paper uses linear order

(a standard term in order theory) to denote a partial order that is complete.
7This game is based on ideas in Dubey, Haimanko, and Zapechelnyuk (2006).
8For example, the task might be getting a paper published, and two potential authors of the paper can

either write the paper by themselves, or jointly, and there is a research assistant who can help complete the

paper, but not write the paper herself. If the paper is published then the reward (perhaps some increase in

lifetime earnings) is shared among the author(s) and/or research assistant who participated. Or, for example,

two potential entrepreneurs are considering offering a new product, and can use the help of another person

who does not have the skill to develop and sell the product on his own. If the product is sold, profit is shared

among project participants. Other interpretations are possible as well.
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profit for player 1 is

r(t)x1(1 − x2)(1 − x3) +
r(t)

2
x1x2(1 − x3) +

r(t)

2
x1x3(1 − x2) +

r(t)

3
x1x2x3 −

c1x
2
1

2
.

Expected profit for player 2 is given symmetrically, and expected profit for player 3 is

r(t)

2
x1x3(1 − x2) +

r(t)

2
x2x3(1 − x1) +

r(t)

3
x1x2x3 −

c3x
2
3

2
.

In this case, the best response functions are given as follows.

x̂1 = min
{

r(t)
c1

(

1 − 1
2
(x2 + x3) + 1

3
x2x3

)

, 1
}

x̂2 = min
{

r(t)
c2

(

1 − 1
2
(x1 + x3) + 1

3
x1x3

)

, 1
}

x̂3 = min
{

r(t)
c3

(

1
2
(x1 + x2) −

2
3
x1x2

)

, 1
}

Notice that the joint best response is not decreasing (for small x1, x2, player 3’s best response

is increasing), but it is not-increasing. Moreover, for each t, the joint best response is a

continuous function on [0, 1]3, and therefore, a fixed point exists.

The model space for endogenous variables is assumed to be a non-empty, compact, convex

subset of Euclidean space, denoted X, with the usual product order. The space for exogenous

parameters is assumed to be a partially ordered set, denoted T . An admissible family

of correspondences is a correspondence g : X × T ։ X such that for every t, the

correspondence g(·, t) is never increasing, non-empty valued, compact-valued, convex-valued,

and upper hemi-continous, and for every x, the correspondence g(x, ·) is weakly increasing.9

Consider an admissible family of correspondences g, and define the following sets. Let

S
¯
(t) = {x ∈ X | ∃x′ ∈ g(x, t), x′ � x}, let S̄(t) = {x ∈ X | ∃x′ ∈ g(x, t), x � x′}, let min S

¯
(t)

9Assumptions other than those regarding correspondences that are never increasing in endogenous vari-

ables and weakly increasing in parameters are made to guarantee existence of equilibrium via Kakutani’s

theorem. Given existence of equilibrium, the results here apply to arbitrary partially ordered X .
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be the minimal elements of S
¯
(t), let max S̄(t) be the maximal elements of S̄(t), and let

FP (t) = {x ∈ X | x ∈ g(x, t)} be the fixed points of g at t. Kakutani’s theorem implies that

for every t, FP (t) is non-empty.10

2.2 Non-Lattice Equilibrium Sets

It is useful to consider one particular reason for the failure of a standard proof of Tarski’s

theorem when correspondences are never increasing.11 This particular failure is notable,

because it is related to a modification that does apply in the model considered here, and

this modification helps understand the structure of equilibrium sets and non-comparability

of equilibria.

In a standard proof, the set S
¯
(t) has an infimum, inf S

¯
(t) ∈ S

¯
(t), and inf S

¯
(t) is the

smallest fixed point. Similarly, S̄(t) has a supremum, sup S̄(t) ∈ S̄(t), and sup S̄(t) is the

largest fixed point. Monotone increasing selections can then be exhibited by considering

these extremal fixed points. With never increasing correspondences, it is easily possible that

the set S
¯
(t) does not contain an infimum, and the set S̄(t) does not contain a supremum. In

such cases, the supremum and infimum cannot be fixed points. For example, consider figure

1, which gives best response functions of two agents. These functions can be viewed as best

responses in a Cournot duopoly where firm 1 has a lower marginal cost at a higher level

of output, and firm 2 has constant marginal cost. As shown, the product of best responses

is a weakly decreasing function. Moreover, S
¯
(t) is the area with lower boundary given by

10Notice that when g is a family of functions, S
¯
(t) = {x ∈ X | g(x, t) � x}, S̄(t) = {x ∈ X | x � g(x, t)},

and FP (t) = {x ∈ X | x = g(x, t)}.
11For a version of the standard proof, see Topkis (1998), page 39.
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ABDE, and it does not contain a smallest point, S̄(t) is the area with upper boundary

given by FBCDG, and it does not contain a largest point, inf S
¯
(t) 6∈ S

¯
(t), inf S

¯
(t) 6∈ FP (t),

sup S̄(t) 6∈ S̄(t), and sup S̄(t) 6∈ FP (t).
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x1
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response function of player 2

S(t)

S(t)
x∗

2(t0)

x∗∗

2 (t0)

x∗

1(t0) x∗∗

1 (t0)

Figure 1: maxS(t), min S(t) and Non-lattice Equlibrium Sets

Nevertheless, as shown in the following lemma, equilibrium points are minimal elements

of S
¯
(t), and maximal elements of S̄(t). These properties are useful in trying to understand

when are equilibria comparable, and when is the equilibrium set a lattice.

Lemma 1. Let g : X × T ։ X be an admissible family of correspondences.

If x∗ ∈ FP (t), then x∗ ∈ min S
¯

(t) ∩ max S̄(t).

Proof. Let x∗ ∈ FP (t). Then x∗ ∈ g(x∗, t), and x∗ � x∗, so x∗ ∈ S
¯
(t). Suppose, by way

of contradiction, there is x̂ ∈ S
¯
(t) with x̂ 6= x∗, and x̂ � x∗; that is, x̂ ≺ x∗. As x̂ ∈ S

¯
(t),
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there is x′ ∈ g(x̂, t) such that x′ � x̂. In other words, x̂ ≺ x∗, and there exist x′ ∈ g(x̂, t)

and x∗ ∈ g(x∗, t) such that x′ � x∗, contradicting the fact that g is never increasing.

Similarly, x∗ ∈ FP (t) ⇒ x∗ ∈ S̄(t). If x∗ 6∈ max S̄(t), then there is x̂ ∈ S̄(t) such that

x∗ ≺ x̂. Consequently, there is x′ ∈ g(x̂, t), and x∗ ∈ g(x∗, t) such that x∗ � x′, contradicting

the fact that g is never increasing.

In the example provided in figure 1, the minimal elements of S
¯
(t) are given by the

boundary depicted by ABDE, and the maximal elements of S̄(t) are given by the boundary

depicted by FBCDG, and each of the two equilibria satisfies the conclusion of the lemma.

This lemma is useful in proving the following set of results.

Theorem 1. Let g : X × T ։ X be an admissible family of correspondences.

If x∗, x̂ ∈ FP (t), and x∗ 6= x̂, then x∗ and x̂ are non-comparable.

Proof. The statement follows from the lemma above, as follows. If x∗ and x̂ are distinct

fixed points of g at t, then these are maximal elements of S̄(t), and hence, these are non-

comparable.

Corollary 1. Let g : X ×T ։ X be an admissible family of correspondences. The following

are equivalent:

1. FP(t) is a non-empty lattice,

2. FP(t) is a singleton, and

3. FP(t) is a non-empty, complete lattice.

Proof. The only part that needs to be checked is that the first statement implies the second.

(The other implications are trivial.) Suppose FP (t) is a non-empty lattice, and suppose it

8



contains at least two distinct points, say x∗ and x̂, with x∗ 6= x̂. Then it contains the join

and meet of these points, the join and meet are distinct points, and the join and meet are

comparable, contradicting the theorem above.

These results show that for a given parameter value, a pair of distinct equilibria are

always non-comparable. In particular, in contrast to equilibria in games with complemen-

tarities, this theorem implies that models considered here do not have ranked equilibria.

Moreover, as compared to the complete lattice structure of the equilibrium set when cor-

respondences of endogenous variables are increasing (see Zhou (1994)), the equilibrium set

here is a non-empty, complete lattice exactly in the trivial case of a unique equilibrium.

Otherwise, the equilibrium set is totally unordered. Consequently, with multiple equilibria,

techniques using the lattice structure of the equilibrium set, or the existence of a smallest

and largest equilibrium do not apply to models considered here.

These implicaitons can be seen in figure 1, and also in the computed equilibria of a slightly

modified version of example 1. In order to exhibit multiple equilibria for example 1, suppose

the cost ci for player i = 1, 2 is given by ci = c̄− 2cxi

3
, where c̄ and c are positive constants, and

cost for player 3 is the same as in the example. In this case, for a fixed and suppressed value

of t, and using the paratmeter values r = 1, c̄ = 0.984, c = 0.6, and c3 = 0.48, three equilibria

for this game can be computed to be (0.906, 0.906, 0.7474), (0.9957, 0.9957, 0.6954), and (1,

1, 0.6944). These equilibria are non-comparable. A graphical presentation is given in figure

2, where ABC is the best response for players 1 and 2, and DE is the best response of player

3.

Furthermore, this result implies that in the special case when X is linearly ordered,

there is a unique equilibrium for every parameter value. In particular, in n-player games of

9



A

10.99570.906

0.6944
0.6954

0.7474

D

E

B

C

0

1x3

x1, x2

Figure 2: Non-lattice equilibrium set for Example 1

strategic substitutes with real-valued strategies, if a symmetric equilibrium exists, then it is

unique.

2.3 Nowhere Decreasing Equilibria

This sub-section uses results of the previous sub-section to present another proof and a

slight generalization of some existing results. The first result generalizes to never increasing

correspondences the result by Villas-Boas (1997) for decreasing functions. Its corollary shows

that symmetric equilibria are increasing in the parameter.

Theorem 2. Let g : X × T → X be an admissible family of correspondences.

For every t1, t2 ∈ T , if t1 � t2, x∗ ∈ FP (t1), x∗∗ ∈ FP (t2), and x∗ 6= x∗∗, then x∗∗ 6≺ x∗.

10



Proof. When t1 = t2, the result follows from Theorem 1. Suppose that t1 ≺ t2, and

consider distinct fixed points x∗ ∈ FP (t1), x∗∗ ∈ FP (t2), and suppose x∗∗ ≺ x∗. Recall that

x∗ ∈ FP (t1) ⊂ min S
¯
(t1) ⊂ S

¯
(t1). Moreover, g(x∗∗, ·) is weakly increasing in t implies that

g(x∗∗, t1) is weakly smaller than g(x∗∗, t2). As x∗∗ ∈ g(x∗∗, t2), let x′ ∈ g(x∗∗, t1) such that

x′ � x∗∗. Then x∗∗ ∈ S
¯
(t1), contradicting the fact that x∗ is a minimal element of S

¯
(t1).

This theorem establishes that equilibria are nowhere decreasing in t. In particular, this

result implies that in the model considered here, there are no decreasing selections of equilib-

ria. Moreover, combined with the previous corollary, it follows that if X is linearly ordered,

then there is a unique equilibrium for every t, and this equilibrium selection is increasing

in t. In particular, for games of strategic substitutes with real-valued strategies, symmetric

equilibria are increasing, as formalized in the following corollary.12

Corollary 2. Consider a game of n-players, each with a non-empty, compact, convex strategy

space Xi ⊂ ℜ, let X = ×n
i=1Xi, T be a parameter space, and g : X × T → X be a product of

best response correspondences, and g is never increasing. Say that an equilibrium x∗ ∈ FP (t)

is a symmetric equilibrium, if for all i, j, x∗

i = x∗

j . Let SE(t) be the (possibly empty) set of

symmetric equilibria. In this case, the following is true.

For every t0, t̂ ∈ T , if t0 � t̂, x∗ ∈ SE(t0), and x∗∗ ∈ SE(t̂), then x∗ � x∗∗.

Proof. If x∗∗ = x∗, then there is nothing to prove. Otherwise, from the previous theorem,

12As discussed in the introduction, with decreasing best responses, symmetric equilibria can be shown to

be increasing using Tarski’s intersection point theorem, which requies X to be a chain (see, for example,

Milgrom and Roberts (1994)). The corollaries here present another proof as an application of the previous

theorem, this proof does not require Tarski’s intersection point theorem, and it does not require X to be a

chain.
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we know that x∗∗ 6≺ x∗. Therefore, there is i such that x∗

i ≤ x∗∗

i . As x∗, x∗∗ are symmetric

equilibria, this implies that x∗ � x∗∗.

Thus, in this class of games, symmetric equilibria are increasing. Indeed, for this class of

games, symmetric equilibria are unique (as shown in the previous sub-section), and therefore

(the unique) selection of symmetric equilibria is (weakly) increasing in t.

More generally, as is well-known, with asymmetric players, the conclusion of the theorem

and corollary above cannot be strengthened to conclude the existence of increasing equilib-

ria, even when the product of best response functions is strictly decreasing in endogenous

variable, strictly increasing in parameters, and for every parameter value, there is a unique

equilibrium. This can be seen through a standard textbook example of a Cournot duopoly

with linear demand, constant marginal cost, and an asymmetrically parameterized subsidy

of marginal cost.

Notice that the lemma and two theorems in this section apply as stated when X is an

arbitrary partially ordered set.
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