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Abstract

This paper considers a class of migration dynamics with forward-
looking agents in a multi-country solvable variant of the core-periphery
model of Krugman (Journal of Political Economy 99 (1991)). We find
that, under a symmetric externality assumption, our static model ad-
mits a potential function, which allows us to identify a stationary state
that is uniquely absorbing and globally accessible under the perfect
foresight dynamics whenever the degree of friction in relocation deci-
sions is sufficiently small. In particular, when trade barriers are low
enough, full agglomeration in the country with the highest barrier is
the unique stable state for small frictions. New aspects in trade and tax
policy that arise due to forward-looking behavior are discussed. Jour-
nal of Economic Literature Classification Numbers: C61, C62, C73,
F12, R12, R23.

Keywords: economic geography; agglomeration; perfect foresight
dynamics; history versus expectations; stability; potential game; equi-
librium selection.
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1 Introduction

Spatial agglomeration of industry is an important feature of international
as well as regional economies. Following the ‘core-periphery model’ due
to Krugman (1991a), the New Economic Geography (NEG) literature has
demonstrated how increasing returns give rise to agglomeration in gen-
eral equilibrium models with monopolistic competition, factor mobility, and
trade costs (Fujita et al. (1999), Baldwin et al. (2003), Fujita and Thisse
(2009)). In most of these models, first, agents are myopic. They are as-
sumed to base their migration decisions only on current utility differences
between locations. Second, migration is modeled as a continuous process. It
is thus implicitly assumed that there is friction in individual location revi-
sions which limits the rate at which the whole economy adjusts. Sometimes
agents are assumed to follow replicator dynamics (e.g., Fujita et al. (1999)),
which originates in evolutionary game theory. Finally, predictions on long-
run spatial distributions of industry are made based on their local stability
under the myopic dynamics. A fundamental conclusion in the literature is
that when barriers to trade are low enough, agglomeration forces due to
scale economies dominate market crowding effects due to trade barriers, so
that core-periphery configurations where all industry is concentrated in a
single location are locally stable, while when trade barriers are high enough,
a fully dispersed configuration is a unique stable state.1 In the former case,
the model cannot select among multiple locally stable states: history (i.e.,
the initial distribution of industry) alone determines the long-run outcome
of the economy.

In the presence of friction in location revisions, however, relocation
should be considered as an investment decision, and agents are naturally
concerned not only with current utilities but also with expected future util-
ities, which depend on future location patterns of the economy. In the
case where agglomeration forces are strong, it is conceivable that expecta-
tions about future location patterns may become self-fulfilling, driving the
economy from a core-periphery configuration to another. In this paper, we
study the role of forward-looking expectations of rational migrants in de-
termining long-run spatial distributions of industry. We employ a solvable
variant of the core-periphery model, due to Martin and Rogers (1995) and
Pflüger (2004), with an extension to finitely many countries that are asym-
metric with respect to their import barriers and market sizes, in which a
continuum of entrepreneurs migrate internationally with their firms. We
embed the model in the context of explicit dynamics and conduct a global
stability analysis by appealing to techniques from the theory of population
games, notably those utilizing a potential function. It is shown that, except

1See Robert-Nicoud (2005) for a thorough analysis on comparative statics of the set of
spatial equilibria with respect to the trade cost parameter in standard two-location NEG
models.
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for degenerate cases, there exists a unique spatial distribution that is both
locally and globally stable under perfect foresight dynamics, whenever the
degree of friction is sufficiently small. When trade barriers are low enough,
one of the core-periphery configurations is such a stable state, for which
we are able to give a complete characterization in terms of key parame-
ters. In particular, if countries are symmetric with respect to market sizes
(trade barriers, resp.), the core-periphery configuration with full agglomer-
ation in the country with the highest barrier (the largest market, resp.) is
the unique stable state for small frictions. This demonstrates that allowing
for forward-looking migration behavior alters results in existing models with
myopic agents, where all the core-periphery configurations are locally stable
under myopic dynamics.

Our dynamic framework follows Matsuyama (1991) and Matsui and
Matsuyama (1995) in formulating frictions in migration decisions.2 Each
entrepreneur, once he chooses to locate his firm at some country, is locked
in that country for a random time interval, so that he cares about the future
location pattern of the economy. Opportunities to revise locations follow
Poisson processes which are independent across individuals. The dynamics
thus exhibits inertia in that the location distribution of entrepreneurs (and
hence of firms) in the economy changes continuously over time. Each individ-
ual forms his belief about the future path of the distribution and, when given
a relocation opportunity, locates in a country that maximizes his expected
discounted utility. A perfect foresight path is defined to be a feasible path
of location distributions along which every revising agent optimizes against
the future location pattern of the society. While the stationary states of
this dynamics are precisely the spatial equilibria of the static model, there
may also exist a perfect foresight path that escapes from a stationary state
when the degree of friction, defined as the discounted average duration of
a lock-in, is sufficiently small. We consider such a state unstable, and thus
employ the following stability concepts: A state x∗ is said to be absorbing
if any perfect foresight path converges to x∗ whenever the initial state is
close enough to x∗; x∗ is said to be globally accessible if for any initial state,
there exists a perfect foresight path converging to x∗. We are interested in
a (unique, by definition) state, if any, that is both absorbing and globally
accessible for sufficiently small degrees of friction.

The key observation for our global analysis of the perfect foresight dy-
namics is that, viewed as a societal game with a continuum of players, our
static model admits a potential function (Monderer and Shapley (1996),
Sandholm (2001)),3 a real-valued function defined on the space of location

2See also Matsuyama (1992a, 1992b), Matsuyama and Takahashi (1998), and
Kaneda (2003). This class of dynamics is extensively studied in game theory since Matsui
and Matsuyama (1995). See, e.g., Hofbauer and Sorger (1999, 2002), Oyama (2002),
Matsui and Oyama (2006), Oyama et al. (2008), and Oyama and Tercieux (2009).

3See also Sandholm (2009) and Ui (2007).
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distributions such that the change in any agent’s utility resulting from a
relocation exactly equals the marginal change in the value of this function.4

We can therefore apply the results on the stability under the perfect foresight
dynamics in potential games due to Hofbauer and Sorger (1999): that there
generically exists a state that is absorbing and globally accessible whenever
the degree of friction is sufficiently small, and such a state is characterized
as a unique global maximizer of the potential function.

Once we have the above results in hand, our task is to characterize the
shape of the potential function. When the trade barriers are low enough, we
show that the potential function is convex and hence attains its global max-
imum at a vertex of the state space, and full agglomeration in the country
with the highest trade barrier or with the largest market is the unique state
that is absorbing and globally accessible for a small friction. This “equilib-
rium selection” result is in sharp contrast with the case of myopic agents,
where all the agglomeration outcomes are locally stable under a broad class
of myopic dynamics. When the trade barriers are high enough, in con-
trast, the potential function is concave and maximized at a unique state in
the interior (a fully dispersed configuration), and any perfect foresight path
converges to this state regardless of the initial state or the degree of friction.
Hence, in this case of high trade barriers, there is no room for history or
expectations to play a role.

We then briefly discuss, for the case of low trade barriers, new aspects
of trade and tax policy that arise when one incorporates forward-looking
migration behavior. First, it is pointed out that, given that a (relatively)
higher import barrier in a country tends to work in favor of agglomeration
in that country, a peripheral country may have an incentive to increase its
import barrier in order to attract firms. This is not possible in standard
models, where a core-periphery configuration once realized is never upset
under myopic dynamics. Second, due to the possibility of self-fulfilling coor-
dinated migration, the amount of ‘agglomeration rents’, which is measured
by the amount of tax that can be imposed on the firms in the core country
without inducing them to move away, is shown to be much smaller under
the perfect foresight dynamics than under myopic dynamics.

Baldwin (2001) and Ottaviano (2001) consider the role of expectations in
models with two symmetric locations under the dynamics due to Krugman
(1991b) and Fukao and Benabou (1993), where migrants can move at any
instant in time, with moving costs which depend on the speed of migration
of the whole society. Baldwin (2001) considers the original core-periphery
model by Krugman (1991a), which is not analytically solvable, and con-
ducts simulation analyses, while Ottaviano (2001) proposes an analytically

4It is worthwhile to note that in general, if there are only two alternatives (locations,
in our context) to choose, then a potential function always exists, provided that utilities
depend only on own choice and the fraction of individuals choosing each alternative. Any
NEG model with two locations that has this property hence admits a potential function.
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solvable version of the core-periphery model and derives several analytical
results. Both conclude, in the case of low trade barriers, that once the
economy agglomerates in a single location, self-fulfilling expectations can-
not alter the outcome even if the moving cost or the discount rate is small.
The equilibrium selection result in the present paper, however, suggests
that their conclusion is not robust to exogenous asymmetries between loca-
tions (clearly, if equilibria are all identical, one cannot discriminate among
them).5 It should be noted that the assumption of symmetric locations has
typically been made in the NEG literature in order to explore pure eco-
nomic mechanisms that may generate asymmetric stable spatial outcomes
without endowing any location with an exogenously given advantage, and
introduction of exogenous asymmetries does not fundamentally affect the
main messages of NEG as long as the stability analysis is based on my-
opic dynamics. In contrast, the model symmetry is no longer innocuous
once one allows for forward-looking behavior. This is not a consequence of
the particular dynamics we employ in this paper. Indeed, the accompanied
paper, Oyama (2009), studies the Krugman-Fukao-Benabou dynamics in a
two-country setting and obtains the same stability result as in the present
paper: that if the potential function has a unique global maximizer, then
it is absorbing and globally accessible also under this class of dynamics for
small frictions.

Different from Oyama (2009) as well as Baldwin (2001) and Ottaviano
(2001), where, with only two countries, the “dimensionality problem”
(Behrens and Thisse (2007)) does not arise in the first place, the present
paper aims at investigating the impact of forward-looking expectations in
a multi -country NEG model. For this purpose, the Poisson formulation of
Matsui-Matsuyama employed here has a substantial advantage in terms of
analytical tractability over the adjustment cost formulation of Krugman-
Fukao-Benabou. As emphasized in Oyama (2009), the Krugman-Fukao-
Benabou dynamics requires delicate mathematical treatments even in the
two-country case, so that extending the formulation to the setting with more
than two countries would be a cumbersome task, whereas it is straightfor-
ward in the Matsui-Matsuyama dynamics. These two classes of dynamics
also differ in their relevance in economic applications. A similar formulation
with explicit adjustment costs had been used by Mussa (1978) in a dynamic
version of a standard international trade model, which in effect reduces to a
single agent investment problem where the adjustment cost depends only on
the agent’s own choice variable, and Krugman (1991b) directly translated it

5If the two locations are completely symmetric, then, in the case of low trade barri-
ers, the potential function is maximized at both vertices of the state space. Any small
asymmetry, such as in trade barriers or market size, breaks the tie, leading to a unique
(global) maximizer of the potential function. Under myopic dynamics, in contrast, local
maximizers of a potential function are locally stable, so that small asymmetry does not
alter the stability properties.
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into a situation with positive externalities under the alternative assumption
that the adjustment cost depends on the other agents’ behavior.6 While the
adjustment cost formulation following Krugman (1991b) appears to be more
popular in NEG (see, e.g., Baldwin et al. (2003)),7 the Poisson formulation
can be found in many other fields where interactions of agents are of im-
portance: our relocation opportunity process is formally equivalent to the
birth-death process in the continuous-time overlapping generations model
of Yaari (1965) and Blanchard (1985) (see Matsuyama (1991, 1992a)), and
can also be viewed as (exogenous) entry-exit of firms which is often modeled
with a Poisson process in studies of industry dynamics (e.g., Melitz (2003),
Miao (2005)); equilibrium search models typically introduce frictions by as-
suming that trading opportunities arrive according to a Poisson process (e.g.,
Diamond and Fudenberg (1989), Kiyotaki and Wright (1991)).8 A difference
between the two formulations also lies in the policy implications they may
yield when explicit dynamic policy schemes are concerned, as pointed out
by Kaneda (2003) in the context of infant industry protection; this issue will
be discussed in Section 5.

Methods that utilize potential functions are found in a diverse range
of applications, including population genetics (Fisher (1930), Hofbauer
and Sigmund (1998)), network traffic (Beckmann et al. (1956), Rosenthal
(1973)), Cournot oligopoly (Slade (1994), Monderer and Shapley (1996)),
environmental economics (Mäler et al. (2003)), and mechanism design and
implementation (Sandholm (2002, 2007), Jehiel et al. (2008)). Global max-
imizers of potential functions are known to have nice properties such as the
stochastic stability under stochastic evolutionary dynamics with logit choice
(Blume (1993)) and the robustness to incomplete information (Ui (2001)),
in addition to the stability under perfect foresight dynamics. The present
paper adds economic geography to the list of applications where potential
methods are of significant use.

The paper is organized as follows. Section 2 describes our static and
dynamic setups. Section 3 defines and constructs a potential function for
the induced static societal game and states the stability properties under
the perfect foresight dynamics. Section 4 characterizes the stable spatial
equilibrium for low and high levels of trade barriers. Section 5 discusses
trade and tax policy issues. Section 6 concludes.

6This assumption makes that model fundamentally different from Mussa’s (1978), and
is in fact the source of the error in Krugman (1991b) corrected by Fukao and Benabou
(1993). See Oyama (2009) for the technical complications that result from this assumption.

7Mossay (2006) considers forward-looking rational agents in an adjustment cost model
with a continuum of locations on a circle, but where, like in Mussa (1978) and unlike in
Krugman (1991b), the adjustment cost each migrant incurs depends only on his own
migration speed.

8An analogous assumption is also seen in the sticky price literature following
Calvo (1983), where opportunities for firms to revise their prices arrive according to inde-
pendent Poisson processes.
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2 Framework

We denote by Rn the n-dimensional real space with a norm | · |, by ∆
the (n − 1)-dimensional simplex (which is a convex and compact subset
of Rn), and by ei (i = 1, . . . , n) the ith vertex of ∆ (i.e., the ith unit
vector in Rn). By int(∆) and ∂(∆) we denote the relative interior and the
relative boundary of ∆, respectively. For x ∈ ∆ and ε > 0, we denote
Bε(x) = {y ∈ ∆ | |y− x| < ε}. We regard elements of Rn as column vectors
and let x′ denote the transpose of a vector x ∈ Rn.

2.1 Environment

We consider an infinite horizon economy which consists of n ≥ 2 countries,
1, . . . , n, inhabited by a continuum of infinitely lived individuals. Time is
continuous, and periods are indexed by t ∈ [0,∞). There are two factors
of production, skilled and unskilled labor, and two sectors, which produce
a differentiated (‘modern’) good and a homogeneous (‘traditional’) good,9

respectively, where goods are assumed not to be durable intertemporarily.
There are mass H + L of individuals, H skilled workers and L unskilled
workers, each of whom is endowed at each time t with one unit of skilled or
unskilled labor, respectively, as well as Ā units of traditional good. Skilled
workers are considered as self-employed entrepreneurs. They are mobile
between countries, and their spatial distribution is endogenously determined.
We normalize the total mass of entrepreneurs to be one, i.e., H ≡ 1, and
denote by xi the mass of entrepreneurs located in country i (= 1, . . . , n), so
that x = (x1, . . . , xn) ∈ ∆. The initial distribution x0 ∈ ∆ is exogenously
given. Unskilled labor is immobile internationally, and each country i hosts
the exogenously fixed mass Li of unskilled workers, where L = L1 + · · ·+Ln.

Preferences over the modern and the traditional goods are identical
across individuals. As in Martin and Rogers (1995) and Pflüger (2004), the
instantaneous utility of an individual in country i is given by a logarithmic
quasi-linear utility function:

U(Mi, Ai) = µ log Mi + Ai, (2.1)

where µ > 0, and Mi (Ai, resp.) is the consumption of the modern (tradi-
tional, resp.) good. The modern good is a CES aggregate of varieties:

Mi =

 n∑
j=1

∫ Nj

0
dji(z)

σ−1
σ dz

 σ
σ−1

, (2.2)

9Our focus will be on the locational distribution of production of the differentiated
good. We incorporate the homogeneous good, which will be chosen as the numeraire, in
order to ease the analysis. In particular, together with the assumption of zero trade costs
in the homogeneous good, it will guarantee equalization of the wage for unskilled labor
among countries.
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where dji(z) is the consumption in country i of a variety z produced in coun-
try j, Nj is the mass of varieties produced in country j, and σ > 1 is the elas-
ticity of substitution between any two varieties (Dixit and Stiglitz (1977)).
Here, it is assumed that the varieties in each country j are ordered so that
they are indexed by [0, Nj ]. Individuals discount future utility flows expo-
nentially with a common rate of time preference θ > 0.

Firms in the modern sector are monopolistically competitive and employ
both skilled and unskilled labor. Entry and exit are free and instantaneous.
Each variety z in the economy is produced by a single firm, where its pro-
duction exhibits increasing returns to scale. As in Ottaviano (2001) and
Forslid and Ottaviano (2003), technology is given by

FM(hi(z), `i(z)) =

0 if hi(z) < 1
`i(z)

c
if hi(z) ≥ 1,

where c > 0, and hi(z) (`i(z), resp.) is the amount of skilled (unskilled,
resp.) labor input. That is, in order to produce Qi(z) units of variety z,
the firm incurs a fixed input requirement of one unit of skilled labor (i.e., an
entrepreneur) and a variable input requirement of cQi(z) units of unskilled
labor. Note that an entrepreneur and a manufacturing firm thus correspond
one to one. The traditional sector is perfectly competitive and employs
unskilled labor as the only input under constant returns. Technology is
given, without loss of generality, by

FA(`i) = `i,

where `i is the amount of unskilled labor input. The skilled and the unskilled
labor markets are perfectly competitive.

Goods differ in terms of their spatial mobility. While trade in the tra-
ditional good is free, it is costly in the modern good due to trade barriers,
which are modeled as iceberg costs. For one unit of a variety to reach country
i from country j 6= i, τji > 1 units must be shipped. We denote

φji = τ1−σ
ji ∈ (0, 1).

While entrepreneurs are mobile between any two countries, they cannot
move at every point in time. As in Matsuyama (1991) and Matsui and
Matsuyama (1995), there are frictions in migration decisions. Once an en-
trepreneur chooses to locate himself and set up a firm in one country, he
must commit to the choice for a random time interval, due to a large migra-
tion cost. Opportunities to migrate follow a Poisson process with parameter
λ > 0.10 It is assumed that these processes are independent across indi-
viduals and there is no aggregate uncertainty. Thus, during a short time

10Here we follow the formulation of Matsui and Matsuyama (1995). But this is
mathematically equivalent to a continuous-time OLG model à la Blanchard (1985)
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interval [t, t + dt), a fraction λ · dt of entrepreneurs are entitled to migrate.
We will view the discounted average duration of a commitment, δ = θ/λ, as
the degree of friction in migration decision. Alternatively, the inverse of the
degree of friction, 1/δ = λ/θ, which is the expected frequency of the con-
scious decision made by an entrepreneur per unit of psychological time, may
be interpreted as entrepreneurial alertness, or simply as entrepreneurship
(Matsuyama (1992b)).

Finally, we impose the following set of conditions in order to simplify
the subsequent analyses.

Assumption 2.1. (1) Ā ≥ µ.
(2) µ < σLi/(σ − 1)

(∑
j Lj + 1

)
for all i = 1, . . . , n.

(3) σ/(σ − 1) ≤ Li for all i = 1, . . . , n.

Assumption (1) guarantees interior solutions for the utility maximization
problem in Subsection 2.2, while (2) is the ‘non-full-specialization condition’,
which guarantees the traditional sector to be always active in all countries
(cf. Pflüger (2004, Footnote 8)) and will be used in Subsection 2.2. The
condition in (3) is a sufficient condition under which dispersion becomes
a unique outcome in the limit as the freeness of trade goes to zero for all
countries, which will be used in Subsection 4.2. We note that this condition
is stronger than necessary. In the case of two countries (i.e., when n = 2),
the necessary and sufficient condition, which is called the ‘no-black hole
condition’ in the literature, is that σ/(σ − 1) ≤ L1 + L2 (cf. Pflüger (2004,
Footnote 9)).

2.2 Instantaneous Market Equilibrium

In this subsection, we solve the static model fixing a distribution of en-
trepreneurs (and hence firms) x ∈ ∆ as given, to obtain the instantaneous
market equilibrium. Here, following the standard approach in the NEG
literature, we rule out any form of intertemporal trade.

We choose the traditional good as the numeraire. Denote by pji(z) the
price of variety z produced in country j and sold in i and by ri (wL

i , resp.)
the wage of entrepreneurs (unskilled workers, resp.) in i.

An individual in i maximizes U(Mi, Ai) subject to

n∑
k=1

∫ Nk

0
pki(z)dki(z)dz + Ai = yi + Ā,

with irreversibility in migration decisions. That is, one could instead assume as in
Matsuyama (1991) that there is a continuum of overlapping agents where each agent
is replaced by his successor according to a Poisson process with parameter λ > 0, and
each is entitled to choose a country to locate only upon entry to the economy and then
stuck in the country for the rest of his life.
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where yi equals ri (if he is an entrepreneur) or wL
i (if he is a worker). This

yields the demand functions:

dki(z) = µpki(z)−σP σ−1
i , Mi = µP−1

i , Ai = yi + Ā− µ,

where Pi is the price index in country i:

Pi =

[
n∑

k=1

∫ Nk

0
pki(z)1−σdz

] 1
1−σ

.

Since unskilled labor markets are perfectly competitive and technology
in the traditional sector exhibits constant returns to scale with unit input
coefficient equal to one, we have wL

i = 1 for all i due to our choice of nu-
meraire. Wage equalization holds as long as the traditional good is produced
in all countries, which is guaranteed by Assumption 2.1(2).

Skilled labor market clearing implies Ni = xi, so that the number of
manufacturing firms (and hence of varieties) in country i is equal to the
number of entrepreneurs living in i. The total cost of a typical firm located
in country i producing variety z (denoted (i, z)) is given by ri + cQi(z),
where Qi(z) is the total output of this firm. Firm (i, z) maximizes profit:

Πi(z) = pii(z)Dii(z) +
∑
k 6=i

pik(z)Dik(z)

− c

Dii(z) +
∑
k 6=i

τikDik(z)

− ri,

where Dik(z) = (xk + Lk)dik(z) is the total demand by the residents in
location k for the variety produced by firm (i, z). Profit maximization prices
are constant markups on marginal costs:

pii(z) =
σ

σ − 1
c, pik(z) =

τikσ

σ − 1
c

for all i and k 6= i. Thus the price index in country i is given by

Pi(x) =
σc

σ − 1

Ni +
∑
k 6=i

φkiNk

 1
1−σ

=
σc

σ − 1

xi +
∑
k 6=i

φkixk

 1
1−σ

,

where φki = τ1−σ
ki ∈ (0, 1). In matrix notation, Pi(x) is written as

Pi(x) =
σc

σ − 1
[
(x′Φ)i

] 1
1−σ , (2.3)

where the matrix Φ ∈ Rn×n is given by

Φ =


φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n
...

...
. . .

...
φn1 φn2 · · · φnn


9



with φii = τ1−σ
ii = 1. We note that (x′Φ)i = xi +

∑
k 6=i φkixk may be viewed

as the effective total mass of firms in country i where the mass of country-k
firms, xk, is “discounted” by φki. The individual demands are thus given by

dki(z) = µ

(
σc

σ − 1

)−1

τ−σ
ki

[
(x′Φ)i

]−1

for all i, k and z.
Under free entry and exit, and hence zero profit, Πi(z) = 0, the reward

for an entrepreneur in country i, ri, is given by his firm’s gross profit:

ri = (p∗ − cwL)Qi(z) =
1
σ

p∗Qi(z),

where p∗ = cσ/(σ − 1) is the mill price, wL = 1 is the wage for unskilled
workers, and Qi(z) is the total production of the firm (i, z). Market clearing
for the variety z implies

Qi(z) = Dii(z) +
∑
k 6=i

τikDik(z)

=
(

σc

σ − 1

)−1 µ(xi + Li)
xi +

∑
k 6=i φkixk

+
∑
k 6=i

(
σc

σ − 1

)−1

φik
µ(xk + Lk)

xk +
∑

` 6=k φ`kx`

for all i and z. Hence, the equilibrium reward for a country-i agent is
computed as

ri(x) =
1
σ

 µ(xi + Li)
xi +

∑
k 6=i φkixk

+
∑
k 6=i

φik
µ(xk + Lk)

xk +
∑

` 6=k φ`kx`

 , (2.4)

or, in matrix notation,

r(x) =
µ

σ
Φ

[
diag(x′Φ)

]−1
m(x), (2.5)

where diag(x′Φ) ∈ Rn×n is the diagonal matrix generated by the vector x′Φ,
and

m(x) = (x1 + L1, . . . , xn + Ln)′ ∈ Rn.

The expression (2.4) can be given a straightforward interpretation. The first
term in the brackets is the revenue that the firm obtains from the home coun-
try i, while the other is the sum of those from the foreign countries, which
are “discounted” by φik’s. In each country k, firms compete for the total
expenditure on the manufacturing good spent by the residents in k, which
always equals µmk(x) = µ(xk + Lk) due to our assumption of logarithmic
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quasi-linear preference, and each domestic firm receives 1/(x′Φ)k of the total
expenditure, while each country-i firm receives φik/(x′Φ)k. Finally, markup
pricing implies that each firm’s revenue is divided by the entrepreneur and
the workers according to the shares (p∗− cwL)/p∗ and cwL/p∗, respectively,
so that the entrepreneur receives 1/σ of the revenue.

We now have the instantaneous indirect utility of an entrepreneur located
in country i, ui(x), as a function of x ∈ ∆:

ui(x) = µ log(µP−1
i (x)) + ri(x) + Ā− µ

=
µ

σ − 1
log(x′Φ)i +

µ

σ

[
Φ

[
diag(x′Φ)

]−1
m(x)

]
i
+ C, (2.6)

where

C = µ log µ

(
σc

σ − 1

)−1

+ Ā− µ.

2.3 Societal Game

The profile u = (ui)n
i=1 of C1 functions ui : ∆ → R given by (2.6) defines a

societal game, a special case of nonatomic game (Schmeidler (1973)) in which
a continuum of players choose among actions 1, . . . , n, and the payoffs are
determined solely by the action distribution x (rather than action profile) as
well as one’s own action. A distribution x∗ ∈ ∆ is said to be an equilibrium
state of u if x∗i > 0 ⇒ ui(x∗) ≥ uj(x∗) for all j; x∗ is said to be a strict
equilibrium state of u if x∗i > 0 ⇒ ui(x∗) > uj(x∗) for all j 6= i. Note that x∗

is an equilibrium state if and only if ui(x∗) = uj(x∗) for all i, j ∈ supp(x∗)
and ui(x∗) ≥ uj(x∗) for all i ∈ supp(x∗) and j /∈ supp(x∗). Due to the
finiteness of actions and the continuity of ui’s, it is a standard exercise to
verify the existence of equilibrium state. The proof is formally identical
to that of the existence of Nash equilibrium of finite normal form games
(Nash (1950)). The best response correspondence of u, B : ∆ → ∆, is
defined by

B(x) = {α ∈ ∆ | αi > 0 ⇒ ui(x) ≥ uj(x) for all j = 1, . . . , n}, (2.7)

where B(x) is the convex hull of arg maxi ui(x) in ∆ (which is obviously
nonempty). Since ui’s are continuous, B has a closed graph. It therefore
follows from Kakutani’s fixed point theorem that B has a fixed point x∗ ∈
B(x∗), which is an equilibrium state of u.

In the rest of this subsection, we make some (coarse) observations about
the relationship between the equilibrium states of the societal game u defined
by (2.6) and the parameter values regarding trade openness, φij , and market
size, Li. We confirm that, as in standard NEG models with symmetric two
locations, our model exhibits the general feature that if trade costs are
sufficiently small, then agglomeration forces due to scale economies become
dominate so that core-periphery states are strict equilibrium states, while if
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trade costs are sufficiently small, then dispersion forces due market crowding
become dominant so that a dispersion state is a unique equilibrium state.
More precisely, we show that if φij ’s are close to one, then the core-periphery
states are all strict equilibrium states provided that φij ’s and Li’s are not too
diverse, while if φij ’s are close to zero, then there exists a unique equilibrium
state, which is a fully dispersed state.

First, for the core-periphery state ei where all firms are located in country
i, the utilities are given by

ui(ei) =
µ

σ
(1 + L) + C,

and

uj(ei) =
µ

σ − 1
log φij +

µ

σ

φji(1 + Li) +
1

φij
Lj +

∑
k 6=i,j

φjk

φik
Lk

 + C

for j 6= i. Now let φ̂ = maxi,j{Lj/(Li + 1)}1/2, and assume that the market
sizes are not so different from each other that φ̂ < 1. Then, fix φ ∈ (φ̂, 1).
Since 1 + Li + Lj > φ(1 + Li) + Lj/φ, if φij ’s are in a neighborhood of φ,
then for all i = 1, . . . , n, ui(ei) > uj(ei) for all j 6= i, that is, ei is a strict
equilibrium state. It is well known that any strict equilibrium state is locally
stable under standard myopic evolutionary dynamics such as best response
dynamics and replicator dynamics.

Second, consider the limit as all φij ’s, i 6= j, go to zero. The utilities in
this limit are given by

ui(x) =
µ

σ − 1
log xi +

µ

σ

xi + Li

xi
+ C.

Under the Assumption 2.1(3) that σ/(σ−1) ≤ Li, ui(x) is strictly decreasing
in xi (and independent of xj , j 6= i), so that we have

(y − x)′(u(y)− u(x)) < 0 (2.8)

for all x, y ∈ int(∆), x 6= y. Hence, the limit game as φij → 0 is what is called
a ‘strictly stable game’ by Hofbauer and Sandholm (2009), and thus has a
unique equilibrium state, which clearly lies in int(∆). If φij ’s are positive
but sufficiently close to zero, then the game u continues to be a strictly
stable game satisfying the inequality (2.8), and its unique equilibrium lies
in int(∆) (i.e., it is a fully dispersed equilibrium). Note that, as shown by
Hofbauer and Sandholm (2009), the unique equilibrium of a strictly stable
game is locally stable under various classes of myopic evolutionary dynamics
including best response dynamics and replicator dynamics.
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2.4 Equilibrium Migration Dynamics

A path of the distribution of entrepreneurs is described by a function
x : [0,∞) → ∆, where x(t) = (x1(t), . . . , xn(t))′ is the distribution at time
t, with xi(t) denoting the fraction of the entrepreneurs in country i. The
assumption of Poisson migration opportunities motivates the following fea-
sibility concept, where λ is the Poisson parameter.

Definition 2.1. A path x : [0,∞) → ∆ is said to be feasible if it is Lipschitz
continuous, and for almost all t ≥ 0 there exists α(t) ∈ ∆ such that

ẋ(t) = λ
(
α(t)− x(t)

)
. (2.9)

In Equation (2.9), α(t) = (α1(t), . . . , αn(t))′ ∈ ∆ denotes the distribution
of the entrepreneurs who have an opportunity to migrate during the short
time interval [t, t+dt), so that αi(t)×λdt is the mass of revising entrepreneurs
who choose to locate in region i during this time interval. In terms of
the geometry on the state space ∆, along a feasible path x(·) the current
distribution x(t) ∈ ∆ always moves towards the distribution α(t) ∈ ∆.
Formally, a feasible path x(·) satisfies that ẋi(t) ≥ 0 whenever xi(t) = 0,
and

∑n
i=1 ẋi(t) = 0 (and thus x(·) does not leave ∆).

An entrepreneur forms a belief about the future evolution of the dis-
tribution and, if given the opportunity to switch locations, migrates to a
country that maximizes his expected discounted indirect utility flows. Since
the duration of the commitment has an exponential distribution with mean
1/λ, the expected discounted utility of committing to country i at time t
with a given anticipated feasible path x(·) is represented by

Vi(t) = (λ + θ)
∫ ∞

0

∫ t+s

t
e−θ(z−t)ui(x(z)) dz λe−λsds

= (λ + θ)
∫ ∞

t
e−(λ+θ)(s−t)ui(x(s)) ds, (2.10)

where θ > 0 is the common rate of time preference. Note that this value
is normalized by the factor λ + θ, which is viewed as the effective discount
rate, and that if x(·) is the constant path at x0 ∈ ∆ (i.e., x(t) = x0 for all
t ≥ 0), then we have Vi(t) = ui(x0) for all i = 1, . . . , n and all t ≥ 0.

A perfect foresight path is an equilibrium path of the dynamic model,
i.e., a feasible path along which each revising agent optimizes against the
future course of migration behavior in the economy.

Definition 2.2. A feasible path x(·) is said to be a perfect foresight path if
for all i = 1, . . . , n, and almost all t ≥ 0,

ẋi(t) > −λxi(t) ⇒ Vi(t) ≥ Vj(t) for all j = 1, . . . , n. (2.11)
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Note that ẋi(t) > −λxi(t) (i.e., αi(t) > 0 in (2.9)) implies that some
positive fraction of entrepreneurs choose to locate in country i during short
time interval [t, t + dt). The definition says that such a decision must be an
optimal choice against the path x(·) itself.

The continuity of ui’s guarantees the existence of a perfect foresight path.

Observation 2.1. For each initial distribution, there exists a perfect fore-
sight path.

Proof. See Oyama et al. (2008, Subsection 2.3).

It is immediate to see that the stationary states of the perfect foresight
dynamics are precisely the equilibrium states of the societal game.

Observation 2.2. The feasible path x̄(·) such that x̄(t) = x∗ for all t ≥ 0
is a perfect foresight path if and only if x∗ is an equilibrium state.

There may exist, however, another perfect foresight path from an equi-
librium state x∗ which departs x∗ and converges to another equilibrium
state. As we will see, when the degree of friction δ = θ/λ > 0 is sufficiently
small, this may happen even from a strict equilibrium state. We employ the
following stability concepts due to Matsui and Matsuyama (1995).

Definition 2.3. (a) x∗ ∈ ∆ is absorbing if there exists ε > 0 such that any
perfect foresight path from any x ∈ Bε(x∗) converges to x∗. x∗ is fragile if
it is not absorbing.

(b) x∗ ∈ ∆ is accessible from x ∈ ∆ if there exists a perfect foresight
path from x that converges to x∗. x∗ is globally accessible if x∗ is accessible
from any x.

By definition, if an absorbing state is also globally accessible, then it is a
unique absorbing state and any other state is fragile. If x∗ is absorbing, then
history matters in the following sense: if history picks the initial condition
in a neighborhood of x∗, then any form of self-fulfilling expectations cannot
alter the outcome and the economy necessarily converges to x∗. Conversely,
if self-fulfilling expectations can drive the economy away from x∗, then x∗ is
fragile. If x∗ is globally accessible, then expectations matter in the following
sense: whatever initial condition history picks, there exists some form of self-
fulfilling expectations that leads the economy to x∗. It is straightforward to
verify that if the degree of friction is large enough, then any strict equilibrium
state, if any, is absorbing, so that self-fulfilling expectations play no role. We
are interested in a state that is uniquely absorbing and globally accessible
for sufficiently small degrees of friction.
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3 Potential and Stability

3.1 The Symmetric Externality Assumption

Since we work with an n-country setting where the state space ∆ has dimen-
sion n − 1, stability analysis becomes nontrivial when n ≥ 3. This is true
even for myopic evolutionary dynamics: for example, it is well known that
even a unique equilibrium may fail to be locally stable even with linear pay-
off functions when there are more than two alternatives (see, e.g., Hofbauer
and Sigmund (1998)).11,12 Difficulties are naturally accelerated here as we
allow for forward-looking behavior. Accordingly, from now on we restrict
our attention to the situations in which the following assumption on trade
costs τji, which we call Symmetric Externality, holds (obviously it imposes
no restriction when n = 2).13

Assumption 3.1 (Symmetric Externality). Trade costs depend only on the
destination country: τji = τi for all j 6= i.

This assumption covers the following cases:

• two countries with asymmetric trade costs (as in Forslid and Ottaviano
(2003, Section 4)14);

• n ≥ 3 countries with symmetric trade costs (as in Tabuchi et al.
(2005));

• n ≥ 3 countries where trade costs arise from import barriers of the
destination country and different countries may have different levels
of barriers.

Formally, the first two cases are special cases of the third. We refer to τi

as the trade barrier of country i and to φi = τ1−σ
i as the trade openness of

country i.
Our assumption captures two of the four aspects of trade costs described

by Spulber (2007) as the “four Ts”: Transaction costs that result from doing
11The stability property of a unique equilibrium state may also be different under

different evolutionary dynamics depending on their fine details; see, e.g., Hofbauer and
Sandholm (2009).

12In the NEG literature, the “dimensionality problem” has been left largely untouched
(Behrens and Thisse (2007)). Among the few theoretical papers that allow for many
locations, Tabuchi et al. (2005) assume that trade costs are the same regardless of the
origin and destination, while Behrens et al. (2007) deal with a matrix of trade freeness
(under the symmetry assumption that φij = φji) but in a ‘footloose capital’ model where
no self-reinforcing agglomeration force is present and thus an equilibrium is always unique.

13It is interesting to note that an analogous assumption is introduced by Hofbauer
(1985) in a selection-mutation model in population genetics: that mutation rates depend
only on the target gene and are independent of the original gene. Hofbauer (1985) shows
that under this assumption, his model admits a potential function.

14See also Leite et al. (2009).
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business at a distance due to differences in customs, business practices, as
well as political and legal climates; and Tariff and non-tariff costs such as
different anti-pollution standards, anti-dumping practices, and the massive
regulations that still restrict trade and investment. It is reasonable that
transaction and tariff costs are predominantly destination-specific. These
are most relevant when policy issues such as trade protection and taxation
are concerned, and possible impacts of forward-looking behavior on policy
implications will be discussed in Section 5. On the other hand, we are to
neglect asymmetries in the other two Ts, Transportation costs and Time
costs, which inherently depend on both origin and destination. Our as-
sumption, although admittedly restrictive, will enable us to obtain clear-cut
analytical results, thereby providing a first step towards the understanding
of forward-looking expectations and spatial agglomeration in general multi-
location situations.

To see why we refer to this assumption as the Symmetric External-
ity Assumption, recall from Equation (2.6) that the instantaneous util-
ities depend on the state x through the terms x′Φ and m(x), where
(x′Φ)i = xi +

∑
k 6=i φkixk, as noted already, is viewed as the effective to-

tal mass of firms in i, while mi(x) = xi + Li is the total mass of con-
sumers in i. Let the effective mass of firms be written as a function Ξi of
x−i = (x1, . . . , xi−1, xi+1, . . . , xn)′:

Ξi(x−i) = 1−
∑
k 6=i

(1− φki)xk.

Consider now a marginal inflow of firms to country j 6= i from other coun-
tries. Its impact on the effective mass of firms in i (hence “externality”) is
represented by ∂Ξi/∂xj . Assumption 3.1 implies that, for all x−i,

∂Ξi

∂xj
(x−i) =

∂Ξi

∂xk
(x−i)

for all j, k 6= i (hence “symmetric”). (The analogous property obviously
holds for mi.)

Under Assumption 3.1, for each country i, the price index and the reward
for entrepreneurs can be written as

Pi(x) =
σc

σ − 1
{xi + φi(1− xi)}

1
1−σ

and

ri(x) =
1
σ

 α(xi + Li)
xi + φi(1− xi)

+
∑
k 6=i

φk
α(xk + Lk)

xk + φk(1− xk)

 ,

respectively, so that the instantaneous utility function ui is now expressed
as

ui(x) = Si(xi) + R(x), (3.1)
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where functions Si : [0, 1] → R and R : ∆ → R are given by

Si(xi) =
α

σ − 1
log ((1− φi)xi + φi) +

α

σ

(1− φi)(xi + Li)
(1− φi)xi + φi

, (3.2)

R(x) =
n∑

k=1

α

σ

φk(xk + Lk)
(1− φk)xk + φk

+ C. (3.3)

3.2 Large Population Potential Games

A potential function of the societal game u will be defined on

∆̄ = {x ∈ R+ | 1− η ≤
∑n

i=1 xi ≤ 1 + η} ,

where η is a positive constant. While a location distribution of entrepreneurs
is always described by a point in ∆, we consider this expanded set ∆̄ only
for the partial derivatives of the potential function to be well defined; it is
otherwise innocuous.

Definition 3.1. A function v : ∆̄ → R is said to be a potential function of
u if it is differentiable, and for all i, j = 1, . . . , n,

∂v

∂xi
(x)− ∂v

∂xj
(x) = ui(x)− uj(x) (3.4)

for all x ∈ ∆. u is said to be a potential game if it admits a potential
function.

This is a natural extension of Monderer and Shapley’s (1996) con-
cept of potential to societal games with a continuum of players (see also
Sandholm (2001, 2009) and Ui (2007)). To understand the definition, sup-
pose that ui(x) − uj(x) > 0, and thus an entrepreneur located in coun-
try j prefers to migrate to i. If u admits a potential function v, then
(∂v/∂(ei − ej))(x) = (∂v/∂xi)(x)− (∂v/∂xj)(x) > 0, so that the relocation
from j to i by an infinitesimal individual leads to a marginal increase in the
common function v. See Appendix A for characterizations of a potential
game.

Observe that the set of states that satisfy the Kuhn-Tucker first-order
conditions for the maximization problem,

maximize v(x)
subject to x ∈ ∆,

coincides with the set of equilibrium states of potential game u.15 In partic-
ular, local maximizers of the potential function v are equilibrium states, but

15Formally, this is reminiscent of Negishi’s (1960) characterization of competitive equi-
libria of general equilibrium models without externalities in terms of solutions to social
welfare maximizing problems. Note, however, that in the presence of externalities, poten-
tial functions generally do not allow any such normative interpretation.
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not vice versa unless v is single peaked having no saddle point on ∆. As is
well known, a potential function works as a Lyapunov function for various
classes of myopic evolutionary dynamics, such as replicator dynamics and
best response dynamics, and therefore its local potential maximizers are all
locally stable under those dynamics; see Appendix B. Under the perfect
foresight dynamics, in contrast, we will see in Subsection 3.3 that, generi-
cally, a global potential maximizer is the unique state that is absorbing and
globally accessible for any small degree of friction.

The key observation of our analysis is that under Assumption 3.1, the
societal game defined by (3.1) admits a potential function.

Proposition 3.1. Let u be given by (3.1). Then, u admits a potential
function v defined by

v(x) =
µ

σ

n∑
i=1

[
1

σ − 1
1

1− φi
{(1− φi)xi + φi}+ xi + Li

]
× log ((1− φi)xi + φi) . (3.5)

This function is obtained by

v(x) =
n∑

i=1

∫ xi

0
Si(x′i) dx′i + D

with some constant D, where Si is defined in (3.2). We thus have

∂v

∂xi
(x)− ∂v

∂xj
(x) = Si(xi)− Sj(xj) = ui(x)− uj(x)

for all i, j.

3.3 Global Accessibility and Absorption

Hofbauer and Sorger (1999) show for games with linear payoff functions
that a unique potential maximizer is globally accessible for sufficiently small
degrees of friction δ = θ/λ, and is always absorbing independently of the
degree of friction δ. As shown in Appendix C, their results hold also in our
framework with nonlinear payoff functions.

Theorem 3.2. Suppose that u is given by (3.1). Assume that x∗ is the
unique global maximizer of the potential function v given by (3.5) over ∆.
Then,

(1) there exists δ̄ > 0 such that x∗ is globally accessible for all δ ∈ (0, δ̄],
(2) x∗ is absorbing for all δ > 0.

Proof. See Appendix C.
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In particular, the potential maximizer x∗ is a unique state that is ab-
sorbing and globally accessible whenever the friction δ is sufficiently small.

The general idea of potential function methods is to reduce the anal-
ysis of equilibria themselves, which are fixed points of a certain func-
tion/correspondence, to that of solutions to a single optimization problem
that involves the potential function, which in many cases are much easier to
manipulate than fixed points. Here we consider, for a given initial condition
x0 ∈ ∆, the following maximization problem:

maximize J(x(·)) = (λ + θ)
∫ ∞

0
e−θtv(x(t)) dt (3.6a)

subject to ẋ(t) ∈ λ
(
α(t)− x(t)

)
, α(t) ∈ ∆, x(0) = x0. (3.6b)

It is shown that any solution to this problem is a perfect foresight path
(Lemma C.3), and it must visit neighborhoods of the potential maximizer
x∗ when δ = θ/λ is sufficiently small (Lemma C.4). In light of the former
result, the functional J can be seen as the dynamic extension of the static
potential function v. The latter is analogous to the so-called “visit lemma” in
turnpike theory (see, e.g., Scheinkman (1976)) and is understood as follows.
When δ is small, the far future values of v(x(·)) are important (when θ is
small) and/or the adjustment of x(·) is very fast (when λ is large). In any
case, the values of v(x(t)) for small t do not have much impact on the value
of J . Therefore, for any small neighborhood of the maximizer x∗ of v, if x(·)
does not visit this neighborhood, then we have J(x(·)) < J(y(·)) for some
feasible path y(·) that converges to x∗, and hence x(·) does not maximize
J , provided that δ is sufficiently small. These lemmata together with the
absorption result prove the global accessibility of x∗.

To prove the absorption of x∗, we consider the function H∗ : ∆̄×Rn → R
given by

H∗(x, V ) = (λ + θ)v(x) + λ
(
V̄ − V ′x

)
,

which is the maximized Hamiltonian of the optimization problem (3.6),
where V̄ = maxi Vi. It is shown that H∗ can be used as a Lyapunov func-
tion. Note that because of forward-looking expectations, the static poten-
tial function v does not suffice by itself, and thus we need to incorporate
future utilities through V . First, if x(·) is a perfect foresight path and V (·)
is given by (2.10), then we have (d/dt)H∗(x(t), V (t)) ≥ 0, and therefore
H∗(x(t), V (t)) is nondecreasing in t (Lemma C.6). Second, if x̂ is an accu-
mulation point of x(·), then it must hold that v(x̂) ≥ v(x(0)) and that x̂ is
a critical point of v (Lemma C.7). Hence, if we take a neighborhood of the
potential maximizer x∗ such that v(x) > v(x̂) for all x in the neighborhood
and for all other critical point x̂ 6= x∗, then any perfect foresight path from
this neighborhood converges to x∗, which completes the proof.
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4 Agglomeration and Dispersion

Once we have the stability results in the previous section in hand, our task
is to characterize the shape of the potential function v for various values
of trade barriers τi, or equivalently, of trade openness φi. In particular, we
are interested in conditions under which v becomes convex or concave on
the state space ∆. A necessary and sufficient condition for v to be convex
(concave, resp.) on ∆ is that, for all x ∈ ∆, its Hessian matrix D2v(x) at x is
positive (negative, resp.) semidefinite with respect to the tangent space of ∆,
T (∆) = {z ∈ Rn |

∑n
i=1 zi = 0}, i.e., it satisfies z′D2v(x)z ≥ 0 (≤ 0, resp.)

for all z ∈ T (∆). This condition, however, will be quite complex, and thus
we choose to consider a simpler, sufficient condition that (∂2v/∂x2

i )(x) ≥ 0
(≤ 0, resp.) for all i and all x ∈ ∆, where

∂2v

∂x2
i

(x) =
µ

σ − 1
1− φi

(1− φi)xi + φi
− µ

σ

(1− φi) {Li − (Li + 1)φi}
{(1− φi)xi + φi}2

=
µ(1− φi)2

{(1− φi)xi + φi}2

×
[

1
σ − 1

(
xi +

φi

1− φi

)
− 1

σ

(
Li −

φi

1− φi

)]
(4.1)

for all i, and (∂2v/∂xi∂xj)(x) = 0 for all i 6= j.
Recall that ei denotes the ith vertex of the simplex ∆, the core-periphery

configuration in which all the entrepreneurs (and hence manufacturing firms)
are located in country i.

4.1 Low Trade Barriers and Agglomeration

In this subsection, we consider the case in which countries have high trade
openness (or equivalently, low trade barriers), i.e., φi’s are sufficiently close
to one. For each i, define

φ̄i =
(σ − 1)Li

(σ − 1)Li + 2σ − 1
. (4.2)

If φi > φ̄i for all i, then (∂2v/∂x2
i )(x) > 0 for all i and all x ∈ ∆ and hence

v is strictly convex, so that the global maximum is attained at a vertex of
∆. We have v(ei) > v(ej) if and only if∑

k 6=i

(
1

σ − 1
φk

1− φk
+ Lk

)
log φk >

∑
k 6=j

(
1

σ − 1
φk

1− φk
+ Lk

)
log φk,

or (
1

σ − 1
φi

1− φi
+ Li

)
log φi <

(
1

σ − 1
φj

1− φj
+ Lj

)
log φj . (4.3)
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In the case where countries have identical market size (i.e., Li = Lj for all
i, j), {ei∗} = arg maxx∈∆ v(x) if and only if φi∗ < φj for all j 6= i∗, while in
the case where countries have identical trade openness (i.e., φi = φj for all
i, j), {ei∗} = arg maxx∈∆ v(x) if and only if Li∗ > Lj for all j 6= i∗.

Proposition 4.1. Assume that countries have high trade openness so that
φi > φ̄i for all i. Then, the potential function is strictly convex and hence
admits a global maximum at a core-periphery configuration. Furthermore,

(1) if φi∗ < φj for all j 6= i∗ and Li = Lj for all i, j, then ei∗ is absorbing
and globally accessible for sufficiently small δ > 0,

(2) if Li∗ > Lj for all j 6= i∗ and φi = φj for all i, j, then ei∗ is absorbing
and globally accessible for sufficiently small δ > 0.

That is, if countries are symmetric with respect to market sizes (trade open-
ness, resp.) and country i∗ has the lowest trade openness (the largest market
size), then the core-periphery configuration with full agglomeration in coun-
try i∗ is absorbing and globally accessible for sufficiently small friction.

Note that properties of the potential function are, of course, those of
the underlying static model. Thus, what shape the potential function are
exactly the agglomeration and dispersion forces identified in the standard
NEG models. These forces can be observed by considering the second partial
derivatives ∂2v/∂x2

i , where the first partial derivative with respect to xi is
given by

∂v

∂xi
(x) =

µ

σ − 1
log (xi + φi(1− xi)) +

µ

σ

(1− φi)(xi + Li)
xi + φi(1− xi)

, (4.4)

which is equal to Si(xi) in (3.2). Consider a small migration of entrepreneurs
into country i. On the one hand, this increases the local expenditures on the
manufacturing good, which has a positive effect on demand per firm (market
size effect). It is captured in the numerator of the second term in (4.4), which
is increasing in xi. On the other hand, this also increases the ‘effective’
number of firms competing in i, xi + φi(1− xi), which has a positive effect
on consumer surplus through the decrease in the price index (cost-of-living
effect) and a negative effect on demand per firm (local competition effect).
The former is captured in the first term in (4.4), which is increasing in xi,
while the latter in the denominator in the second term, where the increase
in xi negatively affects ∂v/∂xi. The first two effects generate a positive
feedback fostering agglomeration of entrepreneurs, which leads to convexity
of the potential function v, while the third effect encourages dispersion,
working in favor of concavity of v. As seen in (4.1), the agglomeration
forces dominate the dispersion force and thus v becomes convex if φi’s are
sufficiently close to one (i.e., trade barriers are sufficiently low), and vice
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versa if φi’s are sufficiently close to zero (i.e., trade barriers are sufficiently
high).

When v is convex, it is locally maximized at vertices of the simplex ∆,
or core-periphery configurations, which are necessarily equilibrium states of
the static model. Standard exercise in the NEG literature is to consider sta-
bility of equilibrium states under myopic dynamics. As is well known, local
maximizers of a potential function are all locally stable under various classes
of myopic evolutionary dynamics. Under the perfect foresight dynamics, by
contrast, all the equilibrium states but the global maximizer of the potential
are destabilized when the degree of friction is sufficiently small: the global
potential maximizer is globally accessible and absorbing, while all the other
equilibrium states are fragile, for sufficiently small frictions. Thus, allowing
for forward-looking expectations helps to select a unique equilibrium out-
come through the global stability consideration under the perfect foresight
dynamics. The condition (4.3) says that the global potential maximizer is
the core-periphery configuration with the core in the country that is most
(relatively) protected or has a largest market size. Located in such a coun-
try, firms can have better access to consumers due to cost reduction in terms
of trade barriers (see also Forslid and Ottaviano (2003, Section 4)).

4.2 High Trade Barriers and Dispersion

In this subsection, we consider the case in which countries have low trade
openness (or equivalently, high trade barriers), i.e., φi’s are sufficiently close
to zero. In this case, as long as Li > σ/(σ − 1) holds (Assumption 2.1(3)),
we have that (∂2v/∂x2

i )(x) < 0 for all i and all x ∈ ∆, and hence v is strictly
concave, and that on the boundary of ∆, |∇v| → ∞ as φi’s tend to zero.
Therefore, v has a unique maximizer in the interior and no other critical
point. More precisely, a sufficient condition for this is obtained as follows.
Let

φ0
i =

(σ − 1)Li − σ

(σ − 1)(Li + 1)
, (4.5)

and φ1
i be the solution to the equation in φ:

σ

σ − 1
log φ +

Li

φ
= L + 1, (4.6)

where L = L1 + · · · + Ln. Verify that, under Assumption 2.1(3), the left
hand side of (4.6) is decreasing in φ. If φi < φ0

i , then (∂2v/∂x2
i )(x) < 0 for

all x ∈ ∆, while if φi < φ1
i , then v does not attain its global maximum on

the face of ∆ where xi = 0. Let

φ
i
= min

{
φ0

i , φ
1
i

}
. (4.7)

By Lemma C.7 in Appendix C, we thus have a stronger stability result.

22



Proposition 4.2. Assume that countries have low trade openness so that
φi < φ

i
for all i. Then, the potential function is strictly concave and steep

on ∂(∆) and hence admits a global maximum at some fully dispersed config-
uration x∗ ∈ int(∆), and any perfect foresight path converges to x∗ for any
δ > 0.

Proof. See Appendix D.

When trade barriers are sufficiently high (i.e., φi’s are sufficiently close
to zero), firms sell mainly in the local markets, so that the local competition
effect becomes dominant, discouraging spatial clustering of firms. Accord-
ingly, the potential function v becomes sufficiently concave and is maximized
at a unique dispersed configuration x∗ ∈ int(∆). The configuration x∗ is a
unique equilibrium state and attracts any perfect foresight path regardless
of the initial condition as well as the degree of friction. Thus, in this case of
large trade barriers, expectations as well as history play no role.

4.3 Two-Country Case

In this subsection, we illustrate our results in the simple case of two countries
(i.e., n = 2). Let f : [0, 1] → R be defined by

f(x1) = u1(x1, 1− x1)− u2(x1, 1− x1). (4.8)

That is, f(x1) is the increment in indirect utility from locating in country 1
instead of in 2 when fraction x1 ∈ [0, 1] of entrepreneurs are located in 1. In
this case where the state space is one dimensional, as the potential function
it is natural to consider the function F : [0, 1] → R defined by

F (x1) =
∫ x1

0
f(x′1) dx′1, (4.9)

which is equal to v(x1, 1− x1) + D′ with some constant D′.
Figure 1 depicts the utility difference function f and the corresponding

potential function F for different values of trade barriers τ1 and τ2 with
parameter values L1 = L2 = 1, σ = 6, and µ = 0.3. Here we set τ1 = 0.9σ−1τ
and τ2 = τ so that φ1 = 0.9φ2 and thus φ1 < φ2. The utility difference f
is depicted in Figure 1(a) for τ = 1.1 and in Figure 1(b) for τ = 1.35
(thin curve), τ = 1.4 (thick curve), and τ = 1.5 (dashed curve), while the
potential function F is depicted in Figure 1(c) for τ = 1.1 and in Figure 1(d)
for τ = 1.35. Compare Figure 1 in Pflüger (2004, p.570), who considers
symmetric countries.

As seen in the previous subsections, when trade barriers τ1 and τ2 are low
(i.e., φ1 and φ2 are close to one), the utility difference function f is upward
sloping (as in Figure 1(a)) and thus the potential function F becomes convex
(as in Figure 1(c)). In this case, while both core-periphery configurations,
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Figure 1: Utility difference f and potential F

x1 = 0 and x1 = 1, are strict equilibrium states and in fact local maximizers
of F , they generically have different stability properties under the perfect
foresight dynamics. If, as in Figure 1(c), F (1) > F (0) so that x1 = 1 is
the global maximizer of F , then x1 = 1 is globally accessible and absorbing,
while x1 = 0 is fragile, when the degree of friction is small. That is, even
if all the entrepreneurs are located in country 2 (i.e., the initial state is at
x1 = 0), the expectations can become self-fulfilling for small friction that
all the entrepreneurs will eventually move to country 1, and once a large
fraction of entrepreneurs have been located in country 1 (i.e., the system
reaches a small neighborhood of x1 = 1), no self-fulfilling expectation can
upset the outcome and the system must converge to the state x1 = 1.

In contrast, when trade barriers are high (i.e., φ1 and φ2 are close to
zero), f is downward sloping, so that F becomes concave and attains the
global maximum at some dispersed configuration x∗ ∈ (0, 1). In this case, x∗

is a unique equilibrium and attracts all the perfect foresight paths regardless
of the degree of friction. For some intermediate values of trade barriers,
there are three equilibrium states; see the thin curve in Figure 1(b) for τ =
1.35. While the left and the right equilibria are locally stable under myopic
dynamics, the right equilibrium is the global maximizer of the potential F
as shown in Figure 1(d) and hence is globally accessible and absorbing under
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Figure 2: Bifurcation diagram

the perfect foresight dynamics for small frictions.
Figure 2 is the bifurcation diagram which depicts the loci of the equi-

librium states for different values of τ . The bold curve (uppermost) is the
locus of the global maximizer of the potential, the thin curve (lowermost) is
that of the local, but not global, maximizer, and the dotted curve (middle)
is that of the other equilibrium state which minimizes the potential and is
unstable even under myopic dynamics. Compare Figure 2 in Pflüger (2004,
p.570), which exhibits a ‘pitchfork bifurcation’ with symmetric locations.
Our figure above suggests, however, that when locations are asymmetric,
the pitchfork bifurcation disappears and the model exhibits a ‘saddle-node
bifurcation’ instead.16

Let us take again the case where trade barriers are low so that the utility
difference f is upward sloping, and see how the strict equilibrium states have
distinct stability properties under the perfect foresight dynamics. Assume
that the potential F is such that F (1) > F (0) (= 0) as in Figure 1(c)
where the strict equilibrium state x1 = 1 is the global potential maximizer.
To see that the other strict equilibrium state x1 = 0 is fragile when the
friction δ = θ/λ is close to zero, consider the feasible path x(·) given by
x1(t) = 1−e−λt, along which all entrepreneurs are anticipated to move from
country 2 to country 1 at their first relocation opportunities. Given this
path x(·), the difference in discounted utilities over the expected duration of
a commitment for an entrepreneur making a decision at time 0 is computed

16In fact, this is a general phenomenon. See Berliant and Kung (2009), who show that
pitchfork or tomahawk bifurcations appearing in NEG models with symmetric locations
are nongeneric patterns which result from the model symmetry.
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as

∆V (0) = V1(0)− V2(0)

= (λ + θ)
∫ ∞

0
e−(λ+θ)tf

(
1− e−λt

)
dt

= (1 + δ)
∫ 1

0
(1− x1)δf(x1) dx1

→ F (1) > 0 as δ → 0, (4.10)

where the last inequality follows from the assumption that F (1) > F (0) = 0.
Thus, this entrepreneur has an incentive to move to country 1, provided that
the future is sufficiently important (i.e., δ is sufficiently small), as the future
utility gain is large enough to compensate the current loss. Since the utility
difference f(x1) is increasing in x1, this suffices to guarantee that the path
x(·) is a perfect foresight path, which in turn implies that, for small δ, the
state x1 = 0 is fragile and in fact x1 = 1 is globally accessible.

To verify that x1 = 1 is absorbing, consider the feasible path x′(·) given
by x′1(t) = e−λt, along which all entrepreneurs are anticipated to move from
1 to 2. Against this path x′(·), the expected discounted utility difference is
given by

∆V (0) = (λ + θ)
∫ ∞

0
e−(λ+θ)tf

(
e−λt

)
dt

= (1 + δ)
∫ 1

0
(x1)δf(x1) dx1

→ F (1) > 0 as δ → 0, (4.11)

where again the inequality follows from the assumption that F (1) > F (0) =
0. That is, even when the friction δ is small, the future gain relative to
the current loss is not large enough, so that entrepreneurs choose to stay in
county 1 postponing migration to country 2 for a next or later relocation
opportunity. Hence, the escaping path x′(·) does not become a perfect fore-
sight path. Since this argument remains valid when the initial state is in a
neighborhood of x1 = 1, we may conclude that x1 = 1 is absorbing (for any
δ > 0).

5 Policy Issues

In this section, we briefly argue how new insights on policy issues are gained
when we allow for forward-looking behavior of mobile production factors. In
what follows, we assume that the countries have the same size and consider
the case in which trade barriers are already low so that φi > φ̄i for all i,
where φ̄i is defined in (4.2); we know that when they are large, there is no
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substantial change from the myopic case. Our purpose here is to point out
that allowing for forward-looking expectations may alter results in existing
NEG models with myopic agents, where all the core-periphery outcomes are
locally stable under myopic dynamics in the case of low trade barriers.

5.1 Trade Policy

To make the discussion as simple as possible, we assume that each govern-
ment i can exercise trade protection by raising trade barrier τi (i.e., lowering
trade openness φi).17 By Proposition 4.1, if unilateral protection by country
i∗ is large enough that φi∗ < φj for all j 6= i (but still φi∗ > φ̄i∗), then the
potential is maximized at ei∗ (the core-periphery configuration with full ag-
glomeration in i∗), so that ei∗ is globally accessible for small frictions. Thus,
by trade protection it is possible for country i∗ to induce relocation of firms
toward country i∗ provided that the degree of friction is sufficiently small.
This is due to the ‘price-lowering effect’ of protection; see, e.g., Baldwin et
al. (2003, Chapter 12). It is not possible in standard NEG models with my-
opic migrants, where each agglomeration state is locally stable under myopic
dynamics.

Notice, however, that largest trade protection does not automatically im-
ply agglomeration of firms in country i∗, since global accessibility of ei∗ only
says that from each distribution x ∈ ∆ there exists a perfect foresight path
convergent to ei∗ and does not exclude existence of other perfect foresight
paths. In order to attract firms to country i∗, it is necessary to encourage
the firms to coordinate on the expectation that leads to i∗.

Two remarks are in order. First, in our model, countries are identical
in terms of production technology, and therefore, comparative advantage
is absent. The above result might be modified if we incorporate effects
of comparative advantage. Second, given the benefit from unilateral trade
protection, countries may well be involved in tariff competition; see, e.g.,
Mai et al. (2008).

5.2 Taxation

Several papers argue in models with myopic migrants that there are ‘ag-
glomeration rents’ that can be taxed without inducing firms to move out
(see Baldwin et al. (2003, Chapter 15) and the references therein). This
is understood in terms of potential. Assume for simplicity that the gov-
ernment of country i collects lump sum taxes Ti from entrepreneurs lo-
cated in i (as in Borck and Pflüger (2006) in the context of tax competi-

17Given our specification of quasi-linear utilities, it is straightforward to model tariffs
explicitly, with an assumption that revenue from tariffs is distributed lump-sum to local
immobile workers.
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tion).18 Then, the instantaneous indirect utility of entrepreneurs in i be-
comes ui(x) = Si(xi) − Ti + R(x), x ∈ ∆, where Si(xi) and R(x) are as in
(3.2) and (3.3), respectively. The potential function is now given by

ṽ(x) = v(x)−
n∑

i=1

Tixi,

where v(x) is as in (3.5). Therefore, taxation in country i implies lowering
the potential at ei, where ṽ(ei) = v(ei) − Ti. Under myopic dynamics,
each local maximizer of the potential is locally stable, so that ei is still
stable unless tax is so large that ei fails to locally maximize the potential
ṽ. Under the perfect foresight dynamics, however, agglomeration rents are
much smaller. When ei is not a global maximizer of the potential, and
hence is fragile when the friction is small, taxation may trigger the firms
to coordinate on expectations that lead them to move out (the same caveat
as in the previous subsection applies here). Even if ei is a global potential
maximizer, which is absorbing, tax must be small enough that ei still globally
maximizes the potential ṽ in order not to trigger relocation of the firms.
Re-examination of agglomeration rents under forward-looking expectations
seems an interesting future topic.

5.3 Speed of Adjustment

The discussions in the preceding subsections were essentially static, reducing
to those relying on the shape of the potential function, since only the stable
long-run distributions of industry were concerned. However, once one is in-
terested also in the speed of adjustment of firms (e.g., for political reasons),
different formulations in dynamics may yield different policy implications
depending on how the adjustment process is modeled. This is indeed the
case, as pointed out by Kaneda (2003) in a different context, for the two par-
ticular classes of dynamics, the dynamics of Matsuyama (1991) and Matsui
and Matsuyama (1995) (MM-dynamics, in short), which the present pa-
per follows, and that of Krugman (1991b) and Fukao and Benabou (1993)
(KFB-dynamics, in short), studied by Baldwin (2001), Ottaviano (2001),
and Oyama (2009) in two-location settings. In this subsection, we illustrate
the difference between them in dynamic policy implications.

Consider as in Subsection 5.1 the unilateral protection by country i∗

and suppose that the agglomeration in i∗, ei∗ , is a global maximizer of
the potential function (an analogous argument holds for taxation, when i∗

lowers its tax rate while the other countries set higher rates so that ei∗

18More generally, the tax instrument may be varied depending on time t and current
state x (this applies also for tariff policy). See e.g., Kaneda (2003), who, in a different
context of infant industry protection but with the same class of perfect foresight dynamics,
studies protection schemes with the duration and rate of subsidy as policy variables.
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is a potential maximizer). Assume also that there are only two countries
(in order to apply the results of Oyama (2009)) and that the rate of time
preference of agents is sufficiently small. Then, under the KFB-, as well
as the MM-, dynamics, there are self-fulfilling expectations that eventually
lead the firms to agglomerate in country i∗, and once the basin of attraction
of ei∗ is reached, no self-fulfilling expectation can upset the outcome.

Now, we ask whether the government can control the speed of agglom-
eration by changing the rate of protection (i.e., tariff rate). It is here that
the two classes of dynamics yield different answers. In the KFB-dynamics,
migration is perfectly reversible in that any agent can migrate at any point
in time, by incurring moving costs which are assumed to be increasing in the
number of moving agents. Therefore, the speed of aggregate adjustment is
a priori unbounded, and in equilibrium it is determined by the non-arbitrage
condition (i.e., that all the agents be always indifferent between staying and
moving) and thus is linked with individuals’ utilities through this condi-
tion. This implies that a protection scheme with a higher rate, by affecting
the utilities of agents, can speed up the migration process. By contrast,
this is not the case under the independent Poisson assumption in the MM-
dynamics, where migration is irreversible, constrained by exogenous factors,
so that for each short time interval, only a given fraction of agents have the
opportunity to migrate, and therefore the speed of adjustment is bounded
and independent of agents’ utilities. Thus, in this case the government can
control only the direction, but not the speed, of relocation of industry.

The relevance of the policy implications derived by the two formulations
depends on the extent to which migration is an irreversible activity. At
least when international migration is concerned, it seems quite reasonable
to assume that it is irreversible to a large extent. Clearly, however, a closer
look is called for at the hidden components behind the reduced-form moving
cost function or the exogenous factors that restrict migration.

6 Concluding Remarks

In this paper, we have studied the impact of forward-looking expectations in
a multi-country NEG model. We considered a version of Krugman’s (1991a)
static core-periphery model, allowing for any finite number of countries as
well as exogenous asymmetries among countries with respect to their trade
barriers and market sizes, and embedded it into the class of perfect foresight
dynamics due to Matsuyama (1991) and Matsui and Matsuyama (1995).
The dynamics may possess multiple stationary states, which is indeed the
case when barriers to trade are low enough that the agglomeration externali-
ties arising from scale economies dominate the market competition effect due
to trade barriers. We were nevertheless able to conduct global analysis of
this dynamics, by invoking the techniques due to Hofbauer and Sorger (1999)
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which utilize the concept of potential function.
We demonstrated that in the case of low trade barriers, incorporating

forward-looking migration decisions alters the predictions on the long-run
spatial configuration of industry obtained in standard NEG models which
assume myopic migrants: while core-periphery equilibrium configurations
are all locally stable under myopic dynamics, generically a unique configu-
ration among them becomes absorbing and globally accessible and the others
become fragile under the perfect foresight dynamics, whenever the degree
of friction is sufficiently small and hence the future is sufficiently important
in migration decisions. In particular, if the countries have the same market
size (trade barrier, resp.), then the core-periphery configuration with the
core in the country with the highest barrier (largest market size, resp.) is
the unique such globally stable state. When trade barriers are high enough,
in contrast, expectations as well as history play no decisive role: there is a
unique equilibrium state, which is a dispersed configuration and to which
any perfect foresight path converges regardless of the degree of friction and
the initial condition.

We then pointed out, for the case of low trade barriers, that the insights
regarding policy issues gained in existing models with myopic agents may be
modified when one allows for forward-looking expectations. In particular,
we argued that, due to the possibility of self-fulfilling coordinated relocation
away from a country, the amount of ‘agglomeration rents’, which can be
taxed without inducing firms to move out from the country, is much smaller
under the perfect foresight dynamics than under myopic dynamics. Our
discussion on policy implications is, however, obviously quite limited and
preliminary. Detailed formal analysis is left for future research.

While we worked with a ‘footloose entrepreneur’ model in which firms
which produce final goods move inter-nationally with their entrepreneurs,
in some situations it may be more reasonable to consider mobile capital
(as in ‘footloose capital’ models) or inter-sectorally mobile labor allowing
for input-output linkages among firms (as in ‘vertical linkage’ models); see
Baldwin et al. (2003, Chapter 15) and the references therein. It would be
interesting to see how our potential methods apply to these models (possibly
starting with two countries).

Finally, the approach in this paper has been to examine the stability of
spatial configurations under perfect foresight.19 Thus our model is silent
about the issue of expectation formation. As we noted, this can be of rele-
vance when one considers policy implications based on our stability results.
It would therefore be desirable to construct a model that explicitly addresses
this issue. The work by Vega-Redondo (1997) may be a possible starting
point, who studies, in a closed economy, how the government can direct the

19For approaches to relaxation of the perfect foresight assumption in large population
situations, see, e.g., Matsui and Oyama (2006) and Antoci et al. (2008).
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expectations of the population towards a preferred outcome by exercising
tax/subsidy schemes. It would be an interesting future research topic to
introduce such policy instruments in our multi-country model, where the
governments would naturally behave strategically.

Appendix

A Potential Functions

In this section, we state useful characterizations of large population potential
games based on Hofbauer (1985), Hofbauer and Sigmund (1998, Section
19.5), and Sandholm (2001, 2009).

Let ∆−n = {y ∈ Rn−1 | yi ≥ 0,
∑n−1

i=1 yi ≤ 1}. Each point x−n =
(x1, . . . , xn−1)′ ∈ ∆−n is identified with the point x = (x1, . . . , xn−1, xn)′ ∈
∆ by xn = 1 −

∑n−1
i=1 xi. Since only the payoff differences are relevant in

optimal choices, it is convenient to consider gi : ∆−n → R, i = 1, . . . , n− 1,
defined by

gi(x−n) = ui(x−n, xn)− un(x−n, xn). (A.1)

Accordingly, given a potential function v : ∆ → R, define the function
G : ∆−n → R by

G(x−n) = v(x−n, xn). (A.2)

(In the case of n = 2, the functions g1 and G correspond to f and F
in Subsection 4.3, respectively.) If v is a potential function of u (recall
Definition 3.1), then for all x−n ∈ ∆−n,

∂G

∂xi
(x−n) =

∂v

∂xi
(x)− ∂v

∂xn
(x)

= ui(x)− un(x) = gi(x−n),

or
∇G(x−n) = g(x−n). (A.3)

This is where the term potential comes from. That is, the function G is the
integral of the payoff difference vector field g. As is well known, a necessary
and sufficient condition for g to be integrable (i.e., its line integral to be
independent of the path of integration) and hence admit a potential is that

∂gi

∂xj
(x−n) =

∂gj

∂xi
(x−n) (A.4)

for all i, j and all x−n ∈ ∆−n. Clearly, when n = 2, so that the state space is
one-dimensional, g is always integrable. If u is defined on a neighborhood of
∆, the integrability condition (A.4) is written in terms of the original payoff
function as

∂ui

∂xj
(x) +

∂uj

∂xk
(x) +

∂uk

∂xi
(x) =

∂ui

∂xk
(x) +

∂uk

∂xj
(x) +

∂uj

∂xi
(x)
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for all i, j, k and all x ∈ int(∆), which is trivially satisfied if n = 2. This
condition can be rewritten as

∂(ui − uk)
∂(ej − ek)

(x) =
∂(uj − uk)
∂(ei − ek)

(x),

which exhibits symmetric externalities on utility differences. That is, for any
i, j, k, the effect of a marginal relocation of agents in k to j on the incentive
of migration from k to i is equal to the effect of a marginal relocation of
agents in k to i on the incentive of migration from k to j.

B Myopic Evolutionary Dynamics in Potential Games

In this section, we review known facts in evolutionary game theory on sta-
bility of local maximizers of a potential function under myopic evolutionary
dynamics.

Given a societal game u, let Ψ be a (set-valued) dynamical system, which
maps a state x ∈ ∆ to a set of Lipschitz paths on ∆ that start at x. This
general formulation accommodates possible multiplicity of solution paths as
in the best response dynamics (and also in the perfect foresight dynamics).
Note that, since it stays in ∆, any x(·) ∈ Ψ(x) must satisfy, for almost all
t ≥ 0, ∑n

i=1 ẋi(t) = 0, and (B.1a)
ẋi(t) ≥ 0 whenever i /∈ supp(x(t)), (B.1b)

where supp(x) = {i | xi > 0}.
A dynamical system Ψ is said to be a myopic adjustment dynamics

(Swinkels (1993)) if every path x(·) ∈ Ψ(x) satisfies

ẋ(t)′u(x(t)) ≥ 0 (B.2)

for almost all t ≥ 0; it is said to be a strict myopic adjustment dynam-
ics if (B.2) holds with equality only if x(t) is an equilibrium state of u.20

(Note that the converse of this follows from (B.2): since
∑

i ẋi(t)′ui(x(t)) =∑
i ẋi(t)[ui(x(t))− ū(x(t))] by (B.1a), where ū(x(t)) = x(t)′u(x(t)), if x(t) is

an equilibrium state of u, then ẋ(t)′u(x(t)) =
∑

i/∈supp(x(t)) ẋi(t)[ui(x(t)) −
ū(x(t))] ≤ 0, where the inequality follows from (B.1b); hence, ẋ(t)′u(x(t)) =
0 holds under (B.2).)

By (B.1a), the condition (B.2) can be written in terms of the payoff
differences gi defined in (A.1) as

ẋ−n(t)′g(x−n(t)) ≥ 0. (B.3)
20For standard (i.e., point-valued) dynamical systems, this strict myopic adjustment

condition is equivalent to ‘positive correlation’ in the sense of Sandholm (2001) under the
additional condition of ‘noncomplacency’ (or ‘Nash stationarity’).
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When n = 2, this reads

ẋ1(t)
(
u1(x(t))− u2(x(t))

)
≥ 0.

That is, the condition postulates that agents tend to switch from a lower-
payoff alternative to a higher-payoff one.

Examples of myopic adjustment dynamics include the best response dy-
namics and the replicator dynamics.

Example B.1. The best response dynamics (Gilboa and Matsui (1991),
Matsui (1992), Hofbauer (1995)), the representative of innovative dynamics,
is defined by the differential inclusion

ẋ(t) ∈ B(x(t))− x(t), (B.4)

where B is the best response correspondence as defined in (2.7). This dy-
namics may be viewed as the limit of the perfect foresight dynamics as the
discount rate θ goes to ∞. Note that (B.4) can be written as

ẋi(t) > −xi(t) ⇒ ui(x(t)) ≥ uj(x(t)) for all j = 1, . . . , n.

The best response dynamics is generated by the following decision rule at
the individual level. Migration opportunities are assumed to arrive according
to independent Poisson processes with parameter λ so that for each time
interval [t, t+dt), a fraction λ·dt of agents receive the opportunity to migrate.
Given an opportunity, each agent chooses a location that maximizes the
current payoff given the state x(t). Therefore, if α(t) ∈ ∆ denotes the
choice distribution of the agents who receive the opportunity in [t, t + dt),
we have α(t) ∈ B(x(t)). Thus,

x(t + dt) = (1− λdt) x(t) + λdt α(t), α(t) ∈ B(x(t)).

By normalizing the unit of time so that λ = 1, we obtain (B.4).
It is easy to verify that the best response dynamics is a strict myopic

adjustment dynamics. Since ẋ(t) + x(t) ∈ B(x(t)) by (B.4), we have

(ẋ(t) + x(t))′u(x(t)) ≥ x(t)′u(x(t)),

or ẋ(t)′u(x(t)) ≥ 0, where the equality holds if and only if x(t) is an equi-
librium state.

Example B.2. The replicator dynamics (Taylor and Jonker (1978)), the
representative of imitative dynamics, is defined by the differential equation

ẋi(t) = xi(t)
(
ui(x(t))− ū(x(t))

)
(B.5)

for i = 1, . . . , n, where ū(x(t)) = x(t)′u(x(t)).
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The replicator dynamics is generated by the proportional imitation rule
(Schlag (1998)): Migration opportunities are assumed to arrive according
to independent Poisson processes with parameter λ so that for each time
interval [t, t + dt), a fraction λ · dt of agents receive the opportunity to
migrate. Given an opportunity, each agent randomly samples an agent, a
candidate to imitate, from the whole population and observes this agent’s
payoff, where the probability that a location-j agent is selected is xj . If the
sampled payoff is higher than his own, the agent migrates to location j from
his current location i with a probability proportional to the payoff difference
uj(x(t))− ui(x(t)); otherwise, he stays at location i. Thus,

xi(t + dt) = xi(t) +
∑
j 6=i

λdt xj(t)× xi(t)
[ui(x(t))− uj(x(t))]+

K

− λdt xi(t)×
∑
j 6=i

xj(t)
[uj(x(t))− ui(x(t))]+

K
,

where [a]+ = max{a, 0}, and K is a constant appropriately chosen for the
imitation probabilities to be well defined. By normalizing the unit of time
so that λ = K, we obtain (B.5).

It is easy to verify that the replicator dynamics is a myopic adjustment
dynamics.21 By (B.1a) and (B.5), we have

ẋ(t)′u(x(t)) =
n∑

i=1

ẋi(t)
[
ui(x(t))− ū(x(t))

]
=

n∑
i=1

xi(t)
[
ui(x(t))− ū(x(t))

]2 ≥ 0,

where the equality holds if and only if ui(x(t)) = ū(x(t)) for all i ∈
supp(x(t)), which holds in particular when x(t) is an equilibrium state.

Note however that the replicator dynamics satisfies the strict myopic
adjustment condition only in the interior of the state space ∆. It violates
the condition on the boundary of ∆ because of its imitative nature: unused
actions are never chosen.

As shown by Sandholm (2001),22 if the game admits a potential func-
tion v, then it works as a Lyapunov function of strict myopic adjustment
dynamics. This is easily verified by using the functions gi and G in (A.1)

21More generally, the positive definite dynamics (Hopkins (1999)) satisfy the myopic
adjustment condition.

22See also Hofbauer (2000) for the case of the best response dynamics.
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and (A.2):

d

dt
v(x(t)) = ∇v(x(t))′ẋ(t)

= ∇G(x−n(t))′ẋ−n(t)
= g(x−n)′ẋ−n(t) ≥ 0,

where the second equality follows from (B.1a), the third equality from (A.3),
and the inequality from (B.3).

Thus we have:

Theorem B.1. Assume that equilibrium states of u are all isolated. If
u admits a potential function, then every trajectory of every strict myopic
adjustment dynamics converges to an equilibrium state, and every local max-
imizer of the potential function is asymptotically stable.

Two corollaries follow from this theorem. First, strict equilibrium states
of a potential game are asymptotically stable under any strict myopic ad-
justment dynamics. Second, if the potential function is strictly concave on
∆, then its unique maximizer is globally asymptotically stable under any
strict myopic adjustment dynamics.

For the replicator dynamics, which satisfies the strict myopic adjustment
condition only in int(∆), a slightly weaker result holds, that every trajectory
starting in int(∆) converges to a local maximizer of the potential function
(while every local maximizer is asymptotically stable).

Outside the class of potential games, the best response and the replicator
dynamics may exhibit different asymptotic behavior; see, e.g., Hofbauer and
Sigmund (1998, Section 8.4).

When there are only two locations (i.e., n = 2), a potential func-
tion always exists and is given by F (x1) =

∫ x1

0 f(x′1) dx′1, where f(x1) =
u1(x1, 1− x1)− u2(x1, 1− x1). Let (x∗1, x

∗
2) be an interior equilibrium state,

x∗1 ∈ (0, 1), which satisfies f(x∗1) = 0. Under any strict myopic adjustment
dynamics, if F ′′(x∗1) = f ′(x∗1) < 0, then (x∗1, x

∗
2) locally maximizes the po-

tential and hence is asymptotically stable, while if F ′′(x∗1) = f ′(x∗1) > 0,
then (x∗1, x

∗
2) locally minimizes the potential and hence is unstable.

C Perfect Foresight Dynamics in Potential Games

In this section, we derive the stability results for the perfect foresight dynam-
ics in potential games, established by Hofbauer and Sorger (1999, Theorems
3 and 4) for linear payoff functions. We provide proofs adapted to our
nonlinear framework.

Consider a potential game u with a potential function v. The stability
results are proved for nonlinear payoff functions under the following regu-
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larity condition. We call xc ∈ ∆ a critical point of v on ∆ if

∂v

∂xi
(xc) =

∂v

∂xj
(xc)

for all i, j ∈ supp(xc). If xc is a critical point of v, then we call v(xc) a
critical value of v.

Assumption C.1. v has finitely many different critical values.

Our societal game u defined in (3.1) satisfies this regularity assumption,
since its potential function v in (3.5) is real analytic (and not identically
zero), so that it admits only finitely many critical values on any compact
set.23

Subsection C.1 proves the global accessibility result, that a unique global
potential maximizer is globally accessible whenever the degree of friction
δ = θ/λ is sufficiently small, while Subsection C.2 proves the absorption
result, that a unique global potential maximizer is always absorbing inde-
pendently of δ. (While we maintain λ as given, one may, as in Hofbauer
and Sorger (1999), simplify the notations by normalizing the unit of time so
that λ = 1.)

C.1 Global Accessibility

Theorem C.2. Suppose that u admits a potential function v and satisfies
Assumption C.1. Assume that x∗ is the unique global maximizer of v over ∆.
Then, there exists δ̄ > 0 such that x∗ is globally accessible for all δ ∈ (0, δ̄].

For a fixed initial condition x0 ∈ ∆, let X be the set of feasible paths from
x0, which is compact with respect to the topology of uniform convergence
on compact intervals. Consider the optimal control problem:

maximize J(x(·)) = (λ + θ)
∫ ∞

0
e−θtv(x(t)) dt (C.1a)

subject to x(·) ∈ X. (C.1b)

The continuity of v implies the continuity of J , which in turn guarantees
the existence of an optimal solution to the problem.

The following lemmata correspond to Theorem 2 and Lemma 1 in
Hofbauer and Sorger (1999), respectively.

Lemma C.3. Every optimal solution to the problem (C.1) is a perfect fore-
sight path from x0.

23This follows from the Lojasiewicz gradient inequality (see, e.g., Absil and Kurdyka
(2006, Lemma 4) and the references therein). I am grateful to Josef Hofbauer for pointing
me to this fact.
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Proof. Let H : ∆̄×∆× Rn → R be the current value Hamiltonian:

H(x, α, q) = (λ + θ)v(x) + q′λ(α− x). (C.2)

The necessary conditions for optimality are as follows: If x(·) ∈ X is an
optimal solution of (C.1) and α(·) the corresponding control path (i.e.,
ẋ(t) = λ(α(t) − x(t)), α(t) ∈ ∆), then there exists an absolutely contin-
uous adjoint function q : [0,∞) → Rn such that

α(t) ∈ arg maxα∈∆ H(x(t), α, q(t)), (C.3)

q̇i(t) = θqi(t)−
∂H

∂xi
(x(t), α(t), q(t)), (C.4)

lim
t→∞

e−θtqi(t) = 0, (C.5)

where (C.3) is the maximum principle, (C.4) is the adjoint equation, and
(C.5) is the transversality condition. Conditions (C.3) and (C.4) are written
as

αi(t) > 0 ⇒ qi(t) ≥ qj(t) for all j = 1, . . . , n, (C.3′)

q̇i(t) = (λ + θ)
(

qi(t)−
∂v

∂xi
(x(t))

)
. (C.4′)

Under (C.5), it follows from (C.4′) that

qi(t) = (λ + θ)
∫ ∞

t
e−(λ+θ)(s−t) ∂v

∂xi
(x(s)) ds.

Thus, by the definition of potential function, we have qi(t) R qj(t) if and
only if Vi(t) R Vj(t), where Vi is defined as in (2.10). It therefore follows
form (C.3′) that x(·) is a perfect foresight path.

Lemma C.4. For any ε > 0, there exists δ̄ = δ̄(ε) > 0 such that for all
δ ∈ (0, δ̄] and for all x0 ∈ ∆, if x(·) is an optimal solution to the problem
(C.1), then there exists t ≥ 0 such that |x(t)− x∗| < ε.

Proof.24 Assume the contrary: i.e., there exists ε > 0 such that for all δ̄ > 0,
there exists an optimal solution x(·) for some λ and θ with δ = θ/λ ∈ (0, δ̄]
and some x0 ∈ ∆ such that |x(t) − x∗| ≥ ε for all t ≥ 0. Given such an
ε > 0, let c = c(ε) > 0 be such that

c = v(x∗)−max
{
v(x)

∣∣ |x− x∗| ≥ ε
}
;

T = T (ε) ∈ [0,∞) be such that

v
(
e−tx0 + (1− e−t)x∗

)
≥ v(x∗)− c/2

24The proof provided here fixes a small gap in the proof of Hofbauer and Sorger (1999,
Lemma 1).
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for all t ≥ T ; and θ̄ = θ̄(ε) > 0 be such that

(1− e−θ̄T )2M < e−θ̄T c/2,

where M > 0 is a constant such that |v(x)| ≤ M for all x ∈ ∆. Given such
a δ̄ > 0, let x(·) be an optimal solution with δ ∈ (0, δ̄] and x0 ∈ ∆ such that
|x(t)− x∗| ≥ ε for all t ≥ 0, as assumed.

Let y(·) ∈ X be the feasible path from x0 such that y(t) = e−λtx0 +(1−
e−λt)x∗ (which converges to x∗). Then,

J(x(·))− J(y(·)) = (λ + θ)
∫ T/λ

0
e−θt

(
v(x(t))− v(y(t))

)
dt

+ (λ + θ)
∫ ∞

T/λ
e−θt

(
v(x(t))− v(y(t))

)
dt

≤ (λ + θ)
∫ T/λ

0
e−θt2M dt + (λ + θ)

∫ ∞

T/λ
e−θt(−c/2) dt

= (1 + 1/δ)
{

(1− e−δT )2M − e−δT c/2
}

≤ (1 + 1/δ)
{

(1− e−δ̄T )2M − e−δ̄T c/2
}

< 0,

which contradicts the optimality of x(·).

Now let us conclude the proof of Theorem C.5. Let x∗ be the unique
maximizer of v over ∆. By Theorem C.5 to be proved below, there exists
ε > 0 such that any perfect foresight path starting in Bε(x∗) converges to x∗,
where ε can be taken independently of δ. Given this value of ε, let δ̄ = δ̄(ε)
as in Lemma C.4, and assume δ ≤ δ̄. Fix any x0 ∈ ∆, and let x(·) be a
solution to the optimization problem (C.1), which is a perfect foresight path
from x0 by Lemma C.3. By Lemma C.4, x(·) must visit Bε(x∗). Since x∗ is
absorbing by Theorem C.5, it follows that limt→∞ x(t) = x∗ by the choice of
ε. Initial condition x0 taken arbitrarily, this proves the global accessibility
of x∗ for δ ≤ δ̄.

C.2 Absorption

Theorem C.5. Suppose that u admits a potential function v and satisfies
Assumption C.1. Assume that x∗ is the unique global maximizer of v over
∆. Then, x∗ is absorbing for all θ > 0.

For x0 ∈ ∆, consider the following system:

ẋ(t) ∈ λ
(
B(t)− x(t)

)
, x(0) = x0 (C.6a)

V̇ (t) = (λ + θ)
(
V (t)− u(x(t))

)
, (C.6b)
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where
B(t) =

{
α ∈ ∆

∣∣ αi > 0 ⇒ Vi(t) ≥ Vj(t) for all j
}
,

which is the convex hull of arg maxi Vi(t) in ∆. Observe that x(·) is a perfect
foresight path from x0 if and only if it is a solution to (C.6) for which V (·)
stays bounded. Then, define H∗ : ∆̄× Rn → R by

H∗(x, V ) = (λ + θ)v(x) + λ
(
V̄ − V ′x

)
, (C.7)

where V̄ = maxi Vi. This function is the maximized Hamiltonian of the
optimization problem (C.1): i.e., H∗(x, V ) = maxα∈∆ H(x, α, V ), where H
is defined in (C.2). Note that H∗(x, V ) ≥ (λ + θ)v(x) for all x ∈ ∆ and
V ∈ Rn.

The following lemmata correspond to Lemmata 3 and 4 in Hofbauer and
Sorger (1999), respectively.

Lemma C.6. Let (x(·), V (·)) be a solution to (C.6). Then, the function
t 7→ H∗(x(t), V (t)) is Lipschitz continuous, satisfies

d

dt
H∗(x(t), V (t)) = θλ

(
V̄ (t)− V (t)′x(t)

)
≥ 0 (C.8)

for almost all t ≥ 0, and therefore is nondecreasing.

Proof. Let (x(·), V (·)) be a solution to (C.6). It is easy to verify that the
function t 7→ H∗(x(t), V (t)) is Lipschitz continuous.

By Danskin’s envelope theorem,25 we have, for almost all t ≥ 0,
(d/dt)V̄ (t) = α′V̇ (t) for all α ∈ B(t), and in particular, (d/dt)V̄ (t) =
(ẋ(t)/λ + x(t))′V̇ (t) by (C.6a). Using this, we obtain, for almost all t ≥ 0,

d

dt
H∗(x(t), V (t)) = (λ + θ)∇v(x(t))′ẋ(t)

+ λ
(
ẋ(t)/λ + x(t)

)′
V̇ (t)− λ

(
V̇ (t)′x(t) + V (t)′ẋ(t)

)
= (λ + θ)∇v(x(t))′ẋ(t) + ẋ(t)′V̇ (t)− λV (t)′ẋ(t)
= (λ + θ)∇v(x(t))′ẋ(t)

+ ẋ(t)′(λ + θ)
(
V (t)− u(x(t))

)
− λV (t)′ẋ(t)

= θV (t)′ẋ(t) + (λ + θ)
(
∇v(x(t))− u(x)

)′
ẋ(t)

= θλ
[
V (t)′

(
ẋ(t)/λ + x(t)

)
− V (t)′x(t)

]
= θλ

[
V̄ (t)− V (t)′x(t)

]
≥ 0,

where the third equality follows from (C.6b), the fifth from the definition of
potential function as well as

∑
i ẋi(t) = 0, and the last from (C.6a).

25See, e.g., Hofbauer and Sandholm (2009, Theorem A.4). The following argument
is due to Josef Hofbauer (personal communication), who informed me that use of this
theorem significantly simplifies the original proof of Hofbauer and Sorger (1999, Lemma 3).
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Lemma C.7. Let x(·) be a perfect foresight path from x0. If x̂ is an accu-
mulation point of x(·), then

(1) v(x̂) ≥ v(x0),
(2) x̂ is a critical point of v on ∆.

Proof. Let V (·) be associated with the perfect foresight path x(·). Let {tk}
be a sequence such that limk→∞ tk = ∞ and limk→∞ x(tk) = x̂. Let,
without loss of generality, V̂ = limk→∞ V (tk). Define (x∗(·), V ∗(·)) by
t 7→ limk→∞(x(t+ tk), V (t+ tk)), which satisfies (C.6) with (x∗(0), V ∗(0)) =
(x̂, V̂ ).

Using Lemma C.7, one can prove by contradiction that H∗(x∗(t), V ∗(t))
is constant, which implies that (d/dt)H∗(x∗(t), V ∗(t)) = 0, and therefore

V̄ ∗(t) = V ∗(t)′x∗(t) (C.9)

for almost all t ≥ 0 by (C.8). From this equation as well as Lemma C.6, we
obtain that

(λ + θ)v(x0) ≤ H∗(x(0), V (0)) ≤ H∗(x(t), V (t))
≤ H∗(x∗(t), V ∗(t)) = (λ + θ)v(x̂),

which proves (1).
Equation (C.9) also implies that, for almost all t ≥ 0, V ∗

i (t) = V ∗
j (t)

and V̇ ∗
i (t) = V̇ ∗

j (t) for all i, j ∈ supp(x∗(t)), where the latter follows from
Danskin’s envelope theorem. It therefore follows from (C.6b) that, for al-
most all t ≥ 0, ui(x∗(t)) = uj(x∗(t)), or equivalently (∂v/∂xi)(x∗(t)) =
(∂v/∂xj)(x∗(t)), for all i, j ∈ supp(x∗(t)). But by continuity, this must hold
for all t ≥ 0, which means that x∗(t) is a critical point of v for all t ≥ 0. In
particular, x̂ = x∗(0) is a critical point, which proves (2).

Now let us conclude the proof of Theorem C.5. Let x∗ be the unique
maximizer of v over ∆. It is a critical point of v. By Assumption C.1, there
exists ε > 0 such that v(x) > v(xc) for all x ∈ Bε(x∗) and all critical point
xc 6= x∗. Lemma C.7 thus implies that any perfect foresight path x(·) from
any x0 ∈ Bε(x∗) satisfies limt→∞ x(t) = x∗, which proves the absorption
of x∗.

D Proof of Proposition 4.2

We only verify that if φi < φ1
i , then v does not attain its global maximum on

the face of ∆ where xi = 0. Fix any x ∈ ∂(∆) such that xi = 0. We denote
supp(x) = {j | xj > 0}. For s ∈ [0, 1], let κ(s) = v((1− s)x + sei)− v(x). It
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suffices to show that if φi < φ1
i , then κ′(0) > 0. Notice that

κ′(0) =
∂v

∂xi
(x)−

∑
j∈supp(x)

xj
∂v

∂xj
(x)

= Si(0;φi)−
∑

j∈supp(x)

xjSj(xj ;φj),

where Sj(xj ;φj) is as in (3.2); i.e.,

Sj(xj ;φj) =
µ

σ − 1
log ((1− φj)xj + φj) +

µ

σ

(1− φj)(xj + Lj)
(1− φj)xj + φj

.

Since, under the assumption that Li > σ/(σ−1), Sj(xj ;φj) is decreasing
in φj , we have

Sj(xj ;φj) ≤ Sj(xj ; 0) =
µ

σ − 1
log xj +

µ

σ

xj + Lj

xj

for j ∈ supp(x). It follows that∑
j∈supp(x)

xjSj(xj ;φj) ≤
∑

j∈supp(x)

xjSj(xj ; 0)

=
µ

σ − 1

∑
j∈supp(x)

xj log xj +
µ

σ

1 +
∑

j∈supp(x)

Lj


≤ µ

σ

1 +
∑
j 6=i

Lj

 .

On the other hand,

Si(0;φi) =
µ

σ − 1
log φi +

µ

σ

Li

φi
− µ

σ
Li.

Hence, we have κ′(0) > 0 if

µ

σ − 1
log φi +

µ

σ

Li

φi
− µ

σ
Li >

µ

σ

1 +
∑
j 6=i

Lj

 ,

or
σ

σ − 1
log φi +

Li

φi
> L + 1,

which is true if φi < φ1
i .
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Mäler, K.-G., A. Xepapadeas, and A. de Zeeuw (2003). “The Eco-
nomics of Shallow Lakes,” Environmental and Resource Economics 26, 603-
624.

Martin, P. and C. A. Rogers (1995). “Trade Effects of Regional Aid,”
in R. E. Baldwin, P. Haapararanta, and J. Kiander, eds., Expanding Mem-
bership of the European Union, Cambridge University Press, Cambridge.

Matsui, A. (1992). “Best Response Dynamics and Socially Stable Strate-
gies,” Journal of Economic Theory 57, 343-362.

Matsui, A. and K. Matsuyama (1995). “An Approach to Equilibrium
Selection,” Journal of Economic Theory 65, 415-434.

Matsui, A. and D. Oyama (2006). “Rationalizable Foresight Dynamics,”
Games and Economic Behavior 56, 299-322.

Matsuyama, K. (1991). “Increasing Returns, Industrialization, and In-
determinacy of Equilibrium,” Quarterly Journal of Economics 106, 617-650.

Matsuyama, K. (1992a). “A Simple Model of Sectoral Adjustment,” Re-
view of Economic Studies 59, 375-388.

Matsuyama, K. (1992b). “The Market Size, Entrepreneurship, and the Big
Push,” Journal of the Japanese and International Economies 6, 347-364.

Matsuyama, K. and T. Takahashi (1998). “Self-Defeating Regional Con-
centration,” Review of Economic Studies 65, 211-234.

Melitz, M. J. (2003). “The Impact of Trade on Intra-Industry Realloca-
tions and Aggregate Industry Productivity,” Econometrica 71, 1695-1725.

44



Miao, J. (2005). “Optimal Capital Structure and Industry Dynamics,”
Journal of Finance 60, 2621-2659.

Monderer, D. and L. Shapley (1996). “Potential Games,” Games and
Economic Behavior 14, 124-143.

Mossay, P. (2006). “A Theory of Rational Spatial Agglomerations,”
mimeo.

Mussa, M. (1978). “Dynamic Adjustment in the Heckscher-Ohlin-
Samuelson Model,” Journal of Political Economy 86, 775-791.

Nash, J. F. (1950). “Equilibrium Points in n-Person Games,” Proceedings
of the National Academy of Sciences of the United States of America 36,
48-49.

Negishi, T. (1960). “Welfare Economics and Existence of an Equilibrium
for a Competitive Economy,” Metroeconomica 12, 92-97.

Ottaviano, G. I. P. (2001). “Monopolistic Competition, Trade, and En-
dogenous Spatial Fluctuations,” Regional Science and Urban Economics 31,
51-77.

Oyama, D. (2002). “p-Dominance and Equilibrium Selection under Perfect
Foresight Dynamics,” Journal of Economic Theory 107, 288-310.

Oyama, D. (2009). “History versus Expectations in Economic Geography
Reconsidered,” Journal of Economic Dynamics and Control 33, 394-408.

Oyama, D., S. Takahashi, and J. Hofbauer (2008). “Monotone Meth-
ods for Equilibrium Selection under Perfect Foresight Dynamics,” Theoret-
ical Economics 3, 155-192.

Oyama, D. and O. Tercieux (2009). “Iterated Potential and Robustness
of Equilibria,” forthcoming in Journal of Economic Theory.
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