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Abstract 
 
The study concentrated on demonstrating how non-linear modelling can be useful to investigate 
the behavioural of dynamic economic systems. Using some adequate non-linear models could be 
a good way to find more refined solutions to actually unsolved problems or ambiguities in 
economics. Beginning with a short presentation of the simplest non-linear models, then we are 
demonstrating how the dynamics of complex systems, as the economic system is, could be 
explained on the base of some more advanced non-linear models and using specific techniques of 
simulation. We are considering the non-linear models only as an alternative to the stochastic 
linear models in economics. The conventional explanations of the behaviour of economic system 
contradict many times the empirical evidence. We are trying to demonstrate that small 
modifications in the standard linear form of some economic models make more complex and 
consequently more realistic the behaviour of system simulated on the base of the new non-linear 
models. Finally, few applications of non-linear models to the study of inflation-unemployment 
relationship, potentially useful for further empirical studies, are presented.   
 
Key words: non-linear model, continuous time map, strange attractor, fractal dimension, natural 
unemployment 
JEL Classification: C02, C63, E27, E32 
 
 
 
1. Introduction 
 
Traditionally economists preferred linear models or at least those that can be interpreted 
as linear ones in the neighbourhood of a solution. In analysis of dynamic processes they 
used only simple linear differential equations that generate regular and stable cycles. 
They made distinction between deterministic systems manifesting predictable behaviour 
and statistic series reflecting random or stochastic behaviour therefore unpredictable. 
Chaotic behaviour of these series was simple interpreted as being stochastic and in 
estimating linear models the inconvenient observations were classified as accidental and 
consequently ignored. However, last time we can see an impressive growth of 
preoccupation in scientific community to analyse non-linear systems. Approaching of 
such systems mostly in mathematics and in natural sciences generated fundamentally new 
concepts and methods. In economics their application is only at the beginning, but 
however some remarkable results emerged. There are a number of economic fields in 
which non-linear methods could be useful, such as behaviour of capital market and 
exchange rate, problems in external debt, economic crises, hyperinflation and banking 
risk etc. 
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Because many times the behaviour of non-linear systems can be investigated only by 
numerical analysis, the development of non-linear models can be considered as a result of 
PC time. Theorems are demonstrated numerical or computer-assisted. It was discovered 
that even simple non-linear models are able to simulate various behaviours and to reflect 
new properties. So, infinitesimal changes in value of some key-parameters can generate 
unexpected effects – this was the case even for some simple classic models, considered in 
the past as being characterized by a clear cyclical behaviour and therefore highly 
predictable. This generated the concept of so-called deterministic chaos. Numerical 
simulations permitted to develop new theories or to incorporate classic theories in 
theories of higher level. Moreover, concepts as equilibrium and stability were revised. 
 
 
2. Complex behaviour of the logistic equation 
 
Logistic equation play an important role in mathematics of chaos development, supplying 
however as base in developing economic applications. Let’s consider variable Yt , where 
0 ≤ Yt ≤ 1 and t = 1, 2, 3, … The discrete dynamic system: 
 
Yt+1  = f (Yt ) 
       = µYt (1 - Yt )         (1) 
 
is known in literature as logistic equation. 
The following simple dynamic model of the advertising expenditure in a company 
supplies one example. We assume the following relation between advertising 
expenditures and level of income: when advertising expenditures, Yt , increase the level 
of income, Xt , firstly rises then, after a maximum, begins to decrease. Also, we consider 
that advertising expenditures in next period are proportional with income of company 
obtained in current period: 
 

Xt  = λYt (1 - Yt ), λ > 0        (2) 
Yt+1  = γXt , γ > 0          (3) 
 

Combining the two equations resulted logistic equation (1), where µ = λγ. Simulation of 
logistic equation model demonstrates dramatic changes in the behaviour of system 
function of values for parameter µ, as in Figures 1 and 2. It is more complex: if value of 
parameter µ increases beyond 3, non-depending on the starting value of Yt, cobweb 
cycles enter a limit-cycle around a fix square. This means that the values fluctuate 
between two values or equivalent - a stable cycle of two periods emerges. For instance, 
for µ=3.1 Yt fluctuates between 0.764566520 and 0.558014125. Such cycle of two 
periods, in case of µ=3.2, is shown in Figure 3. If µ is beyond 3.449 the system enter a 
region of stability demonstrating a cycle of four periods. For example, if µ=3.51 the 
values of Yt fluctuate between 0.877341821, 0.377722156, 0.825018932 and 
0.506713055. Such cycle of four periods, in case of µ=3.5, is shown in Figure 4. When 
parameter µ is 3.544 cycles of eight periods emerge, for µ=3.564 cycles of sixteen 
periods emerge. Beyond this value the doubling of periods accelerates until µ becomes 
equal to 3.57, when the system never returns on a fix point. At this point the system enter 
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a chaotic state, as is shown in Figure 5 for value 3.83. The system is not chaotic for all 
values of µ over 3.57. At some points thee-cycle period emerges. For instance, if µ=3.836 
the values of Y tend to 0.151479312, 0.493053855 and 0.958814917 respectively. 
Infinitesimal changes in parameter µ generate again doubling of periods to 6, 12, 24 etc., 
finally chaos emerging again. When parameter µ is 3.7390 five-cycle periods emerge, Yt 
having values 0.934749476, 0.228052428, 0.658230452, 0.841137120 and 0.499625614. 
In case of a value of parameter µ continuing to increase there will be a region of rapid 
doubling of periods, finally again emerging a chaotic regime. 
 
 

(a) µ = 2.0    (b) µ = 2.0 
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Figure 1. 
 
  

(a) µ = 2.8    (b) µ = 2.8 
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Figure 2. 
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(a) µ = 3.2    (b) µ = 3.2 
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Figure 3. 
 
 
 

(a) µ = 3.5    (b) µ = 3.5 
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Figure 4. 
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(a) µ = 3.83    (b) µ = 3.83 
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Figure 5. 
 
 
Information on the behaviour of logistic model for all values of parameter µ can be 
presented as a so-called bifurcation diagram presented in Figure 6. 
 
 

 
µ 
 

Figure 6. 
 
 
For parameter µ between 3.57 and 4.0 on the bifurcation diagram we can see some black 
bands, corresponding to chaos, separated by windows (so-called order emerged from 
chaos). In case that we focus on a window using a higher resolution to see within it, the 
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picture is identically to integral diagram – this characteristic of logistic system is called 
self-similarity, as it is suggested in Figure 7. 
 
     

 
µ 

 

Figure 7. 
 
 
Other characteristic of non-linear models is the sensitivity to initial conditions, as it is 
shown in Figure 8, where we used two initial values for Y, 0.2 and respectively 0.201 
(after only 15 iterations the two trajectories of Y are already divergent). This 
characteristic suggests a high degree of incertitude to forecast on long run in case of a 
dynamic system fundamentally non-linear. 
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Figure 8. 
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3. One dimensional discrete maps 
 
Logistic equation is only one example of the so-called one-dimensional discrete time. 
Other examples are the following: 
 

Yt+1 = Yt exp(µ  (1- Yt)),  µ > 0       (4) 
Yt+1 = Yt + µ Yt (Yt

2 – 1)          (5) 
Yt+1 = µ sin (Yt)           (6) 
 
They are called exponential logistic, cubic and trigonometric. Their properties take on 
supplementary significance when the extension is made to the whole one-dimensional 
space. 
 

In previous section it is shown that for 0 < µ < 1 the origin is a stable fixed point, but for 
1 < µ < 3 there is a stable fixed point equal to 1-1/µ. Such points were found in an 
analytical manner and numerical computation permitted to discover that when parameter 
µ increases beyond of value 3 the process enter in a cyclical phase in which emerges a 
doubling of the period until the phase of deterministic chaos occurs. Further, when µ 
continues to increase new and new additional “windows” of doubling the period occur 
that at their turn conduct to new chaotic zones. Identification of all values of µ for which 
doubling of the period is registered proves to be very difficult without of a powerful 
computer. Such research permitted to Feigenbaum (1978) to discover a more general 
property than initially is not even thought by simple numeric simulation. The result was 
the discover of an universal constant that today is called Feigenbaum constant. To 
demonstrate the universal constant of Feigenbaum we define µn as a point of doubling 
period. Let us consider the following rate: 
 

δ = ( µn - µn-1 ) / ( µn+1 - µn )        (7) 
 
expressing the ratio between previous change of parameter necessary to obtain doubling 
of the period and current change necessary for doubling of the cyclical period. 
Feigenbaum discovered that independently from n value the ratio takes the same value, 
namely approximately 4.6692. Also, he demonstrated that this constant occurs in case of 
numerous one-dimensional maps. The number 4.6692, known today as Feigenbaum 
number, is proved to be a universal constant, as number π or number c (the light speed in 
vide). One direct implication of above relation is that when µn-1 and µn are known then it 
is possible to compute µn+1. For instance, as in previous section the first two points for 
which a doubling period of cycles occurs are µn-1 = 3 and respectively µn = 3.449. By 
substitution we can obtain: 
 

µn+1 = µn + ( µn - µn-1 ) / δ ≅ 3.56       (8) 
 

As we showed the values of µ in chaos region, 3.57 < µ < 4, generate cycles of odd 
range. Identification of a cycle of three-period become relevant for understanding of 
economic models coming from the Sarkovskii’s demonstration, who showed that since a 
model proves to have a three-period cycle then it also could generate cycles of all 
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possible ranges (see Guckenheimer and Holmes, 1983). This important result it was 
already demonstrated in case of logistic model. Li and Yorke (1975), using the 
Sarkovskii’s result, demonstrated that in case that a map has a three-cycle then it presents 
periodic and irregular behaviour. All mappings  (simulations) satisfying this propriety 
generate chaos in Li-Yorke sense.  As a synthetic expression could be: period three 
implies chaos. Let’s consider a dynamic series given by Yt. If one of the following 
conditions are satisfied  
 
Yt+3 < Yt < Yt+1 < Yt+2         (9) 
Yt+3 > Yt > Yt+1 > Yt+2         (10) 
 
then two distinct time trajectories of Yt, although can be by chance very closed initially, 
in the future they will diverge significantly. One implication of the Sarkovskii, Li and 
Yorke’s results is that order can exist within chaotic region. Referring to Figures 6 and 7, 
for values of µ within chaotic region, 3.57 < µ < 4.0, however there exist windows (sub-
regions) in which stable cycles exist. Such results suggest that, for instance, regarding the 
prices, an economy operating within an order region will present stable and smooth 
cycles. Within this region the market principles determine price. However, if the 
fundamental parameters of the model change then economy could be pushed in a chaotic 
region characterised by ample and frequent movements of prices. 
 
 
4. Higher order discrete maps 
 
A property of one-dimensional discrete maps is that they tend to a so-called saw-tooth 
trajectory. This is usually unrealistic for almost economic variables since it suggests that 
an increase in a particular economic aggregate is immediately followed by a decrease. 
Moreover, one-dimensional models represent only a special case of more general 
equilibrium economic systems. That is why it is useful to investigate the implications of 
non-linearity in higher dimensional systems. However, we must note that although there 
exist a number of theorems to help identify the structure of attractors for one-dimensional 
discrete maps, there is less help for n-dimensional systems. One of the most known 
multivariate discrete maps is that named as the Henon attractor, which is based on the 
following bivariate non-linear discrete set of equations: 
 

Xt+1 = 1 - γXt
2 + Yt           (11) 

Yt+1 =  β Xt          (12) 
 

where γ and β are positive parameters. In Figure 9 there are presented the properties of 
the Henon map for γ = 1.4 and β = 0.3. A time series plot of Xt in Figure 9a shows that 
the series tends to behave in an aperiodic manner and the phase diagram in Figure 9b 
demonstrates the emergence of a “bananas-shaped” object. This is just the Henon 
attractor, meaning, for given starting values of Xt and Yt, the region to which the 
processes simulated by model converge very quickly. The observed chaos in the map is 
coming from the property that the distance between any two successive points is 
uncertain. This attractor also displays a self-similarity feature that is highlighted in Figure 
10a, where part of the Henon attractor is magnified. The graphical representation shows 
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three bands consisting of a single line, a double line and a quadruple line. By zooming in 
on the quadruple line band in Figure 10b, the same picture is repeated but at a finer scale. 
This is just the order in the Henon map.   
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Figure 9. 
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Figure 10. 
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As prototype of a multivariate discrete non-linear model in economics is usually 
considered the following discrete time version of the Kaldor business-cycle model (see 
Lorentz, 1989, p.130): linear discrete set of equations: 
 

Yt+1 - Yt =  α [It (Yt , Kt) - St (Yt)]         (13) 
Kt+1 - Kt = It (Yt , Kt) - δKt          (14) 
It (Yt , Kt) = c2-1/[(dYt + ε)2]  +  eYt  +  a (f / Kt)g     (15) 
St = s Yt                  (16) 
 

where Yt is output, Kt – the stock of capital, It – gross investment, St – savings, and α = 
20.0, δ = 0.05, as the depreciation rate on capital, c = 20.0, d = 0.01, ε = 0.00001, e = 
0.05, a = 5.0, f = 280.0, g = 4.5 and s = 0.21, are parameters. Equation (13) shows that 
changes in output occur when there is a gap between savings and investment. Equation 
(14) shows that net additions to the stock of capital occur when gross investment exceeds 
replacement investment, δKt. The non-linearities are implemented into the model by the 
sigmoidal investment function reflected by relation (15) and equation (16) represents a 
simple linear savings function. The dynamics of the model are governed primarily by the 
parameter α. So, the model displays a unique stationary point for small values of α, 
whereas for larger values there is a closed orbit. In case of very large values of α, there is 
no relationship between Y and K. This chaotic pattern is highlighted in Figure 11a where 
a simulation of time series plot of Yt is shown. A graphical representation of this attractor 
is presented in Figures 11b, 11c, and 11d, in case of considering the Yt - Kt plane, the Yt+1 
- Yt plane and the Kt+1 - Kt plane respectively. 
 
A multivariate analogue of the Li-Yorke Theorem was given by Marotto (1978). This 
was facilitated by introduction of the concept of a snap-back repeller. So, it was 
demonstrated that if a process has a snap-back repeller then it is chaotic. A snap-back 
repeller arises when for small deviations from a fixed point the trajectory is repelled, 
while for large deviations the process jumps on to the fixed point. In order to identify a 
snap-back repeller it is necessary to derive the eigenvalues of the system and show that 
for values of the state variables close to the fixed point the eigenvalues lie outside the unit 
circle, whereas for values of the state variables that are not close to the fixed point the 
eigenvalues lie within the unit circle. However, from practical viewpoint snap-back 
repellers in general can only be identified using simulation procedures. As an example, 
we mention here that in a non-linear business-cycle model (a model relatively similar to 
the Kaldor business-cycle model), Hermann (1985) found, by using a certain set of 
parameters, that a snap-back repeller exists. 
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Figure 11. 
 
 
 
5. Continuous time maps 
 
In last section we concentrated on showing how non-linearities in one-dimensional or 
higher-order discrete economic models can generate chaotic behaviour. Particularly, in 
case of discrete time chaotic motion was identified when the process jumps irregularly 
over the attractor, but economic models are also constructed in continuous time. Due to 
their properties, in case of continuous time models, chaos cannot be defined in terms of 
discrete jumps over an attractor, as is the case in discrete models. Rather, the trajectory 
path over the attractor needs to be smooth and this has led to the definition of so-called 
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strange attractors (Ruelle and Takens, 1971). Strange attractor was initially conceived in 
terms of continuous time systems, but last time they tend to be identified in case of 
discrete time systems as well. Generally, to be “strange” an attractor needs to satisfy the 
following properties (Ruelle, 1979): 1) all trajectories remain within a region; 2) sensitive 
dependence on initial conditions; and 3) the attractor cannot be split into two or more 
pieces. Finally, if a system has a strange attractor, then the system is called chaotic. For 
an attractor to be identified as strange, the dimension of a continuous time system needs 
to be at least equal to three. The reasons for this are as follows: - in a one-dimensional 
continuous time model the trajectory of the state variable is smooth and thus the irregular 
jumps already identified in the one-dimensional discrete maps are prelucted in the one-
dimensional continuous time maps; - two-dimensional continuous time systems also 
cannot exhibit chaotic behaviour since the trajectory cannot intersect itself. Only in case 
of three-dimensional or higher-order continuous time systems a smooth trajectory can 
behave in a supposedly irregular pattern over the attractor without intersecting another 
trajectory. 
 
The Lorenz attractor is based on the following continuous time non-linear trivariate 
system of equations (Lorenz, 1963):       
 

dX/dt = - α (X - Y)          (17)  
dY/dt = βX - Y - XZ          (18) 
dZ/dt = -γZ + XY  α, β, γ > 0       (19) 
 
The properties of this attractor could be highlighted by using the following parameter 
values: α = 10.0, β = 60.0 and γ = 8/3. Among them, the key parameter is β (see Gilmore, 
1981). Also, the key feature of the attractor is the “butterfly” shape, associated with each 
wing of the attractor being an unstable fixed point. The trajectory over the attractor is as 
follows: if the trajectory starts on the left wing there is an outward clock wise spiralling 
motion away from the fixed point; the trajectory eventually traverses to a position near 
the centre of the right wing where it begins spiralling outwards in an anticlockwise 
direction; when the trajectory approaches the outer boundary of the wing it traverses back 
to a point near the centre of the left wing and the process is repeated. 
 
The Rossler attractor is also a strange attractor. This attractor is based on the following 
continuous time trivariate system of equations (Rossler, 1976):       
 
dX/dt = - (Y + Z)         (20)  
dY/dt = X + αY         (21) 
dZ/dt = -β - γZ + XZ  α, β, γ > 0       (22) 
 
The amazing feature of this model is that chaotic behaviour is generated from a model 
with an even similar non-linear structure than the Lorenz system of equations. The key 
parameter of the Rossler model is γ. This parameter plays the same role as the parameter 
µ in the logistic model since it determines the critical points where period doubling occur 
as well as the point where chaos emerges. This period doubling effect can be viewed by 
simulating the model for various values of γ with α = β = 0.2. Transition from a two-
period cycle to a four-period cycle and then to an eight-period cycle can be highlighted in 
case of changes in γ from value 2.4 to value 3.5 and respectively to value 4.0. Further, the 
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period doubling sequence continues until the trajectory becomes chaotic; that is, the 
attractor becomes strange. The structure of the Rossler strange attractor is shown in 
Figure 12. The three two-dimensional plots in Figures 12a, 12b, and 12c show that the 
attractor looks like a funnel with the width increasing as γ increases. The corresponding 
time series are depicted in Figure 13. Also, a three-dimensional view of the attractor is 
given in Figure 14. A feature of the attractor is that there is just one fixed point, which 
contrasts with the Lorenz attractor where there were two fixed points (placed on the two 
wings of butterfly). In fact, the Rossler attractor can be considered as a special case of the 
Lorenz attractor where the trajectory is restricted to just one of the wings of the Lorenz 
attractor. 
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Figure 14. 

 
 
 
The models included in this section are considered as systems of non-linear first-order 
differential equations. Also, higher-order differential equations were investigated. Among 
these the so-called forced oscillators are included. For example, consider the following 
univariate second-order non-linear differential equation: 
 
d2Y/dt2 + f(Y)dY/dt + g(Y) = 0       (23)  
 
where f(Y) and g(Y) represent functions. However, the equation (23) is a univariate 
model when viewed in terms of Y, it is actually a two-dimensional system since its 
properties can be investigated in terms of Y and dY/dt. This can be explicitly expressed 
as a system of two non-linear first-order differential equations as follows: 
 
dX/dt + f(Y)X +g(Y) = 0         (24) 
dY/dt = X           (25) 
 
Although the class of models given by (24) and (25) can generate a wide range of 
dynamic behaviour, it cannot generate chaotic behaviour since it is a continuous time 
system with a dimension less than three. In order to increase the dimension of this system 
is to include time explicitly as follows: 
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dY2/dt2 + f(Y)dY/dt + g(Y) = h(t)        (26) 
 
where h(t) is a general function. The last equation is known as a forced oscillator where 
the forcing term is given by the function h(t). It is a three-dimensional system and it can 
also generate chaotic trajectories (for more discussion on forced oscillators, see 
Guckenheimer and Holmes, 1983, and for economic examples of theses models see 
Lorenz, 1989). 
 
 
6. Applications to investigate inflation-unemployment relationship 
 
A first step to investigate the inflation-unemployment relationship in case of considering 
a continuous-time dynamical system is to use the so-called potential function technique in 
order to obtain some specific spatial representations. Following some old preoccupations 
(Dăianu and Albu, 1996; Albu, 1998 and 2001), we present only few conclusions based 
on an empirical analysis of the inflation-unemployment relationship evolution in 
European area after 1970. Empirical studies demonstrate, on the background of business 
cycles, some major changes of trends in Western countries during last three decades. 
Among these it can be noted an impressive decrease in inflation followed by a continuing 
growth of unemployment and general diminution of the yearly growth rate of production 
(GDP). An important conclusion is that a smaller volume in 3D map (estimated by 
including the variation of the three macroeconomic indicators) represents a greater 
economic stability and consequently less strain in economic system. As example, in 
Figure 15 it is shown a graphical representation of the evolution during last three decades 
(1970-2000) in the three-dimensional space (unemployment rate, u% - annual growth 
rate, y% - inflation, π%), including ten EU countries (Belgium, Denmark, England, 
France, Germany, Italy, Ireland, Holland, Portugal, and Spain). Evolution was from a 
period in which high inflation predominated toward one in which unemployment plays 
now this role. This evolution could mean that on the unemployment-side occurred a 
relaxation, higher levels of unemployment being viewed as normal but is not the case for 
the inflation level. A deeper analysis shows the possibility of some existing persistent 
trends and long-run attractors. There are evidences demonstrating that the long-run trends 
in Central and Eastern European countries seem similar to those registered in Western 
countries. The evolution in Eastern countries in transition period represented only a stage 
within a long-run wave on the general economic development scale. Also, when the 
income level per capita rises to a very high level, it was demonstrated a specific evolution 
process in Western countries, namely that to higher natural rate of unemployment and to 
a period in which unemployment become more autonomous relating to the dynamics of 
GDP. Important for the Eastern countries, is that, in actual period of the “new economy” 
revolution, the converging process do not suppose necessarily a repetition of the Western 
evolution coming from the ‘60s and its achieving period could be substantially reduced. 
In Figure 16 it is shown a 3D representation of the evolution in Romania during last 
fifteen years (1990-2005). 
 
A simple model of the inflation-unemployment relationship can be also derived from a 
potential function. Coming from some old papers (Albu, 1995; Daianu and Albu, 1996) 
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we apply a simple model that can give us a measure of the stability-degree of inflation-
unemployment relationship. Let note S being the sum of unemployment and inflation (in 
a way very similar to that of Okun’s interpretation): 
 
S = u + p          (26)  
 
where u is unemployment rate and p is inflation rate, and let note P their product: 
 
P = u . p          (27)  
 
We write the shares of u and respectively p in S by x1 and respectively x2 as follows: 
 
x1 = u / S   and    x2 = p / S        (28) 
 
and their product as: 
 
PP = ( u / S ) . ( p / S )         (29) 
 
 
 

u% y%, π%,  

Figure 15. 
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Figure 16. 

 
 
Now, let consider the generalised variable x representing shares of S such as the model 
can be expressed by the following system of equations: 
 
p(x) = x . S          (30) 
u(x) = S - p(x)          (31) 
 
From this it results the following expression of PP: 
 
PP(x) = x . ( 1 - x )         (32) 
 
To remark that it is a continuous version of the above logistic equation. In order to 
investigate the behaviour of the system, let consider that the main equation of this model 
can be derived from a supposed existing potential function of higher degree, V (x;m): 
 
dV / dx = 0          (33) 
 
where x is the rapid variable of the system and m - the slow or control variable (both 
variables are implicitly functions of time). In our case, we chose the following potential 
function: 
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V ( x ; m ) = ( -  x3 ) / 3  +  ( x2 ) / 2  -  m . x      (34) 
 
to which  it corresponds the following equation of potential surface: 
 
- x2  +  x  -  m  =  0         (35) 
 
Comparing this with the relation of PP it results that in terms of our model the slow 
variable m can be estimated by the following expression: 
  
m = P / ( S2 )          (36) 
 
Considering the analysis of the graph of function V, it results some threshold values for 
parameter m. Therefore, for x having values among 0 and 1, there are the following 
cases: a) for 0<m<3/16, V has 3 real roots (0 and other two separated); b) for m=3/16, V 
has 2 real roots (0 and an other double root); c) for   3/16<m<1, V has only 0 as real root. 
The graph of function V is shown in Figure 17. A very important threshold value of 
parameter m is 1/4, where the maximum, minimum, and inflexion points are confounded. 
Other important conclusions concerning evolution and stability of the system are: there 
are two equilibrium curves on the potential surface - a stable equilibrium curve (C1) and 
an unstable equilibrium curve (C2); for values of x smaller than (C2) the trajectories are 
attracted to (C1) (the long-run effect); for value of x greater than (C2) the system is 
strong attracted in an intense troubled zone; a rich menu of alternatives can be deduced 
by investigation of the function V map moreover this can offer some larger possibilities 
of statistical data interpretation. 
 
 

M

 

 
Figure 17. 

 

 18 



 
Another methodology to estimate trends in economic series and to appreciate their type is 
that based on fractal dimension. We can choose the method called Hurst exponent. 
According to statistical mechanics, the Hurst exponent (H) should equal 0.5 if the series 
is a random walk. In other words, the range of cumulative deviation should increase with 
the square root of time. When H differed from 0.5, the observations were not 
independent. Each of these carried a “memory” of all the events that preceded it. This is 
not a short-term memory, which is often called Markovian. This memory is different: it is 
long-term. More recent events had a grater impact than distant events, but there was still 
residual influence. On a broader scale, a system that exhibits Hurst statistics is the result 
of a long stream of interconnected events. Time is very important. Inclusion of a time 
arrow is not possible in standard econometrics, which supposes series are invariant with 
respect to time (see Peters, 1991). There are three distinct intervals for the Hurst 
exponent: 1) H=0.50, 2) 0<H<0.50, and 3) 0.50<H<1.00. First case denotes a random 
series. Events are random and uncorrelated. The present does not influence the future. Its 
probability density function can be normal curve. The standard statistics assume that 
nature follows the normal distribution, but H is typically greater than 0.5 for numerous 
series. The second type of system is an antipersistent, or ergodic, series. If the system has 
been up in the previous period, it is more likely to be down in the next period. In the third 
case we have a persistent, or trend-reinforcing, series. If the series has been up (down) in 
the last period, then the chances are that it will continue to be positive (negative) in the 
next period. The closer H is to 0.5, the noisier it will be, and the less defined its trends 
will be. Persistent series are fractional Brownian motion, or biased random walks. The 
strength of the bias depends on how far H is above 0.50. Persistent time series are 
plentiful in nature, as are probably many economic time series. Persistent time series are 
fractal because they can also be described as fractional brownian motion. The Hurst 
exponent describes the likelihood that two consecutive events are likely to occur. 
Because each point is not equally likely (as it is in a random walk), the fractal dimension 
of the probability distribution is not 2; it is a number between 1 and 2. Mandelbrot (1972) 
has shown that the inverse of H is the fractal dimension. Note that a random walk is truly 
2-dimensional and would fill up a plane. For example, to estimate H and fractal 
dimension for the plan u-p or for global surface (u-p-y), the following dynamic series can 
be used (see Daianu and Albu, 1996): 
 

doupt u%t
2 p%t

2
        (37) 

dot u%t
2 p%t

2 y%t
2
       (38) 

 

To investigate inflation-unemployment relationship also it can be used the prototype of 
the pitchfork bifurcation. So, coming from the empirical data on the evolution of the 
unemployment in western countries in last 30-35 years and from the hypothesis on the 
natural rate of unemployment existing in literature, we conceived a model that can be 
described by the following first-order differential equation: 
 

dy/dt = α [ xn (y) – x (y) ]        (39) 
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where, y is the GDP per capita, xn – “natural” unemployment, x – actual unemployment, 
and α - a coefficient. Let ycr be the “natural” or “critical” level of GDP per capita, and 
formulate (39) in terms of the deviations from the appropriate xcr and xncr levels (we 
chose xcr = xncr): 
 

dY/dt = α [ Xn (y) – X (y) ]        (40) 
  
with Y=y-ycr, Xn=xn-xncr, and X=x-xcr. Also, the following relations between X and Y 
and respectively between Xn and Y were initially supposed: 
 
X (Y) = a Y + b          (41) 

Xn (Y) = AY3 + BY2 + cY + D       (42) 
 
where, a, b, A, B, c, and D are coefficients. So, in points where the two curves are 
intersecting will be achieved the natural level of y. The described system seems to be like 
one that has behaviour of type pitchfork bifurcation. However, taking into account the 
condition of an odd function for dY/dt = f (Y;µ) with respect to Y, i.e., f (Y;µ) = -f (-
Y;µ), we chose the solution B=0, and D=b. So, the equation (42) was replaced by: 
 
Xn (Y) = AY3 + cY + b        (42’) 
 
Now, after some operations, the expression of function f can be written as: 
 

f ( Y; µ ) = β ( µ Y – Y3 )         (43) 
 

with β=-α/A and µ=(a-c)/A. Define µ0 as that parameter value for which the eigenvalue 
of (39) or in the new form of (42) is zero, i.e., ∂f(y*,µ0)/∂y=λ=0. Then, the conditions of 
the existence theorem are fulfilled and a pitchfork bifurcation occurs at µ0 (see the 
existence theorems for the main types of bifurcations in Albu, 1997). We applied this 
model in case of some EU countries, but using three different sets of critical points and µ0 
parameters. The main conclusion was that for greater level of GDP per capita the impacts 
of unemployment and respectively that of the natural unemployment on the economic 
growth (represented by changes in GDP) are changing in sense that the natural 
unemployment response to the deviation from the natural GDP level is getting smaller. 
Coming from a point, at a high level of GDP per capita (around 20,000 dollars/inhabitant, 
for example in case of Belgium), the structure of relations between unemployment and 
growth rate of production (GDP) changes dramatically. From that point, the dynamics of 
unemployment and natural unemployment became smaller and smaller related to the 
GDP dynamics, their evolution being more autonomous, governed by different own lows. 
However, the conclusion must be certificate by application on huge statistical data. 
Unfortunately, the achievement of one more efficient methodology still remains for 
future research. 
 
To investigate inflation-unemployment relationship we used also a truncated version of 
the pitchfork bifurcation model, in sense that all conditions of theorem for a pitchfork are 
fulfilled (including that of odd function) excepting the condition referring to remaining 
within the unit interval [0;1] that is violated. The applications of this model in case of 
some countries permitted to capture several important features for medium or even long 
transition. So, let z(x) be the general three-order equation of inflation with respect to 
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unemployment (x), where z and x are evaluated in terms of shares within the above 
mentioned sum S: 
 
z (x) = a x3 + b a x2 + c x + d        (44) 
 
and the following three additional relations between coefficients: d=1; a=2(c+2); and b=-
3(c+2). These relations permitted to define other function z* as function of x and 
parameter c as follows: 
 
z*(x;c) = 2 (c+2) x3 - 3 (c+2) x2 + c x + 1      (45)  
 
The function f resulting from the difference between (45) and (44), by writing z(x)=1-x, 
is as following: 
 
f(x;c) = 2 (c+2) x3 - 3 (c+2) x2 + c (x + 1) x = 0     (46)  
 
It would be also viewed as a potential surface. Then, using the same procedure we write 
the so-called potential function from which f(x;c) is derived as follows: 
 
V(x;c) = { [ (c+2) x4 ] / 2 } - (c+2) x3 + [ (c + 1) x2         (47) 
 
The remarkable values of c are -4 and -2. Thus, in fact, there are two parameters c* and 
c** that are governing the dynamics of the system. We applied this model to the data for 
various EU countries. The results were too different, showing firstly if an economy is 
structured or not. 
 
Other class of models useful to investigate inflation-unemployment relationship could be 
global bifurcations and spiral-type chaos. In connection with the Shilnikov theorem on 
the fulfilment of the local conditions of stability and the demonstration of presence of a 
homoclinical orbit, it was specified that some specific dynamical systems are known 
which posses a homoclinical orbit and allow the fulfilment of the local stability 
proprieties of the Shilnikov theorem to be easily verified (Guckenheimer and Holmes, 
1983; Arneodo, Coullet, and Tresser, 1981). In a series of studies (for details see 
Arneodo, Coullet, and Tresser, 1981, 1982, Glendinning and Sparrow, 1984, Lorenz, 
1989, and de Vilder, 1995) it was demonstrated that the following two-differential-
equations dynamical system: 
 
d2x/dt2 + a ( dx/dt ) + x = z        
dz/dt = f µ ( x ),         (48) 
 
or, written as a third-order differential equation, 
 

d3x/dt3 + a (d2x/dt2) + dx/dt = f µ ( x )       (49)  
 
with a as a constant, exhibit chaotic behaviour for appropriate forms of the one-parameter 
family of functions fµ(x). For instance, the specification fµ(x)=µx(1-x ), i.e., a logistic 
function, like that which we used already above, yields geometrical objects that resemble 
the diverse Rossler attractors. The motion is characterised by a screw-type or spiral-type 
structure depending on the magnitude of the parameter µ (a geometrical description of the 
dynamical behaviour in these spiral-type attractors can be found in Berge et al., 1986). 
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Other forms of the function fµ with similar non-invertibilities lead to comparable results 
(Lorenz, 1989). Here we present a very simple economic example of the emergence of a 
chaotic motion in three-dimensional systems analogous to the case presented above. We 
where inspired by the modified macroeconomic business cycle model with inventories 
which in its discrete-time version was first approached by Metzler (1941). Also, many 
improvements were coming from the Mundell’s analyse within his so-called supply-side 
economics (1990). Our model is very closed to that studied by Gandolfo (1983) and 
presented by Lorenz (1989). Let y denote the GDP and assume that output adjust 
according to discrepancies between the natural and actual unemployment, i.e., 
 

dY/dt = α [ Xn (t) - X (t) ],  α > 0,       (50)  
 
with Xn (t) as the natural and X (t) as actual unemployment at t. We suppose also that the 
actual unemployment changes when disequilibria prevail on the goods market, i.e., on the 
inflation-side  
 

(dX/dt) (t) = λ [Z (t) - Zn (t)], λ > 0,         (51) 
 
where Z(t) is the actual inflation and Zn(t) - the expected rate of inflation, respectively. 
The natural unemployment is assumed to depend linearly on the expected output, Ye (t), 
in t 
 
Xn (t) = hYe (t),  h > 0,        (52) 
 
implying that 
 
(dXn/dt) (t) = h[(dYe /dt) (t)]         (53)  
  
The expected output is determined according to a modified hypothesis of adaptive 
expectations which considers only the rate of change of current output but which also 
includes the changes in this rate: 
 
Ye (t) = Y + k1[(dY/dt) (t)] + k2[(d2Y/dt2) (t)]     (54) 
 
Thus, expected output changes according to  
 
(dYe /dt) (t) = [(dY/dt) (t)] + k1[(d2Y/dt2) (t)] + k2[(d3Y/dt3) (t)]    (55) 
 
Differentiating (50) with respect to time and substituting for [(dXn/dt) (t)] and     [(dX/dt) 
(t)] yields the third-order differential equation 
 

[(d3Y/dt3) (t)] + [(αhk1 - 1)/(αhk2)] [(d2Y/dt2) (t)] + (1/k2) [(dY/dt) (t)] = 

    = [λ / (a k2)] [Z (t) - Zn (t)]   (56) 
 
or, abbreviated, 
 

[(d3Y/dt3) (t)] + K1[(d2Y/dt2) (t)] + K2[(dY/dt) (t)] = β[Z (t) - Zn (t)]   (57) 
 

with β=λ/(ak2). Gandolfo (1983) demonstrated that a equation like (57) is unstable when 
Z(t) is a linear function of output, e.g., in our case,  Z(t)=(1-c)Y(t)-Z0, 1≥c>0, when Zn is 
autonomous, i.e., Zn(t)=Zn0, Zn0>0, and when K1<0. The linearity of the inflation rate 
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and expected inflation functions is assumed only for technical convenience. However, 
there is no convincing reason why these linear functions should constitute the only 
economically relevant forms. Once the linearity assumption is abandoned, it can be 
shown that the modified model has the form (49) with a noninvertible function fµ(.). 
Define y*, zn*, z*, x*, and xn* as the equilibrium values of output, expected and actual 
inflation rate, unemployment and natural unemployment, respectively, and consider the 
deviation from these equilibrium values, i.e., y=Y-y*, zn=Zn-z*, z=Z-z*, x=X-x*, and 
xn=Xn-xn*. Equation (57) then becomes  
 

[(d3y/dt3) (t)] + K1[(d2y/dt2) (t)] + K2[(dy/dt) (t)] = β[z (t) - zn (t)]    (58) 
  
Assume that both actual and expected inflation are nonlinear function of output. Possible 
shapes of the functions that exhibit two points of intersection of the actual inflation and 
expected inflation can be supposed. The difference z(y)-zn(y) therefore describes a one-
humped curve similar to the logistic function fµ(x)=µx(d-x), used by Ameodo et al. 
(1981) for the case d=1.  
Assumption: (i) K1>0 and K2 close to unity; (ii) β[zµ (y) - znµ  (y)] is one-humped 
function fµ(y) with a critical value ycr>0, the slope of which can be controlled by a single 
parameter µ. Under this assumption, our model (58), also being similar to the Metzlerian 
model, is nearly identical with equation (49). The Lie derivative (the divergence) of (58) 
is negative because of K1>0 (the calculated Lyapunov exponents for similar models, 
when the parameters are adequate selected yields a positive and a negative exponent in 
addition to the zero exponent; see Lorentz, 1989 for details). The system is therefore 
volume contracting and possesses an attracting invariant set. The dynamic behaviour of 
(58) is not essentially different from that of (49) and it can see that (58) possesses a 
Shilnikov-type structure for the assumed values of K1, β, and the slope of the excess 
supply function. In contrast to logistic, one-dimensional difference equations, rather flat 
shapes of the one-humped curve are sufficient to encounter chaotic motion (Arneodo et 
al., 1982). It can be expected that several other modifications of the model are possible 
which still imply the emergence of a Shilnikov-type attractor when the excess supply 
function is noninvertible. The main remaining problem, including for our future research, 
is how we should capture these types of attractors from the actual set of existing 
statistical data. 
 
We used also a discrete-time nonlinear model to investigate transitions to chaos in a 
modified Phillips curve system. The stagflation phenomenon was relatively recent added 
to the problematic of inflation-unemployment relationship (Santeremo and Seater, 1978). 
Also, we mention that early empirical investigations indicated an inverse nonlinear 
relationship (Phillips, 1958; Lipsey, 1960). An attempt to model the stagflation 
phenomenon has included through introduction of some additional factors in explaining 
actual inflation, such as the expected inflation rate (Friedman, 1968). One more complete 
approach to model the stagflation is provided by Fischer and Jammernegg (1986) who 
conceived a dynamical system based on the catastrophe theory approach (Lorentz, 1989). 
Among studies that incorporated the Phillips curve we mention here those of Goodwin 
(1967), Pohjola (1981), and Soliman (1996). Our model consists in the following system 
of three equations: 
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π t

π et 1

ut 1

g ut
.h1 π et

π et
.h2 π t π et

.h3 π et 1 π t ut       

 (59)

 
 

where πt and πet are the actual inflation and expected inflation rates in period t 
respectively and ut is the level of unemployment in period t. The incorporation of 
inflationary expectations into actual inflation is represented by the parameter h1 
(0≤h1≤1). The second equation expresses the fact that the inflationary expectations are 
adaptive expectations. The parameter h2 (0≤h2≤1) represents the degree that errors made 
in predicting actual inflation are corrected. The unemployment dynamics is expressed by 
the last equation of system, which includes the assumption that the next unemployment 
rate will be influenced by the difference between expected inflation and actual inflation. 
The extent of this influence is governed by the elasticity of unemployment with respect to 
real monetary growth, therefore parameter h3 (h3>0). Although there is theoretical 
justification for non-linear inflation-unemployment relationship in literature, there is no 
agreement with respect to its functional form. In our model we considered the following 
functional form: 
 

g( )u .k1

lcr2
k2 ( )1 u 2 .k3

lcr
k4 ( )1 u k5

     (60)
 

 
where k1, k2, k3, k4, k5, and lcr are parameters. We mention that this functional form 
represents the result of other model that we used to estimate a critical level of 
unemployment, ucr (ucr=1-lcr), under the condition of a Cobb-Douglas production 
function with respect to the employment level. The simulations based on the model 
demonstrate a very complex dynamics of inflation-unemployment relationship and the 
existence of attractors in case of some critical values of parameters as well. Also, the 
large sensibility to the small differences in the initial values is evident. In Figure 18 are 
presented several functioning regimes in the (πt – ut-1)-space varying with two sets of data 
attributed to parameters, but many others regimes can be extracted from the model 
simulation. The values of fixed parameters are lcr=0.71; k1=3; k2=0.8; k3=6; and k4=4. 
As initial set of values for π, u, and πe, we chose π0=0.08, u0=0.09, and respectively πe= 
0.08. The parameters that change are h1 (0.1; 0.2; 0.3; 0.5), h2 (0.1; 0.3; 0.45), and h3 
(0.6; 0.5; 0.7; 0.9). 
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