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Bertrand-Edgeworth games under oligopoly with a
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Massimo A. De Francesco, Neri Salvadori
University of Siena, University of Pisa

May 7, 2008

Abstract

The paper extends the analysis of price competition among capacity-
constrained sellers beyond the cases of duopoly and symmetric oligopoly.
We �rst provide some general results for the oligopoly and then focus
on the triopoly, providing a complete characterization of the mixed
strategy equilibrium of the price game. The region of the capacity
space where the equilibrium is mixed is partitioned according to the
features of the mixed strategy equilibrium arising in each subregion.
Then computing the mixed strategy equilibrium becomes a quite sim-
ple task. The analysis reveals features of the mixed strategy equilib-
rium which do not arise in the duopoly (some of them have also been
discovered by Hirata (2008)).

1 Introduction

The issue of price competition among capacity-constrained sellers has at-
tracted considerable interest since Levitan and Shubik�s (1972) modern reap-
praisal of Bertrand and Edgeworth. Assume there are a given number of
�rms producing at the same constant unit cost up to some �xed capacity.
Assume, also, a non-increasing and concave demand and that any rationing
takes place according to the surplus maximizing rule. Then there are a few
well-established facts about equilibrium of the price game. First, at any pure
strategy equilibrium the �rms are charging the competitive price. However,
a pure strategy equilibrium need not exist, unless the capacity of the largest
�rm is small enough compared to total capacity (see, for instance, Vives,
1986). When a pure strategy equilibrium does not exist, existence of a mixed
strategy equilibrium is guaranteed by Theorem 5 of Dasgupta and Maskin
(1986) for discontinuous games.

1



A characterization of mixed strategy equilibrium has been provided by
Kreps and Scheinkman (1983) for the duopoly within a two-stage capacity
and price game, assuming concavity of demand and identical unit costs.
The model was subsequently extended by Osborne and Pitchik (1986) to
allow for non-concavity of demand and by Deneckere and Kovenock (1996)
to allow for di¤erences in unit cost among the duopolists. Both changes lead
to the emergence of new phenomena, such as the possibility of the supports
of the equilibrium strategies being disconnected and not identical for the
duopolists.

Yet, there is still much to be learned about mixed strategy equilibria
under oligopoly, even for the case of identical (and constant) unit cost and
concave demand: to the best of our knowledge, a complete characteriza-
tion of the mixed strategy equilibrium is only available for the case of equal
capacities (see, among others, Vives, 1986). This paper purports to make
progress in this direction by allowing for di¤erences in size among the �rms
while retaining equality in unit cost, concavity of demand, and the e¢ cient
rationing rule. In this connection, we �rst point out a number of general
properties of mixed strategy equilibrium under oligopoly, which are subse-
quently used to provide a comprehensive analysis of the price game for the
triopoly. Although far more complex than in duopoly, characterizing mixed
strategy equilibria turns out to be a quite tractable task in a triopoly. Most
important, the task proves to be worth pursuing: several new phenomena
do indeed appear as soon as one departs from duopoly, suggesting that the
latter is a rather special case. First of all, the supports of the equilibrium
distributions need no longer coincide for all the �rms. Second, the supports
need no longer be connected for all the �rms: we identify circumstances
where there is a gap in the support for the smallest �rm. Third, the equi-
librium need no longer be unique. There are an in�nity of mixed strategy
equilibria when the capacity of the largest �rm is high enough - a result
which extends straightforwardly to oligopoly: in such circumstances, the
equilibrium distributions of the other n�1 �rms are determined up to n�2
degrees of freedom.

The paper is organized as follows. Section 2 contains de�nitions and the
basic assumptions of the model along with a few basic results about equi-
librium payo¤s under oligopoly. Section 3 shows that several characteristic
of mixed strategy equilibrium extend from duopoly to the oligopoly. Most
notably, as far as the largest �rm is concerned: the minimum element in
the support of its equilibrium strategy is determined like in duopoly; the
highest element - also determined like in duopoly - is charged with positive
probability if its capacity is strictly higher than for any other �rm.
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The remainder of the paper is devoted to the triopoly. Section 4 char-
acterizes equilibrium pro�ts and bounds the supports of the equilibrium
strategies for all the �rms, in any point of the region of mixed strategy equi-
libria. It is found that, whenever maxima cannot be the same for all the
�rms, it is the support of the smallest �rm the one with the lowest max-
imum. In contrast, when the minima of the supports cannot be the same
for all the �rms, there are regions of the capacity space where the support
with the highest minimum pertains to the smallest �rm as well as one re-
gion where it pertains to the intermediate-size �rm: in either case, we show
how that minimum is determined. The section also addresses the - up to
that point, hypothetical - event of the support being disconnected for some
�rm. More precisely, it is shown how that event can possibly be detected
and how the gap in the support is to be determined. Section 5 applies all
the above �ndings and proves that the event of a disconnected support is a
concrete one. More speci�cally, we compute the mixed strategy equilibrium
for capacities all di¤erent from each other and lying in one of the two regions
where the supports of the equilibrium strategies have the same bounds for
all the �rms. That region is partitioned into two subsets according to the
nature of the equilibrium: in one the supports are identical and connected
for all the �rms, in the other, the support for the smallest �rm has a gap.
Section 6 brie�y concludes.

POSTSCRIPT. The results contained in this paper have been achieved
by the authors over the last couple of years, a few of them being reached
at the end of last year. At that point we were stopped since we were not
yet able to exclude the possibility of a gap in the support of the largest �rm
in the subset E1 introduced in Section 4. Two weeks ago, when coming
back to our paper, we noticed a working paper by D. Hirata (2008, posted
in March 30 in the Munich Personal RePEc Archive), also dealing with
mixed strategy equilibria in the triopoly. The present paper includes all of
the results presented in Hirata�s paper, which we arrived at independently
in the past, along with a number of others, so it is worth to clarify the
di¤erences between Hirata�s contribution and our own.

Hirata proves that there are regularities of mixed strategy equilibria
under duopoly which need not hold in the triopoly (and therefore presumably
need not hold in an oligopoly with more than three �rms). We introduce a
number of procedures which allow us to provide a complete characterization
of the mixed strategy equilibria for the triopoly case. As a consequence
we �nd all the facts which can happen, including those found by Hirata.
In this connection we are able to identify the entire region where there is
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an indeterminacy of equilibrium over part of range [pm; pM ] and the entire
region where p(3)m > p

(1)
m = p

(2)
m = pm (i.e., where the minimum of the

support is higher for �rm 3 - the smallest �rm - than it is for �rms 1 and 2
(respectively, the largest and the medium-size �rms). Further, we recognize
that there is a non-degenerate region (our region F ) where p(2)m > p

(1)
m =

p
(3)
m = pm. (Hirata only discovers this feature for a degenerate region (see
his footnote 4).)1 Further, the fact that under certain circumstances there
is a gap in the support of the equilibrium strategy of the smallest �rm (see
Section 5 below) is a novel feature of our paper. Finally, while recognizing in
his Claim 3 that there are circumstances where equilibrium pro�t per unit
of capacity is larger for �rm 3 than it is for �rm 2, how �rm 3�s equilibrium
pro�t is determined in those circumstances is not addressed by Hirata. This
is done in Proposition 5 below; further, the Theorem in Section 4 below fully
speci�es the subsets of the capacity space where equilibrium pro�t per unit
of capacity is higher for �rm 3 than �rm 2.

2 Preliminaries

There are n �rms, 1; 2; :::; n, supplying a homogeneous good. The �rms are
assumed to produce at the same constant unit cost, normalized to zero, up
to capacity. The demand is denoted as D(p) and its inverse as P (x). When
positive, D(p) is assumed to be decreasing and concave. Without loss of
generality, we consider the subset of the capacity space (K1;K2; :::Kn) such
that K1 � K2 � ::: � Kn; and we de�ne K = K1+ :::+Kn. As already said,
the �rms are charging the competitive price, pc = max f0; P (K)g at any pure
strategy equilibrium of the price game. Thus such an equilibrium fails to
exist when argmax p(D(p)� �j 6=1Kj) > pc, or, to put it more throroughly,
when either

�j 6=1Kj < D(0); pc = 0; (1)

or

K1 > �pc
�
D0(p)

�
p=pc

; pc > 0: (2)

1The fact that a full characterization is not provided by Hirata is also clear by looking
at his Claim 4 (p. 13): in the circumstances of that claim, the equilibrium can exhibit
di¤erent features (only some of them identi�ed by him), but Hirata does not clarify which
obtains when. By the way, statements of Claims 4 and 5 of Hirata include an obvious
misprint. It should be K1 < D(a�) < K1 +K3 instead of K1 < D(a�) < K3:
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It is assumed throughout that either (1) or (2) holds, so that we are in the
region of mixed strategy equilibria. Note that, in the subset of the capacity
space here considered, any point with �j 6=1Kj < D(0) belongs to such a
region provided K1 is not less than or close enough to D(0) � �j 6=1Kj .2

We henceforth denote by ��i �rm i�s equilibrium payo¤ (expected pro�t),
by �i(p) �rm i�s expected pro�t when charging p and the rivals are playing
their equilibrium pro�le of distributions, ��i(p), by �i(p) = Pr(pi < p) �rm
i�s equilibrium (cumulative) distribution, where Pr(pi < p) is the probability
of i charging less than p; by Si the support of �i, and by p

(i)
M and p(i)m the

maximum and the minimum of Si, respectively. More speci�cally, we say
that p 2 Sj when �j(�) is increasing at p, that is, when �j(p+h) > �j(p�h)
for any h > 0, whereas p =2 Sj if �j(p + h) = �j(p � h) for some h > 0.
Of course, any �i(p) is non-decreasing and everywhere continuous except at
p� : Pr(pi = p�) > 0, where it is left-continuous (limp!p�� �i(p) = �i(p

�)) ,
but not continuous.

Obviously, ��i � �i(p) everywhere and ��i = �i(p) almost everywhere
in Si. Some more notation is needed to go deeper through the properties
of �i(p). Let N = f1; :::; ng be the set of �rms, N�i = N � fig, and
P(N�i) = f g be the power set of N�i. Further, let

Zi(p;��i) := p
X

 2P(N�i)
qi; �r2 �r�s2N�i� (1� �s); (3)

where qi; = maxf0;minfD(p) �
P
r2 

Kr;Kigg is �rm i�s output when any

�rm r 2  charges less than p and any �rm s 2 N�i �  charges more than
p.3 Zi(p;��i) is continuous in p and concave almost everywhere (for every p
there is � and �0 such that Zi(p;��i) is concave in the intervals [p; p+ �] and
[p��0; p]; as a consequence it is locally concave whenever it is di¤erentiable.4
Zi(p;��i) is continuous and di¤erentiable in �j (each j 6= i). Di¤erentiation
of Zi(p;��i) with respect to �j yields, after rearrangement,

5

@Zi
@�j

= p
X

 2P(N�i)
(qi; � qi; 0)�r2 0�r�s2N�i� (1� �s) (4)

2The right-hand side of (2) converges to 0 as K1 converges to D(0) � �j 6=1Kj ; hence
inequality (2) is met with K1 in a left neighbourhood of D(0)� �j 6=1Kj :

3Note that �r2 �r is the empty product, hence equal to 1, when  = ;; and it is
similarly �s2N�i� (1� �s) = 1 when  = N�i.

4Zi(p;��i) is kinked at any p = P (
P
r2 

Kr); where it is locally convex so long as

Kr 6= Ki for all r 2  .
5Note that qi; � qi; 0 = 0 whenever j =2  . This allows to simplify the notation.
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where  0 =  � fjg. Since �Kj � qi; � qi; 0 � 0, @Zi=@�j � 0. More
precisely @Zi=@�j < 0 if there exists some  containing j such that

�r2 0�r�s2N�i� g(1� �s) > 0: (5)

and

0 < D(p)�
X
h2 0

Kh < Ki +Kj : (6)

It is immediately recognized that for each p in which all functions �j(p)
(j 6= i) are continuous, then

�i(p) = Zi(p;��i(p));

whereas
Zi(p

�;��i(p
�)) � �i(p�) � lim

p!p�+
Zi(p;��i(p))

if Pr(pj = p�) > 0 for some j 6= i. This is enough to state the following

Lemma 1. For any i 2 N , ��i � �i(p) with ��i = �i(p) for p in the
interior of Si:

Proof. Suppose contrariwise that ��i > �i(p
�) for some p� internal to

Si. This reveals that p� is not charged by i: it is Pr(pj = p�) > 0 for
some j 6= i and Zi(p�;��i(p

�)) > �i(p
�) > limp!p�+ Zi(p;��i(p)). As a

consequence there is a right neighbourhood of p� in which ��i > �i(p): a
contradiction.

Let pM = maxi p
(i)
M and pm = mini p

(i)
m ; M = fi : p(i)M = pMg and

L = fi : p(i)m = pmg. Moreover, if#M < n, then we de�ne bpM = maxi=2M p
(i)
M

and, with an abuse of language, if #M = n, then we say that bpM = pM .
Similarly, if #L < n, then we de�ne bpm = mini=2L p

(i)
m whereas bpm = pm if

#L = n. When evaluated over some range �; �i(p) and �i(p) are denoted as
�i�(p) and �i�(p), respectively. Finally, limp!h+�i�(p) and limp!h��i�(p)
are denoted as �i�(h+) and �i�(h�), respectively.

Since Kreps and Scheinkman it is known that pM = p
(1)
M = p

(2)
M =

argmax p(D(p)�K2) in a duopoly with K1 � K2; also, �1(pM ) < �2(pM ) =
1 if K1 > K2; while �1(pM ) = �2(pM ) = 1 if K1 = K2. Therefore
��i = pM (D(pM ) � K2) for any i such that Ki = K1. The next propo-
sition summarizes some generalizations of these results to oligopoly that
have been made recently.

6



Proposition 1 pM = argmax p(D(p)��j 6=1Kj) and, for any i : Ki = K1;

��i = max p(D(p) � �j 6=1Kj); furthermore, p
(i)
M = pM for any i : Ki = K1

and �j(pM ) = 1 for any j : Kj < K1.

Proof. This statement is an obvious consequence of the statement that
p
(i)
M = pM for some i : Ki = K1 and that ��i = max p(D(p) � �j 6=1Kj) for
any i : Ki = K1.(A complete proof of this statement is in De Francesco
(2003); see also Boccard and Wauthy (2001) and, for a more recent proof,
Loertscher (2008).)

According to this result, in the region of mixed strategy equilibria, the
equilibrium payo¤of the largest �rm is decreasing in the capacity of any rival
and is independent on its own capacity. The fact that ��i = max p(D(p) �
�j 6=1Kj) for any i : Ki = K1 has a nice interpretation. Note that, in the
region of the capacity space where the equilibrium is in mixed strategies,
max p(D(p) � �j 6=1Kj) is nothing but the minimax payo¤ for any i : Ki =
K1.6 Thus, what Proposition 1 is actually saying is that the equilibrium
payo¤ of (any of) the largest �rm(s) equals its minimax payo¤.

Since Kreps and Scheinkman it is also known that, in a duopoly, #L = 2
and Pr(pi = pm) = 0 for i = 1; 2; so that ��1 = pmminfD(pm);K1g: This
implies that pm = maxfbp;bbpg; where bp � ��1=K1 and bbp is the smallest solution
of the equation in p

pD(p) = ��1.

Finally, �rm 2�s equilibrium payo¤ is ��2 = pmK2. Since S1 = S2 = [pm; pM ],
then �1(p) and �2(p) are found straightforwardly by solving the two-equation
system ��i = Zi(p;��i(p)). It will be seen below to which extent these results
generalize beyond duopoly.

3 Some properties of equilibrium for the oligopoly

In this section we establish a number of general properties of mixed strategy
equilibria under oligopoly. The following proposition presents a number of
basic properties, which represent generalizations of analogous results holding
for duopoly.

6Let ��i denote any mixed strategy pro�le on the part of �rm i�s rivals, where i :
Ki = K1 and let p(��i) denote any of �rm i�s best response to ��i. It is immediately
understood that �i(p(��i)) � pM (D(pM )��j 6=1Kj) with strict equality holding for some
��i.
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Proposition 2 (i) #M � 2 and #L � 2:
(ii) At any p� 2 (pm; pM ), it cannot be #fi : p� 2 Sig = 1:
(iii) For any p� 2 (pm; pM ); p� > P (�

i:p
(i)
m <p�

Ki).

(iv) i 2 L for any i : Ki = K1.
(v) Let i 2 N�1 and j 2 N�1 � fig. At any p 2 (pm; pM ):
(v.a) @Z1=@�i < 0 and @Zi=@�1 < 0 for any i;
(v.b) if p � P (K1); @Zi=@�j = 0;
(v.c) if p < P (K1) and n=3, then @Zi=@�j < 0; if p < P (K1) and n > 3;

then, for each i 2 R(p) (for each j 2 R(p)), there is some j 2 R(p) (resp.,
some i 2 R(p)) such that @Zi=@�j < 0, where R(p) = fr : p

(r)
m � pg.

(vi) pm > P (�j2LKj).
(vii) For any p� 2 (pm; pM ), Pr(pj = p�) = 0 for any j.
(viii) pm = maxfbp;bbpg.
Proof. (i) This is so because Zi (�) is concave in p on a right neighbour-

hood of pm and on a left neighbourhood of pM . Suppose contrariwise that
#L = 1 and let L = fig. Then �0j = 0 for all j 6= i in a neighbourhood
of pm. Hence d�i(p)=dp = @Zi=@p, contrary to the fact that �i(p) = ��i
in a right neighbourhood of pm. A similar argument rules out the event of
#M = 1:

(ii) The proof is similar to the previous one, given the fact that Zi (�) is
concave on a right neighbourhood of any p and a left neighbourhood of any
p.

(iii) Otherwise for i : p(i)m < p it would be �i(p) = pKi for p 2 Si\[pm; p�]:
a contradiction.

(iv) Since D(pM ) >
P

j 6=1Kj , if pm < p
(i)
m for some i : Ki = K1, then

a fortiori D(p) >
P

j2LKj for p � pM : as a consequence, for any j 2 L;

�j(p) is increasing for p 2 [pm; p(i)m ): a contradiction.
(v.a) A crucial role is played here by statements (i) to (iv) above and

the fact that D(p) >
P

j 6=1Kj . To see that @Z1(p)=@�i < 0 one must check
that at least one product on the right-hand side of (4) is strictly negative.
This is so for  = R(p) � f1g if j 2 R(p) and  = R(p) [ fjg � f1g if
j =2 R(p): in fact, q1; �q1; 0 < 0 since 0 < q1; < K1 and, at the same time,
�r2 0�r�s2N�i� (1 � �s) > 0: One can similarly see that @Zi(p)=@�1 < 0:
in fact, we take  = R(p) if i =2 R(p) and  = R(p) � fig if i 2 R(p), and
see that q1; � q1; 0 < 0.

(v.b) Now qi; � qi; 0 = Ki �Ki = 0 for any  2 N�i such that 1 =2  ;
while qi; � qi; 0 = 0� 0 = 0 for any  2 N�i such that 1 2  :
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(v.c) Note that the �rst inequality (6) holds for  = f1; jg since p <
P (K1); whereas the second inequality (6) holds for  = N�i sinceD(p) < K:
therefore @Zi=@�j < 0 for n = 3, since then f1; jg = N�i. Turning to
the oligopoly, note that, by statement (iii), the second inequality (6) also
holds for  = R(p) � fig. Thus @Zi=@�j < 0 if #R(p) = 3, since then
f1; jg = R(p)� fig. Finally, with #R(p) > 3, let 	1 (	2) be the set of the
subsets  of N�i which satisfy the �rst (resp., the second) inequality (6):
neither 	1 nor 	2 are empty. If 	1 \	2 6= ;; then @Zi=@�j < 0. If instead
	1 \	2 = ;, then for any  2 	1,

D (p)�
X
h2 

Kh � Ki > �Kj ,

while, for any  2 	2,

D (p)�
X
h2 

Kh � �Kj < Ki.

Of course, there is some  l 2 	1 such that  l [ flg 2 	2 where l 2 R(p)�
fi; jg and therefore

�Kj � D (p)�
X
h2 l

Kh �Kl � Ki �Kl:

Thus Kl � Ki +Kj . But this cannot hold if either i or j is the largest �rm
in R(p) apart for �rm 1. This completes the proof of the claim.

(vi) If #L = n, then inequality pm � P (�j2LKj) implies that each
�rm earns no more than its competitive pro�t, contrary to Proposition 1.
Suppose next #L < n: If pm < P (�j2LKj), then �j(p) would be increasing
over the range [pm;minfbpm; P (�j2LKj)g] for any j 2 L. To rule out the
event of pm = P (�j2LKj) when #L < n; it will be shown that otherwise it
would be limp!p+m

�0i(p) < 0 for each i 2 L. Note that ��i = pmKi and

��i = �i(p) = p[D(p)� �j2L�figKj ]�j2L�fig�j + pKi(1��j2L�fig�j)
= p[D(p)�D(pm)]�j2L�fig�j + pKi

in a neighborhood of pm: Therefore

�j2L�fig�j =
(pm � p)Ki

p[D(p)�D(pm)]
:

Then

d�j2L�fig�j
dp

= Ki
�pm[D(p)�D(pm) + pD0(p)] + p2D0(p)

p2[D(p)�D(pm)]2
;

9



and

lim
p!p+m

d�j2L�fig�j
dp

= Ki
pmD

00(p) + 2D0(p)

2p2m[D
0(p)]2

< 0:

This in its turn implies that limp!p+m
�0i(p) < 0 for each i 2 L since, in the

present case, �i(p)Ki = �j(p)Kj for each i; j 2 L.
(vii) A distinction is drawn according as to whether p� 2 S1 or p� =2

S1. In the former case, if contrariwise �j(p
�) < limp!p�+ �j(p) for some

j 6= 1, then limp!p�+ �1(p) < limp!p�� �i(p) since @Z1=@�j < 0 because
of statement (v): a contradiction. In a similar way it is also proved that
�1(p

�) = limp!p�+ �1(p). Assume now that p
� =2 S1. It must preliminarily

be noted that such an event might only arise (if ever) when p� < P (K1):
Indeed, if p� � P (K1) and p� =2 S1; then, as a consequence of statement
(v) above, d�i(p)=dp = @Zi=@p in a neighbourhood of p�; contrary to the
fact that �i(p) is constant in a neighbourhood of p� for any i such that
p� 2 Si. If, on the other hand, p� < P (K1); then, according to statement
(v.c), @Zi=@�j < 0 for some i such that p(i)m � p. Therefore, if �j(p

�) <
limp!p�+ �j(p) for some j, it would be limp!p�+ �i(p) < limp!p�� �i(p): a
contradiction.

(viii) Since�1(p) � pminfD(p);K1g, then�1(p) < ��1 for p < maxfbp;bbpg.
At the same it cannot be that pm > maxfbp;bbpg: if it were, then it would be
�1(p

�
m) = pmminfD(pm);K1g > ��1:

Note that, since bp is decreasing in K1, the event of bbp � bp arises at
relatively large levels of K1. An immediate consequence of statement (viii)
is

Corollary 1. pm � P (K1) if and only if bbp � bp:
Note that if ��j = pmKj for all j 6= 1 and Si = [pm; pM ] for all i; then

the equilibrium distributions would be found, as in duopoly, by solving the
n-equation system ��i = Zi(p; ��i(p)) throughout [pm; pM ]: But there is no
guarantee that the above features hold, hence we are not yet in a position to
the determine the equilibrium. Yet, we can make some remarks regarding
pM .

Proposition 3 (i) Let K1 > K2. Then �1(pM ) < 1. (ii) If Kr = K1, then
�r(p) = �1(p) for p 2 [pm; pM ]; and �r(pM ) = �1(pM ) = 1. Furthermore, if
at the same time Kj < K1 for some j, then p

(j)
M < pM .

Proof. (i) Suppose contrariwise that �1(pM ) = 1: As a consequence,
��i = �i(p

�
M ) = pM maxfD(pM )�

P
j 6=iKj ; 0g for i 2M �f1g. If D(pM ) �

10



P
j 6=iKj , then ��i = 0 while �i(p�m) = pmKi > 0: a contradiction. If,

instead, D(pM ) �
P

j 6=iKj > 0; then, since argmax p[D(p) �
P

j 6=iKj ] 2
(0; pM ) for i 2 M � f1g, it would be �i(p) > �i(p�M ) for some p: a contra-
diction. Thus it must be Pr(p1 = pM ) > 0 and �i(p

�
M ) > �i(pM ).

(ii) Since D(pM ) >
P

j 6=1Kj , we can write ��r = �r(p) = p�1E(xr j p1 <
p) + p(1 � �1)Kr = p�1[E(xr j p1 < p) �Kr] + pKr, where p is internal to
Sr and E(xr j p1 < p) denotes r�s expected output at p conditional on �rm
1 charging less than p. Similarly, we can write ��1 = �1(p) = p�r[E(x1 j
pr < p) � K1] + pK1 for p internal to S1. Obviously, E(xr j p1 < p) =
E(x1 j pr < p); so that �r(p) = �1(p) - as required by Proposition 1 - if
and only if �r = �1. Further, it cannot be �r(pM ) = �1(pM ) < 1, otherwise
�r(p

�
M ) > �r(pM ) contrary to the presumption that pM is quoted with

positive probability by �rm r: Nor can it be p(j)M = pM for any j : Kj < K1.
By arguing as in the proof of the previous statement we would obtain that
�j(p) > �j(pM ) at some p < pM .

4 The triopoly: a complete characterization

In the preceding sections we have seen how there are a number of properties
which generalize from the duopoly to oligopoly. Equipped with these results
and in order to get further insights for the oligopoly, in the remainder of
the paper we provide a comprehensive study of mixed strategy equilibria
in the triopoly. Compared to the duopoly, the triopoly will be seen to
allow for much wider diversity throughout the region of mixed equilibria,
the equilibrium being a¤ected on several grounds by the ranking of pm and
pM relative to the demand prices of di¤erent aggregate capacities, namely,
P (K1 +K2), P (K1 +K3), and P (K1).

Without loss of generality, in the region of mixed strategy equilibria
of the (K1;K2;K3)-space we restrict ourselves to the subset where K1 �
K2 � K3: In light of what will be found in this section, that subset can be
partitioned in the following way. (Note that, because of Proposition 1 and
statement (viii) of Proposition 2, pM and pm are known once K1, K2, and
K3 are given.)
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A = f(K1;K2;K3) : K1 � K2 > K3; pm � P (K1 +K2); pM � P (K1 +K3)g
B1 = f(K1;K2;K3) : K1 � K2 > K3;

pm � P (K1 +K2); P (K1 +K3) < pM � P (K1)g
E1 = f(K1;K2;K3) : K1 � K2 > K3; pm � P (K1 +K2); pM > P (K1)g
C1 = f(K1;K2;K3) : K1 � K2 > K3; P (K1 +K2) < pm < P (K1 +K3)g
C2 = f(K1;K2;K3) : K1 � K2 > K3; P (K1 +K3) � pm; pM � P (K1)g

C3 = f(K1;K2;K3) : K1 � K2 > K3;

P (K1 +K3) � pm <
K1 �K3

K1
P (K1); pM > P (K1)g

F = f(K1;K2;K3) : K1 � K2 > K3;

maxfP (K1 +K3);
K1 �K3

K1
P (K1)g � pm < P (K1); pM > P (K1)g

D = f(K1;K2;K3) : K1 � K2 � K3; pm � P (K1)g
B2 = f(K1;K2;K3) : K1 � K2 = K3; pm < P (K1); pM � P (K1)g
E2 = f(K1;K2;K3) : K1 � K2 = K3; pm < P (K1); pM > P (K1)g

It is easily checked that it is actually K1 > K2+K3 whenever pM � P (K1),
hence at any (K1;K2;K3) 2 C3 [D [E1 [E2 [ F; and K1 > K2 whenever
pM � P (K1 +K3), hence at any (K1;K2;K3) 2 B1 [ C2.

The following theorem collects most of the results to be achieved in this
section.

Theorem. (a) In A, ��i = pmKi for all i, L = f1; 2; 3g and M = f1; 2g.
(b) In B1 [B2, ��i = pmKi for all i and L =M = f1; 2; 3g.
(c) In C1 [ C2 [ C3, ��i = pmKi for i 6= 3 and ��3 > pmK3; L = M =

f1; 2g; p(3)M < P (K1).
(d) In D, ��1 = pmD(pm) and ��j = pmKj for j 6= 1; �1(p) = 1� pm=p;

while �2(p) and �3(p) are any pair of non-decreasing functions such that
pK2�2 + pK3�3 = pD(p)���1; �j(pm) = 0 and �j(pM ) = 1 for j 6= 1:

(e) In E1 [ E2, ��i = pmKi for all i, L = f1; 2; 3g and #M � 2 withbpM � P (K1). Over [P (K1); pM ], �1(p) = 1�pm=p; and �2(p) and �3(p) are
any pair of non-decreasing functions such that pK2�2+pK3�3 = pD(p)���1;
�j(P (K1)

+) = �j(P (K1)
�) and �j(pM ) = 1 for j 6= 1.

(f) In F , ��i = pmKi for all i, L = f1; 3g and p(2)m � P (K1). Over the
range [P (K1); pM ] distributions are determined like in E1 [ E2:

(g) In A; B1[B2, and C1[C2[C3, the equilibrium is unique throughout
[pm; pM ]. In F, all equilibria share the same �i over range [pm; P (K1)].
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In addition, we will see how to determine p(3)m and��3 when (K1;K2;K3) 2
C1[C2[C3. We will also deal with the event of a disconnected support, the
fact that such an event may hold being established in the following section.

The route leading to the results listed in the Theorem begins with the
determination of #L in the various subsets making up the partition of the
region of mixed strategy equilibria. Then we will address the determination
of L and the �0is. Finally, we will determine M in each subset of the par-
tition. In connection to the �rst task an intermediate step is made by the
following Lemma.

Lemma 2. If #L = 2; then Pr(pj = pm) = 0 for each j 2 L; if #L = 3
and Pr(pi = pm) > 0 for some i, then Pr(pj = pm) = 0 for each j 6= i.

Proof. Let L = fi; jg: If Pr(pj = pm) > 0, then, taking account of
statement (vi) of Proposition 2, ��i = �i(p

+
m) < pmminfD(pm);Kig while

�i(p
�
m) = pmminfD(pm);Kig: a contradiction. A similar argument estab-

lishes the second part of the statement, relating to the event of L = fi; j; kg.

We are now ready to address the determination of #L. First of all note
that if #L = 3 then equilibrium distributions constitute a solution of system

��i = Zi(p; ��i(p)); �i > 0; �
0
i � 0 for each i; (7)

in an open to the left right neighbourhood of pm, where ��2 and �
�
3 are

constants to be determined. Note, furthermore, that Pr(pi = pm) = �i(p
+
m).

The following result addresses the determination of #L in the whole region
of mixed strategy equilibria except set D along with the determination of
Pr(pi = pm) throughout the partition. In this connection, it must be noted
that subset B2 [E2 can be partitioned into two subsets, one in which pm �
P (K1+K2) = P (K1+K3) and one in which P (K1+K2) = P (K1+K3) <
pm < P (K1). It is shown that whether #L = 2 or #L = 3 depends on the
size of pm relative to P (K1+K2) and P (K1); as well as on whether K2 > K3

or K2 = K3.

Proposition 4 (i) Let pm � P (K1+K2) or, equivalently, let (K1;K2;K3) 2
A [ B1 [ E1 or (K1;K2;K3) fall in the subset of B2 [ E2 where pm �
P (K1 +K2). Then #L = 3 and Pr(pi = pm) = 0 for each i.

(ii) Let (K1;K2;K3) fall in the subset of B2 [ E2 where P (K1 +K2) =
P (K1 +K3) < pm < P (K1). Then #L = 3 and Pr(pi = pm) = 0 for each i.

(iii) Let (K1;K2;K3) 2 C1[C2[C3[F; or, equivalently, P (K1+K2) <
pm < P (K1) and K2 > K3. Then #L = 2:

13



(iv) Let (K1;K2;K3) 2 D; that is, pm � P (K1). Then Pr(pi = pm) = 0
for each i.

(v) Pr(pi = pm) = 0 for each i 2 L.
(vi) ��i = pmKi for each i 2 L, except that ��1 = pmD(pm) in set D.

Proof. (i) The �rst part is an obvious consequence of statement (vi)
of Proposition 2. The second part of the statement is proved by showing
that �i(p

+
m) = 0 for each i at any solution of system (7). Suppose �rst that

pm < P (K1 +K2). Then the equations in system (7) read

��1 = p�2�3[D(p)�K] + pK1;

��2 = p�1�3[D(p)�K] + pK2;

��3 = p�1�2[D(p)�K] + pK3:

Hence
�
dZi(p; ��i(p))=dp

�
p=p+m

= 0 for each i if and only if

(D �K)[�2�3 + pm(�02�3 + �2�03)] +D0pm�2�3 +K1 = 0;

(D �K)[(�1�3 + pm(�01�3 + �1�03)] +D0pm�1�3 +K2 = 0;

(D �K)[(�1�2 + pm(�01�2 + �1�02)] +D0pm�1�2 +K3 = 0;

where D;D0; �1; �2; �3; �
0
1; �

0
2, and �

0
3 are all to be undertood as limits for

p ! p+m. Now, suppose contrariwise that, say, �1(p
+
m) > 0 (one might as

well suppose either �2(p
+
m) > 0 or �3(p

+
m) > 0). Then, according to Lemma

2, �2(p
+
m) = �3(p

+
m) = 0; and the system above becomes

pm(D �K)(�02�3 + �2�03) = �K1;

pm(D �K)(�01�3 + �1�03) = �K2;

pm(D �K)(�01�2 + �1�02) = �K3:

But this system cannot hold. Indeed, in order for the �rst equation to hold it
must be either �02 =1 or �03 =1 (or both): then, either the third equation
or the second equation (or both) cannot hold. The same logic applies when
pm = P (K1+K2), regardless of whetherK2 > K3 orK2 = K3. For example,
in the former case, the equations in system (7) read

��1 = p�2[D(p)�K1 �K2]� p�2�3K3 + pK1;

��2 = p�1[D(p)�K1 �K2]� p�1�3K3 + pK2

��3 = p(1� �1�2)K3;

in a right neighbourhood of pm and the same procedure proves the statement
in this case too.
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(ii) Assume contrariwise that p(1)m = p
(2)
m < p

(3)
m . Then

��2 = Z2(p; ��2(p)) = p�1(D(p)�K1) + p(1� �1)K2

�3(p) = Z3(p; ��3(p)) = p�1(1� �2)(D(p)�K1) + p(1� �1)K2

for p 2 (pm; p(3)m ]. It is immediately seen that Z3(�) < Z2(�) for any �1; �2 >
0: Consequently, ��3 = Z3(p

(3)+
m ; ��3(p

(3)
m )) < ��2: �rm 3 has not made a best

response since it can guarantee itself ��2 by charging pm. To establish the
second part of the statement, assume contrariwise that �i(p

+
m) > 0 for some

i. Then ��j = Zj(p
+
m; ��j(p

+
m)) < �j(p

�
m) = pmKj for j 6= i: a contradiction.

(iii) The statement is proved by showing that, if #L = 3; then either
Zi(p

+
m; ��i(p

+
m)) < Zi(pm; ��i(pm)) for some i - a clear contradiction - or

system (7) has no solution. The proof runs somewhat di¤erently according as
to whether P (K1+K2) < pm < P (K1+K3) or P (K1+K3) � pm < P (K1).

(iii.a) P (K1 +K2) < pm < P (K1 +K3).
There are three cases to consider: either �i(p

+
m) > 0 for some i 2 f1; 2g,

or �3(p
+
m) > 0; or �i(p

+
m) = 0 for each i. In the �rst case ��j = �j(p

+
m) <

�j(p
�
m) = pmKj for j 2 f1; 2g and j 6= i. In both the second and third case

the equations in system (7) read

��1 = p�2[D(p)�K1 �K2]� p�2�3K3 + pK1;

��2 = p�1[D(p)�K1 �K2]� p�1�3K3 + pK2;

��3 = p(1� �1�2)K3;

over range (pm; P (K1+K3)). Then
�
dZi(p; ��i(p))=dp

�
p=p+m

= 0 if and only
if

pm[�
0
2�3K3 + �2�

0
3K3 � �02(D �K1 �K2)] = K1;

pm[�
0
1�3K3 + �1�

0
3K3 � �01(D �K1 �K2)] = K2;

pm(�
0
1�2 + �1�

0
2) = 1:

Since �0i � 0, the �rst two equations cannot hold unless �02 and �01 are both
�nite, whereas the third equation requires that at least one of them is not.

(iii.b) P (K1 +K3) � pm < P (K1).
Then the equations in system (7) read

��1 = p[�2(D(p)�K1 �K2)� �2�3(D(p)�K1)

+�3(D(p)�K1 �K3) +K1];

��2 = p[�1(D(p)�K1 �K2)� �1�3(D(p)�K1) +K2];

��3 = p[�1(D(p)�K1 �K3)� �1�2(D(p)�K1) +K3];

15



for p 2 (pm;minfbpM ; P (K1)g]. We consider a partition of four cases. In
the �rst case, P (K1 + K3) < pm and �i(p

+
m) > 0 for some i. If i = 1;

then ��j = Zj(p
+
m; ��j(p

+
m)) < �j(p

�
m) = pmKj for j 6= i; if i 2 f2; 3g;

then ��1 = Z1(p
+
m; ��1(p

+
m)) < �1(p

�
m) = pmK1. A similar contradiction is

obtained in the second case, in which P (K1+K3) = pm and �i(p
+
m) > 0 for

some i 2 f1; 2g. Then, ��j = Zj(p
+
m; ��1(p

+
m)) < �j(p

�
m) = pmKj for j 6= i

and j 2 f1; 2g: As third case, assume that P (K1 +K3) = pm and �1(p
+
m) =

�2(p
+
m) = 0. Then the proof follows as in the last two cases inspected in

(iii.a). The partition is completed by the case where P (K1 +K3) < pm and
�i(p

+
m) = 0 for each i. Arguing as before it is now obtained

pm
�
�02�3(D �K1) + �2�

0
3(D �K1)� �02(D �K1 �K2)+

��03(D �K1 �K3)] = K1;

pm[�
0
1�3(D �K1) + �1�

0
3(D �K1)� �01(D �K1 �K2)] = K2;

pm[�
0
1�2(D �K1) + �1�

0
2(D �K1)� �01(D �K1 �K3)] = K3:

On close scrutiny, a necessary condition for such equations to hold is that
0 < �0i <1 for each i. Granted this, the last two equations become

�pm�01(D �K1 �K2) = K2;

�pm�01(D �K1 �K3) = K3:

These two equalities cannot simultaneously hold sinceK2 > K3 andD(pm) >
K1:

(iv) Under the present circustances, equation ��1 = Z1(p; ��1) reads

��1 = pm[D(pm)� �2K2 � �3K3]:

If either �2(p
+
m) > 0 or �3(p

+
m) > 0; then �

�
1 = Z1(p

+
m; ��1(p

+
m)) < �1(p

�
m) =

pmD(pm): a contradiction. To dispose of the event of �1(p
+
m) > 0; note that

Zj(p; ��j(p)) = p(1 � �1)Kj for j 6= 1: then, if �1(p
+
m) > 0; it would be

��j = Zj(p
+
m; ��j(p

+
m)) < �j(p

�
m) = pmKj for j 2 L� f1g:

(v) It is a consequence of statements (i)-(iv) and Lemma 2.
(vi) It is a consequence of previous statement and Corollary 1.

We know from Sections 2 and 3 that pm and pM are determined just
as in the duopoly. Unlike in duopoly, however, the supports Si need not
be the same for all i, as is immediately revealed by the fact that #L = 2
may hold. One group of related questions is then whether L = f1; 2g or
L = f1; 3g and how bpm is determined under the circumstances of statement
(iii) of Proposition 4. According to the following proposition, L = f1; 2g in
C1 [ C2 [ C3 and L = f1; 3g in F . Furthermore, the proposition points the
indeterminacy a¤ecting the equilibrium at p > P (K1) when bpM > P (K1).
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Proposition 5 (a) Let (K1;K2;K3) 2 C1[C2[C3: Then: (a.i) L = f1; 2g
and ��i = pmKi for i 6= 3; (a.ii) (pm; p(3)m ] � S1\S2; ��3 = maxp2e��3�(p) >
pmK3 and p

(3)
m = argmaxp2e��3�(p), where e� = [pm; p

�
M ], p

�
M is such that

�2�(p
�
M ) = 1, �1� and �2� are such that �

�
1 = Z1(p; ��1�) and �

�
2 =

Z2(p; ��2�) in the assumption that �3� = 0, and �3�(p) = Z3(p; ��3�).
(b) If (K1;K2;K3) 2 D, then ��1 = pmD(pm) and ��j = pmKj for j 6= 1;

�1(p) = 1 � pm=p; while �2(p) and �3(p) are any pair of non-decreasing
functions such that

�2 =
pD(p)���1 � pK3�3

pK2
; (8)

�j(pm) = 0 and �j(pM ) = 1 for j 6= 1. Equation (8) is consistent with L =
f1; 2; 3g; L = f1; 2g and L = f1; 3g, as well as M = f1; 2; 3g; M = f1; 2g
and M = f1; 3g, and even with (non-overlapping) gaps in S2 and/or S3.
Among the in�nite solutions, there exists a simmetric one in �2 and �3.

(c) If (K1;K2;K3) 2 F , then L = f1; 3g, p(2)m � P (K1); (pm; p
(2)
m ] �

S1 \ S3 and ��i = pmKi for all i. Over the range [P (K1); pM ], �1(p) =
1 � pm=p while �2(p) and �3(p) are any pair of non-decreasing functions
meeting (8) and such that �3(P (K

+
1 ) = �3(P (K

�
1 ) and �2(P (K

+
1 ) = 0. It

is �3(P (K1)) < 1 unless K1�K3
K1

P (K1) = pm: in this special case, S2 \ S3 =
fP (K1)g and the equilibrium is completely determined.

Proof. (a.i) Given statement (iii) of Proposition 4, we just need to rule
out the event of p(1)m = p

(3)
m < p

(2)
m . Consider �rst (K1;K2;K3) 2 C1. Under

that event ��3 = Z3(p; ��3(p)) = pK3 for p 2 (pm;minfp(2)m ; P (K1 +K3)g]:
an obvious contradiction. Next let (K1;K2;K3) 2 C2. If it were p

(1)
m =

p
(3)
m < p

(2)
m , then, for i 2 f1; 3g and j =2 fi; 2g it would be ��i = p�j(D(p)�

Kj) + p(1� �j)Ki over the range [pm; p
(2)
m ]; and, as a consequence,

�j =
(pm � p)Ki

p[D(p)�Ki �Kj ]
(9)

over that range. By charging a price there �rm 2 would get

�2(p) = Z2(p; ��2(p)) = p�1(1� �3)[D(p)�K1] + p(1� �1)K2;

which is lower than pmK2 at any p < P (K1). As a consequence, if pM <

P (K1); �
�
2 = �2(p

(2)
m ) < �2(pm): a contradiction. If instead pM = P (K1),

then one can avoid this contradiction only by taking p(2)m = p
(2)
M = pM ,

that is, Pr(p2 = pM ) = 1 > 0, contrary to Proposition 1. Finally, let
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(K1;K2;K3) 2 C3. Now, with p(1)m = p
(3)
m < p

(2)
m it should be p(2)m � P (K1),

to avoid the previous contradiction; but then, according to (9), �3(P (K1)) >
1 since pmK1 < (K1 �K3)P (K1).

(a.ii) We �rst prove that (pm; p
(3)
m ] � S1 \ S2 (namely, S1 and S2 ex-

hibit no gaps over that range). If not, then either statement (ii) of Propo-
sition 2 is contradicted or there exists some range (p�; p��) � [pm; p

(3)
m ]

which is o¤ S1 as well as S2 while p� 2 S1 \ S2. Now, since p� 2 S1;h
d�1(p)
dp

i
p=p��

=
h
dZ1(p;��1(p))

dp

i
p=p��

= 0; by statement (v) of Proposition 2,

this in its turn implies that
h
@Z1(p;��1(p))

@p

i
p=p��

� 0. This leads to a con-

tradiction: if
h
@Z1(p;��1(p))

@p

i
p=p��

> 0; then 1 would earn more than ��1 by

charging slightly more than p�; if
h
@Z1(p;��1(p))

@p

i
p=p��

= 0 then it could not

be
h
d�1(p)
dp

i
p=p��

= 0 on the right of p�, contrary to the fact that p(1)M = pM .

Let � = [pm; p
(3)
m ]. Note that, for all i, �i� is �rm i�s equilibrium distribu-

tion over �. Furthermore, �3�(p) = p�1�(1��2�)maxf0;minfK3;minfD(p)�
K1gg + p(1 � �1�)K3 on a neighbouhood of pm. Of course, �3�(p) � ��3
for p 2 �. It is easily checked that �3�(pm) = pmK3 = �3�(P (K1)) and, if
P (K1) > p�M , �3�(p

�
M ) < pmK3; furthermore, �03�(p)p=pm > 0.7 It follows

immediately that ��3 > pmK3, since �rm 3 will earn more than pmK3 at
a price higher than and su¢ ciently close to pm, and that �3�(p) has an
internal maximum over the range [pm;minfP (K1); p

�
Mg]. Thus it cannot

be p(3)m > argmax�3�(p); otherwise ��3 = �3�(p
(3)
m ) < max�3�(p); while

�rm 3 can earn max�3�(p) by charging argmax�3�(p). This being so, let
� = [p

(3)
m ;minfP (K1); bpMg]. To rule out the event of p(3)m < argmax�3�(p),

note that, on a right neighbourhood of p(3)m , ��i = �i�(p) = Zi(p; ��i�(p))
for all i and ��i = �i�(p) = Zi(p; ��i�(p)) for i 2 f1; 2g. Thus, taking
account of statement (v) of Proposition 2, �2� < �2� and �1� < �1� since
�3� > �3� = 0), implying that Z3(p; ��3�(p)) > Z3(p; ��3�(p)). But this

inequality is contradicted from the fact that p(3)m < argmax�3�(p), implying
that Z3(p; ��3�(p)) > Z3(p

(3)
m ; ��3�(p

(3)
m )) = ��3 = Z3(p; ��3�(p)) on a right

neighbourhood of p(3)m .8

(b) It is immediately checked that ��j = p (1� �1)Kj for j 6= 1 and

7 In C1, �03�(p)p=pm = K3; in C2 [ C3, �03�(p)p=pm = pm [�
0
1�]p=pm [D(pm) � K1 �

K3] +K3; where [�01�]p=pm = � K2
pm[D(pm)�K1�K2]

:
8One might wish to account for the event of �3�(p) reaching its maximum more

than once in e�: Arguing as in the text, it is established that �3� = 0 for any p �
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p 2 Sj : Since #L > 1; ��j = pmKj for some j 6= 1; in its turn implying
�1(p) = 1� pm

p . Further, equation �
�
1 = Z1(p; ��1(p)) reads

��1 = p�2�3[D(p)�K2 �K3] + p�2(1� �3)[D(p)�K2]

+ p(1� �2)�3[D(p)�K3] + p (1� �2) (1� �3)D(p).

This leads to equation (8), leaving one conditional degree of freedom in the
determination of �2 and �3, additional constraints being, of course, �

0
j � 0

throughout [pm; pM ] for all j 6= 1; �j(pm) = 0; and �j(pM ) = 1.9
As one can easily check, these constraints are met at the symmetric

solution of (8), namely,

�j(p) =
pD(p)���1
p(K2 +K3)

for j 6= 1: (8�)

(c) Again taking account of statement (iii) of Proposition 4, we just need
to rule out the event of p(1)m = p

(2)
m < p

(3)
m . Under such an event, �3(p) =

Z3(p; ��2(p)) = p�1(1� �2)[D(p)�K1] + p(1� �1)K3 in a neighbourhood
of pm, where �1(p) and �2(p) are given by equations (9). It is easily checked
that �3(p) > pmK3 in an open to the left neighbourhood of pm. This im-
plies, �rst, that ��3 > pmK3 and, second, that p

(3)
M < P (K1), otherwise

p (1� �1)K3 = �
�
3 > pmK3 and �rm 2 would get �2(p) = p (1� �1)K2 >

pmK2 = �
�
2 at p � P (K1). As a result, ��1 = p�2[D(p)�K2 �K3] + p(1�

�2)[D(p)�K3] over the range (p
(3)
M ; P (K1)) and �2 =

p[D(p)�K3]���1
pK2

.10 But
then �2(P (K1)) � 0 since pmK1 � (K1 �K3)P (K1): an obvious contradic-
tion. Thus it must be p(1)m = p

(3)
m < p

(2)
m . Further, it cannot be p

(2)
m < P (K1),

otherwise - as shown in the proof of statement (a.i) - ��2 = �2(p
(2)
m ) < pmK2.

By following a procedure used above we get that (pm; p
(2)
m ] � S1 \ S3

(cf. proof of statement (a.ii)). Thus �1 and �3 are given by equations (10)
over the range [pm; P (K1)]. Over the range (P (K1); pM ]; �1(p) = 1� pm=p;
whereas �2 and �3 are any pair of non-decreasing functions meeting equation
(8) and such that �3(P (K1)

+ = �3(P (K1)
�. (Note that �2(P (K1)

+) = 0

whenever �3(P (K1)
+ = �3(P (K1)

�.) Quite interestingly, it can be p(2)m >

P (K1) rather than p
(2)
m = P (K1). In the former case, �3 =

pD(p)���1
pK3

maxfargmaxp2e��3�(p)g; hence p(3)m = maxfargmaxp2e��3�(p)g.
9By the way, holding equation (9), �2(pm) = 0 if �3(pm) = 0 and �2(pM ) = 1 if

�3(pM ) = 1:
10 In the assumption that (p(3)M ; P (K1)) � S1 \ S2. Assuming otherwise that this range

belongs neither to S1 nor to S2 would lead to a contradiction.
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over the range [P (K1); p
(2)
m ] and it would still be �2(p

(2)
m )+) = 0. Finally,

�3(P (K1)) = 1 if and only if K1�K3
K1

P (K1) = pm; in this special case,

�2 =
pD(p)���1�pK3

pK2
over range [P (K1); pM ].

A few remarks are in order as regards the regions of indeterminacy
of equilibrium. One can generate solutions with any of the qualitative
features claimed in statement (b) of Proposition 5, by slightly perturb-
ing �3(p) around �j(p) (the symmetric solution in �2 and �3) over some
[p�; p��] � [pm; pM ]. For example, one can obtain in�nitely many equilibria
with L = f1; 2g and M = f1; 2; 3g by using a procedure like the follow-
ing. Take �3(p) = 0 for p 2 [pm; p

�], next, let �3(p) = r + s(p � pm)
for p 2 [p�; p��], with r and s chosen such that �3(p

��) = �j(p
��), and

let �3(p) = �j(p) for p 2 [p��; pM ]: It is immediately seen that �03 > 0
throughout (p�; pM ) and �02 > 0 throughout (pm; p

�][(p��; pM ): Straightfor-
ward calculus would also show that �2(p) (to be determined according to
equation (8)) is such that �02 > 0 throughout (p

�; p��], provided p�� is chosen
close enough to pm. A similar procedure can be used to generate equilibria
with, say, L = f1; 3g and #M � 2; and even equilibria such that �0j = 0 for
some j 6= 1, over a subset of [p(j)m ; p

(j)
M ]: in other words, Sj need not be con-

nected.11 Finally, it is worth looking at what underlies the indeterminacy of
equilibrium when (K1;K2;K3) 2 D or when (K1;K2;K3) 2 F . Except in
a duopoly, this feature can arise when K1 is su¢ ciently large. With n � 3,
the output of any i 6= 1 when charging p > P (K1) does not depend on
pj (j =2 fi; 1g) - the demand forthcoming to i being zero whenever p1 < p
and higher than Ki whenever p1 > p. (Recall that D(p) >

P
i6=1Ki at any

p � pM :) Thus, in region D - where pm � P (K1) - �i (each i 6= 1) only
a¤ects �rm 1�s payo¤ at any p 2 (pm; pM ): consequently, there is one degree
of freedom in the determination of �2 and �3 all over (pm; pM ). A similar
feature holds, in region F , throughout (P (K1); pM ).

Two remarks are in order about statement (a.ii). If argmaxp2e��3�(p) 6=
P (K1 + K3), then [�03� ]p=p(3)m = 0 and [�0j� ]p=p(3)m + = [�0j�]p=p(3)�m

for j =

1; 2; whereas if argmaxp2e��3�(p) = P (K1 +K3), then [�03�]p=p(3)m > 0 and

[�0j� ]p=p(3)m + < [�0j�]p=p(3)m � for j = 1; 2. (We omit the proof, which can be

derived straightforwardly.)
11 In a not dissimilar fashion, with (K1;K2;K3) 2 F one can devise a simple method to

completing the construction of the equilibrium on the right of P (K1). Take �3 as constant

at �3(P (K1)) until
pD(p)���1�pK3�3(P (K1))

pK2
= �3(P (K1)). Over the remaining range, let

�2(p) = �3(p) (the symmetric solution). It can easily be checked that �
0
2 > 0 over the

range where �3 is constant.
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We still have to determine M in all regions but D and F:

Proposition 6 (i) Let (K1;K2;K3) 2 A[C1 [C2 [C3. Then M = f1; 2g,
p
(3)
M < P (K1) and (p

(3)
M pM ] � S1 \ S2:

(ii) Let (K1;K2;K3) 2 B1 [ B2. Then #M = 3. Furthermore, �2(p) =
�3(p) whenever K2 = K3.

(iii) Let (K1;K2;K3) 2 E1 [E2. Then p(j)M � P (K1) for j 6= 1. For p 2
[P (K1); pM ], �1(p) = 1�pm=p while �2(p) and �3(p) are any non-decreasing
functions consistent with equation (8) and such that �j(P (K1)

+) = �j(P (K1)
�)

and �j(pM ) = 1 for j 6= 1. This is consistent with #M = 3, p(2)M < pM ; and

p
(3)
M < pM , and even with (non-overlapping) gaps in S2 and/or S3.

Proof. (i) In order to establish thatM = f1; 2g, the set A[C1[C2[C3
is partitioned into the following regions: region (a), where pM � P (K1 +
K2); region (b), where pm � P (K1 + K2) < pM < P (K1 + K3); region
(c), where pm � P (K1 + K2) < P (K1 + K3) = pM ; region (d), where
P (K1 + K2) < pm < pM < P (K1 + K3); region (e), C2 [ C3; region (f),
where P (K1 +K2) < pm < P (K1 +K3) � pM . This is a partition because
regions (a), (b), and (c) make up set A; while regions (d) and (f) make up
set C1.

A constructive argument is provided for region (a). By statement (i)
of Proposition 4, p 2 S1 \ S2 \ S3 in a neighbourhood of pm. Hence, over
that neighbourhood equilibrium distributions are the solution of the three-
equation system ��i = p�j�r(D(p) � Kj � Kr) + p(1 � �j�r)Ki; so that

�i = (Kj=Ki)�j . Based on this, it can be neither #M = 3 nor p(2)M < pM .

It is instead p(3)M < pM and S1 = S2 = [pm; pM ] and S3 = [pm; p
(3)
M ] at one

equilibrium.12

As to regions (b) through (f), we �rst rule out the event of #M = 3

and then the event of p(2)M < pM . Recall that, by Proposition 3, with
#M = 3 it is �1(pM ) < 1 = �2(pM ) = �3(pM ). Further, in a left neigh-
bourhood of pM equilibrium distributions would be the solutions of the
three-equation system (7), call them ��i: Let us consider region (c) �rst. As
seen more thoroughly in the following section, solving this system yields

��1 =
q

K2
K1

(p�pm)
p ; ��2 =

K1
K2
��1, and ��3 =

D(p)�K1�K2

K3
+ K1

K3
��1 for

p 2 � = [P (K1 + K2); P (K1 + K3)]. Since ��2(P (K1 + K3)) = 1, then
��1(P (K1 +K3)) = K2=K1; upon di¤erentiation of ��3 and recalling that

12By Lemma 4 below, the equilibrium is unique.
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D(pM ) �K2 �K3 + pM [D
0(p)]p=pM = 0 and ��1 = pM [D(pM ) �K2], it is

found
�
��03(p)

�
p=P (K1+K3)�

=
[D0(p)]p=pM

2K3
< 0: a contradiction.

The event #M = 3 in regions (b), (d), (e), and (f) can be dismissed more
easily. Under that event, �2(p�M ) = Z2(pM ; ��2(pM )) = �

�
2 and �3(p

�
M ) =

Z3(pM ; ��3(pM )) = ��3. These two equations contradict each other since
�2(pM ) = �3(pM ) = 1. For example, if the former holds, then �3(p

�
M ) < �

�
3

and the latter cannot hold. Let us see how this works in each case. Note
that, both in (e) and (f), pM � P (K1 +K3). Hence, in either case, under
our working assumption it would be ��2 = pmK2 = pM [1 � �1(pM )]K2:
This yields �1(pM ) = 1 � pm=pM ; in its turn implying Z3(p

�
M ) = pM [1 �

�1(pM )]K3 = pmK3; contrary to statement (a.ii) of Proposition 5. In (d),
��2 = pmK2 = Z2(p

�
M ) = pM [�1(pM )(D(pM )�K1�K3)+ (1��1(pM ))K2];

yielding �1(pM ) =
pM�pm
pM

K2
K�D(pM ) . By substituting this into Z3(p

�
M ) =

pM [1��1(pM )]K3 it is obtained Z3(p�M ) =
pM [K1+K3�D(pM )]+pmK2

K�D(pM ) K3. Note

that pM [K1+K3�D(pM )]+pmK2

K�D(pM ) < pm since P (K1+K3) > pM ; hence Z3(p
�
M ) <

pmK3, contrary to statement (a.ii) of Proposition 5. A similar argument
applies to (b).

It remains to dismiss the event of p(2)M < pM in regions (b), (c), (d), (e),
and (f). This is done by showing that it would otherwise be �2(p) > ��2 in

a left neighbourhood of pM . If p
(2)
M < pM in regions (d), (e) and (f), then

�3(p
�
M ) = pM [1��1(pM )]K3 = �

�
3 > pmK3; implying �1(pM ) = 1�

��3
pMK3

<

1� pm
pM

and hence �2(p�M ) = pM�1(pM )maxf0; D(pM )�K1�K3g+pM [1�
�1(pM )]K2 � ��3

K3
K2 >

pmK3

K3
K2 = pmK2. If p

(2)
M < pM under (b) or (c), then

�1(p) = 1 � pm
p in a neighbourhood of pM . Consequently, by charging a

price in that neighbourhood �rm 2 would earn �2(p) = p�1�3[D(p)�K1 �
K3] + p�1(1� �3)[D(p)�K1] + p(1� �1)K2 > p(1� �1)K2 = pmK2 = �

�
2:

Next we prove that p(3)M < P (K1): This is trivial when pM � P (K1),

i.e. in A [ C2. In C1 [ C3, ��3 > pmK3 and if p
(3)
M � P (K1), then ��3 =

P (K1)[1 � �1(P (K1))]K3 = pmK3 and pmK2 = P (K1)[1 � �1(P (K1))]K2:
an obvious contradiction.

The claim that (p(3)M ; pM ] � S1 \ S2 is a bit cumbersome to prove. The
event of there being p� � p

(3)
M such that p� 2 S1 \S2 and (p�; p��) belonging

neither to S1 nor to S2 is dismissed by arguing similarly as in the proof of
statement (a) of Proposition 5. Next we rule out the joint event of a gap
(p�; p��) in S1 and a gap (p

(3)
M ; p��) in S2 when p� < p

(3)
M and p� 2 S1 \ S2.

Under such an event,
h
d�2(p)
dp

i
p=p��

=
h
dZ2(p;��2(p))

dp

i
p=p��

= 0, implying
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h
@Z2(p;��2(p))

@p

i
p=p��

� 0. Likewise,
h
@Z2(p;��2(p))

@p

i
p=p

(3)�
M

� 0 as a conse-

quence of the fact that p(3)M 2 S2. However, one can check that Z2(p;��2(p))
is di¤erentiable and concave everywhere in p when �3(p) = 1. Therefore,

a contradiction would at any rate be reached: if
h
@Z2(p;��2(p))

@p

i
p=p

(3)�
M

> 0,

then �rm 2 would get more than ��2 by charging a price slightly higher than

p
(3)
M ; if

h
@Z2(p;��2(p))

@p

i
p=p

(3)�
M

= 0, then it would be
h
@Z2(p;��2(p))

@p

i
p=p��+

< 0,

contrary to the fact that p�� 2 S2: Finally, the joint event of a gap (p�; p��)
in S2 and a gap (p

(3)
M ; p��) in S1 when p� < p

(3)
M and p� 2 S1 \ S2 is ruled

out (even more easily) by relying on the concavity of Z1(p;��1(p)).

(ii) Note that, by statements (i) , (ii), and (vi) of Proposition 4, #L =
3 and ��i = pmKi. Consider �rst the case where (K1;K2;K3) 2 B1:

If p(j)M < pM for some j 6= 1, then one can easily check that �j(p) >

��j for p 2 [maxfp(3)M ; P (K1 + K3)g; pM ]. Turn next to the case where
(K1;K2;K3) 2 B2. Here ��2 = ��3 = pmK2 (recall that K2 = K3), hence
pmK2 = Z2(p; ��2(p)) = Z2(p; ��3(p)) on a right neighbourhood of pm.
Therefore, �2(p) = �3(p) and, of course, #M = 3.

(iii) According to statements (i), (ii) and (vi) of Proposition 4, ��j =
pmKj for any j 6= 1. Also, �j(p) = p (1� �1)Kj for p 2 [P (K1); pM ]:

this leads to �1(p) = 1 � pm=p since p
(j)
M = pM for some j 6= 1. Now, if

it were p(r)M < P (K1) then it would be �r(p) > ��r for p 2 [p
(r)
M ; P (K1)],

as one can easily check. Also, the argument in the proof of statement (ii)
of Proposition 5 leads to the stated relationship between �2 and �3 over
[P (K1); pM ]. Any �2 and �3 consistent with equation (8) constitutes a pair
of equilibrium distributions so long as �0j � 0, �j(pM ) = 1 for j 6= 1; and
�j(p) is continuous in P (K1).

It remains to establish statement (g) of the Theorem, concerning the
uniqueness of the equilibrium. First, equilibrium distributions are uniquely
determined over [pm; bpm] and over [bpM ; pM ].
Proposition 7 In C1 [ C2 [ C3; �1 and �2 are uniquely determined over
the range [pm; p

(3)
m ][ [p(3)M ; pM ] � S1 \S2 and the same holds, in A, over the

range [p(3)M ; pM ]. Similarly, in F, �1 and �3 are uniquely determined over
the range [pm; P (K1)].

Proof. The proposition follows from the fact that @Z1=@�j < 0 and
@Zj=@�1 < 0.
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As to the range [bpm; bpM ], an obvious candidate as a pro�le of equilibrium
distributions is a solution to the equations in system (7). Denoting any such
solution as (�1

�; �2
�; �3

�), we have the following uniqueness result.

Lemma 3. (i) (�1�; �2�; �3�) is unique at any p � P (K1).
(ii) In A; B1 [B2 and C1 [C2 [C3, if �1�; �2�; and �3� are increasing

over the range (bpm; bpM ), then �1�; �2�; and �3� are the equilibrium distrib-
utions throughout (bpm; bpM ).

Proof. (i) Let contrariwise (b��1; b��2; b��3) be another solution and let,
without loss of generality, b��1(p) < ��1(p) at some p: Then, since @Z3=@�2 <
0 and @Z2=@�3 < 0, it should be b��2(p) > ��2(p) in order for Z3(p; b���3) =
��3 and it should be b��3(p) > ��3(p) in order for Z2(p; b���2) = ��2. Con-
sequently, since @Z1=@�j < 0 for j 6= 1, it would be Z1(p; b���1) < ��1: a
contradiction.

(ii) It must preliminarily be noted that p < P (K1) at any p 2 (bpm; bpM ) in
A, B1[B2, and C1[C2[C3; hence we are in the circumstances of statement
(i). The statement is violated if and only if there is a gap (ep;eep) � [pm; bpM ]
in Sj for some j, so that �j(eep) = �j(ep+). On the other hand, �j�(eep+) >
�j(ep) = �j

�(ep): consequently, either ep or eep or both are charged with positive
probability, contrary to statement (vii) of Proposition 2.

Up to now, the �rst claim of statement (g) of the Theorem is proved
if �1

�; �2
�; and �3

� are increasing throughout [bpm; bpM ]: Unfortunately, this
need not be so. An example is provided in the following section where,
among other things, we will identify a gap in S3 in a speci�c region of the
capacity space. The task to be addressed now is how equilibrium distri-
butions are determined when �i

�0 < 0 for some i over some interval(s) in
[bpm; bpM ], with bpM � P (K1). We establish, �rst, a general property about
any gap in Si.

Lemma 4. Let N = fi; j; rg and let (ep;eep) be a gap in Si, with eep �
P (K1). Then it must be ��i(eep) = ��i(ep) and ��i(p) � ��i(ep) = �i(p) =

��i(eep) at any p 2 (ep;eep):
Proof. Suppose contrariwise that ��i(eep) > ��i(ep). Since ep 2 Si \

Sj \ Sr and eep 2 Si \ Sj \ Sr, �i(eep+) > �i(ep); so that either ep or eep or
both would be charged with positive probability, contrary to statement (vii)
of Proposition 2. Suppose next that ��i(p) < ��i(ep) = �i(p) for some
p 2 (ep;eep): Since Zj(p; �i�(ep); �r(p)) = ��j = Zj(p; �i

�(p); �r
�(p)), �r(p) <

��r(p). Similarly, since Zr(p; �i
�(ep); �j(p)) = ��r = Zr(p; �i

�(p); �j
�(p)),
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�j(p) < ��j(p). Consequently, �rm i would get more than its equilibrium
pro�t by charging p: Zi(p; �j ; �r) > �

�
i = Zi(p; �j

�; �r
�).

We can now determine the equilibrium when ��0i < 0 for some i over
some subset of [bpm; bpM ]:
Proposition 8 Let N = fi; j; rg and ��0i < 0 over range �i � [bpm; bpM ],
where bpM � P (K1). Let ��i; ��j, and ��r be non-decreasing in 
 = [eep; bpM ],
where eep = sup�i. Let ep be the largest solution of �i�(p) = �i

�(eep) in the
range (bpm;eep). Finally, let � = [bpm; ep] and � = (ep;eep).

(a) As to range � [ 
:
(a.i) equilibrium distributions are ��i; ��j ; and ��r over 
;
(a.ii) Sj and Sr are connected throughout � [ 
 and Si is disconnected

with a gap equal to �.
(b) Moving on the left of ep:
(b.i) If ��i; ��j, and ��r are never decreasing in �; then they are the

equilibrium distributions throughout �.
(b.ii) If ��0s < 0 over range �s � � ( s 2 fi; j; rg ), ��0i, ��0j, and ��0r

are non-negative at p = ep, and, similarly as before, ��i; ��j ; and ��r are
never decreasing over range [eeq; ep], where eeq = sup�s, then: ��i, ��j, and ��r
are the equilibrium distributions over [eeq; ep]; there is a gap (eq;eeq) in Ss, whereeq is the (largest) solution of �s�(p) = �s

�(eeq) in the range (bpm;eeq); the other
two supports are connected throughout [eq; ep].

(b.iii) If ��0j < 0 at p = ep, then there is a gap (eq; ep) in Sj, where eq is the
(largest) solution of �j

�(p) = �j
�(ep) in the range (bpm; ep).

(c) In the circumstances of statement (b.ii) or (b.iii), equilibrium distri-
butions on the left of eq are found along the same lines as in (b), until the
stage is reached where ��i; ��j, and ��r are never decreasing over the right
neighbourhood of bpm still left to analyze: then they provide the equilibrium
distribution over that neighbourhood.

Proof. By construction, each �rm gets its equilibrium payo¤ at any
p 2 
, and the same holds for j and r at any p 2 �: Zj(p; �i�(ep); �r(p)) = ��j
and Zr(p; �i

�(ep); �j(p)) = ��r . Further, it does not pay for �rm i to charge
any p 2 �: Zi(p; �j ; �r) < ��i = Zi(p; �j

�; �r
�) since �j > ��j and �r > ��r

throughout �. One can argue likewise while moving on the left of ep and up tobpm: thus the strategy pro�le under consideration constitutes an equilibrium.
To check uniqueness, we begin by noting that, by Lemma 4, there are not

equilibria where �i (or �j or �r) is constant over any interval in 
. Lemma 4
also allows us to dismiss any strategy pro�le such that any interval di¤erent
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from � constitutes a gap in Si in the range �[
. Nor can there be equilibria
where any subset of � constitutes a gap in, say, Sj even if ��0j < 0 over
some interval �j � �. (The argument goes likewise in the circumstances
of statement (b.iii).) In order not to immediately violate Lemma 4, let
(bq; sup�j) be a gap in Sj , with bq such that ��j(bq) = ��j(sup�j): Then
it would be �i(sup�j) = ��i(sup�j) > ��i(eep): as a result, one could not
construct a gap for Si consistent with Lemma 4.

5 On the event of a disconnected support

Based on the results above one should be able to compute the mixed strategy
equilibrium once the demand function and the �rm capacities are �xed. This
will be shown in this section. More precisely we will determine the equilib-
rium for (K1;K2;K3) 2 B1. This region is of special interest. We will show,
in fact, that S3 may be disconnected under well-speci�ed circumstances.

Let us partition the range [pm; pM ] into three subsets: � = [pm; P (K1 +
K2), � = [P (K1 +K2); P (K1 +K3)), and 
 = [P (K1 +K3); pM ]. In � the
equations in system (7) read8<:

��1 = p f�2��3�(D(p)�K2 �K3) + [�2� (1� �3�) + (1� �2�)]K1g
��2 = p f�1��3�(D(p)�K1 �K3) + [�1� (1� �3�) + (1� �1�)]K2g
��3 = p f�1��2�(D(p)�K1 �K2) + [�1� (1� �2�) + (1� �1�)]K3g ;

and the solution is

��1� =

s
K2

K1

(pm � p)K3

p(D(p)�K) ; �
�
2� =

K1

K2
��1�; �

�
3� =

K1

K3
��1�: (10)

In �; the equations in system (7) read

8<:
��1 = p

�
�2��3�(D(p)�K2 �K3) + �2�

�
1� �3�

�
(D(p)�K2) +

�
1� �2�

�
K1

�
;

��2 = p[�1��3�(D(p)�K1 �K3) + �1�
�
1� �3�

�
(D(p)�K1) +

�
1� �1�

�
K2];

��3 = p[�1�
�
1� �2�

�
+
�
1� �1�

�
]K3;

and the solution is

��1� =

s
K2

K1

(p� pm)
p

; ��2� =
K1

K2
�1�; �

�
3� =

D(p)�K1 �K2

K3
+
K1

K3
��1� :

(11)
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In 
; the equation in system (7) read

8>><>>:
��1 = p

�
�2
�3
(D(p)�K2 �K3) + p�2


�
1� �3


�
(D(p)�K2)

+
�
1� �2


�
�3
(D(p)�K3) +

�
1� �2


�
(1� �3
)K1

�
��2 = p

�
�1


�
1� �3


�
(D(p)�K1) +

�
1� �1


�
K2

�
��3 = p

�
�1


�
1� �2


�
(D(p)�K1) +

�
1� �1


�
K3

�
;

and the solution is

��1
 =

s
K2K3(p� pm)2

p2(D(p)�K1 �K2)(D(p)�K1 �K3) + (p� pm)K1p(D(p)�K1)
;

��2
(p) = 1�
K3

K2
+
K3

K2
��3
 (12)

��3
 =
(p� pm)K2 + p�

�
1
(p)(D(p)�K1 �K2)

p��1
(D(p)�K1)
:

In range �, ��0i� > 0 and ��i�(P (K1 +K2)) < 1 for all i. (If ��0i� < 0 for
some i, then ��0j� < 0 for all j 6= i, thereby violating the requirement that
�0i = 0.) In range 
, �1
(pM ) < 1 = �2
(pM ) = �3
(pM ) and �

0
i
 > 0 in

the interior of 
; with �03
 = �02
 = 0 at p = pM (see the Appendix). The
problem lies with range �, as it might be ��03� < 0 in a left neighbourhood
of P (K1 +K3): Note that

��03� =
D0(p)

K3
+
K1

K3
��01� =

D0(p)

K3
+
1

2

�
K2

K1

(p� pm)
p

��1=2 K2

K3

pm
p2
:

Since ��03� is decreasing, it will be �
�0
3� > 0 throughout � if and only if

[��03� ]p=P (K1+K3) � 0: This in its turn amounts to

K2pm � �2
�
D0(p)

�
p=P (K1+K3)

� [P (K1 +K3)]
2

s
K2

K1

�
1� pm

P (K1 +K3)

�
:

(13)
If this inequality holds, then equilibrium distributions are actually the ��i��s
throughout �. If not, then, by Proposition 8, S3 has a gap, equal to
[ep; P (K1+K3)]. Two cases are possibile according as to whether ��3�(P (K1+
K3)) � ��3�(P (K1 + K2)) or ��3�(P (K1 + K3)) < ��3�(P (K1 +K2)). In
the former case ep is such that ��3�(ep) = ��3�(P (K1 + K3)), in the lat-
ter it is such that ��3�(ep) = ��3�(P (K1 + K3)). In the former case, the
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equilibrium distributions are provided by equations (10) throughout � and
by equations (11) over subset [P (K1 + K2); ep] of �, the remaining sub-
set [ep; P (K1 + K3)] being the gap in S3: here �3 = ��3�(P (K1 + K3)),

�1 =
��2�pK2

p[D(p)�K1�K2��3K3]
and �2 =

��1�pK1

p[D(p)�K1�K2��3K3]
. In the latter case,

equations (10) provide the equilibrium distributions over subset [pm; ep] of �
and �3 = ��3�(P (K1 +K3)) throughout range [ep; P (K1 +K3)], the gap in

S3. Now �1 =
��2�pK2

p�3(D(p)�K)
and �2 =

��1�pK1

p�3(D(p)�K)
over subset [ep; P (K1+K2)]

of the gap and �1 =
��2�pK2

p[D(p)�K1�K2��3K3]
and �2 =

��1�pK1

p[D(p)�K1�K2��3K3]
over

the remaining subset [ep; P (K1 +K3)].

Examples.
First example: D(p) = 10� p; K1 = 5:98; K2 = 1; and K3 = 0:97: Then

pM = 4:015 and pm = 4:0152=5:98, while ��i = pmKi for each i. Condition
(13) is met, hence Si = [pm; pM ] for all i.

Second example: D(p) = 10 � p;K1 = 23=4; K2 = 3; K3 = 2: Then
pM = 4:015 and pm = 25=23, while ��i = �

�
i = pmKi for each i. Condition

(13) is violated, hence �3 is constant over range [ep; P (K1 + K3)]; whereep � 1:57358 and P (K1 +K3) = 9=4.

6 Concluding remarks

In this paper we have extended the analysis of price competition among
capacity-constrained sellers beyond the cases of duopoly and symmetric
oligopoly. We have �rst provided some general results for the oligopoly.
They include the fact that the minimum element of the support of the equi-
librium strategy is determined for the largest �rm like in duopoly (a similar
result was recently provided as for the maximum element). Apart from these
results it emerged that mixed strategy equilibria might look quite di¤erent
depending on the �rm capacities: a taxonomy is required. For this reason
we turned to the analysis of the triopoly and have provided a complete char-
acterization for this case. In particular we have partitioned the region of the
capacity space where the equilibrium is mixed according to the features of
the mixed strategy equilibrium found to arise in each subregion. Having
done this, computing the mixed strategy equilibrium becomes a much easier
task, as exempli�ed by Section 5. Our analysis has discovered interesting
new features, which do not arise in the duopoly. Among them, there is the
fact that the supports of the equilibrium strategies need not coincide across
all the �rms and the fact that, in some subregions, there is one degree of
freedom in the equilibrium distributions of �rms other than the largest one
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(features which have also been discovered by Hirata (2008)). Another very
interesting feature - not yet emerged before in the context of concave de-
mand, constancy and equality of unit cost and e¢ cient rationing - is the
possibility of the support of the equilibrium strategy being disconnected.

7 Appendix

Since �01 = 0 we obtain:

�03
 =
��1 + p

2D0(p)[�2
 + �3
 � �2
�3
 ]

2p2K3

h
1� D(p)�K1

K2

�
1� �3


�i =
��1 + p

2D0(p)[1� K3
K2
(1� �3
)2]

2p2K3

h
1� D(p)�K1

K2

�
1� �3


�i :
This fraction is positive because both the denominator and the numerator
are positive throughout 
. The denominator is immediately ascertained as
positive. As to the numerator, recall that ��1 = pM [D(pM ) � K2 � K3],
where pM = argmax p[D(p) � K2 � K3]. Thus the numerator becomes
pM [D(pM ) � K2 � K3 + pM [D

0(p)]p=pM ] = 0 at p = pM . At p < pM the
numerator is positive since D(p) is concave and �3
 < 1.

The proof that �01
 > 0 is more involved. Since �
0
1
 = (1=2)�

�1
1
 (d�

2
1
=dp)

and �1
 > 0 throughout 
, then �01
 > 0 if and only if d�21
=dp > 0. This
leads to

��1(p� pm)[D(p)�K1] > �2pmp(D(p)�K1 �K2)(D(p)�K1 �K3)+

+(p� pm)p2D0(p)[D(p)�K2 �K3 +D(p)�K1]� (p� pm)K1pmpD
0(p),

which can be rearranged as

pm(D(p)�K1)('(p)���1)+
pmp[K2(K1 +K3 �D(p)) +K3(K1 +K2 �D(p)] >

(p� pm)D0(p)p('(p)���1), (14)

where '(p) = p[D(p)�K2�K3] + p[D(p)�K1]. Note that '(p) is concave;
furthermore, '(pM ) > ��1 > '(P (K1)); and '(P (K1 + K2)) > ��1: Thus
'(p) > ��1 throughout 
. As a consequence, inequality (14) is obviously met
since the left-hand side is positive while the right-hand side is negative.
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