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Abstract

This paper reconsiders the nature of the trends (i.e. deterministic or stochastic)

in macroeconomic time series. For this purpose, the paper employs two new tests

that display robustness to structural breaks of unknown forms, irrespective of the date

and/or location of the breaks. These tests approximate structural changes as smooth

processes via Flexible Fourier transforms. The tests deliver strong evidence in favor of

a nonlinear deterministic trend for real GNP, real per capita GNP, employment, the

unemployment rate, and stock prices. Further, the two tests confirm the existence of

stochastic trends in nominal GNP, consumer prices, real wages, monetary aggregates,

velocity, and bond yields. In general, it appears that real variables are stationary while

nominal ones have a unit root.
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1 Introduction

One of the most studied and questioned topics in the applied unit root literature is whether

macroeconomic time series, in particular those considered by Nelson and Plosser (1982),

are random walks or stationary processes around a level or a trend. The issue of stochastic

versus deterministic trends in time series models has important practical policy consider-

ations.

The Nelson and Plosser (1982) article has generated a significant amount of literature as

reflected by the numerous unit root and stationarity tests developed1. Until the empirical

work of Nelson and Plosser (1982) (i.e., abbreviated as NP), the general view was that

macroeconomic time series were stationary around either a deterministic trend or level (see

Kydland and Prescott (1980); Blanchard (1981); Barro (1976)). However, using the unit

root tests of Dickey and Fuller (1979) and Dickey and Fuller (1981) (abbreviated as DF and

ADF), Nelson and Plosser (1982) find that with one exception (i.e., the unemployment

rate) all historical time series have a unit root. This finding supports the real business

cycle hypothesis and goes against the deterministic approach which separates business

cycles from trend growth (see Rudebusch (1993)). The paper of Nelson and Plosser (1982)

initiated a long debate, with subsequent research both partially confirming and challenging

its findings. I attempt only a partial and brief review of this literature.

Phillips and Perron (1988) depart from the standard Dickey-Fuller assumptions (i.e.

Dickey and Fuller (1979)) of independently and identically distributed (i.i.d.) errors and

in a non-parametric fashion develop new unit root tests (abbreviated as PP tests) that are

robust to heterogeneity and serial correlations in errors. However, both ADF and PP tests

have the same limiting distribution and thus lead to the same qualitative results. Departing

1A test with the null of I(0) will be called a stationarity test, and as usual a test with the null of I(1) is
called a unit root test
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from the world of DF-type tests, Sargan and Bhargava (1983) and Bhargava (1986) suggest

tests in the Durbin-Watson framework. Further, based on one of Bhargava’s statistics,

Schmidt and Phillips (1992) derive a Lagrange Multiplier test or score test (abbreviated

as LM) which they argue is more powerful than the DF-type tests.

The stationarity test of Kwaitowski et al. (1992) (i.e. KPSS for short) applies the LM

principle to a general error process similar to the one in the PP-type tests. Their model

has the following representation:

yt = ξt + rt + εt (1)

where rt is a random walk:

rt = rt−1 + ut (2)

and ut is iid (0,σ2
u). The null hypothesis of stationarity is stated as σ2

u = 0. Kwaitowski et al.

(1992) apply their test to NP data and find support for the trend stationarity hypothesis for

six series (i.e., real per capita GNP, employment, the unemployment rate, the GNP defla-

tor, wages, and the monetary aggregates). Using a similar set-up, Leybourne and McCabe

(1994) modify the KPSS test to form a stationarity test in the DF-type framework.

Leybourne and McCabe (1994) use the data set from Schwert (1987)2 and in contrast

to Kwaitowski et al. (1992), they find that monetary base, CPI, and wages clearly have a

unit root. Kwaitowski et al. (1992) also compare their findings with the results from the

ADF/PP unit root tests to perform a so-called confirmatory analysis. They conclude that

the unemployment rate is stationary while CPI, real wages, velocity, and stock prices have

2The data in Schwert (1987) contains the following series: monetary base, bond yields, consumer prices,
producer prices,wages, civilian population,labor force, employment, the unemployment rate, industrial pro-
duction, price/earnings ratio, dividend yield for the S&P composite portfolio, volatility of stock returns,
price deflator, GNP, and real GNP. These are either monthly or quarterly and start from 1947 to 1954 and
end in 1985
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a unit root. However, they find less evidence in favor of a unit root in real GNP, nominal

GNP, and the interest rate. Finally, for real per capita GNP, industrial production, em-

ployment, GNP deflator, wages, and monetary aggregates they conclude the evidence is

mixed. It is not possible to reject either the unit root or the trend stationarity hypothesis

for these series.

Another line of research approaches the issue from a Bayesian perspective. In this

regard, it appears that the results concerning the stationarity of NP data differ with the

choice of the prior distribution. Following Sims (1988), DeJong and Whiteman (1991) use

a flat prior and based on the estimated posterior probabilities of the dominant root they

find evidence of a unit root only for bond yields, for velocity, and, marginally, for consumer

prices. However, Phillips (1991) argues that these results are driven by the use of the

flat prior, which he argues is not a satisfactory representation of ”uninformativeness”.

He suggests an ignorance prior (i.e. Jeffrey’s prior), that when applied to the NP data

reverses the findings of DeJong and Whiteman (1991). Subsequent research has confirmed

the importance of the choice for the form of the prior distribution (see DeJong (1992);

Zivot and Phillips (1994)).

However, as Perron (1989) points out, all these tests can be misleading if one does

not account for the possibility of structural breaks in the time trend or level. His seminal

paper led to a new area of research which seeks to develop unit root tests that are robust

to structural breaks and outliers in the data. Perron (1989) shows that if one is willing

to assume an exogenous break3 in 1929, then for eleven of the initial fourteen series of

Nelson and Plosser (1982), the unit root hypothesis can be rejected at a high significance

level. However, Christiano (1992) argues that when the break is allowed to be endogenous,

then the evidence against unit roots diminishes significantly. Similarly, using a sequential

3He also considers an exogenous break for postwar quarterly GNP series in 1973 due to the first oil price
shock
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test with a single unknown break Zivot and Andrews (1992) fail to reject the null of unit

root for four of the ten series which Perron (1989) finds to be I(0) (i.e., real per capita GNP,

GNP deflator, money stock, and real wages). Also, for the original Nelson and Plosser

(1982) data set, Stock (1994) finds more support for the I(1) than the I(0) hypothesis in

a Bayesian framework with both linear detrending and piecewise linear detrending.

This discussion makes clear the importance of properly modeling structural breaks

in testing for unit roots. This poses a serious problem for applied economists since the

number, duration, and form of structural breaks may not be known. Moreover, detecting

the number and locations of the break(s) may in turn cause an unknown pre-testing bias

(Maddala and Kim (1998)). A complicating factor is that a break occurring in a given

year need not manifest itself contemporaneously. Even major breaks, such as the Great

Depression of 1929 and the oil price shocks of the 1970s, did not display their full impacts

immediately. These arguments motivate the use of a recently developed set of unit root

and stationarity tests that avoid this problem. Enders and Lee (2006) and Becker et al.

(2006) (for short, EL and BEL respectively) develop tests which model any structural

break of an unknown form as a smooth process via means of Flexible Fourier transforms

(i.e., an expansion of a periodic function in terms of an infinite sum of sines and cosines).

Several authors, including Gallant (1981), Becker et al. (2004), and Enders and Lee (2006),

show that a Fourier approximation can often capture the behavior of an unknown function

even if the function itself is not periodic. The authors argue that their testing framework

requires only the specification of the proper frequency in the estimating equations. By

reducing the number of estimated parameters, they ensure the tests have good size and

power irrespective of the time or shape of the break. Moreover, they increase the tests’

power by adopting the LM principle instead of the DF-type approach. EL and BEL will

be discussed in more detail in the following section.
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This paper reconsiders the nature of the trends in the NP time series using both the

EL and BEL tests. They are applied both to the original and to an extended version of

the NP data set. Thus, my analysis is of a ”confirmatory” type. Several issues should

be kept in mind. To begin with, a valid confirmatory analysis should not simultaneously

reject or accept the respective nulls. Also, according to the Amano and van Norden (1992)

Monte Carlo study, a joint-testing approach is most useful when both tests suggest that

the data is stationary or has a unit root for small samples with a large truncation lag.

According to Burke (1994), if the true model has a unit root, then the proportion of

correct confirmations is high, whereas when the true model is stationary, the proportion is

low. Finally, following Burke (1994), a confirmatory analysis favors the 10% significance

level over the 5% significance level.

The results for the extended NP data set suggest a high confirmatory power. Thus, both

the EL and the BEL tests confirm the stationarity hypothesis for real GNP, real per capita

GNP, employment, the unemployment rate, and, surprisingly, stock prices. I find six more

series to be I(1): nominal GNP, CPI, real wages, monetary aggregates, velocity, and bond

yields. Uncertainty regarding the type of integration persists only for industrial production,

GNP deflator, and wages. However, both the GNP deflator and wages seem closer to

having a unit root than being stationary. The only ambiguous result concerns industrial

production, where both the null of I(0) and I(1) are strongly rejected. For robustness

checks, I apply the tests to the original NP data set as well. In this case, the findings suggest

that only the unemployment rate and the monetary aggregates are stationary. Although

the evidence is mixed, it suggests that real GNP, real per capita GNP, employment, and real

wages are closer to having a deterministic trend. Excluding employment, the stationarity

test suggests these series are I(0). Also, the unit root statistics for these series are close to

being significant at the 10% level. Thus, this evidence favors the hypothesis of deterministic
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trends. For employment, the EL unit root test suggests the trend is deterministic, while

the BEL stationarity test only marginally rejects this conclusion. The rest of the variables

(i.e., nominal GNP, GNP deflator, CPI, wages, velocity, bond yields, and stock prices) are

confirmed to have a unit root. The emerging picture is that real and workforce variables

have deterministic trends while nominal variables have stochastic trends. Most likely, only

real wages represent an exception to this rule. Compared to previous studies, there is a

significant increase in confirmatory power.

The paper is structured as follows: section 2 discusses in more detail the performance

of the Fourier series to approximate various types of structural breaks; section 3 introduces

the EL and BEL tests; section 4 discusses the empirical results and section 5 concludes.

2 Nonlinear Trend Approximation with Fourier Transforms

As discussed, traditional unit root tests lose power if structural breaks are ignored in unit

root testing. The general method to account for breaks is to approximate them using

dummy variables. However, this approach has several undesirable consequences. First, one

has to know the exact number and location of the breaks. These are not usually known

and therefore need to be estimated. This in turn introduces an undesirable pre-selection

bias (see Maddala and Kim (1998)). Second, current available tests account only for one

to two breaks. Third, the use of dummies suggests sharp and sudden changes in the trend

or level. However, for low frequency data it is more likely that structural changes take

the form of large swings which cannot be captured well using only dummies. Therefore,

a complicating factor is that a break occurring in a given year need not manifest itself

contemporaneously. Even major breaks, such as the Great Depression of 1929 and the oil

price shocks of the 1970s, did not display their full impacts immediately. Breaks should

therefore be approximated as smooth and gradual processes (see Leybourne et al. (1998)
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and Kapetianos et al. (2003)).

Both EL and BEL tests implement a variant of the Flexible Fourier transform (i.e.,

Gallant (1981)) to control for the unknown nature of the breaks. Fourier series are able

to capture the essential characteristics of one or more structural breaks by using only a

small number of low frequency components. This is true because a break tends to shift

the spectral density function towards frequency zero. The ability of the Fourier series to

capture nonlinear trends is illustrated below.

In a simple Dickey-Fuller setting, one can allow the intercept α(t) to be a deterministic

function of time:

yt = α(t) + βyt−1 + γt + εt (3)

where the drift term is written as:

α(t) = α0 +

n∑

k=1

αk sin (2Πkt/T ) +

n∑

k=1

βk cos (2Πkt/T ) ;n ≤ T/2 (4)

In the above formulation, εt is a stationary disturbance term with variance σ2
ε , n is the

maximum number of frequencies, k is a particular frequency and T is the total number

of observations. The drift term represents the Fourier approximation written as a deter-

ministic function of the sine and cosine terms. Note that by imposing αk = βk = 0 one

gets the standard DF specification. In contrast to other possible series expansions (e.g.,

Taylor series), the Fourier expansion has the advantage of acting as a global approximation

(see Gallant (1981)). This property is preserved even if one specifies a small number of

frequencies. In fact, Enders and Lee (2006) argue that a large value of n in a regression

framework uses a lot of the degrees of freedom and leads to an over-fitting problem.

To illustrate the approximation properties of a Fourier series, I consider first a single
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frequency in the Data Generating Process (DGP):

α(t) = α0 + αk sin (2Πkt/T ) + βk cos (2Πkt/T ) ; (5)

where k is the single frequency selected in the approximation, and αk and βk represent the

magnitudes of the sinusoidal terms.

I generate series with breaks similar to the ones employed in Becker et al. (2004) and

Clements and Hendry (1999). Thus, for T = 500, I simulate one break, two breaks and

trend breaks both in the middle and towards the extremes. Cases for temporary, permanent

and reinforcing breaks are considered. The appendix displays the results in panels 1 through

9. As in Enders and Lee (2006), Panels 1 and 2 display approximations for breaks towards

the end of a series. In panel 3, the series has a temporary, though long-lasting break. Panels

4 and 5 display permanent breaks in opposite directions, while in Panel 6 the breaks are

in the same direction. Finally, Panels 7-9 depict breaks in the intercept and slope of a

trending series. I estimate the coefficients of the sinusoidal terms by performing a simple

regression of yt on α(t) and a time trend.

Just from a simple inspection of the graphs, several assessments can be made. First,

a single frequency k = 1 or two cumulative ones n = 2 can approximate a large variety

of breaks. Second, the Fourier transform approximates accurately, even when the breaks

are asymmetric (see Panels 1 and 2). Third, a Fourier series works best when the break

is smooth over time, which means it may not be suited for abrupt and sharp breaks of

short duration (see Panel 5). An additional frequency of k = 2 can improve the fit in these

circumstances. Further discussion of the properties of the Fourier approximation is given

by Enders and Lee (2006) and Becker et al. (2006). Next we review the Enders and Lee

(2006) unit root test.

9



3 The Models

3.1 The Flexible Fourier Unit Root Test

Throughout the paper, I shall call the EL test the Flexible Fourier Unit Root test. As

argued, in this framework one does not need to worry about the dates or number of breaks,

but only about the proper specification of the best fitting frequency. Consequently, the

smaller number of estimated parameters insures a more parsimonious representation.

Enders and Lee (2006) develop their unit root test using the LM principle. As men-

tioned, the LM has increased power over the DF approach. They assume that the data-

generating process (DGP ) has the following form:

yt = α0 + γt + αk sin (2Πkt/T ) + βk cos (2Πkt/T ) + ǫt; k ≤ T/2 (6)

ǫt = βǫt−1 + εt (7)

Under the null of a unit root β = 1, while under the alternative hypothesis β < 1. EL

employ the LM methodology of Schmidt and Phillips (1992) and Amsler and Lee (1995)

by imposing the null restriction and estimating the following regression in first differences:

△yt = δ0 + δ1∆ sin (2Πkt/T ) + δ2∆ sin (2Πkt/T ) + νt (8)

The estimated coefficients δ̃0, δ̃1 and δ̃2 are then used to construct the following detrended

series:

S̃t = yt − ϕ̃ − δ̃0t − δ̃1 sin (2Πkt/T ) − δ̃2 cos (2Πkt/T ) , t = 2, T (9)
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where ϕ̃ = y1 − δ̃0 − δ̃1 sin (2Πkt/T )− δ̃2 cos (2Πkt/T ), and y1 is the first observation of yt.

The testing regression based on the detrended series has the following expression:

∆yt = θS̃t−1 + d0 + d1∆ sin (2Πkt/T ) + d2∆ cos (2Πkt/T ) + εt (10)

If yt has a unit root then θ = 0 and the LM test statistic (denoted τLM ) is the t-test for the

null hypothesis of θ = 0. The innovation process εt is assumed to satisfy Phillips and Perron

(1988)’s serial correlation and heterogeneity conditions. They augment equation (10) with

lagged values of △S̃t−j, j = 1, . . . p to get rid of the remaining serial correlation (see also

Ng and Perron (1995)). Enders and Lee (2006) derive the properties of the asymptotic

distribution of the τLM statistic and demonstrate that it depends only on the frequency k

and is invariant to all other parameters in the DGP.

It has been shown that a single frequency can mimic a wide variety of breaks. However,

when a researcher does not know the correct frequency to use, the solution is to employ

cumulative frequencies to estimate the unknown functional form. Therefore, they provide

critical values for up to five cumulative frequencies. Also, in applied work the sine and

cosine terms should both be included; otherwise the test diverges under the null (see

Enders and Lee (2006)).

The Monte Carlo simulations of Enders and Lee (2006) show that ignoring the possi-

bility of nonlinear breaks in the linear LM test creates serious size distortions when β = 1,

regardless of the magnitudes of αk and βk, sample size and the frequency in the DGP (see

EL, Table 5). Additionally, when dummies similar to those of Perron (1997)’s endogenous-

break tests are used, the fit is very poor if the DGP contains a nonlinear Fourier function.

The outcome has poor size and power properties (Table 6 in EL). Moreover, an endogenous-

break unit root test that is designed to approximate sudden sharp breaks does not perform

substantially better than the Flexible Fourier unit root test in these cases (see Table 8 in
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EL). Overall, Monte Carlo experiments indicate that the Enders and Lee (2006) unit root

test is excellent for various types of breaks with good size and power in large samples.

However, for small samples with values of n greater than two the power of the test is poor.

As a rule, they indicate that for small samples one should use k = 1, while for larger

samples one should use n = 2.

3.2 The Flexible Fourier Stationarity Test

To perform a so-called confirmatory analysis, I also use the stationarity test of Becker et al.

(2006). For ease of reference I will call it the Flexible Fourier stationarity test. The test

in Becker et al. (2006) uses a modified version of the KPSS framework to accommodate

nonlinear breaks, under both the null and the alternative. The Fourier series properties

regarding the specification, number, and shape of breaks outlined for the EL test are valid

in this case as well. The BEL test works best in the presence of breaks that are gradual

and has good power to detect u-shaped and smooth breaks.

The DGP considered has the following form:

yt = α0 + γt + αk sin (2Πkt/T ) + βk cos (2Πkt/T ) + ηt + ξt (11)

where the ηt process is described as:

ηt = ηt−1 + εt (12)

where ξt is assumed to be stationary. The error process εt is assumed to be i.i.d. and

have a variance σ2
η. Under the null of stationarity σ2

η = 0 and the process described by

equations (11) and (12) is stationary. Similar to the EL test, the asymptotic properties

of the Flexible Fourier stationarity test are invariant to the values of γ, αk and βk. As
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the DGP in (11) nests the one used to generate the common KPSS test, the BEL test

statistic needs only a slight modification of the KPSS statistic. First, one needs to obtain

the residuals from the following equations:

yt = α0 + α1 sin (2Πkt/T ) + α2 cos (2Πkt/T ) + νt (13)

and

yt = α0 + γt + α1 sin (2Πkt/T ) + α2 cos (2Πkt/T ) + νt (14)

Equation (13) tests the null of level stationarity while equation (14) tests the null of trend

stationarity. The test statistic is given by:

ττ (k) =
1

T 2

∑T
t=1 S̃t(k)2

σ̃2
(15)

where S̃t(k) =
∑t

j=1 ν̃j and ν̃j are the OLS residuals from regressions (13) and (14),

respectively.

As in the KPSS framework and following the PP-type approach, Becker et al. (2006)

suggest that a nonparametric estimate of σ2 be obtained by choosing a truncation lag

parameter l and a set of weights ωj, j = 1, l:

σ2 = α̃0 + 2

l∑

j=1

ωjα̃j (16)

where α̃j is the jth sample autocovariance of the residuals ν̃t from equations (13) and (14),

respectively. Becker et al. (2006) suggest that the frequencies in (13) and (14) should

be obtained via the minimization of the sum of squared residuals. However, their Monte

Carlo experiments suggest that no more than one or two cumulative frequencies should be

used because of the loss of power associated with a larger number of frequencies.
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Becker et al. (2006) checks the small sample performance of their test. They find that

when the coefficients α1 and α2 and/or the sample size is small there is a mild size distortion

causing the procedure to be too conservative. However, they show that for moderate

values of T and/or α1 and α2 the size is relatively good. Becker et al. (2006) note that

regarding the power properties of their test, one potential problem could be the inclusion

of trigonometric functions which can hide the non stationarity of a time series. This results

in a non-rejection of the null. Nevertheless, their Monte Carlo simulations suggest that this

is a rather mild problem (see Table 3 in Becker et al. (2006) for details). Finally, for the

case in which the correct frequency to incorporate in the model is not known, Becker et al.

(2006) suggest the minimization of the residual sum of squares (SSR) approach. This

method has clear advantages over using a fixed value or using two cumulative frequencies,

and it applies to both EL and BEL tests. Therefore, the estimations of this paper use the

data dependent frequency suggested by the SSR minimization.

I apply next the Enders and Lee (2006) and Becker et al. (2006) tests to both the

original and to an extended version of the Nelson and Plosser (1982) data set.

4 Empirical Results

The original macroeconomic time series of Nelson and Plosser (1982) run from 1860 through

1970. The extended data set adds supplemental information through 1988. Given the

longer time period available, one should emphasize the results for this data set. The ad-

ditional use of the original NP data set is for robustness purposes. However, this section

considers first the original and then the extended series.
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4.1 Empirical Estimates for the Original NP Data Set

A grid-search is performed to find the best frequency, as there is no a priori knowledge

concerning the shape of the breaks in the data. I estimate equations (13) and (14) for each

integer k = 1, ...5 following the recommendations of Enders and Lee (2006) that a single

frequency can capture a wide variety of breaks. Following the literature, equation (13) is

employed for the unemployment rate and bond yields, while equation (14) is employed for

the rest of the series, respectively. Table 1 displays the SSRs for each integer frequency

in the interval [1, 5]. A single frequency works best for most series. For employment,

GNP deflator, wages, and monetary aggregates, the SSR minimization criterion suggests

a single frequency of two. Lastly, my findings suggest a single frequency of four for the

unemployment rate.

Next, Table 2 employs the Flexible Fourier stationarity test for each series based on the

estimated frequencies. I follow Burke (1994) and use a 10% significance level. Further, I

choose a lag of eight for the truncation lag. Kwaitowski et al. (1992) choose eight lags for

the original NP data. Also, Becker et al. (2006) choose the same number of truncation lags

in their analysis of the Purchasing Power Parity hypothesis. They use quarterly data from

1973-2004, which amounts to 120 observations and is approximately the same size as the

NP data. Therefore, a choice of eight for the truncation lag seems reasonable. The second

column in Table 2 shows the critical values for each frequency at the 10% level. I find

that the null of trend stationarity cannot be rejected for real GNP, real per capita GNP,

industrial production, real wages, and monetary aggregates. Also, for the unemployment

rate, the null of level stationarity cannot be rejected. Furthermore, I accept the alternative

of a unit root for nominal GNP, GNP deflator, CPI, wages, velocity, bond yields, and stock

prices.

Table 3 displays the results from the EL test. The second column shows the best
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frequency that results from the minimization of SSR. The third column shows the number

of lags of ∆St needed to remove serial correlation in the residuals. In most cases one lag

is sufficient. Fourth column displays the τLM statistic of the Flexible Fourier unit root

test. It is significant for three series: employment, the unemployment rate, and monetary

aggregates. Hence, I reject the null of a unit root for these series. For a single frequency,

the critical value at the 10% level reported by Enders and Lee (2006) is -3.82. For five

series (i.e., real GNP, real per capita GNP, industrial production, real wages, and stock

prices), the test statistic is relatively close to that value. However, the τLM statistic is

much smaller for the rest. In these cases, one cannot reject the null of a unit root. As

Enders and Lee (2006) recommend, I also employ two cumulative frequencies to obtain a

better fit. For most series, an additional lag of ∆St suffices to eliminate residual correlation.

Surprisingly, for stock prices one can now reject the null of a unit root. This confirms that

two cumulative frequencies can better approximate structural breaks. I find again the

unemployment rate stationary around a level.

When results from the two tests are combined, one finds that the stationarity hypothesis

(level and trend) is confirmed for the unemployment rate and the monetary aggregates,

respectively. One confirms the presence of stochastic trends in six series: nominal GNP,

GNP deflator, CPI, wages, velocity, and bond yields. Using just the best single frequency,

stock prices appear to have a stochastic trend as well. However, as shown, the Flexible

Fourier unit root test, contrary to the stationarity test, suggests the trend is deterministic

for stock prices when one uses two cumulative frequencies. Nevertheless, for the extended

sample both tests suggest that stock prices are trend stationary. For the rest (i.e., real

GNP, real per capita GNP, industrial production, employment, and real wages), the results

are not conclusive, although these series appear to be stationary rather than random walks.

Confirmatory power appears much higher for the extended NP data set and given the longer
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time period available I emphasize this next set of results.

4.2 Empirical Estimates for the Extended NP Data Set

I adopt a similar approach for the extended data set. The second column of Table 4 displays

the best fitting frequency which minimizes the sum of squared residuals in equations (13)

and (14). One can note some changes compared to the original sample. A frequency of

1 gives the best fit for most series. The SSR criterion suggests a frequency different from

1 for industrial production (i.e. k̂ = 2), employment (i.e. k̂ = 3), unemployment (i.e.

k̂ = 5), and monetary aggregates (i.e. k̂ = 3). The best fitting frequency increases by

1 for industrial production, employment, unemployment, and monetary aggregates. The

best fitting frequency for GNP deflator and wages decreases by 1. This strengthens the

possibility of structural breaks. Note that the sum of the squared residuals is roughly the

same across the two samples for most series with the exception of bond yields. This is true

for all k integer values in the interval [1,5]. One possible explanation could be the switch

to the Friedman rule as the basis for monetary policy at the end of the 1970’s and the

beginning of the 1980’s.

Table 5 displays the results of the Flexible Fourier stationarity test. As before, a

common value of eight is used for the truncation lag. Real GNP, real per capita GNP,

employment, and the unemployment rate are stationary at the 10% significance level. The

test statistic for GNP deflator, wages, and stock prices is significant up to the second

and third decimals respectively. However, one cannot reject the null of trend stationarity

if one considers all four decimals provided by Becker et al. (2006). The final verdict is

considered after we investigate the results from the EL test. The null of stationarity is

strongly rejected (i.e. at least with 95% confidence) for remaining variables. Note that

there are some changes from the results on the shorter sample. For instance, industrial
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production, real wages, and monetary aggregates now appear to have a unit root. On the

other hand, employment and possibly the GNP deflator, wages, and stock prices appear

stationary. For employment in particular, an increase in the best frequency accompanies

this finding. As already noted, the best fitting frequency decreases both for wages and

GNP deflator, a fact that is generally associated with structural breaks.

Finally, Table 6 shows the estimation results from the EL test. One lag at most is needed

to obtain white noise residuals in the regression equation (10). Column four displays the

derived τLM statistics for the extended sample. These values reject the null of a unit root

for real GNP, real per capita GNP, industrial production, employment, the unemployment

rate, and stock prices while for remaining variables the null cannot be rejected. Hence, the

number of instances we reject the null doubles in contrast to the original sample. Therefore,

the case for deterministic trends in macro series strengthens from the perspective of the

Flexible Fourier unit root test. The number of stationary series reduces to three with

two cumulative frequencies (i.e., industrial production, the unemployment rate, and stock

prices).

Overall, when we combine the output in Tables 5 and 6, we are able to confirm the

stationarity hypothesis for real GNP, real per capita GNP, employment, the unemployment

rate, and stock prices. However, the stationarity test for stock prices validates this con-

clusion only when one accounts for the fourth decimal of the critical value. Nevertheless,

the EL test with both one and two cumulative frequencies brings solid evidence in favor

of stock prices stationarity. Six other series confirm a unit root: nominal GNP, CPI, real

wages, monetary aggregates, velocity, and bond yields. This hypothesis probably holds

true also for the GNP deflator and wages. In these cases, the τLM statistic of the EL test is

much smaller than the corresponding critical value. Using the BEL test up to the second

decimal, one rejects the null of trend stationarity. Industrial production is the only series
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with ambiguous results where both the null of I(0) and the null of I(1) are strongly rejected.

Overall, the evidence suggests that real variables are either level or trend stationary, and

nominal ones have a unit root. The only exception is real wages. Nevertheless, these

results are more conclusive than previous findings in the literature (see Kwaitowski et al.

(1992), Gil-Alana and Robinson (1997)). I confirm the nonstationarity of CPI, monetary

aggregates, velocity, and bond yields and the stationarity of unemployment. Additionally,

using the tests of Enders and Lee (2006) and Becker et al. (2006), we can determine the

nature of nominal and real GNP, real per capita GNP, employment, and stock prices.

5 Conclusion

This paper employs two new sets of unit root and stationarity tests recently introduced

in the literature by Enders and Lee (2006) and Becker et al. (2006). These tests have the

ability to test for unit roots in the presence of various types of smooth structural breaks

with an unknown form. The Flexible Fourier transform introduced by Gallant (1981) cap-

tures the unknown shape of the breaks. The Monte Carlo simulations of Enders and Lee

(2006) and Becker et al. (2006) show that the tests do not suffer from low power and have

good size properties. I apply the tests to both the original and to an extended version of

the Nelson and Plosser (1982) data set. For the original data set, both unemployment and

monetary aggregates appear stationary at the 10% level. Nominal GNP, GNP deflator,

consumer prices, wages, velocity, and bond yields are confirmed to have a unit root; how-

ever, the results for real GNP, real per capita GNP, industrial production, employment,

and real wages are less straightforward. Confirmatory power increases for the extended

data set. Thus, real GNP, real per capita GNP, employment, the unemployment rate, and

stock prices are confirmed to be stationary. I find evidence of stochastic trends in nominal

GNP, consumer prices, real wages, monetary aggregates, velocity, and bond yields. Per-
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haps, the GNP deflator and nominal wages have a unit root as well. Industrial production

is the only contradictory result. In general, real variables have deterministic trends while

nominal ones have stochastic trends.
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6 Appendix

Results for the original NP data set

Table 1: Best frequency selected for each series in the original data set
Series Best frequency Deterministic term SSR♣ at 1 freq. SSR at 2 freq. SSR at 3 freq. SSR at 4 freq. SSR at 5 freq.

Real GNP 1 Trend 0.683 0.906 0.893 0.898 1.028

Nominal GNP 1 Trend 2.610 2.830 3.619 4.202 4.132

Real per capita GNP 1 Trend 0.724 0.790 0.886 0.873 1.016

Industrial Production 1 Trend 2.306 2.867 3.218 3.430 3.432

Employment 2 Trend 0.408 0.352 0.532 0.427 0.538

Unemployment Rate 4 Drift 38.147 30.579 35.855 28.092 38.488

GNP Deflator 2 Trend 1.735 0.875 1.400 1.907 1.904

Consumer Prices 1 Trend 2.944 6.254 7.619 7.023 7.785

Wages 2 Trend 1.916 1.522 1.861 2.475 2.530

Real Wages 1 Trend 0.196 0.420 0.381 0.385 0.382

Monetary Aggregates 2 Trend 2.636 1.890 2.153 2.349 3.013

Velocity 1 Trend 1.341 2.995 3.711 3.710 3.597

Bond Yields 1 Drift 43.934 45.247 62.435 62.813 64.558

Stock Prices 1 Trend 7.916 11.435 14.343 14.954 14.932

♣ Sum of Squared Residuals

Table 2: Results using the Flexible Fourier Stationarity Test (the original data set)
Lag truncation parameter

Series 10% Critical Value 0 1 2 3 4 5 6 7 8

Real GNP 0.0471 0.132 0.073 0.054 0.046 0.043 0.042 0.042 0.043 0.045

Nominal GNP 0.0471 0.256 0.136 0.097 0.079 0.068 0.062 0.058 0.056 0.054∗

Real per capita GNP 0.0471 0.142 0.078 0.058 0.049 0.045 0.044 0.043 0.044 0.046

Industrial Production 0.0471 0.158 0.090 0.068 0.057 0.051 0.048 0.046 0.045 0.044

Employment 0.1034 0.407 0.222 0.163 0.136 0.121 0.113 0.108 0.106 0.105∗

Unemployment Rate 0.3476 0.231 0.137 0.108 0.094 0.085 0.080 0.076 0.072 0.070

GNP Deflator 0.1034 0.485 0.260 0.186 0.151 0.131 0.119 0.112 0.106 0.103∗

Consumer Prices 0.0471 0.353 0.184 0.129 0.102 0.086 0.076 0.068 0.063 0.059∗

Wages 0.1034 0.682 0.365 0.262 0.213 0.185 0.168 0.157 0.149 0.144∗

Real Wages 0.0471 0.101 0.057 0.043 0.038 0.035 0.035 0.036 0.037 0.040

Monetary Aggregates 0.1034 0.350 0.182 0.128 0.102 0.088 0.079 0.074 0.071 0.070

Velocity 0.0471 0.348 0.191 0.139 0.114 0.099 0.089 0.082 0.077 0.072∗

Bond Yields 0.1318 1.988 1.105 0.795 0.639 0.545 0.482 0.436 0.402 0.374∗

Stock Prices 0.0471 0.300 0.164 0.121 0.099 0.088 0.080 0.075 0.070 0.067∗

∗∗ Significance at the 10% level and so we can reject the null of stationarity
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Table 3: Results using the Flexible Fourier Unit Root Test (the original data set)

Series Single Freq. Lags τLM Cumulative Freq. Lags τLM

Real GNP 1 1 -3.62 2 1 -3.86

Nominal GNP 1 1 -2.98 2 1 -4.23

Real per capita GNP 1 1 -3.49 2 1 -3.83

Industrial Production 1 0 -3.65 2 1 -4.51

Employment 2 1 -3.42∗ 2 1 -4.60

Unemployment Rate 4 1 -4.32∗∗ 2 1 -4.63∗

GNP Deflator 2 1 -3.06 2 1 -3.33

Consumer Prices 1 1 -3.08 2 1 -4.11

Wages 2 1 -3.16 2 1 -3.70

Real Wages 1 1 -3.70 2 1 -3.85

Monetary Aggregates 2 1 -3.48∗ 2 1 -3.77

Velocity 1 0 -2.93 2 0 -4.37

Bond Yields 1 0 -2.69 2 0 -2.85

Stock Prices 1 1 -3.55 2 1 -4.77∗

1Critical values using the best single frequency for each series; 2A single frequency of two is used to check
whether results can be improved;
3 Critical value using two cumulative frequencies; ∗ Significance at the 10% level; ∗∗∗ Significance at the 1% level;

Results for the extended NP data set

Table 4: Best frequency selected for each series in the extended data set
Series Best frequency Deterministic term SSR♣ at 1 freq. SSR at 2 freq. SSR at 3 freq. SSR at 4 freq. SSR at 5 freq.

Real GNP 1 Trend 0.716 0.935 0.941 1.020 0.949

Nominal GNP 1 Trend 3.145 6.003 5.889 6.620 7.036

Real per capita GNP 1 Trend 0.793 0.898 0.893 0.992 0.929

Industrial Production 2 Trend 3.017 2.559 3.665 3.537 3.678

Employment 3 Trend 0.422 0.505 0.378 0.553 0.460

Unemployment Rate 5 Drift 39.751 33.040 36.584 35.793 32.262

GNP Deflator 1 Trend 2.166 4.793 3.406 5.107 5.088

Consumer Prices 1 Trend 5.854 14.384 17.664 16.749 17.492

Wages 1 Trend 2.098 3.926 2.520 3.763 3.032

Real Wages 1 Trend 0.275 0.585 0.776 0.721 0.739

Monetary Aggregates 3 Trend 2.772 3.996 2.186 3.742 3.502

Velocity 1 Trend 1.368 6.652 7.086 7.237 7.238

Bond Yields 1 Drift 302.251 423.082 485.564 519.197 530.145

Stock Prices 1 Trend 8.351 19.861 20.895 20.191 21.679

♣ Sum of Squared Residuals
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Table 5: Results using the Flexible Fourier Stationarity Test (the extended data set)
Lag truncation parameter

Series 10% Critical Value 0 1 2 3 4 5 6 7 8

Real GNP 0.0471 0.117 0.065 0.048 0.041 0.038 0.036 0.036 0.037 0.038

Nominal GNP 0.0471 0.252 0.132 0.093 0.075 0.064 0.057 0.053 0.050 0.048∗∗

Real per capita GNP 0.0471 0.153 0.083 0.062 0.052 0.047 0.045 0.044 0.043 0.044

Industrial Production 0.1034 0.577 0.327 0.244 0.204 0.182 0.169 0.161 0.155 0.151∗∗

Employment 0.1141 0.306 0.167 0.123 0.102 0.090 0.084 0.080 0.078 0.077

Unemployment Rate 0.3518 0.216 0.126 0.098 0.083 0.075 0.070 0.066 0.063 0.061

GNP Deflator 0.0471 0.244 0.127 0.089 0.070 0.059 0.052 0.048 0.045 0.043

Consumer Prices 0.0471 0.544 0.279 0.191 0.148 0.122 0.105 0.093 0.085 0.079∗∗

Wages 0.0471 0.220 0.115 0.080 0.064 0.054 0.048 0.045 0.042 0.040

Real Wages 0.0471 0.205 0.115 0.085 0.071 0.064 0.060 0.057 0.056 0.056∗∗

Monetary Aggregates 0.1141 0.646 0.336 0.235 0.186 0.158 0.141 0.129 0.122 0.116∗∗

Velocity 0.0471 0.364 0.200 0.145 0.118 0.103 0.092 0.084 0.078 0.074∗∗

Bond Yields 0.1318 2.658 1.387 0.961 0.746 0.619 0.537 0.479 0.437 0.406∗∗∗

Stock Prices 0.0471 0.209 0.114 0.084 0.069 0.061 0.056 0.052 0.049 0.047

∗ Significance at the 10% ; ∗∗ Significance at the 5% level; ∗∗∗ Significance at the 1% level

Table 6: Results using the Flexible Fourier Unit Root Test (the extended data set)

Series Single Freq. Lags τLM Cumulative Freq. Lags τLM

Real GNP 1 1 -4.09∗ 2 1 -4.23

Nominal GNP 1 1 -3.09 2 1 -3.88

Real per capita GNP 1 1 -3.89∗ 2 1 -4.16

Industrial Production 2 0 -3.83∗∗ 2 0 -4.88∗

Employment 3 1 -3.23∗ 2 1 -4.31

Unemployment Rate 5 1 -4.55∗∗ 2 1 -4.94

GNP Deflator 1 1 -2.44 2 1 -2.57

Consumer Prices 1 1 -2.82 2 0 -3.95

Wages 1 1 -3.15 2 1 -3.19

Real Wages 1 1 -3.70 2 1 -4.52

Monetary Aggregates 3 1 -2.75 2 1 -3.56

Velocity 1 0 -3.11 2 0 -4.39

Bond Yields 1 1 -3.60 2 1 -4.20

Stock Prices 1 1 -4.17∗∗ 2 1 -4.62∗

∗ Significance at the 10% level; ∗∗ Significance at the 5% level
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Approximation of Structural Breaks with Fourier Transforms
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Trend Approximation of NP Series

Real GNP with Fourier trend
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Wages with Fourier trend
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