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Many governments use technology incentives as an important component of their greenhouse gas abatement strategies. These
“carrots” are intended to encourage the initial diffusion of new, greenhouse-gas-emissions-reducing technologies, in contrast to carbon
taxes and emissions trading which provide a “stick” designed to reduce emissions by increasing the price of high-emitting technologies
for all users. Technology incentives appear attractive, but their record in practice is mixed and economic theory suggests that in the
absence of market failures, they are inefficient compared to taxes and trading. This study uses an agent-based model of technology
diffusion and exploratory modeling, a new technique for decision-making under conditions of extreme uncertainty, to examine the
conditions under which technology incentives should be a key building block of robust climate change policies. We find that a combined
strategy of carbon taxes and technology incentives, as opposed to carbon taxes alone, is the best approach to greenhouse gas emissions
reductions if the social benefits of early adoption sufficiently exceed the private benefits. Such social benefits can occur when economic
actors have a wide variety of cost/performance preferences for new technologies and either new technologies have increasing returns to
scale or potential adopters can reduce their uncertainty about the performance of new technologies by querying the experience of other
adopters. We find that if decision-makers hold even modest expectations that such social benefits are significant or that the impacts of
climate change will turn out to be serious then technology incentive programs may be a promising hedge against the threat of climate
change.
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1. Introduction

Most policy-makers would very much like to use carrots
as well as sticks to address the threat of climate change.
Among the most popular carrots are technology incentives,
such as tax credits and subsidies, that encourage economic
actors to adopt new, low-greenhouse-gas emitting technolo-
gies. For instance, the Clinton Administration has proposed
a three-stage plan to meet US commitments under the Kyoto
framework, of which the first stage (1999–2003) focuses on
voluntary actions and tax credits for energy efficient tech-
nologies. On the one hand, such incentive policies have
a compelling logic. New technologies will likely be criti-
cal to any significant reduction of society’s greenhouse gas
emissions during the course of the 21st century. Technology
incentive policies offer the potential for politically feasible
actions that might make significant emissions reductions
possible in the future.

There are, however, good reasons to take a jaundiced
view of such incentives. Economic theory suggests that in
the absence of market failures the most efficient policies
for inducing innovation, as well as reducing emissions, are
sticks such as carbon taxes or tradable emissions permits
that impose on emitters the full social costs of greenhouse
gases. By comparison, technology incentives may distort
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the market. While there has been much less practical expe-
rience with price-based sticks than with technology carrots,
the latter have had a mixed record of achieving any practical
success [1] independent of their relative efficiency. Finally,
such incentive policies may be irrelevant given the scale of
the climate problem. Certainly, the technology programs
conducted to date by many governments have not stopped
the inexorable rise in worldwide emissions of greenhouse
gases.

This study addresses the question of whether and under
what conditions technology incentives can provide a key
building block for effective and feasible climate change
policies. To date, the integrated assessment modeling com-
munity has been largely silent on this important question
because of two methodological problems. First, technology
incentives aim to influence the development and diffusion
of new emissions-reducing technologies in the presence of
market failures that would otherwise deflect this diffusion
below the socially optimal path. Paramount among them
are coordination failures [2,3] that occur in the presence of
increasing returns to scale, imperfect information, and het-
erogeneous preferences regarding new technologies. It is
difficult to represent such factors in a mathematical model
that can be solved within the optimization techniques com-
monly used for climate change assessment.

Second, extreme uncertainty surrounds many of the fac-
tors associated with technology diffusion. These range from
our understanding of micro processes to our judgments
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about the fundamental macro question – what is the poten-
tial for new technologies to dramatically reduce the costs
of future reductions of greenhouse gas emissions? Any
judgments about the efficacy of technology incentives will
depend, in part, on expectations about these uncertainties.
Unfortunately, different stakeholder groups hold very dif-
ferent expectations, probably unresolvable in the near-term,
about the potential of new technologies. Thus, traditional
methods of prediction-based policy analysis will have dif-
ficulty adjudicating among alternative policy options.

We address these problems using two analytic innova-
tions. First, we employ a new method of decision-making
under extreme uncertainty, exploratory modeling [4,5] that
allows us to compare alternative policies without requir-
ing predictions of the future cost and performance of new
technologies. The basic idea is to use simulation models
to create a large ensemble of plausible future scenarios,
where each member of the ensemble represents one guess
about how the world works and one choice among many
alternative strategies we might adopt to influence the world.
We then use search and visualization techniques to extract
from this ensemble of scenarios information that is useful
in distinguishing among policy choices. These methods are
consistent with the traditional, probability-based approaches
to uncertainty analysis because when such distributions are
available, one can lay them across the scenarios and thus
calculate expected values for various strategies, value of
information, and the like. However, in situations charac-
terized by extreme uncertainty, the exploratory modeling
method has an advantage. It allows us to express informa-
tion at many levels of uncertainty within the same frame-
work, and to draw upon tools from dynamic areas of today’s
technology – computer search and visualization – to help
us extract knowledge from this collection of information
and make policy arguments [6,7].

Second, we employ an agent-based model of technol-
ogy diffusion, which provides a convenient platform for
treating key factors, such as increasing returns to scale,
the flow of imperfect information about technology per-
formance among agents, and the heterogeneity in agents’
preferences governing the adoption of new technologies.
In particular, we consider heterogeneous economic agents
that adopt technologies on the basis of expectations about
future costs (influenced by expectations about the poten-
tial for increasing returns to scale) and performance (in-
fluenced by learning about the performance experience of
other agents). Our model is similar in many respects to oth-
ers recently proposed [8–10], though as we will discuss be-
low it includes several commonly neglected factors that are
important to our conclusions about policy choices. Agent-
based models have been popular because they are a useful
means to represent important features of economies, such
as bounded rationality, and heterogeneity among economic
actors, that are poorly treated in standard models. How-
ever, their use in practical policy analysis has been limited.
In capturing such features, agent-based models also capture
some of the indeterminism of the real world, so that a single

model with a single set of input parameters might admit of
a wide array of potential outputs. Thus, these models are
hard to employ within traditional, prediction-based policy
analysis, and are often relegated to building intuition about
a problem rather than providing rigorous contributions to
the policy debate. By framing and beginning to address
the question – what is the set of all plausible agent behav-
iors consistent with choosing one policy over another? –
exploratory modeling provides a means for making agent-
based models useful for policy analysis.

In this study, we compare two potential near-term (that
is, over the next one or two decades) carrot and stick poli-
cies for abating global emissions of CO2: carbon taxes and
technology subsidies.1 Carbon taxes, the stick, can reduce
emissions by inducing economic actors to use less energy
and to choose lower-emitting energy technologies. Technol-
ogy subsidies, the carrot, can reduce emissions by inducing
early adopters to purchase new technologies. While the-
oretically the most efficient policy, carbon taxes can slow
the economy and can be politically unattractive. Subsidies
also need to be financed either through taxes or government
borrowing and, in the absence of market failures, should
be a more costly means of reducing emissions than the tax,
since, by definition, if the optimal tax does not cause the
agents to switch to an alternative technology, this technol-
ogy must not be efficient. However, in a dynamic setting,
the benefit of a technology subsidy may be higher than
its cost, if it accelerates the diffusion of an environmen-
tal friendly technology. But policy makers do not usually
know ex ante whether the diffusion of low-emitting tech-
nologies can be accelerated or the benefits of doing so. This
is the problem that we analyze.

Although our model is highly stylized, it provides use-
ful guidance on how carbon-taxes and technology subsidies
should be combined in the presence of uncertainty about
the severity of future climate change and the potential for
near-term actions to affect the future costs of greenhouse
gas emissions. We find that adaptive-decision strategies
for greenhouse gas abatement that combine the sticks of
carbon taxes with the carrots of technology incentives per-
form better than strategies employing carbon taxes alone,
if the agents have heterogeneous preferences and there are
either significant opportunities for increasing returns or sig-
nificant opportunities for learning about technology perfor-
mance among the populations of actors. Our results also
suggest that this combined strategy is more robust than the
tax-only policy, in that policy makers need to ascribe about

1 Much of the political debate currently focuses on emissions trading
rather than carbon taxes as a means of placing a cost on carbon emis-
sions. We focus on taxes here because they are analytically somewhat
simpler. There are important differences, both theoretical and practi-
cal, between taxes and emissions trading, but the results of this study
should apply similarly to both. Governments propose and pursue many
different types of technology incentive programs, including tax credits,
subsidies, government procurements, information programs, technology
transfer programs, mandates, etc. We focus on subsidies here for ana-
lytic simplicity. It is less clear how the results of this study apply to
other types of incentive programs.
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1 : 2 odds that the externalities are important in order to pre-
fer this combined strategy. Finally, our analysis confirms
the importance of carbon taxes. We replicate the standard
result that carbon taxes are the most efficient policy when
opportunities for increasing returns and learning are not sig-
nificant and find no cases where technology subsidies alone
are a viable response to climate change.

2. Landscape of plausible futures

This study compares the performance of alternative
greenhouse gas-emissions reductions strategies against a
wide range of plausible futures which represent our un-
certainty about the damages due to climate change, the ex-
tent to which new technologies may reduce the costs of
future emissions reductions, and the role that heterogeneity
and social interactions have in economic agents’ technology
choices. In this section, we describe how this landscape of
plausible futures has been generated. To do so, first we de-
scribe the agent-based model of technology diffusion that
is used to formalize the uncertainties. We next describe
how we constrain the set of plausible input parameters by
requiring the model to reproduce the current market mix of
energy technologies, current greenhouse gas emissions, and
the historic range of rates of technology diffusion. Finally
we describe the landscape of plausible futures.

2.1. Model

As shown in figure 1, our model considers a population
of agents, each a producer of a composite good that is ag-
gregated as total GDP, using energy as one key input. Each
time period the agents make two key choices that affect the
evolution of the system as a whole: first they choose among
several energy-generation technologies and second, given
their chosen technology, they decide how much energy to
consume. (We can think of this as choosing a production
function and choosing where to operate on that production
function.) The technologies differ in cost, carbon emissions
per unit of energy, and the performance each agent obtains
from them. The agents choose among these technologies in
order to maximize a utility function which depends on the
cost (including the cost of capital and those costs resulting
from carbon taxes) and performance of each technology. In
general, the agents do not have perfect information about
future costs and the performance of new technologies, so
they make this choice based on their expectations and their
level of risk aversion. In addition, the agents are heteroge-
neous, that is, they differ from one another in terms of the
cost/performance tradeoffs expressed in their utility func-
tions, their level of risk aversion, their initial expectations
about technology performance, and the actual performance
they will get from various technologies.

Aggregated across the agent population, the agents’ tech-
nology and energy consumption choices have a variety of
important consequences. First, each agent pays a certain

price for energy and generates a certain amount of emis-
sions. The average energy cost and the total carbon emis-
sions can affect the rate of economic growth in an oth-
erwise exogenously expanding global economy. Second,
the agents’ technology choices affect future costs of new
technologies as well as the agents’ expectations about these
costs and the technologies’ performance. When a new tech-
nology is introduced there is often great uncertainty about
how well it will serve the needs of a variety of potential
users. Agents can estimate the performance of a new tech-
nology by querying other agents who have used it. Thus,
the diffusion rate can depend reflexively on itself, since
each user generates new information that can influence the
adoption decisions of other potential users. In addition, the
cumulative number of agents that have used a technology
can affect the cost, and expectations about the cost, of that
technology through increasing returns to scale.

This model is in accord with other models of induced
technology change introduced in the climate change liter-
ature in recent years (for instance, see recent reviews by
Azar and Dowlatabadi [11] and Grübler, Nakicenovic and
Victor [12]). Mattsson [8] proposes a model where the in-
vestment costs for new emissions-reducing technologies are
related to accumulated experience through learning curves.
He calculates the optimal emissions-reduction path, which
depends on the exogenous parameters characterizing the
learning rate. Grübler and Gritsevskii [9] consider the po-
tential effects of cost reductions in new technologies from
learning by doing (through investment and R&D) and of
uncertainty about these reductions. They show that tech-
nologies that are economically unattractive at present, but
perhaps attractive in the future, can diffuse into the mar-
ket if policy-makers invest up front in R&D and promote
niche market applications. More recently, Gritsevskii and
Nakicenovic [10] have introduced a model to examine, sim-
ilarly to ours, the effects of learning-by-doing, uncertainty,
and technology spillovers (due to technology clusters rather
than learning among heterogeneous agents) using stochastic
optimization methods. They argue that these effects are cru-
cial in shaping technology paths over the next few decades,
find a wide, bimodal range of “base-case” emissions scenar-
ios, and suggest that research and development policies can
have the largest impacts if they focus on related clusters of
technologies. Similarly to these studies, our model consid-
ers the role that uncertainty and learning-by-doing may have
in shaping the diffusion of new technologies. However, we
also consider the learning process through which economic
agents learn about particular performance characteristics of
new technologies. Our study only considers the effects of
policies on the diffusion of fuel-switching technologies. We
do not consider the effects of policies on innovation (e.g.,
as in work by Goulder, Mathai, and Schneider [13,14]) nor
the rate of improvements in energy-efficiency.

As described in detail in section 3.2, we find that the
dynamics of the system shown in figure 1, in the ab-
sence of carbon taxes and technology subsidies, depends
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Figure 1. Agent-based model of technology diffusion used in this study. Economic agents choose among alternative technologies on the basis of
forecasts of cost and performance. The forecasts are influenced by learning among the agents and potential price decreases due to increasing returns to
scale. The agents have heterogeneous initial expectations about technology performance and heterogeneous preferences for technology cost/performance
tradeoffs. The agents’ choices influence the level of energy prices and of greenhouse gas emissions, which both influence the rate of economic growth.
Policy decisions about the level of carbon taxes and technology subsidies, which depend on observations of economic growth, damages and technology

diffusion, also influence the agents’ technology choices.

primarily on several key factors: the extent to which eco-
nomic growth is affected by changes in energy costs and
by increases in CO2 emissions, the extent to which eco-
nomic actors evaluate new technologies using different
cost/performance preferences and different degrees of risk
aversion, the rate at which reliable information about the
performance of new technologies flows through a popula-
tion of economic actors, the extent to which cumulative
production volumes reduces the cost of new technologies,
and the economic actors’ initial expectations about the cost
and performance of new technologies.

2.1.1. Economic growth
Given the focus of our study, we use a very simple rep-

resentation of economic growth. We assume that the world
economy is in a steady state where output per capita grows
at some exogenous rate that can be modified by changes in
the price of energy and any damages due to climate change.

We write the Gross Domestic Product (GDP) in each
of two world regions, the OECD and the Rest of the
World (ROW), with the difference equation:

GDPg(t) =
[
GDPg(t− 1)

(
γg − φxgĊg(t)− φsgṠg(t)

)]
×
{

1− κ0

[
Conc(t)

Conc(1765)

]κ1
}

, (1)

where γg represents the exogenous growth rate in the re-
gions g = OECD and ROW; Ċg(t) is the growth rate of the
average cost of energy per unit of output in region g includ-
ing the costs of energy-producing technologies, any carbon
tax imposed in order to reduce CO2 emissions, and any
subsidies on new, low-emitting technologies; Sg(t) is the

per unit of output cost of the subsidy; and φxg and φsg are
the corresponding elasticities. The last term in equation (1)
represents the share of GDP that is lost as a result of cli-
mate change. For simplicity, we express these damages
due to climate change as a geometric function of Conc(t),
the atmospheric concentration of CO2 (see Cline [15] and
Nordhaus and Yang [16]), the parameters κ0 and κ1, and
the pre-industrial concentration Conc(1765) = 280 ppm.2

The concentration is given by the simple difference
equation [16]

Conc(t) = κ2E(t) + (1− κ3)Conc(t− 1), (2)

where E(t) are the global carbon emissions, κ2 = 0.90
is the marginal atmospheric retention ratio of CO2 emis-
sions, and κ3 = 0.005 is the rate of transfer of CO2 from
atmosphere to other reservoirs. In our model, worldwide
emissions of carbon dioxide are given by

E(t) =
∑
g

Ng(t)∑
i=1

s(t)ng,j(i)(t)mj(i), (3)

where Ng(t) = GDPg(t)/s(t) is the number of agents in
each region, each producing s(t) units of output. The
CO2 emissions intensity mj(i) (carbon emitted per unit en-
ergy consumed) is determined by agent i’s choice of tech-
nology j. As described in the appendix, the energy intensity
ng,j(i)(t), the energy agent i requires to produce one unit

2 In earlier work [55], we used a damage function based on the flow,
rather than the stock, of carbon emissions which produced results rel-
atively less favorable to the combined carbon tax and subsidy strategy
than we find here.
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of GDP with technology j, represents the agent’s choice
of energy consumption and is determined by the cost of
energy (inclusive of all taxes and subsidies), the elasticity
of substitution, and improvements in energy efficiency.

2.1.2. Agents’ technology choices
As shown in figure 1, we pay particular attention in

this study to the process by which economic agents choose
among alternative technologies. The economic literature
generally uses one of two ways to describe such choices.
The standard approach assumes that agents make choices
in order to maximize a given utility or pay-off function.
This implies that the agent chooses from a known set of
alternatives by computing ex ante the pay-off of each al-
ternative. Under conditions of uncertainty, the approach
assumes agents know the probability distribution of the
pay-off and choose the alternative that provides on aver-
age maximum risk-adjusted pay-off [17,18]. The second
approach replaces maximizing behavior by trial and error
processes and adaptive behaviors, based on the assertion
that real economic agents have only a limited capacity to
gather and process all the information that would actually
be necessary to solve a real-world optimization problem,
and rather use rules of thumb [19]. While we believe the
later approach to be a more general description, we use
the first in this study for two reasons. First, we consider
technologies with long lifetimes and high switching costs,
so economic agents have a strong incentive to approximate
as closely as possible the optimal choice given their objec-
tives, preferences and constraints. Second we work with
a small set of alternatives (three technologies), and thus
we expect that the agents’ information-gathering problems
should be small.

Each of the technologies in our study are represented by
three factors. The cost, which can drop over time due to
increasing returns, and the emission intensities (the quan-
tity of CO2 emitted when generating one unit of energy) are
intrinsic to the technology. The performance of the tech-
nology also depends on the agent using it. Technologies
differ according to characteristics such as size of the equip-
ment, noise generated when operating, resistance to changes
in temperature, and reliability under different types of ap-
plications and intensities of use. The importance of such
characteristics depends on the particular characteristics of
the user, such as firm size, technical skills, and environmen-
tal conditions [20]. For instance, many renewable energy
sources produce intermittent power but can operate inde-
pendently from an electric grid. Thus, in our model, the
performance of each technology is represented by a distrib-
ution of performance values across the population of agents.

With these considerations, we assume that our agents
choose among three technologies in order to maximize an
intertemporal expected utility. The agents have imperfect
information, so they estimate utility on the basis of their
expectations about technology performance and costs. We
define 〈Ui,g,j(τ ,T life

i )|t〉 as the agent i in region g’s estimate
at time t of the risk-adjusted pay-off it would gain by using

energy conversion technology j from some time τ > t
through the end of the technology’s lifetime, T life

i . We
write this risk-adjusted pay off using the Cobb–Douglas
functional form〈
Ui,g,j

(
τ ,T life

i

)∣∣t〉=
〈
Performanceαii,g,j |t

〉
×
〈
Costi,g,j

(
τ ,T life

i

)αi−1∣∣t〉
−λi(VarPerformance + VarCost). (4)

The first term, 〈Performancei,g,j |t〉, is the agent i’s expec-
tation at time t of the performance it will get from the
technology j, which it forms on the basis of its own past
experience with the technology and from the experience
of other agents that have used it [21]. As described in
detail in the appendix, this term depends on the rate at
which the agents sample the experience of others in order
to learn about the performance of new technologies. This
rate is given by the parameter ϑ, defined in the appendix,
which represents the fraction of the agent population sam-
pled by each agent each time period. The second term,
〈Costi,g,j(τ ,T life

i )|t〉, is the expected cost of using the tech-
nology over its lifetime, which depends on projections of
future use and estimates of the potential for cost reductions
from learning-by-doing. The projections and estimates are
derived from observations of past trends in usage and cost
of the technology. As described in the appendix, this term
depends on the potential for cost reductions due to increas-
ing returns to scale, represented here by the learning curve
parameters βj . The third term represents the agent’s risk
aversion taken as a function of the variance of the estimates
of technology performance and future costs.

Equation (4) addresses the role heterogeneity may play
in affecting the diffusion of new technologies across the
system. First, the agents have different preferences regard-
ing new technologies, as reflected in different values for
the exponents αi, representing the cost/performance trade-
offs, and in the risk aversion coefficient λi. We assume
that both the αi and the λi are normally distributed across
the agent population, with means α and λ, respectively,
and with variance υ. Second, the agents have different
expectations regarding the performance and cost of each
technology. Each agent’s expectations of performance are
private; that is, they apply only to that agent, since in fact
each agent will gain a unique performance from each tech-
nology. While the cost forecasts are public, that is shared in
common by all the agents, each agent in general will have
different planning horizons, determined by the remaining
lifetime of the technology they are already using. As we
illustrate in section 3, both types of heterogeneity signifi-
cantly affect observed market shares and the dynamics of
the diffusion process.3

3 Bassanini and Dosi [56] have formally examined the effects of hetero-
geneity on technology diffusion in models simpler than that used here.
In a system with two technologies, constant prices, and non-switching
behavior (agents choose a technology once and cannot subsequently
change their minds) these authors find that market domination can re-
sult from “chance” and that heterogeneity diminishes the probability of
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2.2. Choosing model parameters

In order to compare the performance of alternative cli-
mate change policies using this agent-based model we must
choose the model’s parameters. This task is complicated by
the large number of parameters for the model, over 40 as
shown in table 1, as well as the great uncertainty surround-
ing many of them, such as those describing the damages
due to climate change, the potential for cost reductions in
new energy technologies, and the heterogeneity of the agent
population.

Traditionally, one would address this model uncertainty
by choosing probability distributions for the model para-
meters and then propagating these distributions through the
model to calculate probability distributions for model out-
comes as a function of the choice of policy. This approach
is questionable here for two reasons. First, good infor-
mation does not exist to provide accurate estimates of the
probability distributions for key parameters in the model.
Indeed, much of the political debate on climate change can
be characterized as very different expectations about such
unknown parameters among different stakeholders [6,7].

Second, there is no reason to believe that this agent-
based model, or any model, would provide an accurate
description of the likelihood of different climate change
futures. Mathematically, it is well known that the time
evolution of many processes is unpredictable, and com-
mon sense suggests that long-term predictions are usually
wrong. Nonetheless, we can reasonably expect a model to
propagate certain constraints into the future and to track the
implications of a wide variety of assumptions. For instance,
we cannot know whether or not new technology will dra-
matically lower the cost of future greenhouse gas emissions,
but we know that if such technology becomes available, it
will diffuse according to certain economic rules.

Exploratory modeling [4,5] is a method for decision-
making under conditions of extreme uncertainty that allows
us to distinguish among alternative policy strategies using
models which do not predict the future. Figure 2 shows a
schematic of the exploratory modeling method as we use
it here. In the first step, we create what we call a land-
scape of plausible futures, that is, the set of all plausible
paths into the future consistent with available information.
To do so we use the agent-based model which describes
alternative technology diffusion paths through an economy
characterized by uncertainty, heterogeneity, imperfect infor-
mation, and the potential that increased use might lower the
cost of new technologies. Not all outputs from this model
are plausible, however, because both the plausible range
of values for individual input parameters and the plausi-
ble range of behavior of the model outputs are constrained
by available information. For instance, we know that the
individual parameters representing the elasticities in equa-
tion (1) lie within a certain range. We also know that his-
torically energy technologies have shown a wide, but finite

observing domination. Our simulations results, presented in section 4,
suggest that these results hold in our model as well.

range of diffusion speeds. If we thus constrain the diffu-
sion speeds output by the model to lie within this range,
we have a constraint on allowable combinations of input
parameters.

The set of input parameters for the model that satisfy all
the constraints defines what we call an uncertainty space.
The model outputs resulting from these parameters defines
the landscape of plausible futures. To find these plausi-
ble futures, we conduct a search over the model, looking
for allowable sets of input parameters. This search is the
subject of this section. In the next stage of the analysis,
we define a set of alternative strategies and calculate their
performance across this landscape of plausible futures to
construct a large ensemble of alternative scenarios. We can
then conduct searches across these scenarios to compare the
performance of the alternative strategies.

In order to create the landscape of plausible futures, we
must define ranges for the model inputs and constraints on
the model outputs. Given the simplicity of the model and
the types of data readily available, we chose three con-
straints for the model outputs. The model should repro-
duce current (1995) market shares for energy technologies;
reproduce current levels of carbon emissions, energy in-
tensities, and emissions intensities; and generate diffusion
rates no faster than 20 years (from 1% to 50% penetration),
which is faster than the rates historically observed for en-
ergy technologies [22]. The first two constraints guarantee
that our model is consistent with current data. The third
forces the model to be consistent with one (of the few)
binding constraints history places on future technologies.
(See [12] for a discussion of reoccurring patterns in tech-
nology diffusion.)

In order to define the ranges for the input parameters,
it is convenient to divide them into two classes, macroeco-
nomic parameters and microeconomic parameters. The for-
mer describe the growth of the economy and its response to
changes in the cost of energy and damages due to climate
change. These parameters include the exogenous rate of
economic growth, the elasticity of economic growth with
respect to the cost of energy, the elasticity of economic
growth with respect to the cost of the subsidy, the parame-
ters characterizing damages and the concentration of car-
bon in the atmosphere, the parameters defining the energy
demand functions, and those used to simulate exogenous
improvements in energy-efficiency. The plausible ranges
we assign to these parameters and the sources for this in-
formation are shown in table 1.

The microeconomic parameters describe the cost and
performance of energy technologies and the behavior of
the population of consumers of energy technologies. In
this preliminary study we confine ourselves to parameters
describing only three generic types of technologies: high
emission intensity systems, such as coal fired power plants,
which at present provide the bulk of the world’s energy;
medium emissions intensity systems, such as natural gas
powered combustion, which provide a significant minority
of the world’s energy; and low emissions intensity systems,
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Table 1
Model parameters.

Parameter Description Range Reference

Macroeconomic parameters
γOECD, γROW Exogenous economic growth rate 2%, 4% World Bank [57]

φx,OECD, φx,ROW Elasticity of economic growth with
respect to the cost of energy

[0.00,0.1] Dean and Hoeller [58]

φs,OECD, φs,ROW Elasticity of economic growth with
respect to the cost of the subsidy

[0.00,1]

κ0 0.3
κ1 [0–3]

Conc(1765)
κ2

κ3

Parameters governing the accumu-
lation of CO2 and damages

750
0.9
0.005

Houghton et al. [60]
Cline [15]

Parameters governing the demand
functions for energy:

ag,j Scale parameter n.a Endogeneous

ε Elasticity of substitution 0.5 Burniaux et al. [59]

ȧOECD, ȧROW Exogenous technological progress
(energy efficiency gains)

0.02, 0.016 Defined to reproduce Manne and
Richels [61] projections with no
diffusion of new technologies

Microeconomic parameters
Technologies
qj Mean of the performance distribu-

tion for technology j
100 Fixed

νj Variance of the performance distri-
bution

j = 1: [1,5]
j = 2: [1,10]
j = 3: [10,50]

Defined to reproduce different
levels of uncertainty

Cg,j (0) First unit cost j = 1: 9 $/Gj
j = 2: 8 $/Gj
j = 3: 19 $/Gj

Manne and Richels [61]

mj Emission intensity j =1: 0.038 Tc/Gj
j = 2: 0.023 Tc/Gj
j = 3: 0.001 Tc/Gj

Tester et al. [62]

T life Lifetime [5,40] years

βj Level of increasing returns to scale j = 1: [−0.2,0.05]
j = 2: [−0.3, 0.05]
j = 3: [0,0.6]

γj Switching costs [0,1]

Agents
α Means of the distributions of pref-

erences with respect to perfor-
mance and costs

[0,1]

λ Mean of the distribution of risk
aversion coefficients

[0,1]

υ Variance of the distribution of pref-
erences (heterogeneity)

[0,2]

ρg Learning error (performance) [1, 10]

ρc Learning error (price) [1]

ϑ Sample size (social interactions) [0%,20%]
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Figure 2. Schematic of the exploratory modeling method. We first conduct a search across the space of input parameters for the agent-based technology
diffusion model, looking for those combinations of model inputs which are themselves and which produce model outputs consistent with available data
(step 1). We next examine the performance of our alternative adaptive-decision strategies across the most important dimensions of this set of plausible
futures (step 2) and search for those strategies that best meet the decision-makers’ goals (step 3). Finally, we search across the entire set of plausible

futures, looking for counter-examples to our conclusions (step 4).

Table 2
Range of parameter values that give model results.

N Mean Std Min Max

Selected endogenous variable

GDP (pv to 2045) 1012 US$ 1611 89.38879 0.6321316 85.95 95.14
Variance GDP 1611 0.0691186 0.1807702 0 3.58
Emissions (2045) 109 tons carbon 1611 17.86817 7.139093 3.43 91.52
LE Mrkt Share (2045) 1611 0.2116574 0.175137 0 1
Variance LE Mrkt Shr 1611 0.0011767 0.0008317 0 0.0044
HE Mrkt Shr (1995) 1611 0.7018187 0.2370247 0 1
ME Mrkt Shr (1995) 1611 0.2669522 0.2331999 0 1
LE Mrkt Shr (1995) 1611 0.0312477 0.0233843 0 0.09

Parameter

υ 1611 0.4617517 0.2546615 0 1
α 1611 0.3641409 0.2465205 0 1
λ 1611 0.1782104 0.1416057 0 0.948
ν1 1611 1.642264 0.8030245 1 4.845
ν2 1611 4.864824 2.265987 1.05 10
ν3 1611 23.44834 8.575531 10 49.4
β1 1611 0.0299963 0.0203724 0 0.05
β2 1611 0.0273085 0.0192474 0 0.05
β3 1611 0.1872024 0.1201763 0 0.582
ϑ 1611 0.0189926 0.0149588 0 0.126
ρq 1611 5.129235 2.146752 1.008 10
κ1 1611 0.5011173 0.6329159 0 3
φx,OECD, φx,ROW 1611 0.0164333 0.0150177 0 0.145
γj 1611 0.4586189 0.2518373 0 1
T life 1611 20.81891 8.306418 5.2 40
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Figure 3. Set of plausible greenhouse gas emissions trajectories over the 21st century. The trajectories shown are a random sample of those calculated
using the full range of plausible inputs to our agent-based model of technology diffusion.

such as renewable, biomass, and/or new nuclear power fa-
cilities, which at present are not in widespread use, but may
be significant energy sources in the future. This is clearly
a very coarse grouping, similar to that used in [12], but
it is sufficient to draw policy conclusions about the appro-
priate mix of carbon taxes and technology subsidies. The
ranges and sources for these parameters are also shown in
table 1.

We can now search across the space of allowable model
inputs looking for those combinations that give model out-
puts consistent with our constraints. In this study we found
it convenient to use a genetic algorithm search, similar to
that used by Miller [23]. Our search generated 1,611 plausi-
ble sets of input parameters that vary widely in key parame-
ters such as the level of increasing returns to scale, agents’
heterogeneity, uncertainty regarding new technologies, and
future damages due to climate change. This process did,
however, rule out as implausible sets of points with very
small levels of uncertainty and heterogeneity regarding ex-
pectations about the performance of new technologies (such
points do not satisfy the constraint on initial market shares),
sets of points where the agents’ utility functions are largely
insensitive to costs, and sets of points with both very high
learning rates and levels of increasing returns to scale. The
range of variation of the restricted parameters is summa-
rized in table 2.

Using this plausible set of input parameters, we project
society’s future carbon dioxide emissions, which we plot

as a landscape of plausible futures in figure 3. Hence, fig-
ure 3 provides our model’s best estimate forecast of global
emissions of carbon dioxide over the course of the next
century. The model suggests that the plausible levels of
emissions could vary by over an order of magnitude, from
a 1 GT/year to over 30 GT/year. This distribution of esti-
mates is similar to that of Gritsevskii and Nakicenovic [10]
and spans the lower part of the range of 400 published sce-
narios collected by the IPCC Special Report on Emissions
Scenarios [24,25]. We generate a narrower range because
ours are driven largely by different assumptions about tech-
nology, while the scenarios in the literature span a range
of assumptions about both demand and technology. While
our model is very simple and ignores a wide variety of
important factors, there is no reason to believe that adding
complexity should reduce this range of plausible futures.
Imagine that we had a highly complex, “perfect” model
that could reproduce all past trends to any desired level of
detail. Unless history is completely deterministic, such a
model would need to be able to generate many possible
pasts, of which the actual past was only one example [26].
Even when run through the crucible of the past, such a “per-
fect” model should spread out into a wide cone of plausible
futures as it moves forward in time. Figure 3 represents
what is probably the most concrete fact we know about the
future a century hence – it is in fact highly unpredictable
no matter how perfectly it is modeled.
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Table 3
Parameters defining adaptive decision strategies.

Parameter Carbon tax policy Subsidy policy Combined policy

Tax0 100 $/ton 0 100 $/ton
dtax 5% 0 5%
Mintax 0% economic growth 0 0% economic growth
Sub0 0 40% mrkt share 40% mrkt share
Maxsub 0 50% mrkt share 50% mrkt share
Minsub 0 20% mrkt share 20% mrkt share
Lsub 0 15 years 15 years

3. Robust strategies

We cannot predict the future, but it may often be possible
to determine the best actions available to shape the future
to our liking. As shown in figure 2, the next step of an
exploratory modeling analysis is to define a set of strategies,
compare these strategies against the landscape of plausible
futures, and create a ensemble of scenarios. We can then
examine these scenarios to find the strategies that best meet
our goals.

In this study we aim to evaluate how policy-makers
ought to combine two different types of policy levers –
carbon taxes and technology subsidies – given the great un-
certainty of the climate change problem, the possibility that
if climate change is a serious problem, society will have to
make much larger emissions reductions than are currently
seen as possible, and the potential that early policy actions
may improve society’s ability to make such large reduc-
tions. We will look for strategies that are robust, that is,
ones that are effective over a very wide range of expecta-
tions about the future, because such strategies may be the
only ones that will be politically viable given the diverse
array of stakeholders who will be impacted by any climate
change policies. We expect that such robust strategies will
be by necessity adaptive [6,7,27], that is, they will adjust
themselves over time in response to new information gener-
ated by observations of the climate and economic systems.

3.1. Defining adaptive strategies

Carbon taxes have two main effects. First, they in-
crease the cost of energy and thus reduce its use. Sec-
ond, taxes provide incentives for economic actors to de-
velop and choose energy technologies with relatively lower
emissions by reducing the cost differential between low-
and high-emitting technologies. Overall, carbon taxes have
competing effects on economic growth: slowing growth
by increasing the marginal cost of production and speeding
growth by reducing damage-causing carbon emissions.

Technology subsidies have the potential to speed up
technology diffusion by increasing the number of early
users, which can reduce costs via learning-by-doing and
speed the spread of information about the performance of
these technologies. However, subsidies must be financed
out of taxes or savings, which slows economic growth and
may have little impact on emissions if the subsidized tech-

nologies do not turn out to have desirable cost/performance
characteristics.

As shown in figure 1, taxes and subsidies affect our
model of technology diffusion in two ways. First, they
influence the adoption decisions of individual agents by
changing their technology cost forecasts. As described in
the appendix, subsidies decrease the expected cost of using
non-emitting technologies and taxes increase the cost of
using high and medium emitting technologies in proportion
to their carbon intensities. In addition, taxes and subsidies
directly affect the rate of economic growth by increasing
the cost of energy to the economy and through the effect
of the government spending required, respectively.

Taxes and subsidies in this study are adaptive, that is,
they can change over time in response to observations of
the rate of economic growth, the damages due to climate
change, and the market share of low-emitting technolo-
gies. In our model, the tax begins with an initial level
Tax0 per ton of emitted carbon. The tax grows at an an-
nual rate dtax but is adjusted if one of two conditions hold:
(a) the cost of the tax is greater than the marginal cost
of emissions of carbon dioxide (expressed as a percentage
of GDP), or (b) the global economic growth rate is below
some minimum rate, ∂(GDPOECD +GDPROW)/∂t < Mintax.
In the latter case, the tax drops to Tax0 and begins to grow
again. This description of a steadily growing tax is consis-
tent with the optimum taxes described in the literature, and
the stopping condition represents a way in which political
conditions may force a tax to terminate.

The implementation of the subsidy is in general more
complicated. The potential benefits of the subsidy depend
on the existence of spillover effects in the diffusion of sub-
sidized technologies, that are usually unknown ex ante. The
costs depend on how the subsidy is financed. In this paper
we take a very simple approach. The subsidy begins at a
level Sub0 percent of the cost of the subsidized technol-
ogy. This subsidy stays at a constant level over time until
either: (i) the market share for low emitting technologies
goes above a level Maxsub, or (ii) the market share fails to
reach a minimum level, Minsub, after Lsub years. If either
of these conditions is met, the subsidy is permanently ter-
minated. Basically the subsidy is terminated once policy
makers observe that the technology succeeds or that it fails
to diffuse over a long period of time.

For simplicity, we consider three alternative strategies
in this study. The Tax-Only strategy, the Subsidy-Only
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strategy and a combination of the Tax- and Subsidy-Only
strategies (see table 3). Each strategy is characterized by the
seven parameters: Tax0, dtax, Mintax, Sub0, Maxsub, Minsub,
and Lsub. The Tax- and Subsidy-Only strategies were cho-
sen by searching for the best tax and the best subsidy strat-
egy at the point in uncertainty space characterized by the
average value for each of the model input parameters shown
in table 1. Preliminary explorations suggest that results pre-
sented in the following sections are reasonably insensitive
to this simplification.

3.2. Generating scenarios

In order to choose among the alternative strategies, we
must compare their performance against a variety of plau-
sible futures, as shown in figure 2. We define a scenario as
one combination of a strategy and a plausible future repre-
sented by a set of input parameters to the model. It is im-
practical to examine all the possible scenarios because the
computations would take too long and, more importantly,
it would be difficult to interpret so many dimensions (on
the order of 15) of possible actions and plausible uncertain-
ties using the visualization tools at our disposal. Thus, we
will first examine a strategically chosen subset of scenarios
that we will use for generating hypotheses. As discussed in
section 3.4, we will then test these hypotheses by searching
back across the full range of scenarios.

We reduce the dimensionality of the uncertainty space by
using econometric techniques to find those dimensions most
important to the questions of interest. In particular, we want
to find those input parameters that have the biggest impacts,
individually and in combination, on the future market share
of low-emitting technologies. This market share is a key
model outcome, because it determines whether or not low
cost greenhouse gas abatement is available in the model.

We begin by identifying the market share of low emitting
technologies in the year 2045 as a field variable [2,28] and
calculate its mean and variance for each of our set of 1,611
uncertainty space points. Then we estimate the probability
that the mean will be above 20% of the market in year 2045,
as a function of the model parameters. Since the appropriate
functional form is unknown we use the second order linear
expansion

Pr(µ2045 > 0.20)

= Φ

(
ψ0 +

k∑
i=1

ψiθk +
k∑
i=1

k∑
j=1

ψk+ijθiθj

)
, (5)

where µ2045 is the mean of the distribution, θ is a vec-
tor of model parameters, ψ is a vector of coefficients to
be estimated, and Φ is the logistic probability distribution.
Because our simulations showed that the variance of the
distribution also changes as a function of the parameters,
each observation included in the estimation data set was
weighted by its variance.

As hypothesized, parameters related to the potential for
costs reductions of the technologies, as well as those defin-

ing the distribution of preferences and the number of social
interactions, appear to be important (i.e., their coefficients
are statistically significant) in determining the future market
share of low-emitting technologies. In table 4 we present
the estimated coefficients of the model parameters. We fo-
cus our attention on β3, the level of increasing returns to
scale for the low-emitting technology; ϑ, the learning rate
among agents; the risk aversion λ, and the heterogeneity of
the agents’ preferences υ. We observe that there are impor-
tant interactions among these parameters. Some parameters
enhance each other. For instance, increasing returns to scale
and the sample size work together to increase the market
share. The level of heterogeneity of the population also
enhances the positive effect of these two parameters. This
is so because heterogeneity increases the number of poten-
tial early adopters of the new technology. However, more
heterogeneity is not always good since it can also slow the
later stages of diffusion by increasing the number of late
adopters, that is, agents with a strong preferences for tradi-
tional technologies or high risk aversion. Also, the negative
effect of high uncertainty (variance) with respect to the new
technology increases with the level of heterogeneity.

It is important to note that some of the effects are non-
linear. For instance the negative square term for the sample
size parameter suggests that the positive effect diminishes
after a given value where the total effect reaches a maxi-
mum. This result is consistent with Lane [29] who finds
that a higher sample size in the case of Bayesian optimizers
does not necessarily improve social outcomes. In addition,
some parameters counteract each other. For example, the
positive effect of the sample size is reduced in the presence
of increasing returns in the production of medium emitting
technologies. Our results also suggest that the switching
cost γ is a critical determinant of the variance of the future
market share. Low switching costs increase the turnover
between technologies and make the model dynamics ex-
tremely sensitive to early stochastic variations (see Grubb
et al. [30], for a discussion on the role of inertia in climate
change policy).

3.3. When technology subsidies are useful

We now examine the performance of the adaptive de-
cision strategies defined above in the sub-region of the
landscape of plausible futures spanned by the vector S =
{β3, υ,ϑ,λ,κ1}. The first four dimensions are the most im-
portant determinants of the dynamics of technology diffu-
sion in our model and the fifth captures the damages due to
climate change. We applied our adaptive decision strategies
in a grid of points defined by combinations of the parame-
ters in S, while the other parameters were kept constant at
their mean values. This process generates an ensemble of
scenarios (see figure 2), that we search to identify the fac-
tors that determine the relative performance of one strategy
over another. This relative performance is measured by the
regret of each decision strategy. The regret is defined as
the expected difference between the performance of a strat-
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Table 4
Econometric estimates of the effect of model parameters in the market share of new emitting technologies (selected interactions).

Coef. Std. err. z P > |z| (95% conf. interval)

υ 12.49103 3.873437 3.225 0.001 4.899229 20.08282
α 7.32531 1.40877 5.2 0 4.564172 10.08645
λ −1.629188 6.250245 −0.261 0.794 −13.87944 10.62107
ν1 −0.1703135 0.3372748 −0.505 0.614 −0.8313599 0.490733
ν2 0.1379413 0.1301188 1.06 0.289 −0.1170869 0.3929694
ν3 −0.069668 0.0334578 −2.082 0.037 −0.1352442 −0.0040919
β1 6.41204 36.27177 0.177 0.86 −64.67933 77.50341
β2 36.95832 35.85846 1.031 0.303 −33.32297 107.2396
β3 −1.859102 5.218475 −0.356 0.722 −12.08713 8.368921
ϑ 71.76872 39.879 1.8 0.072 −6.392691 149.9301
φg 0.8488508 42.04792 0.02 0.984 −81.56355 83.26125
γ −2.061293 1.936609 −1.064 0.287 −5.856978 1.734392
T life 0.1041627 0.06325 1.647 0.1 −0.019805 0.2281305

υ2 −0.5951488 1.641682 −0.363 0.717 −3.812787 2.622489
α2 −4.799885 1.266893 −3.789 0 −7.28295 −2.31682
λ2 3.463986 3.506615 0.988 0.323 −3.408854 10.33683
β2

1 −531.9518 468.2693 −1.136 0.256 −1449.743 385.8392

β2
1 131.5067 421.3547 0.312 0.755 −694.3334 957.3468

β2
3 8.934308 5.294473 1.687 0.092 −1.442669 19.31128

ϑ2 −1037.171 227.8347 −4.552 0 −1483.719 −590.6235
ρ2 0.0380914 0.0142229 2.678 0.007 0.0102151 0.0659678
γ2 2.994101 1.254874 2.386 0.017 0.5345937 5.453609

T life2

3 −0.0000981 0.0010801 −0.091 0.928 −0.002215 0.0020189
υα −10.26669 2.082545 −4.93 0 −14.3484 −6.184974
αν3 −0.3600053 0.066708 −5.397 0 −0.4907506 −0.22926
υβ3 11.28381 4.648449 2.427 0.015 2.173014 20.3946
υϑ 220.9146 41.36304 5.341 0 139.8445 301.9847
υρ −1.146068 0.2303033 −4.976 0 −1.597454 −0.694682
λρ −0.8403946 0.4178413 −2.011 0.044 −1.659348 −0.0214408
β1ρ 10.21623 2.534978 4.03 0 5.247767 15.1847
β2ϑ −949.2111 426.5594 −2.225 0.026 −1785.252 −113.17
β3ϑ 232.8181 71.52681 3.255 0.001 92.62811 373.0081

egy at a particular uncertainty space point – measured as the
present value of the GDP in a particular scenario from 1995
to 2045 – and the performance of the strategy with the best
performance at that uncertainty space point (see [27] for
an example of the use of regrets to find strategies robust
across multiple scenarios).

The results suggest not only that increasing returns to
scale and learning feedbacks cause the Combined strategy
to dominate the Tax-Only strategy (not a surprising result),
but also that this dominance is conditioned by the degree
of risk aversion of the population of agents and the level of
heterogeneity. The role of heterogeneity is an interesting
phenomenon. Indeed, if the mean of the distribution of
preference does not change, one should not expect changes
in aggregate behavior (i.e., the mean representative agent
does not change). However, in the presence of interactions
between agents, changes in the variance of the distribution
do affect aggregate behavior and therefore policy choices.

We illustrate these ideas in figure 4, where we compare
the regret of the Tax-Only strategy policy (lighter surface)
with the regret of the Combined strategy (darker surface),
as a function of the heterogeneity and risk aversion of the
agents. For this figure we have assumed moderate increas-
ing returns to scale (β3 = 0.2), a moderate level of social

interactions (ϑ = 5%), and moderate damages due to cli-
mate change (κ1,κROW = 1.3). The figure shows that the
Tax-Only strategy is preferable in a world where the agents
are homogenous (υ = 0). As the heterogeneity of agents’
preferences increases, the Combined tax and subsidy strat-
egy quickly becomes more attractive. However, the effect
is non-linear; the difference between the Tax-Only and the
Combined strategies becomes independent of heterogene-
ity once the heterogeneity is larger than about υ = 0.4,
when the preference of an extremist agent is about twice
the preference of an average agent. Heterogeneity favors
the Combined strategy because it creates a number of po-
tential early adopters that are well disposed to use the new
low-emitting technology. The subsidy encourages many of
these agents to adopt, thus generating learning and cost re-
ductions above and beyond the social benefit gained by any
individual adopting agent.

The agents’ risk aversion also affects the choice between
the Tax-Only and Combined strategies. Both high and low
levels (λ < 0.1 and λ > 0.4) increase the desirability of the
latter strategy, while intermediate levels of risk aversion fa-
vor the tax. When agents are risk neutral, the low-emitting
technologies are likely to diffuse independent of any ad-
verse initial experience with the technology. However, the
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Figure 4. Expected regret of the Tax-Only (lighter surface) and Combined tax and technology subsidy (darker surface) adaptive-decision-strategies.
The surfaces are displayed as a function of the risk aversion and heterogeneity of the agents’ population. All other input parameters are held constant

at their mean values.

Figure 5. Difference in expected regret between the Tax-Only and Combined strategies as a function of the damages due to climate change, given by
the damage function coefficient, and the “classicalness” index, a composite index of the level of increasing returns to scale, the speed of learning, the

risk aversion and the heterogeneity of the agents’ preferences.

subsidy speeds up this diffusion at a very low cost (given
increasing returns to scale). When the agents are highly
risk adverse, adverse early experience with a technology
from a small number of agents may greatly delay diffusion
of the new technology. In such cases, the subsidy is more
expensive, but may provide the important benefit of launch-
ing the diffusion process as the uncertainty regarding the
characteristics of new technologies diminishes.

We have similarly compared the performance of the Tax-
Only and Combined strategies in other subsets of S. In

each case we find, in accord with most economic analyses,
that the Tax-Only policy is best in what we can think of
as the classical limit, where heterogeneity, increasing re-
turns, and endogenous learning are all small. When these
effects are non-negligible, however, we find that the Com-
bined strategy is best. We summarize these results in fig-
ure 5, which compares the performance of the Tax-Only
and Combined strategies as a function of the damages due
to climate change, coefficient of the damage function, and
the “classicalness” of the economy, a composite index of
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Figure 6. Percent increase in the variance of the expected GDP under the Tax-Only strategy relative to the Combined strategy as a function of the
damages due to climate change, given by the damage function coefficient, and the “classicalness” index.

the extent to which heterogeneity, risk aversion, increasing
returns, and endogenous learning are small.4

Our results are consistent with those of Goulder and
Schneider [14,31], who examine greenhouse gas abatement
policies using a general equilibrium model for the United
States that takes into account incentives to invest in re-
search and development, knowledge spillovers, and the
functioning of research and development markets. They
find that the tax should be accompanied by a subsidy only
when there are spillovers benefits from research and de-
velopment. Here we show that this result can be more
general. Many types of spillovers, such as those resulting
from increasing returns to scale, network externalities, or
non-R&D knowledge spillovers from users to non-users of
new technologies may justify a subsidy. However, the pres-
ence of spillovers is not a sufficient condition. The level
of spillovers is an important consideration. Furthermore
the level of spillovers that justifies the subsidy depends on
the degree of heterogeneity of agents preferences and their
attitude towards risk. Our results suggest, all other things
being equal, that the critical level to justify the subsidy de-
creases, but non-monotonically, as heterogeneity and risk
aversion increase.

We also find that the Combined strategy reduces the vari-
ability of GDP, in addition to increasing its expected value,
relative to that of the Tax-Only strategy in the non-classical
regions of the uncertainty space, as shown in figure 6. This
stochastic behavior of our results for any given set of pa-
rameter input values is due to the random distribution of
characteristics across the initial agent population and each
agent’s random choice of other agents to query for infor-
mation. The Tax-Only strategy fails to generate a pool of

4 This classicalness index CI = {0, i, . . . , 4, 5} characterizes the four
parameters (β3,ϑ, υ,λ)i, i ∈ CI, where each parameter z of the four
is given by: zi = zmin + i( zmax−zmin

5 ), and [zmin, zmax] determines the
range of variation of the parameter.

early adopters that increase the quantity and quality of the
information that would allow all the agents to make bet-
ter technology adoption choices. In cases with significant
potential for learning and increasing returns, the dynamics
of the economy thus become more sensitive to chance, in
particular the initial distribution of agents’ preferences and
expectations about new technologies, for the Tax-Only than
the Combined strategy.

3.4. Robustness of the adaptive decision strategies

A decision-maker’s choice between the Tax-Only and
Combined strategies should depend on their assessment of
the likelihood of a significant potential for learning and
increasing returns, as well as the likelihood of observing
heterogeneous preferences and risk aversion. Yet, these
likelihoods are themselves important uncertainties. Hence,
in our analysis we proceed backwards, by asking the ques-
tion: what likelihoods would cause a decision-maker to
prefer one policy to another? An adaptive decision strat-
egy that has low expected regrets over most regions of the
probability space is said to be a robust strategy.

Figure 7 compares the expected value of the Combined
and Tax-Only strategies as a function of the probability of
observing a non-classical world, CI = 0, and the prob-
ability of observing low damages, given by κ1 = 1 in
equation (1), equivalent to a 0.3% reduction in GDP re-
sulting from a doubling in atmospheric concentrations rel-
ative to pre-industrial levels. We created this figure by
weighting the points in figure 5 with classical index 0
by w1 ∈ [0, 1], and those points with classical index 1
through 5 by (1−w1)/5. Similarly we weighted the points
with damage index 1 by w2 ∈ [0, 1] and those points with
damage indices 2 and 3 by (1−w2)/2 (see [7]). The region
in the lower-left-hand corner represents those expectations
about the state of the world such that the expected value of
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Figure 7. Regions in probability space where the expected GDP resulting
from the Tax-Only strategy is greater than that of the Combined strategy
as a function of the probability of a classical world and low damages due

to climate change, as defined in the text.

the Tax-Only strategy is favored and the region in the upper-
right represents those expectations such that the Combined
strategy is favored.

It is difficult to make definitive policy statements based
on the results in figure 7 because we cannot directly re-
late all the components of our classical index to the real
world. In particular, our model of learning due to random
sampling among agents is almost certainly a poor repre-
sentation of the actual networks that exist among economic
actors. Of the components of our classicalness index, only
the increasing returns parameter and probably the degree of
risk aversion can be supported by real data. With respect
to the former we find that increasing returns to scale in the
order of 0.1, which is one sixth of that estimated for nat-
ural gas turbines [32], justify the use of subsidies, if the
population is heterogeneous and risk averse. In figure 4,
the highest level of risk aversion, 0.5, corresponds to a cur-
vature of the utility function that is consistent with the one
estimated by models of health insurance demand [33–35].

The interpretation of the degree of heterogeneity and
the sample size is more complicated. Nonetheless we try
to provide some insights. In figure 4, a level of hetero-
geneity of 0.4, implies for example that if the distribution
of the risk aversion parameter across the real population
has a mean of 0.5 then the standard deviation would be
approximately 0.12. So, our assumptions regarding risk
aversion and heterogeneity, seem consistent with empiri-
cal evidence. Finally, in our simulation a sample size of
approximately 1% of the population (in figure 5 the sam-
ple size varies between 0 and 12%) implies that within
5–7 years, an agent’s estimate of the variance of its expec-
tations will converge to zero. This can be interpreted as

the agent been extremely confident about its beliefs about
a given product or technology. While we don’t have evi-
dence about how long it takes on average for real agents
to feel confident about the quality of a given product, we
believe that five to seven years could be a high range for
this time period.

These heuristic considerations, suggest that the condi-
tions necessary for the Combined strategy to be preferred
to the Tax-Only strategy may exist in the real world, and
that the Combined strategy may be the most robust strategy.

3.5. Back search

These results are based on a search over the restricted re-
gion of the uncertainty space given by the set S. Yet, it may
be the case that our conclusions cannot be extended to other
regions of the uncertainty space. To test this possibility we
implement a search over the entire range of plausible fu-
tures defined by the parameters in table 1, looking for points
for which the Tax-Only strategy is superior to the Com-
bined. We use a genetic algorithm search routine similar to
that used to find the landscape of plausible futures in fig-
ure 3. While such a search cannot guarantee the absence of
counter examples to our conclusions, it provides strong cor-
roborating evidence that we are interpreting our model re-
sults fairly. We examined roughly 5,000 uncertainty points.
The only cases found where the Tax-Only strategy performs
better than the Combined, other than those shown in fig-
ure 5, are: (a) cases with no learning, (b) cases with small
levels of learning (e.g., the point β3 = 0.05, ϑ = 0.01)
and homogenous preferences (υ = 0), or (c) cases where
the economic-growth-elasticity of the cost of energy (φxg in
equation (1)) is equal to zero. At other points, usually with
low switching costs, we observe arbitrarily high variability
in the outcome variable, so that the differences in perfor-
mance have not been able to be detected with the current
number of Monte Carlo simulations.

4. Conclusions

Many governments are exploring policies designed to
encourage potential early adopters to deploy new carbon
emissions-reducing technologies. Such policies range from
tax credits and subsidies on certain classes of technolo-
gies, to early action credits, to the Clean Development
Mechanisms under the Kyoto Protocol. This study sug-
gests that under particular, likely to be met, conditions
such actions can be an important part of a successful cli-
mate change strategy. We find that a Combined strategy
of carbon taxes and technology incentives, as opposed to
carbon taxes alone, is the best approach to greenhouse gas
emissions reductions if society has even modest expecta-
tions that the diffusion of new, emissions-reducing tech-
nology will be important in reducing the future costs of
emissions abatement and that there are broad social bene-
fits to the early adoption of such technologies by a small
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number of early users. In our model, these broad social
benefits arise from two main sources: (a) cost reductions
due to increasing returns to scale, and (b) improvements in
the quantity and quality of the flows of information about
the performance of new technologies that lead economic
agents to better coordinate their choices. If such factors
are important, early adopters generate cost reductions and
public information with social value far beyond that which
can be captured by the early adopters themselves. If the
agent population also has heterogeneous preferences – that
is, some agents are more prone to adopt a new technol-
ogy than others are – and if some of these agents are risk
averse, then technology incentives may provide an impor-
tant complement to carbon taxes. While taxes raise costs
for all agents, those inclined towards the new technologies
as well as those highly disinclined towards them, subsidies
focus on only those most inclined towards early adoption.
This difference is of course the basis for the political pop-
ularity of incentives over taxes. This study suggests that
under certain conditions, incentives can be not only popular,
but cost-effective as well.

We come to these conclusions using two analytic in-
novations, an agent-based model of technology diffusion
and an exploratory modeling approach to decision-making
under conditions of extreme uncertainty. Agent-based mod-
els provide a convenient framework for modeling hetero-
geneity and imperfect information. Using such a model,
we can examine the effects of endogenous technology dif-
fusion, which are often missed in analytic studies of cli-
mate change policy and which are crucial to distinguish
between the Tax-Only and Combined strategies considered
here. While agent-based models are finding wide use in
many studies of social systems, they have to date had lim-
ited impact on policy research because they do not fit easily
into the standard tools of policy analysis. Thus, agent-based
models are most often used to illuminate the evolution of
several possible paths into the future as a means of help-
ing decision-makers build insight about a problem. While
useful, this approach is anecdotal but not systematic. One
never knows what new and perhaps contradictory insights
reside in the cases not considered. Exploratory modeling
provides a fundamentally different alternative to this “flight-
simulator” approach. We let the computer search through a
huge number of plausible scenarios generated by the agent-
based model, looking for those that distinguish one policy
choice from another. We are thus able to place each sce-
nario in context and move from insights to arguments. In
this study, we map out those conditions that favor a Com-
bined emissions-reduction strategy over a Tax-Only strategy
and thus identify the factors that would justify the former
policy. We believe that this approach is a powerful and
widely applicable way to exploit the information contained
in agent-based models.

Nonetheless, the models and data used in this study are
very crude and thus can offer only general recommenda-
tions to decision-makers. Significant steps remain before
our results can be translated into more specific policy rec-

ommendations. For instance, our model of learning due
to random sampling among agents is almost certainly a
poor representation of the actual networks that exist among
economic actors. Thus, while we can relate our model of
increasing returns to data on actual technologies and say
that learning factors similar to those for natural gas tur-
bines justify a Combined strategy, we cannot relate our
model parameters on learning to any real world data. Sim-
ilarly, our model of technology is sufficiently aggregated
so that it is difficult to relate our subsidy to specific rec-
ommendations for spending levels or other questions about
implementation. Thus, while we argue that technology in-
centives are likely to be an important part of any climate
change strategy, we have not answered the question as to
whether the subsidies currently in place and proposed by
governments are the correct type of technology incentive
or whether the monetary amount is sufficient, too much, or
too little. We believe, however, that the methods laid out
in this paper provide a powerful framework for addressing
such questions.

Appendix: agent decision-making

As discussed in section 2, the model of technology dif-
fusion used in this study pays particular attention to the
process by which agents make decisions about the type of
energy producing technology they employ and the amount
of energy they use. This appendix describes in detail how
we model these choices.

A1. Energy consumption

Global emissions of carbon dioxide in our model are de-
termined by the energy intensities, ng,j(t), for each agent,
as seen in equation (3). Each agent chooses to consume the
amount of energy that will minimize its cost for producing
one unit of output, so that its energy intensity depends on
both its choice of energy technology and the (exogenous)
state of conservation technology used in region g. Assum-
ing that agents have a CES production function (as in [36]),
we write

ng,j(t) =
ag,j(t){

[1− Sj(T adopt
i )]Cj(T

adopt
i ) + Tax(t)mj

}ε ,

(A1)
where ε is the elasticity of substitution, and ag(t) is
an energy-efficiency coefficient proportional to the Au-
tonomous Energy Efficient Improvement Index (AEEI)
used in other climate change studies. As defined after equa-
tion (A8) the terms in brackets represent the cost in constant
1997 dollars (inclusive of all taxes and subsidies) of pro-
ducing one unit of energy5 with technology j adopted in
the year T adopt

i .

5 This formulation implies that the prices of output and other inputs re-
main constant.
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A2. Technology choice

As shown in equation (4), the agents choose among en-
ergy technologies in order to maximize their intertemporal
expected utility. The long lifetimes of each technology cre-
ate two distinct decision problems for the agents, depending
on whether or not an agent is currently using a technology.
An agent may not be using a technology because it is a new
agent, or because the lifetime of its previous technology has
expired. In either case, agent i will choose technology j
such that〈
Ui,g,j

(
t,T life

i

)∣∣t〉 > 〈Ui,g,j′
(
t,T life

i

)∣∣t〉, ∀ j 6= j′. (A2)

More commonly, an agent currently using some technol-
ogy must decide whether to switch to another. To solve this
problem, we define 〈Ui,g,j→j′ (t, τ ,T life

i )|t〉 as the expected
utility agent i, at time t, estimates it will derive from using
technology j until time τ , and then using technology j′

until time T life
i . This expectation is given by〈

Ui,g,j→j′
(
t, τ ,T life

i

)∣∣t〉 =
〈
Ui,g,j(t, τ )|t

〉
+ (1 + r)−(τ−t)〈Ui,g,j′

(
τ ,T life

i

)∣∣t〉+ Γi,g,j(τ ), (A3)

where Γi,g,j(τ ) is the cost of abandoning technology j at
time τ before its useful life is expired, and r is the discount
factor. Thus, the present value at time t of the expected
utility of the technology switch j → j′ at time τ is given
by the expected utility of using technology j from time t
to time τ , plus the discounted expected utility of using
technology j′ from τ up to T life

i , plus the switching penalty.
We take T life

i as the planning horizon, since at that time
technology j will need to be replaced.

Thus, agent i using technology j will shift to technol-
ogy j′ if only and only if〈

Ui,g,j′
(
t,T life

i

)∣∣t〉 > 〈Ui,g,j
(
t,T life

i

)∣∣t〉 and〈
Ui,g,j′

(
t,T life

i

)∣∣t〉 > 〈Ui,g,j→j′′
(
t, τ ,T life

i

)∣∣t〉, (A4)

∀ j′′ ∈ J , t < τ < T life
i .

The two conditions in equation (A4) are the profitability
and arbitrage conditions, respectively. The former implies
that an agent will only adopt a new technology j′ if its
expected utility is higher than that of currently employed
technology j. The latter implies that an agent will adopt a
new technology at time t if and only if there is no alternative
technology or switching time that will generate a higher
expected utility. The first term dominates when costs are
rising; the second when they are falling [3,37,38].

In our simulations at each time period we solve numer-
ically this intertemporal problem for every agent on the
basis of its expectations about performance and costs. In
sections A2.1 and A2.2 we will describe how, respectively,
the agents construct these expectations.

A2.1. Learning about technologies

Different mechanism have been implemented to simu-
late learning within socioeconomic systems: genetic algo-

rithms or classifier systems [19,39–42]; least squares learn-
ing [43–45], or Bayesian updating [46–50]. The appropriate
choice is of course dependent on what is being learned. In
our study agents learn about the performance of alternative
technologies. So, we use an information contagion model,
similar to [29] and [46], to describe the flow of information
about the performance of new technologies through a pop-
ulation of potential users. This model assumes that agents
form their expectations about technology performance from
Bayesian updates based on their own past experience (if
any) using the technology, and from the experience of other
agents that have used it. As mentioned previously, our
model differs from Arthur and Lane’s in that we consider
a heterogeneous population of agents, use more than two
technologies, and do not assume that the relative costs are
constant over time.

We begin by defining qi,g,j as the time-independent6

performance agent i will achieve if it uses technology j.
To capture agents’ heterogeneity we assume that perfor-
mances achieved for any technology j are normally distrib-
uted among the agents, so that qi,g,j ∼ N (q̄g,j , νg,j), where
q̄g,j and νg,j are the mean and variance of the distribu-
tion. At any time t, the agents have imperfect information
about the performance of the technologies where µqi,g,j(t)
and νqi,g,j(t) are the mean and variance of agent i’s estimate
of qi,g,j . Each agent improves its estimates by observing its
own and other agents’ previous experience using the tech-
nology. Thus, we assume that agent i’s observation of the
performance of technology j used by agent i′ is given by

Zi,i′ ,j(t) = qi′ ,g′,j + ωq(t), (A5)

where ωq(t) ∼ {qi,g,j − qi′ ,g′,j , ρq[1 + (qi,g,j − qi′ ,g′,j)2]}
is a normally distributed random variable representing the
measurement error. We assume for simplicity that ρq is
the same for all the agents and all the technologies. When
i = i′, equation (A5) reduces to the form used by Arthur
and Lane in their study of information flow across a ho-
mogenous population of agents. We have further assumed
here that in a heterogeneous population of agents with dif-
ferent characteristics, when estimating how another agent’s
experience with a technology would apply to itself, an agent
can observe these characteristics and partially compensate
for them; however the error in the observation increases
proportionally to the square of the difference between the
agents. Based on its observations and its prior expectations,
each agent can estimate the performance it expects from the
technology using a discrete-time Kalman filter [51]

µqi,g,j(t+ 1) = µqi,g,j(t)

+

{
νqi,g,j(t)

R + νqi,g,j(t)

}[
µqi,g,j(t)− Zi,i′ ,j(t)

]
, (A6)

νqi,g,j(t+ 1) =

{
Rνqi,g,j(t)

R+ νqi,g,j(t)

}
,

6 We are thus neglecting the ability of a technology to improve over time.
We capture similar effects, however, through the effects of learning-by-
doing on the price.
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where R = ρq[1 + (qi,g,j − qi′ ,g′,j)2]. Note that the knowl-
edge agents have about technologies they have not used
comes exclusively from observations of other agents’ ex-
perience.

This formalization addresses the problem of how agents
may use the information generated by their own experience
and the experience of other agents to learn about a given
technology. However, it does not say anything about how
much information a given agent demands or, even more
importantly, how he/she finds the providers of such infor-
mation. In this first version of the model we make two
simplifying assumptions. First, we work within a global
interaction framework [52]. Thus every agent has the same
probability to be interviewed by another agent: interactions
are chance driven. This assumption rules out the possibil-
ity that agents create networks that increase the efficiency
of the learning process. These networks are known to be
important determinants of the diffusion process [53], and
have important policy implications since they reduce coor-
dination failures.

Our second assumption is that the number of social in-
teractions (the demand for information) is exogenously de-
termined and is the same for all the agents. In practice the
number of interactions that an agent decides to have would
depend on the value of the additional unit of information
(e.g., by how much it reduces its uncertainty), and its cost.
Indeed, the fact that an agents’ value of information does
not take into account the social value is an important source
of market failure. To compensate for this shortfall in this
study we consider a wide range of interactions thresholds.

As we discuss in section 4, the type of learning process
that we have described may generate externalities which
have important policy implications. First, because late
adopters learn from the experience of early adopters, there
is an externality deriving from the adoption of technology
by early users. Second, expectations may be inaccurate.
When the sample size is small, the potential for initial, ab-
normally bad experiences with a new technology can signif-
icantly delay its subsequent diffusion and therefore increase
abatement costs.

A2.2. Costs dynamics and agents’ forecasts

An important and well-documented characteristic of the
diffusion of new technologies is the decline in costs as
the number of adopters increases [20,53,54]. Hence, we
assume that the actual production cost of each energy tech-
nology drops as the number of users increases according to
the standard logistic expression

Cg,j(t) = Cg,j(0)Nj(t)
−βj , (A7)

where Cg,j(0) is the known first-unit cost, Nj(t) is the cu-
mulative number of units of the technology that have been
adopted by year t, and βj is the unknown learning factor.
A βj greater than zero implies increasing returns to scale
resulting from learning by doing.

Agents’ technology choices are in part based on their ex-
pectations about future costs. These expectations are based
on observations of past costs. More precisely, agents gener-
ate expectations about the learning coefficient and the future
number of users of a given technology through Bayesian
updating. For simplification we have assumed that there is
some common forecast, freely available to all the agents.
This forecast is generated by a discrete Kalman filter [51],
applied to the log linear equivalent of equation (A7).

On the basis of this common forecast agents compute
〈Cg,j(T

adopt
i ,T life

i |t)〉, the expected present value in year t
of the cost of producing one unit of output over the period
T adopt
i to T life

i with technology j. Noting that the cost of
the energy needed to produce one unit of output in some
future year τ is given by the product of ng,j(τ ) and the
annual energy cost, we can use equation (A1) to write the
expectation of this cost as〈
Cg,j

[
Cg,j

(
T adopt
i

)
,T adopt
i ,T life

i

∣∣t]〉
=

〈 T life
i∑

τ=T adopt
i

(1 + r)−(τ−t)

× ag,j(τ )

{[1− Sj(T adopt
i )]Cg,j(T

adopt
i ) + Tax(τ )mj}ε−1

〉
, (A8)

where Cg,j (T
adopt
i ) is the annual cost per unit of energy for

technology j adopted in the year T adopt
i ,Sj(T

adopt
i ) is the

price subsidy available for technology at time of adoption,
and Tax(τ ) is a tax per unit of CO2 at time τ . In this study
we assume each agent has perfect information of all the
terms in equation (A8) but Cg,j(T

adopt
i ).

Notice that in this model increasing returns to scale make
the diffusion process sensitive to the adoption decisions of
the early users. Also, pessimistic initial price expectations
due randomness can delay or abort adoption. The same is
true of optimistic expectations; agents will prefer to wait
until the price drops further before using the new technol-
ogy.
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