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Hierarchical Bayes Prediction for the 2008 US Presidential Election 

 

 
                                  Pankaj Sinha1 and Ashok K. Bansal2  

 
                                                  

                                                                   Abstract     
 

In this paper a procedure is developed to derive the predictive density function of a future 

observation for prediction in a multiple regression model under hierarchical priors for the vector 

parameter. The derived predictive density function is applied for prediction in a multiple 

regression model given in Fair (2002) to study the effect of fluctuations in economic variables on 

voting behavior in U.S. presidential election. Numerical illustrations suggest that the predictive 

performance of Fair’s model is good under hierarchical Bayes setup, except for the 1992 

election. Fair’s model under hierarchical Bayes setup indicates that the forthcoming 2008 US 

presidential election is likely to be a very close election slightly tilted towards Republicans. It is 

likely that republicans will get 50.90% vote with probability for win 0.550 in 2008 US 

Presidential Election. 
  

 

1. Introduction 
 

 

   Consider a prediction problem where the outcomes 1 2, ,..., nx x x  of informative 

experiments are independent with probability density function )|( iixf θ , 1, 2,...,i n= . The 

outcome 1+nx  of a future independent experiment has p.d.f. )|( 11 ++ nnxf θ , the parameter 

1+nθ has same parameter space Θ  as that of iθ  ( ni ,...,2,1= ). Our objective is to derive the 

predictive density function of 1+nx , given the outcomes 1 2, ,..., nx x x  of informative experiments 

for prediction in a multiple regression model. One approach to deal with this prediction problem 

is to employ hierarchical priors in a Bayesian framework. Hierarchical priors are used when the 

parameter θ
ɶ
 is a vector ( 1 2, ,..., nθ θ θ ) and it is assumed that iθ  ( ni ,...,2,1= ) are distributed 

independently with common prior distribution )|( λθ ig  and a second stage prior distribution 

( )g λ  is placed on it, i.e., on λ . 

A hierarchical Bayesian regression model has been found useful in the area of applied 

econometrics and statistics. Lindley & Smith (1972) initially developed the general Bayesian 

linear model, which is also known as (linear) hierarchical model. Polasek (1984) developed an 

empirical Bayes estimation of a 2-stage hierarchical model. Polasek & Potzelberger (1988) 

carried out robust Bayesian analysis with a hierarchical time series model using Austrian 

economic data. Berger and Berliner (1986) used ε − contaminated class of priors to represent the 

uncertainty both in )|( λθ ig  and ( )g λ to investigate the robustness with respect to hierarchical 

priors. Aitchison & Dunsmore (1975) illustrates the wide applicability of Bayes predictive 

approach.              
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 In section 2, we demonstrate the standard Bayesian method to find the predictive density 

function of a future observation 1+nx , given the outcomes of an informative experiment, under 

hierarchical priors.  In section 3, the derived predictive density function is modified for the 

purpose of prediction in a multiple regression model, assuming that iθ 's are independent and 

their prior distributions are described in two stages. The expressions for one period forward 

forecast and predictive interval are obtained in sections 4 and 5. 

           In section 6, to demonstrate the hierarchical Bayes approach to forecast the 2008 US 

presidential election, the derived results are applied to the multiple regression model and data 

given in Fair (2002) for studying the effect of fluctuations in economic variables on voting 

behavior in U.S. presidential election.  Fair (1978) examined the economic determinants of the 

presidential popular vote. Fair's model has contributed significantly to research into presidential 

election. The more recent works in the area are found in Berry and Harpham (1996), Erikson and 

Wlezien (1996), Hibbs (2000) and Fair (2004). Gleisner (1992, 2005) critically examines the 

Fair’s model.   

 We denote density function (.)g  on parameter space Θ (i.e., prior as well as posterior), 

density function (.)f  on the sample observations and (.)p  as predictive density function to 

simplify the notations. 

 

                      

                                  2. Prediction Under Hierarchical Priors 
 

Let nxxx ,....,, 21  be independent observations from )|( iixf θ , ni ,...,2,1= , where iθ ’s 

are independent and their prior distribution may be described in two stages. 

 

            Stage1:  iθ ’s are conditionally independently distributed as ( | )ig θ λ  with a common                                

parameter λ ∈  Λ . 

             

            Stage 2: The parameter λ  at stage 1 has a proper prior distribution ( )g λ . 

 

              Let the future observation 1+nx be distributed as )|( 11 ++ nnxf θ  and 1+nθ  has the same 

parameter space Θ  as that of iθ  ( ni ,...,2,1= ). 

The predictive density function of the future observation 1+nx , given x = { nxxx ,....,, 21 }, may 

be obtained as follows:  

 

                          1 1( | ) ( | ) ( | )n np x x p x g x dθ θ θ+ +
−

=

Θ
∫                                                             (2.1) 

where, 

                          1 1 1 1 1( | ) ( | ) ( | )n n n n nP x f x g dθ θ θ θ θ+ + + + +=

Θ
∫                                                (2.2) 

 

                          1 1( | ) ( | ) ( | )n ng g g dθ θ θ λ λ θ λ+ +=

Λ
∫                                                           (2.3) 
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                                                         (2.4)    

 

                             ( | ) ( | , ) ( )g x g x g dθ θ λ λ λ=

Λ
∫                                                                 (2.5) 

and 

                         

                         
( | ) ( | )

( | , )
( | ) ( | )

f x g
g x

f x g d

θ θ λ
θ λ

θ θ λ θ
=

Θ
∫

                                                              (2.6) 

                                  

                                        = 
( | ) ( | )

( | ) ( | )1

1

n
i i i

n

i i i i

f x g

f x g di

i

θ θ λ

θ θ λ θ=
=Θ

∏
∏∫

,                                              (2.7) 

 

since nxxx ,....,, 21  are independent random variables and nθθθ ,,........., 21 are also assumed to 

be independent. 

  

 Example 2.1 

 

             Let nxxx ,....,, 21  be independent observations from nirN i ,......,..2,1),,( =θ , with mean 

iθ  and known common precision r . Let the future observation 1+nx ~ ),( 1 rN n+θ .   Assume that 

iθ ’s are independent and their prior distributions are described in two stages (c.f. Berger (1985).   

 

 Stage 1:  iθ ’s are independent and normally distributed each with mean µ and known  

                   precision τ . We have     

 

                              
2( | ) exp[ ( ) ]

2 2
i ig

τ τ
θ µ θ µ

π
= − −                                                          (2.8)  

 

    Stage 2:  the common parameter µ at stage 1 has a normal prior distribution with mean a  and  

                  precision b ; it is  represented by  

 

                                   
2( ) exp[ ( ) ]

2 2

b b
g aµ µ

π
= − −                                                           (2.9)  
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           Though the MCMC methods freed the analysts from using conjugate prior distributions for 

mathematical convenience, the advantage of conjugate prior is that it treats the prior information 

as if it were a previous sample of the same process. 

              Let us use the fact that the sample mean provides the sufficient statistic for the unknown 

mean of the normal population. 

 

   Let 

                          ∑
=

=
n

i

i
n 1

1
θθ     and      ∑

=

=
n

i

ix
n

x
1

1
, 

we find  

                   
( ) ( | )

( | )

( ) ( | )

g g
g

g g d

µ θ µ
µ θ

µ θ µ µ

=
∞

−∞
∫

 

                           

                                  =   
2'

exp[ ( ) ]
2 2

c
τ τ

µ
π

− −                                                                    (2.10) 

                1( | )ng θ θ+ =  1( | ) ( | )ng g dθ µ µ θ µ+

∞

−∞
∫  

    

                                   = 
2

1

11 )(
2

'
exp[

2

'
cn −− +θ

τ
π
τ

]                                                             (2.11) 

 

               1 1 1 1 1( | ) ( | ) ( | )n n n n np x f x g dθ θ θ θ θ+ + + + +

∞
=

−∞
∫  

 

                                 =  ])(
2

"
exp[

2

" 2

1 cxn −− +

τ
π
τ

                                                               (2.12) 

 

               
( | ) ( | )

( | , )

( | ) ( | )

f x g
g x

f x g d

θ θ µ
θ µ

θ θ µ θ

=
∞

−∞
∫

 

                                  = ])'(
2

)(
exp[

2

)( 2

1µθ
τ

π
τ

−
+

−
+ nrnr

                                              (2.13) 

 

 

                   ( | )g xθ
 

( | , ) ( )g x g dθ µ µ µ
∞

=

−∞
∫
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=  ])(
2

exp[
2

2

1

22 g
ll

−− θ
π

                                                               (2.14) 

Thus the predictive density function of a future observation 1+nx , given x , is given by 

      

               ∫
∞

∞−

= ++ θθξθ dxxpxxp nn )|()|()|( 11  

 

                                   =  ])(
2

exp[
2

2

21

44 gx
ll

n −− +π
  

                                                                                                                                                  (2.15) 

 

Where,  
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τ
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'

)
( 1

2 τ
τgnba

g
+

=  ,   
1

1

'

'
"

τ
τ

τ
+

=
r

r
  ,   

1

1

'
'

τ
ττ

τ =   ,    '1 τττ +=  ,    bn += ττ ' ,                                                                                                                          

 

    and )/()( bnbanc ++= τθτ         

 

        

                     

                          3.  Prediction in the Regression Model 

 
 

Let the informative experiments assume normal regression of endogenous variable x  on 

1m − exogenous variables 2, 3...... mt t t .  

                   1 2 2 ...................i i m mi ix t tβ β β ε= + + + + , ni ,...,2,1=                                   (3.1)   

     

where, each iε ~
2(0,  )N σ  with mean 0 and variance 

2σ  so that  

             βii TxE =)(    

with  1 2 2 3[  ........ ]'    and [1 ...... ]m i i i mi T   t   t tβ β β β= = . 

   

The informative experiments yield observations 1 2 , , ..., nx x x , which are independently 

distributed having normal p.d.f. with respective means nθθθ ,,........., 21  and common   variance 

2σ . Here )(
−

= βθ ii T . 
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               Consider the data set represented by 

 

  T  = 

21 31 1 1

22 32 2

2

2 3

1 ................

1 ................
,

............................ ..

1 ................

m

m 2

nn n mn

  t    t t x

  t   t t x
           X

x  t   t t

   
   
   =
   
   
    

. 

 

 The least square estimate of β  is given by 
1ˆ ( ' ) ' .  T T T Xβ −=  

−
β̂  has a multivariate normal distribution, i.e. 

2 ' 1ˆ ~ ( ,  ( ) )mN T Tβ β σ −

− −
and ˆ

iT β  has a normal 

distribution, i.e., 
2 1ˆ ~ ( ,  ( ' ) )i i i iT N T T T T Tβ β σ −

− −

′ .  

 

Thus ∑
=

n

i

iT
n 1

ˆ1
β

2
' 1 '

2
1 1

1
~ ( ,  ( ) )

n n

i i i

i i

N T T T T T
n n

σ
β −

= =
∑ ∑ . 

 

Note that ∑
=

=
n

i

ix
n

x
1

1
= ∑

=

n

i

iT
n 1

ˆ1
β  is a sufficient statistic for θ   )

1
(

1

∑
=

=
n

i

i
n

θ , where βθ ii T= . 

We have 

2

~ ( , )x N p
n

σ
θ  with mean θ  and variance

2

p
n

σ
, where ∑

=

− ′′=
n

i

ii TTTT
n

p
1

1)(
1

 

The  precision of x is given by 
 

          
2 2

1 1
  where,  and 

( )

n n
kr k r

V x p pσ σ
= = = =   .                                                 

 

Thus     ),(~ krNx θ  with mean θ  and precision kr .                                     

 

Let the outcome 1+nx  of future experiment be also identically distributed with mean  

)( 11
−

++ = βθ nn T and  precision rk1 , i.e.,      

          

            1+nx  = )   ,(~ˆ 111 rkNT nn ++ θβ , where 
1

1

1

11 ))(( −
+

−
+ ′′= nn TTTTk . 
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Therefore, the predictive density function of future observation 1+nx , when the 

hierarchical prior distribution for )(
−

= βθ ii T is given by equations (2.8) and (2.9) and if 
2

1
r

σ
=  

is assumed to be known, may be easily rewritten as 

 

 

                          =+ )|( 1 xxp n  ])(
2

exp[
2

2

21

44 gx
ll

n −− +π
 

                                                                                                                                                 (3.2) 

 Where,                              
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                                       4. One -Period Forward Forecast 
 

     On the basis of observations 1 2 , ,..., nx x x , the one -period forward forecast can be 

expressed as  

 

                                ],.......,|[)1(ˆ
111 xxxxEX nnnn −+=  

 

                                            = 111 )|( ++

∞

∞−
+∫ nnn dxxxpx  

                                            = 2g                                                                                             

where,  

                                                                                                                                                  (4.1) 

'

)
( 1

2 τ
τgkba

g
+

= , 1

kr x n a
g

kr n

τ
τ

+
=

+
,     x  =  ∑

=

n

i

iT
n 1

ˆ1
β , bk += ττ ' , 

p

n
k = , 

β̂  is the least squares estimate of β   and ∑
=

− ′′=
n

i

ii TTTT
n

p
1

1)(
1

.   
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                                                    5. Predictive Interval  
 

            Let us denote                       

         ( )=+1nxφ ]
2

exp[
2

1
2

1+− nx

π
  and   =Φ )(q ∫

∞−
++

q

dxx nn 11 )(φ .                                     (5.1) 

 

Then the probability 1[ | ]nP x q x+ >  is given by            

 1[ | ]nP X q x
−

+ >  =  ∫
∞

++

q

dxxxp nn 11 )|( =  [ )]*(1 qΦ−    ,                       

                                                                                                                                                  (5.2) 

  where ,     )(*
24 gqlq −= .  

               

 

 

                                                         6. Illustration  

Consider the following modified model given by Fair (2002) for studying the influence of 

fluctuations in economic variables on voting behavior in U.S. presidential election.  

1 2 3 4 5 6 7 8( )E Vote Party Duration Person War Growth Inflation Goodnewsβ β β β β β β β= + + + + + + +
                                                                                                                                                   (6.1) 

 The notation for the above regression equation is as follows: 

Vote = Incumbent share of two party vote. Incumbent vote is divided by the Democratic plus 

Republican vote 

Party = 1 if there is a Democratic incumbent at the time of election and –1 if there is a  

   Republican incumbent 

Duration = 0 if the incumbent party has been in power for one term, 1 if the incumbent party has 

been in power for two consecutive terms, 1.25 for three consecutive terms, 1.50 for four 

consecutive terms, and so on. 

Person = 1 if incumbent is running for election and 0 otherwise. 

War = 1 for the elections of 1920, 1944 and 1948, and 0 otherwise. 

Growth = growth rate of real per capita GDP in the first three quarters of the election year (annual 

rate) 

Inflation = absolute value of the growth rate of the GDP deflator in the first 15 quarters of the 

administration (annual rate) except for 1920, 1944, 1948, where the values are zero. 
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Goodnews = number of quarters in the first 15 quarters of the administration in which the growth 

rate of real per capita GDP is greater than 3.2 percent at an annual rate except for 1920, 

1944, and 1948, where the values are zero. 

                        Table 6.4 gives Fair’ s data on quadrennial presidential elections in the United States from   

1916 to 2004. Quarterly data on nominal GDP, real GDP and population are used to construct the 

variables Growth, Inflation and Goodnews. The economic data and formulation   for construction 

of data on the variables are explained in Fair (2002, 2004). 

                        Let us denote the variable Vote by x , and variables Party, Duration, Person. War, Growth, 

Inflation and Goodnews by  2 3 4 5 6 7, , , , ,t t t t t t  and 8t , respectively. Since each election year is 

unique and its result is independent of its previous and next election results, the equation (6.1) can 

be written in the form of equation (3.1) and the results derived in equations (3.2), (4.1) and (5.2) 

can be easily applied for obtaining predictive density function, one period forward forecast and 

probability for win 1[ 50.0 | ]nP x x+ > . We recursively estimate the model and evaluate the out-

of-sample one period ahead probability forecast. 

 The parameters 1 2 8( , , )β β β β ′= … of the model are estimated by the least squares method from 

the data set given in Table 6.4.These estimates are summarized in Table 6.3. 

 The precision r =
2

1

σ
 is assumed to be known, we take 

2

1 8

ˆ

n
r

RSSσ
−

= =  as a true value, where 

RSS = )ˆ()ˆ( ββ TXTX −′− . The estimates of parameters of prior distribution are made on the 

basis of  results of the informative experiments.  We take the first stage prior for the unknown 

mean θ  as ( , ),N µ τ where 
2

1

1

( )
n

i

i

n

x x

τ

=

−
=

−∑
 and n  is the  number of sample observations.  

 The second stage prior on µ  is distributed as ( , )N a b with mean a  and precision b . 

Setting a =  1
ˆ

nT β+  and b = r 1 1

1 1( ( ) )n nT T T T− −
+ +′ ′ , the one period forward forecast values, 

prediction errors and 1[ 50.0 | ]nP x x+ > are summarized in Tables 6.0, 6.1 and 6.2. We find that 

the predictive performance of the model is very good with the above values of the parameters.  

 For the sample period 1916 –2000 ( 22)n = , the root mean square error of one period 

forward forecast is 3.18 and the Theil inequality coefficient is near zero (0.00114). The Theil 

inequality coefficient for all other sample periods (1916-1996 to 1996-1880) is also near zero. 

Root mean square error of one period forward forecast is 3.196 and 3.384 for the sample periods 
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1916-2000 and 1916-1996, respectively. It is below 2.1 for all other sample periods. This 

suggests the predictive performance of the model is good. 

  For the 2000 election using sample observations 1916-1996, the model predicted victory 

for Democratic Party candidate Mr. Al Gore by a narrow margin (50.948) with probability 0.552. 

For the 2004 election using sample observations 1916-2000, it predicted victory for President 

Bush by a fairly comfortable margin (54.463) with probability 0.736. Though President Bush won 

both the elections, the margin in 2000 election was narrow (50.265). The model prediction was  

good for the 1996 election when it predicted victory for President Clinton (52.633) with 

probability 0.646 using sample observations 1916-1992, President Clinton could secure 54.736 

percentage of vote share. The model predictions are also true for the 1988, 1984 and 1980 

elections. The model predicted victory for the incumbent in the 1988 and 1984 elections, with one 

period forward forecasts 51.836 (probability to win 0.596) and 60.223 (probability to win 0.991), 

respectively. Using sample observations 1916-1976, the model predicted defeat of the incumbent 

in the election of 1980 with one period forward forecast 48.672 and probability for victory 0.431. 

The 1992 election is the most problematic election for the model. It predicted 

victory for President Bush (54.042) with a probability 0.707 but he lost to Mr. Clinton 

by a fairly large margin (46.545). Fair (1996) tries to explain this error in prediction.  

 

 2008 US presidential election                                                            
                                     

 Table 6.2 gives the hierarchical Bayes forecast on Fair’s vote model for the 2008 

election. It suggests that the 2008 presidential election is likely to be a close election 

slightly tilted towards the republicans if the GDP, inflation and Goodnews remain at the 

current level (July 2008) of 1.0%, 3.0% and 3 respectively. At this level of GDP and 

inflation, it is likely that republicans will get 50.90% vote with probability for win 0.550.  
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                                                          Table –6.0 

  One Period Forward Hierarchical Bayes Forecast Estimates for Fair’s Vote model   

 

 
 

 

 

Year 

 

Sample 

 

 
   n  
 

 

 

 Forecast 

 

Vote share    

     of 

Incumbent 

      % 

 

Actual  

 

Vote share  

     of 

Incumbent 

        % 

 
Forecast 

Error 

 
. . .r m s   
Error 
 

 

Prob.  for   win* 

 [P 1 50 | ]nx x+ >           

 

2004 

 

 

22 

(1916-2000) 
54.059 

 

 

51.233 2.826 

 

3.187 

 

 

             0.716 

 

2000 

 

 

21 

(1916-1996) 

 

50.948 49.735 

 

1.213 

 

3.271 

 

 

0.552 

 

1996 

 

 

20 

(1916-1992) 

 

52.577 54.736 

 

2.159 

 

3.385 

 

 

0.641 

 

1992 

 

 

19 

(1916-1988) 

 

53.738 46.545 

 

-7.193 

 

2.093 

 

 

0.692 

 

1988 

 

 

18 

(1916-1984) 

 

51.836       53.902 

 

2.066 

 

1.953 

 

 

0.596 

 

1984 

 

 

17 

(1916-1980) 

 

60.228 59.17 

 

-1.057 

 

1.370 

 

 

0.911 

 

1980 

 

 

16 

(1916-1976) 

 

48.672 

 

 

44.697 

 

 

3.975 

 

 

1.321 

 

 

 

0.431 
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                                                                      Table –6.1 

  One Period Forward Hierarchical Bayes Forecast Estimates for Fair’s Vote model   
 

     

 

       Prior Parameters 

 

 

 

 

Year 

 

 

 

Sample 

 

 
   n  
 

 

 

 
   a  

 

 

   b  

 

 
    τ  

 

 

 

  

 
r

2

1

σ̂
=

 

 

 

 

Forecast 
Vote share    

     of 

Incumbent 

      % 

 

 

 

 

Actual 
Vote 

share    

  of 

Incumb-

ent 

      % 

 

Thiel 
Inequali-

ty 

 

Coeff. 

 

 Prob.  for   win 

1[ | 50.0]nP x x+ >
           

         

2004 

 
22 

(1916-

2000) 

58.269 0.427 0.021 0.178 

54.059 

 

 

51.233 0.00114 

 

  

             0.716 

2000 

 
21 

(1916-

1996) 

48.58 0.643 0.0201 0.171  

50.948 49.735 

 

0.00117 

 

0.552 

1996 

 
20 

(1916-

1992) 

53.078 0.343 0.0212 0.161  

52.577 54.736 

 

 

0.00123 

 

0.641 

1992 

 

19 

(1916-

1988) 

55.353 0.525 0.0188 0.370  

53.738 46.545 

 

 

0.00074 

 

0.692 

1988 

 
18 

(1916-

1984) 

51.428 1.342 0.0178 0.400  

51.836 53.902 

 

 

0.00074 

 

0.596 

1984 

 
17 

(1916-

1980) 

 

63.343 1.606 0.0176 0.697  

 

60.228 59.17 

 

 

0.00049 

 

0.911 

1980 

 
16 

(1916-

1976) 

45.685 0.745 0.0177 0.648  

48.672 

 

 

44.697 

 

 

 

0.00046 

 

0.431 
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                                                                Table- 6.2                     

         Hierarchical Bayes Forecast on Fair’s Vote Model for the 2008 Election      

 
 Sample 1916 – 2004                                                                     Number of observations n =  23 
 

 

Prior Parameters 

 

Year 

 

Growth 

 

Inflation 

 

Goodnews 

a  b  τ  

 

r  
 

Forecast 
Vote share    

     of 

Incumbent 

        % 

 

Probability 

for Win 

April 

2007 

 

1.9 

 

3.3 

 

1 46.808 0.428 0.02193 0.155 50.78 0.543 

July 

2008 

 

1.0 

 

3.0 

 

3 48.543 0.682 0.02193 0.155 50.90 0.550 
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                                                   Table –6.3 

   

                   Least Squares Estimates of Fair’s Vote Model 
 

                 
 

 

constant 

 

 

 

 

Party 

 

Duration 

 

Person 

 

War 

 

Growth 

 

Inflati-

on 

 

Good 

News 

 
 

Election  

 

  Year 

 

Sample 

 

 
   n  
 

 1β̂  2β̂  3β̂  4β̂  5β̂  6β̂  7β̂  8β̂  

2008 

 
23 

(1916-2004) 
47.264 

 

-2.676 
-3.330  3.296 

 

5.614 

 

0.680 

 

-0.657 
 

1.075 
 

2004 

 

 

22 

(1916-2000) 
49.608 

 

 

-2.713 
-3.628 3.251 

 

 

3.855 

 

 

0.691 

 

 

-0.775 

 

 

0.837 
 

2000 

 

 

21 

(1916-1996) 

 

 

49.405 
-2.808 -3.641 3.451 

 

 

4.043 

 

 

0.697 

 

 

-0.763 

 

 

0.827 
 

1996 

 

 

20 

(1916-1992) 

 

 

48.594 -2.914 -3.420 3.441 

 

 

4.699 

 

 

0.703 

 

 

-0.714 

 

 

0.896 

 

1992 

 

 

19 

(1916-1988) 

 

 

49.543 -3.251 -2.104 5.319 

 

 

1.238 

 

 

0.738 

 

 

-0.866 

 

 

0.558 

 

1988 

 

 

18 

(1916-1984) 

 

 

48.843 
-3.139 -2.164 5.520 

 

 

1.754 

 

 

0.728 

 

 

-0.837 

 

 

0.619 
 

1984 

 

 

17 

(1916-1980) 

 

 

47.616 
-3.463 -2.255 5.618 

 

 

3.409 

 

 

0.768 

 

 

-0.708 

 

 

0.764 
 

1980 

 

16 

(1916-1976) 

47.645 -3.354 -2.357 5.585 

 

 

3.412 

 

 

0.762 

 

 

-0.662 

 

 

0.759 
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                                                       TABLE- 6.4                   

 

 Fair (2002) Data on U.S. Presidential Elections, 1916-2000 

 

 

Year 

 

Vote 

 

Party 

 

Duration 

 

Person 

 

War 

 

Growth 

 

Inflation 

 

Good news 

 

1916 

 

51.682 

 

1 0.00 1 0 2.229 4.252 3 

1920 36.119 

 

1 1.00 0 1 -11.463 0.000 0 

1924 58.244 

 

-1 0.00 1 0 -3.872 5.161 10 

1928 

 

58.820 -1 1.00 0 0 4.623 0.183 7 

1932 

 

40.841 -1 1.25 1 0 -14.557 7.160 4 

1936 

 

62.458 1 0.00 1 0 11.677 2.454 9 

1940 

 

54.999 1 1.00 1 0 3.611 0.055 8 

1944 

 

53.774 1 1.25 1 1 4.433 0.000 0 

1948 

 

52.370 1 1.50 1 1 2.858 0.000 0 

1952 

 

44.595 1 1.75 0 0 0.840 2.316 6 

1956 57.764 -1 0.00 1 0 -1.394 1.930 5 

1960 

 

49.913 -1 1.00 0 0 0.417 1.963 5 

1964 

 

61.344 1 0.00 1 0 5.109 1.267 10 

1968 

 

49.596 1 1.00 0 0 5.070 3.156 7 

1972 

 

61.789 -1 0.00 1 0 6.125 4.813 4 

1976 

 

48.948 -1 1.00 0 0 4.026 7.579 4 

1980 

 

44.697 1 0.00 1 0 -3.594 7.926 5 

1984 

 

59.170 -1 0.00 1 0 5.568 5.286 8 

1988 

 

53.902 -1 1.00 0 0 2.261 3.001 4 

1992 

 

46.545 -1 1.25 1 0 2.223 3.333 2 

1996 

 

54.736 1 0.00 1 0 2.712 2.146 4 

2000 

 

50.265 1 1.00 0 0 1.603 1.679 7 
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                                                           TABLE- 6.5             

                   Fair (2007) Revised Data on U.S. Presidential Elections, 1916-2004 

 

Year 

 

Vote 

 

Party 

 

Duration 

 

Person 

 

War 

 

Growth 

 

Inflation 

 

Good news 

 

1916 

 

51.682 

 

1 0.00 1 0 2.229 4.252 3 

1920 36.119 

 

1 1.00 0 1 -11.463 0.000 0 

1924 58.244 

 

-1 0.00 1 0 -3.872 5.161 10 

1928 

 

58.820 -1 1.00 0 0 4.623 0.183 7 

1932 

 

40.841 -1 1.25 1 0 -14.499 7.200 4 

1936 

 

62.458 1 0.00 1 0 11.765 2.497 9 

1940 

 

54.999 1 1.00 1 0 3.902 0.081 8 

1944 

 

53.774 1 1.25 1 1 4.279 0.000 0 

1948 

 

52.370 1 1.50 1 1 2.579 0.000 0 

1952 

 

44.595 1 1.75 0 0 0.691 2.362 7 

1956 57.764 -1 0.00 1 0 -1.451 1.935 5 

1960 

 

49.913 -1 1.00 0 0 0.377 1.967 5 

1964 

 

61.344 1 0.00 1 0 5.109 1.260 10 

1968 

 

49.596 1 1.00 0 0 5.043 3.139 7 

1972 

 

61.789 -1 0.00 1 0 5.914 4.815 4 

1976 

 

48.948 -1 1.00 0 0 3.751 7.630 5 

1980 

 

44.697 1 0.00 1 0 -3.597 7.831 5 

1984 

 

59.170 -1 0.00 1 0 5.440 5.259 8 

1988 

 

53.902 -1 1.00 0 0 2.178 2.906 4 

1992 

 

46.545 -1 1.25 1 0 2.662 3.280 2 

1996 

 

54.736 1 0.00 1 0 3.121 2.062 4 

2000 

 

50.265 1 1.00 0 0 1.219 1.605 8 

2004   51.233 -1 0.0 1 0 2.690 2.325 1 

Jan2007 -- -1 1.0 0 0 1.7 3.4 1 

April 

2007 

--- -1 1.0 0 0 1.9 3.3 1 

July 

2008 

 -1 1.0 0 0 1.0 3.0 3 
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