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A Multi-Agent Growth Model Based on 

the von Numann-Leontief Framework 
 

LI WU* 

College of International Business and Management, Shanghai University, P.R.C. 
 

ABSTRACT  This paper presents a discrete-time growth model to describe the dynamics of a multi-

agent economy, and the model consists of production process, exchange process, price and 

technology adjustment processes etc. Technologies of agents in each period are represented by a 

technology matrix pair, and some properties of Perron-Frobenius eigenvalues and eigenvectors of 

technology matrix pairs are discussed. An exchange model is also developed to serve as the 

exchange part of the growth model. And equilibrium paths of the growth model are proved to be 

balanced growth paths sharing a unique normalized price vector. Though this paper focuses mainly 

on the case of n agents and n goods, the growth model can also deal with the case of m agents and n 

goods. A numerical example with 6 agents and 4 goods is given, which describes the dynamics of a 

two-country economy and has endogenous price fluctuations and business cycles.  
 

KEY WORD: von Neumann’s expanding economic model, input-output model, dynamic general 

equilibrium, disequilibrium, multi-country economic model 

 

1. Introduction 

The expanding economic model of von Neumann (1945) and the input-output model of Leontief 

(1936, 1941) laid the foundation of a distinct modern framework for economic analysis. And the 

von Neumann-Leontief framework is greatly enriched and improved by Kemeny, Morgenstern and 

Thompson (1956), Gale (1956, 1960), Dorfman, Samuelson and Solow (1958), Morishima (1960, 

1964), Sraffa (1960), McKenzie(1963, 1976), and numerous other works including some recent ones 

such as the studies on stochastic von Neumann–Gale model by Dempster, Evstigneev and Taksar 

(2006), and Evstigneev and Schenk-Hoppe (2007).  

The von Neumann-Leontief framework provides a deep insight into the structure and 

interdependency of all parts of the economy, and furnishes proper tools to explore both the nature of 

economic structure and the dynamic general equilibrium. Until now, however, some major economic 
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elements haven’t been incorporated explicitly into the framework, e.g. maximizing agents, exchange 

process among agents, price fluctuation and technology adjustment etc. This paper aims to combine 

some fundamental thoughts of the von Neumann-Leontief framework with those elements 

mentioned above by developing a new growth model. 

As the expanding economic model of von Neumann (1945), the growth model in this paper treats 

the economy as a discrete-time dynamic system. Matrix pairs are also used to represent technologies 

adopted by agents in each period, and as a consequence durables goods can be treated in the form of 

joint production. 

On the other hand, unlike the expanding economic model which in fact consists of a set of 

equilibrium conditions, no equilibrium condition is presumed when building the growth model in 

this paper. That is, whether there exists an equilibrium or not, the growth model here is workable. In 

fact, the model is an autonomous system focusing on describing decision-making processes and 

interactions of maximizing agents under changing economic circumstances which generally are in 

disequilibrium. In this sense the growth model here is in essence a disequilibrium one, though the 

equilibrium paths of the model are still analyzed in this paper. 

The paper is organized as follows. Section 2 and 3 discuss the representation method of 

technologies and some properties related to technology matrix pairs. Section 4 presents an exchange 

model. Section 5 introduces the growth model, which contains the exchange model as a part. 

Section 6 is devoted to the equilibrium analysis of the growth model. Section 7 presents a numerical 

example with m agents and n goods. And the final section contains some open discussions.  

2. Technology Matrix Pairs  

Analogous to input-output models, we start with an economy including n agents and n goods 

which are indexed by 1, 2, , n⋅ ⋅⋅ , and good i is produced only by agent i. Each agent attempts to 

maximize its profit (i.e. minimize its cost). Such an agent may stand for a firm or a sector. If we 

regard a household as a producer of labor power (or human capital, service, etc.), which absorbs 

consumer goods, education, trainings and medical treatment etc, and regard its consumption process 

as an investment and production process, then such an agent can also stand for a household roughly. 

And such treatment of the consumption process is generally used in the so-called closed models 

based on the von Neumann-Leontief framework (e.g., see Solow and Samuelson, 1953). 

In the sequel the following notations and terms will be used. 0  denotes a zero vector or zero 

matrix, and e denotes the vector (1, 1, , 1)T⋅ ⋅ ⋅ . A vector x is called nonnegative (or positive) and we 

write x ≥ 0  (or x 0 ) if all its components are nonnegative (or positive). x is called semipositive 

and we write x > 0  if x ≥ 0  and x ≠ 0 . A semipositive column (or row) vector x is said to be 

normalized if 1Te x =  (or 1xe = ) holds. For vectors x and y, we write x y , x y>  and x y≥  

to denote x y− 0 , x y− > 0  and x y− ≥ 0 . Such notations and terms are also applied to 
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matrices. 

2.1. Production and Technology 

We regard the economy as a discrete-time dynamic system, and in each period of the economy the 

production process of an agent is an input-output process which absorbs an input bundle a and 

yields an output bundle b. Hence a feasible production process of an agent can be represented by a 

n-dimensional column vector pair ( , )a b . 

For a production process ( , )a b  of agent i, if the input bundle is used up in the production, the 

output bundle contains only good i as the product, that is, 0kb =  holds for all k i≠ , where kb  

denotes the kth component of b. In order to take account of durable goods or capital goods, let’s 

suppose after production some input goods may have remainders. Thus the output bundle b now 

may contain both one kind of product and some remainders of input goods, and may have more than 

one positive component. The assumptions on production processes of each agent are summarized as 

follows. 

Assumption 2.1: Let ( , )a b  be a feasible production process of agent i, then: 

 (i) if ( , ) ( , )a b ≠ 0 0  then a > 0  and b > 0  hold; 

 (ii) if k i≠  and 0ka >  then k kb a< ; if k i≠  and 0ka =  then 0kb = ; 

 (iii) for any ξ +∈ , ( ),a bξ ξ  is also a feasible production process of agent i. 

Assumption 2.1 implies every input good will undergo depreciation more or less in production, 

and production has constant returns to scale. 

Definition 2.1: Let ( , )a b  be a feasible production process of agent i. If 1ib =  then ( , )a b  is 

called a technology of agent i, and a is called a standard input bundle of agent i; moreover, for a 

production process ( ),a bξ ξ , ξ +∈ , ξ  is called the production intensity of the production 

process. 

By the definition above, a technology is a feasible production process with a unit of production 

intensity, which needs one standard input bundle as inputs. 

We make the following assumption on technologies to simplify the analysis. 

Assumption 2.2: Each agent possesses at least one and at most finitely many technologies. 

In this paper every price vector p is supposed to be an n-dimensional positive vector, and ip  

denotes the price of good i. Let ( ),a b  be a technology of agent i, then ( ) ( )T Tp a p b  is the cost 

rate of the technology under the price vector p. Since agent i has a finite number of technologies, 

among its technologies there exists a technology possessing the minimal cost rate under a given 

price vector p, and that cost rate is said to be the minimal cost rate of agent i under p. 
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2.2. Technology Matrix Pairs 

Definition 2.2: A n-by-n matrix pair ( ),A B  is called a technology matrix pair (TMP), if 

( )( ) ( ),i ia b  is a technology of agent i for all 1, 2, ,i n= ⋅⋅⋅ , where ( )ia  and ( )ib  denote the ith 

columns of A and B respectively; moreover, A and B are called an input coefficient matrix and 

output coefficient matrix respectively. A TMP ( ),A B  is called a minimal cost rate TMP under a 

price vector p, if ( )( ) ( ),i ia b  is a minimal cost rate technology of agent i under p for all 

1, 2, ,i n= ⋅⋅⋅ . A TMP ( ),A B  is said to be productive if there is a semipositive vector x such that 

Ax Bx≤ .  

Let Τ  denote the set of all TMPs, then by Assumption 2.2 there are a finite number of TMPs in 

Τ . For TMPs, we make the following assumption. 

Assumption 2.3: There is at least a productive TMP in Τ ; and for each TMP ( ),A B ∈Τ , the 

input coefficient matrix A  is indecomposable. 

The existence of productive TMP provides the possibility of growth. And the indecomposability 

of each input coefficient matrix guarantees that every good is indispensable in a growing economy. 

By Assumption 2.1, 2.3 and Definition 2.1, it’s clear that each TMP ( ),A B ∈Τ  can be written as 

( ),A I R+  such that R is nonnegative and A R−  is nonnegative and indecomposable.  

2.3. Perron-Frobenius Eigenvalues and Eigenvectors of TMPs 

For an indecomposable nonnegative square matrix M, let ( )Mρ  denote its spectrum radius. And 

the following lemma is a well-known result of Perron-Frobenius theorem (e.g., see Debreu and 

Herstein, 1953).  

Lemma 2.1: Let M  be an indecomposable nonnegative square matrix, x be a semipositive 

column vector and α ∈ , then:  

 (i) ( )Mx x Mα ρ α≤ ⇒ ≤ ; ( )Mx x Mα ρ α< ⇒ < ; 

 (ii) ( )T Tx M x Mα ρ α≤ ⇒ ≤ ; ( )T Tx M x Mα ρ α< ⇒ < . 

By Lemma 2.1 some necessary and sufficient conditions for the productivity of TMPs can be 

obtained, as the following lemma shows. 

Lemma 2.2: For each TMP ( ),A B ∈Τ , the following statements are equivalent: 

 (i) ( ),A B  is productive; 

 (ii) ( ) 1A Rρ − ≤ , where R B I≡ − ; 

 (iii) there is a semipositive vector Ty  such that T Ty A y B≤ . 

Proof. Firstly, let’s prove (i) implies (ii). Suppose ( ),A B  is productive, then there is a 
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semipositive vector x such that Ax Bx≤ , that is, ( )A R x x− ≤ . Since A R−  is nonnegative and 

indecomposable, by Lemma 2.1(i) we find ( ) 1A Rρ − ≤ . 

Secondly, let’s prove (ii) implies (iii). Suppose ( ) 1A Rρ − ≤  holds, then by Perron-Frobenius 

theorem there is a positive vector Ty  such that ( )T Ty A R yλ− = , where ( )A Rλ ρ= − . Thus we 

find ( )T Ty A R y− ≤ , that is, T Ty A y B≤ . 

Finally, let’s suppose (iii) holds. By Lemma 2.1(ii) we find ( ) 1A Rρ − ≤ . Then by Perron-

Frobenius theorem it’s clear that ( ),A B  is productive. █ 

Some results of Perron-Frobenius theorem have been extended to matrix pairs by Mangasarian 

(1971), Bapat, Olesky and van den Driessche (1995), Mehrmann, Nabben and Virnik (2008). Here 

let’s define the Perron-Frobenius eigenvalues and eigenvectors of semipositive square matrix pairs 

as follows.  

Definition 2.3: Let ( ),A B  be a semipositive square matrix pair. If there exist a positive real 

number λ  and two positive vectors Ty  and x such that Ax Bxλ=  and T Ty A y Bλ= , then λ , 
Ty  and x are called the P-F (i.e. Perron-Frobenius) eigenvalue, left and right P-F eigenvector of 

( ),A B  respectively; and in the special case B I= , they are also called the P-F eigenvalue, left 

and right P-F eigenvector of A respectively. 

The following lemma stems from Bapat, Olesky and van den Driessche (1995).  

Lemma 2.3: For a semipositive square matrix pair ( ),A B , if B A−  is nonsingular and 
1( )B A A−−  is nonnegative and indecomposable, then ( ),A B  possesses a unique P-F eigenvalue 

(0,1)λ ∈ , a unique normalized left P-F eigenvector and a unique normalized right P-F eigenvector. 

Lemma 2.4: Each productive TMP ( ),A B ∈Τ  possesses a unique P-F eigenvalue (0,1]λ ∈ , a 

unique normalized left P-F eigenvector and a unique normalized right P-F eigenvector. 

Proof. Let R B I≡ − . Since ( ),A B  is productive, by Lemma 2.2 we find ( ) 1A Rρ − ≤ . 

First let’s consider the case ( ) 1A Rρ − < . It’s well known that 1

1
( ) k

k
I M I M

∞
−

=

− = + ∑  holds for 

any square matrix M satisfying ( ) 1Mρ <  (e.g., see Horn and Johnson, 1990). So we have 

 1

1
( ) ( )k

k
B A I A R I

∞
−

=

− = + − >∑ ,  

then 1( )B A A A−− >  holds. Since A is nonnegative and indecomposable, it’s clear that 1( )B A A−−  

is nonnegative and indecomposable. By Lemma 2.3 the statement holds. 

If ( ) 1A Rρ − =  holds, let Ty  and x  denote the normalized left and right P-F eigenvectors of 

A R−  respectively, then by Perron-Frobenius theorem it’s clear that T Ty A y B=  and Ax Bx=  

holds. That is, ( ),A B  has the P-F eigenvalue 1. If ( ),A B  has any other P-F eigenvalue λ , then 

there is a positive vector Ty′  such that T Ty A y Bλ′ ′= . By T Ty Ax y Bxλ′ ′=  and T Ty Ax y Bx′ ′= , 

we find 1λ = . Furthermore, since each left (or right) P-F eigenvector of ( ),A B  corresponding to 
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the P-F eigenvalue 1 is also a left (or right) P-F eigenvector of A R− , by Perron-Frobenius theorem 

we find Ty  and x  are the unique normalized left and right P-F eigenvectors of ( ),A B  

respectively. Hence the statement holds.  █ 

If a non-productive TMP possesses a P-F eigenvalue λ , by the definitions of productive TMP 

and P-F eigenvalue we can see that 1λ >  holds. 

Some properties of the P-F eigenvalues and eigenvectors of matrices are also retained in the case 

of matrix pairs. For instance, the following lemma is an extension of Lemma 2.1. 

Lemma 2.5: Let ( ),A B  be a semipositive square matrix pair possessing a P-F eigenvalue λ , 

and A  is indecomposable. Let x  be a semipositive vector and α ∈ . Then: 

 (i)  Ax Bxα λ α< ⇒ < ; Ax Bxα λ α≤ ⇒ ≤ ;  

 (ii) Ax Bxα λ α> ⇒ > ; Ax Bxα λ α≥ ⇒ ≥ ; 

 (iii) T Tx A x Bα λ α< ⇒ < ; T Tx A x Bα λ α≤ ⇒ ≤ ;  

 (iv)  T Tx A x Bα λ α> ⇒ > ; T Tx A x Bα λ α≥ ⇒ ≥ . 

Proof. (i) Let Ty  be a left P-F eigenvector of ( ),A B  such that T Ty A y Bλ= . Since Ty  is 

positive, we have:  

 T T T TAx Bx y Ax y Bx y Ax y Axα α λ α< ⇒ < ⇒ < .  

Since A is indecomposable, it’s clear that 0Ty Ax > , thus we find λ α< . 

The rest of the proof is analogous.  █ 

3. Optimal Technology Matrix Pairs 

This section is devoted to the analysis of some properties related to the minimal P-F eigenvalue 

of productive TMPs, and conclusions will be used in the equilibrium analysis of Section 6. 

Definition 3.1: Among all productive TMPs belonging to Τ , a TMP possessing the minimal P-F 

eigenvalue is called an optimal technology matrix pair (optimal TMP), and the minimal P-F 

eigenvalue is denoted by *λ .   

By Assumption 2.2, Assumption 2.3 and Lemma 2.4, there exists at least one optimal TMP, and 
* 1λ ≤  holds. 

Lemma 3.1: Let Tp  be a left P-F eigenvector of an optimal TMP, then: 

 (i) *T Tp a p bλ≥  holds for each technology ( , )a b  of each agent; 

 (ii) *T Tp A p Bλ≥  holds for each TMP ( , )A B ∈ Τ .  

Proof. (i) Suppose Tp  is a left P-F eigenvector of the optimal TMP ( , )A B′ ′ , then 
*T Tp A p Bλ′ ′= . If agent i has a technology ( , )a b  such that *T Tp a p bλ< , then by replacing the 
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ith columns of A′  and B′  with a  and b  respectively we obtain a new TMP ( ),A B′′ ′′ ∈ Τ  

satisfying *T Tp A p Bλ′′ ′′< . By * 1λ ≤  and Lemma 2.2, ( ),A B′′ ′′  is productive, and by Lemma 2.4 

( ),A B′′ ′′  has a P-F eigenvalue λ′′ . By *T Tp A p Bλ′′ ′′<  and Lemma 2.5(iii) we find *λ λ′′ < . 

Recall the definition of *λ , there is a contradiction. Hence the statement holds.  

 (ii) It’s an immediate result of (i). █ 

The following proposition shows the normalized left P-F eigenvector of optimal TMPs is unique. 

Proposition 3.1: All optimal TMPs share the same normalized left P-F eigenvector. 

Proof. Let ( ),A B  and ( ),A B′ ′  be two optimal TMPs, which possess the P-F eigenvalue *λ . 

Let Tp  denote the normalized left P-F eigenvector of ( ),A B . 

By Lemma 3.1(ii) we find *T Tp A p Bλ′ ′≥ . If *T Tp A p Bλ′ ′>  holds then by Lemma 2.5(iv) we 

find the absurdity * *λ λ> . Thus *T Tp A p Bλ′ ′=  must hold, that is, Tp  is the normalized left P-F 

eigenvector of ( ),A B′ ′ . █ 

3.1. Minimal Cost Rates of Agents 

Obviously, given a price vector p the potential profit rate level of each agent depends on its 

minimal cost rate under p. As for minimal cost rates of agents, we have the following proposition. 

Proposition 3.2: Let p  be a positive price vector, either (i) or (ii) holds: 

 (i)  minimal cost rates of all agents under p  equals *λ ; 

 (ii) there is an agent whose minimal cost rate under p  is greater than *λ , and there is 

another agent whose minimal cost rate under p  is smaller than *λ . 

Proof. If the minimal cost rate of each agent under p  is no smaller than *λ  and there is an 

agent whose minimal cost rate under p  is greater than *λ , then for any ( ),A B ∈Τ , 
*T Tp A p Bλ>  holds. Let ( ),A B′ ′  be an optimal TMP. By *T Tp A p Bλ′ ′>  and Lemma 2.5(iv) we 

find * *λ λ> . There is a contradiction.  

If the minimal cost rate of each agent under p  is no greater than *λ  and there is an agent 

whose minimal cost rate under p  is smaller than *λ , then there is a TMP ( ),A B ∈Τ  such that 
*T Tp A p Bλ< . By Lemma 2.2, ( ),A B  is productive. Furthermore, by Lemma 2.4 and Lemma 

2.5(iii) ( ),A B  has a P-F eigenvalue smaller than *λ , which contradicts the definition of *λ . 

Hence either (i) or (ii) holds.  █ 

Proposition 3.2 implies under any positive price vector there is an agent whose minimal cost rate 

is no greater than *λ . 

Proposition 3.3: For a TMP ( ),A B ∈Τ  possessing a left P-F eigenvector Tp , ( ),A B  is a 

minimal cost rate TMP under p  if and only if ( ),A B  is an optimal TMP. 
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Proof. Let λ  denote the P-F eigenvalue of ( ),A B  such that T Tp A p Bλ= , then under p the 

cost rate of each technology in ( ),A B  equals λ . 

First let’s suppose ( ),A B  is a minimal cost rate TMP under p, then for any productive TMP 

( , )A B′ ′ ∈ Τ  with a P-F eigenvalue λ′  we have T Tp A p Bλ′ ′≥ , and by Lemma 2.5(iv) we find 

λ λ′ ≥ . Hence *λ λ=  holds and ( ),A B  is an optimal TMP. 

Now let’s suppose ( ),A B  is an optimal TMP, then under p the cost rate of each technology in 

( ),A B  equals *λ . By Lemma 3.1(ii) ( ),A B  is a minimal cost rate TMP under p.  █ 

3.2. Convex Combination of TMPs 

In this paper the convexity of the technology set of each agent is not assumed. And the following 

proposition and the analysis in the sequel indicate that the convexity assumption on technology sets 

is relatively unimportant.  

Proposition 3.4: Let ( , )A B  be a convex combination of k TMPs, that is, ( ) ( )

1

k
i i

i
A Aα

=

= ∑  and      
( ) ( )

1

k
i i

i
B Bα

=

= ∑  where ( ) ( )

1
, 1

k
i i

i
α α++

=

∈ =∑ , ( )( ) ( ),i iA B ∈ Τ . If ( , )A B  has a P-F eigenvalue λ , 

then *λ λ≥  holds. 

Proof. Let Tp  be a left P-F eigenvector of an optimal TMP. Then by Lemma 3.1(ii) we find: 

 ( ) ( ) * ( ) ( ) *

1 1

k k
T i T i i T i T

i i
p A p A p B p Bα λ α λ

= =

= ≥ =∑ ∑ . 

Note that A  is indecomposable, by Lemma 2.5(iv) the statement holds.  █ 

Analogously we can also find that a convex combination of optimal TMPs must possess the P-F 

eigenvalue *λ . 

4. An Exchange Model 

This section is devoted to the exchange process among n agents. And a short-term exchange 

model will be presented, in which both the price vector and each agent’s demand structure are fixed. 

Under some reasonable assumptions we will find the model has a unique exchange result. And the 

model will play a part in the growth model in Section 5.  

Suppose the exchange process occurs among n agents and under a given price vector p, in which 

each agent sells its outputs and purchases its standard input bundle for production. 

Let S denote the supply matrix, whose ( , )i j  entry denotes agent j’s supply amount of good i. 

Let s Se≡  denote the supply vector, which is supposed to be positive. 

Demand structures of agents are represented by a given input coefficient matrix A and each agent 

intends to purchase some standard input bundles indicated by A for its production. That is, in the 

exchange process the bundle purchased by agent i must be ( )iaξ , where ξ +∈  and ( )ia  is the ith 
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column of A. ξ  is called the purchase amount of agent i. Let z denote the vector consisting of 

purchase amounts of n agents, and z is called the purchase vector or exchange vector. 

Obviously, the ( , )i j  entry of Az


 indicates agent j’s purchase amount of good i, and the total 

purchase amount of n goods can be represented by Az. Here we write x  to denote diag(x), i.e. the 

diagonal matrix with the vector x as the main diagonal. Though diag(x) is the generally used 

notation, considering it’s much frequently used in this paper we adopt the new notation to make 

formulas clearer and shorter. 

The sales rate of a good refers to the proportion of its sales amount to its supply amount. Suppose 

for one good all its suppliers share the same sales rate. And let u be the n-dimensional sales rate 

vector indicating the sales rates of n goods. Then the total sales amounts of n goods are us


. And the 

following equation holds obviously. 
 Az us=


 (4.1) 

(4.1) means the balance of material in the exchange process, that is, the total purchase amount of 

each good equals its total sales amount. And (4.1) can also be written as 
1

u s Az
−

=


. 

On the other hand, under the given price vector p, the purchase and sales values of n agents are 
Tp Az


 and Tp uS


 respectively. And the value each agent purchases must equal the value it sells, 

that is: 

 T Tp Az p uS=
 

 (4.2) 

(4.2) means the balance of value in the exchange process. 

By (4.1) and (4.2), we obtain: 

 
1T Tp Az p s AzS

−
=
 

 (4.3) 

When (4.3) holds and TS A  is indecomposable, the following proposition shows that there exists 

a unique normalized exchange vector. 

Proposition 4.1: Let A  and S  be n-by-n semipositive matrices such that s Se≡  is positive 

and TS A  is indecomposable. Let p  be an n-dimensional positive vector and z  be an n-

dimensional semipositive vector. Then:  

 (i)  1 1T TZ A p S s pA
− −

≡


 is an indecomposable nonnegative matrix possessing the P-F 

eigenvalue 1; 

 (ii) z  satisfies 
1T Tp Az p s AzS

−
=
 

 if and only if z  is a right P-F eigenvector of Z ; 

 (iii) if z  satisfies 
1T Tp Az p s AzS

−
=
 

 then z  is positive. 

Proof. (i) Because TS A  is indecomposable, each column of A must be semipositive. Then TA p  

is a positive vector, and all entries on the main diagonals of 
1

TA p
−

, 
1

s
−

 and 

p  are positive. 

Hence if the ( ),i j  entry of TS A  is positive then the ( ),i j  entry of Z is also positive. Therefore 

Z is indecomposable.  

And it can be readily verified that T Tp AZ p A=  holds. By Perron-Frobenius theorem, the P-F 
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eigenvalue of Z  equals 1 and Tp A  is a left P-F eigenvector of Z.  

 (ii) We have: 

 
   1 1 1T T T T T Tp Az p s AzS p Az p Azs S A pz S s pAz

− − −
= ⇔ = ⇔ =
    

 

  1 1T TA p S s pAz z Zz z
− −

⇔ = ⇔ =


. 

Hence by Perron-Frobenius theorem the statement holds. 

 (iii) It’s an immediate result of (ii). █ 

Let z′  denote the normalized right P-F eigenvector of Z, then by Proposition 4.1(ii) we have 

z zξ ′= , where ξ +∈ . Since the sales amount of each good is no more than its supply amount, we 

find Az s≤  holds, that is, Az sξ ′ ≤  holds. Hence ξ  is no greater than the minimal component 

of 
1

Az s
−

′ . Suppose all agents attempt to obtain maximal exchange amounts. The unique maximal 

exchange vector can be found by following steps, which stands for the exchange result of the 

exchange process: 

 STEP 1. Compute the matrix  1 1T TZ A p S s pA
− −

≡


; 

 STEP 2. Find the normalized right P-F eigenvector of Z , denoted by z′ ; 

 STEP 3. Find the minimal component of 
1

Az s
−

′ , denoted by ξ ; 

 STEP 4. Compute the exchange vector z zξ ′≡ . 

Thus the exchange process can be represented by a function as follows: 

 ( ) ( ), , ,u z A p S= Z  (4.4) 

where A, S and p satisfy those assumptions in Proposition 4.1, and z is computed by steps above and 

u  equals 
1

s Az
−

. Here we write u explicitly on the left side of (4.4) only for the expression 

convenience of the growth model in Section 5. Since TS A  is supposed to be indecomposable, 

accordingly the exchange process above is said to be an indecomposable exchange process. 

In the discussion so far, some stringent assumptions are made on the exchange process, and those 

assumptions may be relaxed. Here let’s discuss two cases briefly. 

First, when A and S are n-by-m matrices, it’s clear that the results of Proposition 4.1 also holds. 

That is, without essential modification the discussion in this section can also be applied to the case 

of m agents and n goods. 

Second, when TS A  is decomposable, we will find that agents involved in the exchange process 

can be divided into some groups to exchange independently, that is, the exchange process can be 

divided into some independent and indecomposable exchange processes. Hence the analysis of the 

decomposable case will be analogous, and eventually we can also obtain a unique exchange vector.  

5. The Growth Model 

Let’s regard the economy as a discrete-time dynamic system and suppose economic activities 

such as price adjustment, technology adjustment, exchange and production etc. occur in turn in each 
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period. And the state of the economy in period t is represented by following variables: 

 p(t)  Price vector, which is positive and consists of prices of n goods in period t;  

 ( )( ) ( ),t tA B   TMP, which represents those technologies adopted by agents in period t;  

 ( )tS   Supply matrix, whose ( ),i j  entry stands for the agent j’s supply amount of 

good i in period t;  

 ( )tu   Sales rate vector, which consists of sales rates of n goods in period t; 

 ( )tz  Exchange vector and production intensity vector, which represents the amounts 

of standard input bundles that are purchased and put into production by agents in 

period t;  

 ( )tY   Output matrix, whose ( ),i j  entry stands for the output amount of good i by 

agent j in period t. 

Suppose in period t+1 the economy runs as follows. 

Firstly, the new price vector emerges on the basis of the price vector and sales rates of period t, 

which indicates the market prices of n goods in period t+1. 

Secondly, each agent adjusts its technology according to the new price vector to maximizing its 

profit rate, and the new TMP is formed. 

Thirdly, outputs and depreciated inventories of period t constitute the supplies in period t+1. 

Fourthly, supplies are exchanged under market prices, and the exchange vector and sales rates 

vector of period t+1 are obtained. Unsold goods constitute the inventories of period t+1, which will 

undergo depreciation and become a portion of the supplies of next period. 

Finally, each agent puts into production its input bundle purchased in the market, and outputs of 

period t+1 are obtained.  

The growth model is as follows: 

 ( )( 1) ( ) ( ),t t tp p u+ = P  (5.1) 

 ( ) ( )( )( 1) ( 1) ( ) ( ) ( 1), , ,t t t t tA B A B p+ + += H  (5.2) 

 ( )( 1) ( ) ( ) ( )t t t tS Y e u S+ = + −Q  (5.3) 

 ( ) ( )( 1) ( 1) ( 1) ( 1) ( 1), , ,t t t t tu z A p S+ + + + += Z  (5.4) 

 ( 1) ( 1) ( 1)t t tY B z+ + +=  (5.5) 

Let ( )tx  denote ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,t t t t t t tp A B S u z Y . A path of the model (5.1)-(5.5) is denoted 

by a sequence { }( )

0

t

t
x

∞

=
 . 

Let’s explain equations in the model in turn. Meanwhile some assumptions will be made to 

facilitate the equilibrium analysis of the model. 

(5.1) stands for the adjustment process of market prices, and P is the price adjustment function. 

The following assumption is made. 
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Assumption 5.1: The price adjustment function ( ),p p u′= P  satisfies: u e p p′= ⇔ = . 

That is, if and only if all goods clear the price vector won’t change. 

(5.2) stands for the technology adjustment process, and : n
++Τ× → ΤH   is the technology 

adjustment function, which stands for the process that each agent adjusts its technology according to 

market prices to minimize its cost rate. And the ith columns of input and output coefficient matrices 

are adjusted by agent i. For the technology adjustment function the following assumption is made. 

Assumption 5.2: The technology adjustment function ( ) ( )( ), , ,A B A B p′ ′= H  satisfies: ( ),A B  

is equal to ( ),A B′ ′  if and only if ( ),A B′ ′  is a minimal cost rate TMP under p. 

That is, no agent adjusts its technology if and only if the old TMP is a minimal cost rate TMP 

under the current price vector. 

(5.3) stands for the formation of supplies. If ( )tu e≠ , then there are some unsold goods in period 

t. The inventory amounts of agents in period t are indicated by the inventory matrix ( ) ( )t te u S− . Q is 

the inventory depreciation function, which stands for the depreciation process of inventories and is 

defined on the nonnegative matrix set, and the following assumption is made. 

Assumption 5.3: For any nonnegative matrix M, ( )M M≤ ≤0 Q  holds. 

The outputs of period t, which is denoted by ( )tY , plus the depreciated inventories of period t, 

which is denoted by ( )( ) ( )t te u S−Q , forms the supplies of period 1t + , which is denoted by ( 1)tS + . 

(5.4) stands for the exchange process, and Z  is the exchange function obtained in Section 4. 

Let’s make the following assumption to guarantee that each agent possesses initial endowment. 

Assumption 5.4: (0)z 0  holds. 

Note that TB A A≥  holds for each TMP ( ),A B ∈Τ , by Assumption 2.3 we find TB A  is 

indecomposable for each ( ),A B ∈Τ . Since (0)z  is positive, by (5.5), (5.3) and Proposition 4.1(iii) 

it’s clear that ( ) ( )t T tS A  is indecomposable and ( )tz 0  holds for all 1,2, ,t = ∞ . 

(5.5) stands for the formation of outputs. Since ( 1)t
iz +  indicates the amount of the standard input 

bundle purchased by agent i in period 1t +  and a standard input bundle corresponds to a unit of 

productivity intensity, ( 1)t
iz +  also indicates the productivity intensity of agent i in period 1t + .  

We write (5.5) explicitly in the model only for clarity. (5.5) can be omitted if (5.3) is written as 

follows: 

  ( )( 1) ( ) ( ) ( ) ( )t t t t tS B z e u S+ = + −Q  ( 5.3′ ) 

6. Equilibrium Paths 

In this section we define and analyze equilibrium paths of the model (5.1)-(5.5). 
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Definition 6.1: A path of the model (5.1)-(5.5) is called an equilibrium path if it satisfies: (i) 
( )tu e= ; (ii) ( ) ( )( ) ( ) (0) (0), ,t tA B A B= , for all 0,1,2, ,t = ⋅⋅⋅ ∞ . 

The first equilibrium condition says that in an equilibrium path all goods clear all the time. By the 

assumption on the price adjustment function, i.e. Assumption 5.1, this condition implies that the 

price vector keeps constant all the time. That is, in an equilibrium path ( ) (0)tp p=  holds for all 

0,1, 2, ,t = ⋅⋅ ⋅ ∞ , and (0)p  is called an equilibrium price vector.  

The second equilibrium condition says that in an equilibrium path the TMP keep constant all the 

time, and the TMP is called an equilibrium TMP. By the assumption on the technology adjustment 

function, i.e. Assumption 5.2, ( )(0) (0),A B  must be a minimal cost rate TMP under the equilibrium 

price vector so that each agent needn’t adjust its technology.  

And the following lemma is immediate. 

Lemma 6.1: Let { }( )

0

t

t
x

∞

=
 be an equilibrium path of the model (5.1)-(5.5), in which the 

equilibrium TMP and the equilibrium price vector are ( ),A B  and p  respectively, then the 

equilibrium path satisfies: 

 (i)  ( )  ( )( ) ( 1) ( ) ( ), , , , , ,t t t tx p A B Bz e z Bz−=  holds for all 1, 2, ,t = ⋅⋅⋅ ∞ ; 

 (ii) ( ) ( )( 1) ( ), , ,t te z A p Bz+ = Z  holds for all 0,1,2, ,t = ⋅⋅⋅ ∞ ; 

 (iii) ( 1) ( )t tAz Bz+ =  holds for all 0,1,2, ,t = ⋅⋅⋅ ∞ ; 

 (iv)   ( 1) ( )T t T tp Az p Bz+ =  holds for all 0,1,2, ,t = ⋅⋅⋅ ∞ ; 

 (v) ( ),A B  is a minimal cost rate TMP under p . 

Equilibrium paths of models based on the von Neumann-Leontief framework are always closely 

related with balanced growth paths. The growth model in this paper is no exception, even though 

equilibrium paths here are defined in a distinct way. Here we define balanced growth paths as 

follows. 

Definition 6.2: Let ( ),A B  be an optimal TMP and { }( )

0

t

t
x

∞

=
 be a path of the model (5.1)-(5.5). 

{ }( )

0

t

t
x

∞

=
 is called a balanced growth path corresponding to ( ),A B  if it satisfies: 

 (i)  ( ) ( )( ) ( ), ,t tA B A B=  holds for all 0,1,2, ,t = ⋅⋅⋅ ∞ ; 

 (ii) (0)z  is a right P-F eigenvector of ( ),A B  and ( ) * (0)t tz zλ −=  holds for all 

0,1,2, ,t = ⋅⋅⋅ ∞ ; 

 (iii) (0)Tp  is a left P-F eigenvector of ( ),A B  and ( ) (0)tp p=  holds for all 0,1,2, ,t = ⋅⋅⋅ ∞ . 

By Proposition 3.3, we find that in a balanced growth path corresponding to an optimal TMP 

( ),A B , ( ),A B  is the minimal cost rate TMP under the price vector of any period. Furthermore, it 

can be readily verified that a balanced growth path corresponding to an optimal TMP is an 

equilibrium path. 

On the other hand, the following proposition shows that an equilibrium path must be a balanced 
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growth path corresponding to an optimal TMP. 

Proposition 6.1: Let { }( )

0

t

t
x

∞

=
 be an equilibrium path of the model (5.1)-(5.5), in which the 

equilibrium TMP and the equilibrium price vector are ( ),A B  and p  respectively, then the 

equilibrium path satisfies: 

 (i) ( ) * (0)t tz zλ −=  holds for all 0,1,2, ,t = ⋅⋅⋅ ∞ ; 

 (ii) ( ),A B  is an optimal TMP; moreover, Tp  and (0)z  are its left and right P-F 

eigenvectors respectively. 

Proof. (i) From Lemma 6.1(iv) we have: 

      1
( 1) ( ) ( 1) ( ) ( 1) ( )T t T t T t T t t T T tp Az p Bz p Az p Bz z p A p Bz

−
+ + += ⇒ = ⇒ = . 

Let  1
T Tg p A p B

−

≡ , so 


( 1) ( )t tz gz+ = .  

Since ( ),A B  is a minimal cost rate TMP under p, 1 ig is the minimal cost rate of agent i under 

p for all 1, 2, ,i n= ⋅⋅⋅ . Denote the maximal component of g by ξ , then by Proposition 3.2 * 1ξ λ −≥  

holds. 

If all components of g are same, then by Proposition 3.2 we find * 1g eλ −=  and the statement 

holds. 

Now let’s suppose some component of g is smaller than ξ . From Lemma 6.1(iii) we have: 

 
   1 1( 1) ( ) (0) (0) 1 (0) 1 (0)t t t tt t t tAz Bz Ag z Bg z A g z B g zξ ξ

+ ++ − − − −= ⇒ = ⇒ = .  

Let 
( )(0)lim

tt

t
z g zξ −

→∞
′ ≡ , then z′  must be a semipositive vector containing at least one zero 

component, and 1Az Bzξ −′ ′=  must hold. Hence we find: 

 ( )A R z zξ ′ ′− = , 

where R B I≡ − . 

By * 1 1ξ λ −≥ ≥ , A Rξ −  is nonnegative and indecomposable, and z′  is a eigenvector of 

A Rξ − . By Perron-Frobenius theorem A Rξ −  has no other semipositive eigenvector besides its P-

F eigenvectors which are positive. Hence there is a contradiction. Thus the statement holds. 

 (ii) By the statement above, Lemma 6.1(iii) and 6.1(iv), it’s obvious.   █ 

By Proposition 3.1 and Proposition 6.1 the following proposition is immediate, which 

summarizes the principal results obtained in this section. 

Proposition 6.2: A path of the model (5.1)-(5.5) is an equilibrium path if and only if it’s a 

balanced growth path corresponding to an optimal TMP, and all equilibrium paths share the same 

normalized equilibrium price vector, which is the normalized left P-F eigenvector of optimal TMPs. 

7. A Numerical Example with m Agents and n Goods 

Until now we have imposed some stringent assumptions on the growth model (5.1)-(5.5) to 

simplify the analysis. When some assumptions are relaxed, however, the growth model is also 
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workable, though the analysis may become complex. For example, without any essential 

modification the growth model can deal with the case of m agents and n goods, and we even need 

not assume any relation between m and n. In such case a TMP ( , )A B  is an n-by-m matrix pair. 

Furthermore, the assumption on the relation between A and B can also be relaxed, e.g. B A  may 

be permitted. And zero initial endowments of some agents can also be allowed for. 

For concreteness, let’s give a numerical example of the growth model with m agents and n goods, 

which describes the dynamics of a simple two-country economy.  

Suppose there are two countries, i.e. country 1 and country 2, and each country consists of 3 

agents, i.e. a household producing labor power, a consumer good producer and a capital good 

producer. Suppose consumer good and capital good are internationally tradable and labor power is 

internationally non-tradable. That is, agents of one country can only purchase the labor power 

supplied by the household of that country. Since the labor power of country 1 and country 2 isn’t 

substitutable for each other and as a result may have different prices, they need to be treated as two 

kinds of goods. Hence there are 6 agents and 4 goods in the model now. 

Let’s index goods as follows: 

 Good 1 Labor power of country 1; 

 Good 2 Consumer good; 

 Good 3 Capital good; 

 Good 4 Labor power of country 2. 

And agents are indexed as follows: 

 Agent 1  Household of country 1; 

 Agent 2 Consumer good producer of country 1; 

 Agent 3 Capital good producer of country 1; 

 Agent 4 Capital good producer of country 2; 

 Agent 5 Consumer good producer of country 2; 

 Agent 6 Household of country 2. 

For the sake of simplicity, suppose each agent has only one technology and the unique technology 

matrix pair ( , )A B  consists of two matrices as follows: 

 

0.28 0.50 0.53 0 0 0
0.84 0 0 0 0 0.77

0 0.49 0.45 0.50 0.48 0
0 0 0 0.51 0.57 0.29

A

 
 
 =
 
 
 

, 

 

1 0 0 0 0 0
0 1 0 0 1 0
0 0.25 1 1 0.25 0
0 0 0 0 0 1

B

 
 
 =
 
 
 

. 

And now the growth model is specified as follows: 
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( ) ( )

( 1)
( ) ( )

0.98
, for 1,2,3,4

0.98 0.98

t t
t i i

i t t
i i

p u
p i

p u
+  >= =

≤
                          (7.1) 

  ( 1) ( ) ( ) ( )0.8t t t tS Bz e u S+ = + −  (7.2) 

 ( ) ( )( 1) ( 1) ( 1) ( 1), , ,t t t tu z A p S+ + + += Z  (7.3) 

(7.1) stands for the price adjustment process, which means if a good nearly clears its price won’t 

change, otherwise its price will fall by 2 percent. Here Assumption 5.1 is relaxed, and all prices 

won’t change if and only if all goods nearly clear. If there are goods far from clearing, the prices of 

nearly clearing goods will rise relatively. Since only relative prices matters in the model, such 

adjustment method is reasonable.  

(7.2) stands for the formation of supplies. Here we assume a simple inventory depreciation 

function ( ) 0.8M M=Q . 

(7.3) stands for the exchange process. Note that TB A  is indecomposable here, as a result 
( 1)t TS A+  is indecomposable for all 1, 2, ,t = ⋅⋅⋅ ∞  if (0)z 0  holds. 

We set initial values as (0)p e= , (0)z e= , (0)u e= , and compute the model for 200 periods. 

Some numerical results are shown in Figure 1, 2 and 3. 

Since only relative prices matters, the price vector ( )tp  can be normalized such that ( ) 1T te p = , 

and normalized prices are shown in Figure 1. 

The production intensities indicated by ( )tz  are shown in Figure 2, and the growth rates of 

components of ( )tz , i.e. the growth rates of production intensities of 6 agents, are shown in Figure 3. 

For the model (7.1)-(7.3), we can readily find its balanced growth paths with the maximal growth 

rate (i.e. with the minimal cost rate), in which the growth rate and cost rate equal 0.0492 and 0.9531 

respectively, the normalized price vector is 

 * [0.2646 0.2120 0.2772 0.2462]Tp = , 

and the normalized production intensity vector is 

 * [0.2725 0.3669 0 0.2038 0 0.1568]Tz = . 

Comparing such balanced growth paths with the definition of equilibrium paths, i.e. Definition 

6.1, it’s clear that these paths in fact can be regarded as equilibrium paths of the model (7.1)-(7.3).   

Observing those computation results of the numerical example and comparing them with *p  and 
*z , we find following facts. 

First, after around period 30, the price of each good enters an interval respectively and then keeps 

fluctuating in the interval. Compared with *p , it’s clear that each price is in fact fluctuating around 

its corresponding price in *p . 
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Figure 1. Normalized prices of goods in period 1 to 200. 

Figure 2. Production intensities in period 1 to 200. 

Figure 3. Growth rates of production intensities in period 100 to 200. 
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Second, on average the production intensities of agent 3 and agent 5 grow more slowly than other 

agents. As a result, both the market share of agent 3 in the capital good market and the market share 

of agent 5 in the consumer good market are decreasing. Furthermore, when we compute 20,000 

periods of the model (7.1)-(7.3) and normalize those production intensity vectors, we find that with 

time passing by, the normalized production intensities of agent 3 and agent 5 are approaching to 

zero and the normalized production intensities of other agents keep fluctuating around those 

corresponding components of *z  respectively. 

Third, by aggregating data of agents belonging to each country, we find that country 1 keeps 

importing the capital good and exporting the consumer good in all periods, and country 2 is quite 

the contrary. That is, there emerges international specialization in this example. 

Fourth, the growth rates of production intensities of agents fluctuate quite synchronously, as 

shown in Figure 3. That is, there are business cycles in the two-country economy. Moreover, when 

we compute 20,000 periods of the model (7.1)-(7.3), we find that the fluctuations of prices and 

growth rates show no sign of abating. 

8. Discussion 

Here, we discuss some results of this paper and some open questions. 

A. Equilibrium: In the equilibrium analysis of this paper the existence of equilibrium paths 

depends on the existence of optimal TMP, and for the sake of simplicity we suppose each agent 

possesses a finite number of technologies so that there are a finite number of TMPs, thus the 

existence of optimal TMP is guaranteed. However, optimal TMP may still exist when this 

assumption is relaxed. In fact, Proposition 3.4 implies that even if each agent can use its 

technologies in combination, there still exist optimal TMP and equilibrium paths. In such case the 

technology set of each agent is in essence a compact convex set with a finite number of extreme 

points. In the future work the assumption on technology sets need to be weakened further to allow 

for merely close convex technology sets. And the equilibrium analysis in the case of m agents and n 

goods is also left to the future work.  

B. Disequilibrium: Though this paper pays much attention to equilibrium analysis, the model 

(5.1)-(5.5) may play a better role in disequilibrium analysis. And Proposition 3.2 can be interpreted 

as a simple result in disequilibrium analysis. The proposition implies in any period of any path of 

the model (5.1)-(5.5) there is one agent whose minimal cost rate is no greater than *λ .  

Disequilibrium analysis is important and indispensable from the viewpoint of economic reality. 

This is particular true if theoretical analysis shows that equilibrium paths are unstable. However, 

maybe it’s difficult to investigate systematically the stability of equilibrium paths of the model 

(5.1)-(5.5). By computing some numerical examples with respectively a unique TMP, we find that in 

many cases the model shows no sign of converging to equilibrium paths. Instead, it seems that the 
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normalized price vector will keep fluctuating in a neighborhood of the normalized equilibrium price 

vector. Behaviors of the model in more complicated cases, e.g. each agent possesses a wide range of 

technologies, needs further studies. And numerical methods such as Monte Carlo simulation are 

likely to play an important role in the future disequilibrium analysis.  

C. Changing Technology Sets: In this paper technology sets of agents are supposed to be 

exogenous and time-invariant. The assumption can be relaxed to allow that technology sets vary 

gradually as other variables changing, e.g. as output levels rising or time passing by. Such changing 

technology sets can be used to treat changing returns to scale, technology progress etc. And for this 

purpose an equation standing for the changing of technology sets need to be added to the grow 

model. So far as numerical methods are adopted, such dynamic technology sets won’t bring 

essential difficulties to the analysis of the model.    

D. Multi-country Economic Analysis: As shown by the two-country example, the model in this 

paper treats a country merely as a set of agents. Thus for the model in this paper, describing and 

analyzing a k-country economy is essentially the same as describing and analyzing a national 

economy. And macroeconomic variables of each country can be obtained easily by aggregating 

variables of its agents. By running such model on computer, the propagation of effects of a single 

agent’s microeconomic change through a k-country economy can be traced and studied as if we 

were doing a laboratory experiment. 
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