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1 Appendix A - The Firms’ Problem

Noting that 8 > 1, FOC from firms’ optimization problem is given by:
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using expression in the main text for labor supply, production function and
discount factor:
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2 Appendix B - Steady State

This section shows that there is a steady state characterized by zero inflation
and constant values for all variables, where exogenous disturbances also assume
constant values, that is: & = {G, ax.}, where G > 0 and ay; = 1, all k. We
focus particular attention to a steady state with positive real debt at maturity,
that is b* ;| = b* > 0, price dispersion equals one, Ag,—1 =1, and relative price
also equals one, pi —1 = 1, all k. While b* is arbitrary, it is nonetheless subject



to a upper bound. To see this, take the government budget constraint, which
in steady state is given by:
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= 7Y - (3)
k=1

Assuming debt and government expenses are non-zero in steady state imply
T > 0, for some k. Also, given py,—1 = 1 and zero inflation, all &, then py = 1.
From demand for sectorial output in terms of aggregate output, Y = msY,
which imply (3) becomes
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where T = Zle mgTk, once steady state values are properly replaced. From
firms’ maximizing conditions in the main text and taking into account that
I, =1,

Ki = Fy;
using definitions
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where we have used the fact that pp = 1, @, = 1, and Y, = mY. Sectorial tax

rate is given by
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which only depends of aggregate variables and sector specific parameter pj.
We assume that steady-state wage markup is the same across sectors, that is
gy = p*, all k. In this case, steady-state distortive tax rates are the same
across sectors, that is

Tk =T, (7)
all k, which is positive whenever
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once one considers an always-possible normalization Y = 1; that is, the level of
consumption over GDP should not be too high. Considering in a more concrete
fashion, for the parameter values used in our calibration, that is 6 = 10, A = .98,

or



¥ = 1.05, and o = 2, the steady state value for C should not be larger than 76%
of the GDP. We believe it does not represent a significant restriction. Equations

%ﬂw?” (T -G)° (8)
and (4) define the aggregate output level in steady state as well as the aggre-
gate tax rate. In (8) steady state output Y is a negative function of steady
state aggregate tax rate, industry and wage markups and a positive function
of steady state government purchase. If 7 equals unity, than Y is zero and so
the government revenue. Then, it should be the case that 7 < 1. Once T is
bounded above, so should be G and b* for (4) to hold. On the other hand, as G
and b* are both greater than zero by hypothesis, then it is clear that 7 > 0. Let
Y1(7) and Y5(7) be the aggregate output defined respectively by equations (8)
and (4), both functions of aggregate tax rate. From (8), one should notice that
Y (7) approaches G as 7 approaches unity. In this case, there should be a range
of aggregate tax rates 0 < 7' < 7* < 7/ < 1 such as Y;(7*) > G/7*, provided
G are small enough. Fixing G and b*, (4) uniquely determines Yz, for any 7**
€ (0,1). For b* small enough, than it should be that Y5(7**) < Y;(7*) for some
values of 7** € (0,1). If, however, 7** is too small, then Y2(7**) > Y1(7*).By
continuity, it should be the case that Y2(7) = Y1(7) for a 7 € (0,1), which de-
termine the aggregate level of tax rate and output. Using (7), above conditions
hold for every k. Finally, from definitions for Ky, Fj and government budget
constraint in recursive terms one can define steady state values for K}, Fj, and
W, which complete the characterization of the steady state values.

Define the set of commitments Xy = {Kjy, Fie, Wi}, all k, and let X
be the set of initial commitments that make policy optimal form a timeless
perspective. We wish to characterize a steady state by a constant policy and set
of initial commitments, constant debt level and tax rates, constant aggregate
and sectorial outputs, relative prices as sectorial price dispersions equal to their
initial values, that is: one. The centralized policy maker chooses a sequence of
X = {Ht7 Hk,ta Y3, Yk,m Fk‘,ta Kk:,ty Wi, Ak,ta Tt by, pk,t}a all k, for t > t¢ in
order to maximize
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subject to:
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and taking as given the initial commitments X, and the initial conditions
Ty = {b*, Ax,_1, pr,—1} for every k and ¢ > t¢. In order to impose con-
stant commitments X, = X we consider additional restrictions such as the first
order conditions for the problem in t = ty are equivalent to the first order con-
ditions for a generic t > 0. Let ¢y, , 0, 0} Grss Orrs Bps Piots Grss D1 be
the Lagrange multipliers corresponding to equations (10) to (18). In order to
complete the proof, we need to show that first order conditions for the indicated
steady state are satisfied for time-invariant Lagrange multipliers. The first order
conditions to the maximization problem are the following.
With respect Ay ¢
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From FOC with respect to Ay ¢
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which solves for ¢11€, all k. From FOC with respect to K ; and Fj,
i = —dr(1 - an), (20)
i = Sr(1 — ), (21)
which imply
—o5, = O (22)
Optimality with respect to W; yields
¢’ =0. (23)



From FOC with respect to 71+ and b} yield, respectively

o = 6, (24)
and
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FOC with respect to Y, and using (25)
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FOC with respect to Yy ¢
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multiplying by my, and using the definition for Y},
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summing across sectors and using the relation (29) yields
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It is then possible to establish the steady state value of ¢° only as function

of aggregate variables:
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(31)

Havmg determined the value for ¢® allows us to determine Z 1y $ using
(29), ¢; using (30), ¢} using (24), and ¢, and ¢7 using respectively (22) and
(21).

FOCs with respect to py ; yields
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summing across sectors

using (26) and (29)



1—n¢® - s s
U (v —0) " =0 -0) (7 - C) " (34)
which solves for ¢® as we use as a function only of aggregate variables, as we

use (31). In this case, Zle ¢ can be determined by (26). Finally, ¢; can be
determined using (32). It follows the system is just determined which completes

the proof.

3 Appendix C - Second Order Approximation

to Utility Function

3.1 Second Order Approximation of Utility Function

We start with a second order Taylor expansion of the representative consumer’s
welfare function, along the lines of Woodford (2003).
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and where &, refers to the full vector of random disturbances, as in Benigno and
Woodford (2003). We start by working with u (Y;,&,). A second order Taylor
expansion over original expression yields
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where the term tips refers to terms independent of policy hereafter.
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Define hereafter, for any variable X;

- X — X
X, == < (38)
and
5 X
X; = log ?t (39)
It is know that the following relation holds up to second order:
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Given the functional form assumed for the utility function, we have:
oY
2C

where ét represents the absolute deviation over GDP. As G, is the only random
disturbance considered in this case, than it is clear that
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as an exception to (38). We define the ratio of consumption over output
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and use (40), yielding
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A second order Taylor expansion of v (Y ¢,&,) Ay around steady state val-
ues yield
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Considering that in this component of utility function, the vector &, contains
only non-zero terms for disturbances ay; and that a; = 1, all k, then

apt = akt — 1,
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and also

App =20, — 1.

Expression above (43) simplifies to
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where we have used the relation (40) for both a,; and Yk,t. Using the defini-

tion for Ay, one can show that Ay, is a term of second order. In this sense,

interactions between Ak,t and ag ¢ or Akﬂg and Yk,t can be ignored for they are
of no importance up to second order. To see this, recall that
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Steady state values for prices imply, for every k:
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Using integrals
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Noting further that
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due to the definition of sectorial price index, then we have:

Apt=ADpy—1=02

Hence, expression (44) simplifies to
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where we have used the relation
A A Y 3
Akt = Bit + 58k + Oy,
which simplifies to

Ak,t = Ak,t + 027

once one notice that A%t is of higher order than 012,. Using a second order
Taylor expansion over the law of motion for sectorial price dispersion given by
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yields
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where interactions between Am,l and f[k,t have been explicitly considered as
of third order. Using the relation:
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We have, up to second order,
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where 7+ is the percent variation of sectorial price level, or best known as

01 +v)(1+ 91/)7'('%7,5 + Og,
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sectorial inflation, 7y ; = log Py ¢/ Pk t—1. Interacting backwards yields

" _1a 1 «ap
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—r t—j 3
2(1_ak)9(1+u)1+ﬂu Zak T+ 03, (54)

7=0

while we consider the sectorial price dispersion in the remote past as a "term in-
dependent of policy". Further considering that it is possible to change positions
of sums over ¢ and k on (51), that is

S [t]”

t=0 k=1

Vit I & s
E ANIAS
[ k] 1+Vt:06 k.t}

Reordering terms, one can find that

Zﬁtﬁk,t = % = ak)ozli ey 0(1+v)(1+0v) Zﬁtﬂit + tips + Og. (55)
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Substituting (55) over (51) yields
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where we have benefited from the possibility of swapping sums of ¢ and k. Using
(16) and (17) in the text, one can show that the following relation holds in
steady state:
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It follows that
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where the last equality is due to relation (7). These last definitions lead to (35)

being approximated up to second order by the following expression:
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G-ey=2"10-7 (60)
I
as above.

3.2 Second Order Approximation to AS Equation

The starting point is the expression for the sectorial non-linear Phillips Curve,
given by:

1+6v

(Gr) i g
We define Vj, ¢ as
Vi = % (62)
Applying logs yield the exact approximation:
T e = s~ (63)

where we used the definition (39). Using a second order Taylor expansion over

15



Vk‘,t:

o ag(0-1) S lag(@-1) 9 3
Vi =~y M) = 57 (0= 1) = (1= )} ) + 0. (69
Using (53), one obtain:

Vit = —% Tt + %%ﬂ%,t + 02- (65)

Considering the expression for Ky, ; given by (16), define for convenience

Pk‘ s
I, s = =,
ks = P (66)

)

where s > t is some date in the future and Py the aggregate price level in
sector k in period t. We use a second order Taylor expansion over

s ar.j

) i vi1) i VTt
Ky = 1M EtZ(ak,B)J t/ﬁé},tHth;l)L{ ;
i=t ’
yields
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where the term i%t can be defined as

kg = 01+ V) + L+ v)Viy — (1 +v)an + iy, (68)
as we have used the relation in (40) for variables ﬁk-,t,jv 17;6,,5 and dy,;. Using the
same relation applied for Ky, ; yields
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=t

1
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Taking the expression in the text for Fj, given by (17), we define the net
revenue factor as

Pk:,t =1- Tkt (70)

Applying (70) and (66) over (17) yields

o0

Fro=EY (B " TryCroIY pk iV s (71)

J=t
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We apply a second order Taylor expansion over (17) which yields

o0

Frg=(1-Ban)E > (B ™ {frj+ 5 fkj}+0 (72)

=t
where Fk,t follows (38) and we define fAM as

fk-,j = fk,j — Uéj + Yk,j +]3k-,j + (9 — 1) Tht,5 (73)

where hat variables correspond to their definitions in (39). More explicitly,
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and, as above,
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Also, from (40), we have
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We can subtract (65) from (76) yielding
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We can multiply this last expression by (63), which yields:
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Replacing this last expression over (77) and (63)
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Using the definitions for fk.ﬂg and lAck.,t, we have
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For convenience, we can also define
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Replacing above expressions over (80)
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We can replace in the expression above and get:
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+3(1-) B, ; (@) ™" [og = (L+ 00) ] X + 100 = 1)+ 001+ )] sg]

1 1+60v] -
_ 5(1 — Bag) [ 1 } Vit Lt —I-OS.

Taking the lead, multiplying by axf and then subtracting from expression
above yields:

T [T~ auBE i ] = B3 (0B ™ (s = 1+ 80)mig )+
j=t
— (auB)Ey Z (apB) 1 {lzk,; — (14 0v)Th 141 5] 1+
j=t+1

o

+ %Et ; (@)™ [z = (14 00 ag) Ko +100 = 1) + 00+ )i | 1+

o

1 o R
_(Oék‘ﬁ)iEt Z ()’ t—1 2k, — (L4 0v) g 1 415) [Xk;)j +[(0-1)+0(1+ y)]ﬁmﬂd} s
j=t+1
1[1+6v] 1~ N
-5 [ T ] [Vk,tZk,t - akﬁEth7t+1Zk7t+1} + Og_
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Using the facts that mp ¢ = 0, Mgt — Tht41,j = Tk tt+1 = Tk,¢+1 and also
that

”Z,Hl,j - 7Ti,t,j = Wi,t+1 = 2 441kt (86)
one gets
(1+6v) . - af 1 .
- = Zps— —_*Z_p Sz X
=11 = o) [Vm akﬁEth,tJrl} 2, —[1+0V] A= orf) tﬂk,t+1+2{zk,t kit ht
1 > e X
+35 (i) B, D (B ™ T a0 = DFO(140)] (7, 141) — (1400 (ke 141) X+
j=t+1
+[1+0v[(6—1)+6(1+ 9”)](”%,:&4—1 = 2Tt 41Tk t,5)

11+0v - N
_ 5 9 1 [Vk,tzk,t - ak/BEth,t+1Zk,t+l:| + Og

Noticing that

Tkt = Tht+l + Tht+1,5

expression above simplifies to

© —(11)?19—1/)56%) [th - akﬁEth,t+1:| = Zk-,t(1+9V)%Etﬂk,t+l+ézk,txk,t+
1 a3 2
— 5(1 + 91/)[(9 - 1) + 9(1 + V)]mEtﬂ-k,thl
+%[(9 — DH0A+0)] () (Tras1)Be Y ()™ {zrj— (1400) (Tr41,5)}
j=t+1
—%(H@V) (arB) (mrer)Ee Y (0B ™ T H{ Xk j+(0 — D+0(1+)]) (T 141,5)}
j=t+1
- % [%] [Vk,tzk,t - akﬁEth,t+1Zk,t+1:| + OS-

Using the definition for Z ;, expression simplifies to
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(1+6v) - . - B [
= 1)(1 - Ban) [Vm akﬁEth7t+1} = 2 (1+9u)7(1 ey Etﬁk,t+1+22k;7th,t
1 o
B 5(1 * 01/)[(0 o 1) + 0(1 + V)] (1 _kak-ﬁ) Etﬂ-i,t-‘rl
1 Oékﬁ ~
+ 3+ O =D+ 00+ V] G Ao B Visrmas
1 1(146v) [~ .
_5(1—1—0”) (o) Et[ﬂk’t+1zkvt+1]_§ﬁ {Vk,tzk‘,t - akﬁEth,tJrle,tﬂ] +03,

where we have used the fact that, from (80) and from the definition of fm - l%k,t:

@ (il)-(i-leu)ﬁa )Vk,t(ﬂ'k,tﬂ) = (mrat1)Er > (B T {ak—(1400) (m11,)} 405
* j=t+1

(87)

We can use the definition for Vk,t in (65) and replace above, also discharging
the terms O or of higher order.

. 1(0—1)
—E T S T )

1 (0-1
Ths — BB 141 — 5%%5&7@”5“
a3

(1 — akﬁ)
[(6—1)+6(1+ u)]%Eﬂ;Hﬁ

1 N
2kt + =264 Xkt — (14 6v)

D) Eymp i1+

Nl —= N =

(1+0v) () Et[mk 412k t41]+

(14 0v)ay

L1
2 (1—Ozk-)

[Tkt 2kt — Ok BE Tk 41 Zne41]] + O3,

where we have defined ki as

(1 — Ozk)(l — Ozkﬁ)-

k= (14 0v)ay
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Further simplification yields

_ 1 4, (0-1) 1(1+6v)oy
— Ky, 17Tk:,t — §l{k 1_(1 ,—ak)ﬂi’t — 57(1 ~or) Tkt Lt
1 N _
= Zpt + Ezk,th,t — K}, \BE T 41
1, (0-1)
1(1+46v)oy 3
- §W5Et[7rk,t+1zk,t+1] +0,.

Multiplying both sides for —ky, allow us to write above expression as

1 . 0(1+v
Vk‘ﬂf = —mk{zki + §Zk,th-,t} + %ﬂ-i,t + ﬁEth-,H_l + Og (89)
where:
1 (0 — 1) 2 1 RO
- v L A 90
Vk:,t ﬂ-kvt + 2{(1 _ ak) + 9(1 + V)}Trk‘,t + 2 (1 _ ak) [ﬂ'k,t k7t] ( )

and 2y ¢, Xk,t and Zy; are give, respectively, by (84), (82), (85). A second order
Taylor expansion of log(1 — 74¢) allows us to relate (74) with the original tax
rate variables:

_ T I
log(l — Tk;t) = log(l — T) — ? k.t 5 (1 —)QTk,t + Op,
S X Lo 3
F]“t = —(ST]C,t — (1 — ,7_) §Tk,t + Op’
where
,7—
0= 91
1+ (91)
Also, a log-linearization of
Ce=Y:— G

yields

N N N 1 N 1 N N
C; = salYtfsath+§sal(1fsal)Y;275351(1+351)Gt2+352)/}Gt+03, (92)
where

SC :C'/Y
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Using both results, one can redefine 2 ; and X kit @S

1 46

bt §ﬁ%i’t + (2 + I/)Yk,t +ﬁk7t - (1 + I/)(Alk;,t + ﬂ11é)7£93)

N N 1 A A
—o{Y: — G + 5(1 — s Y2 + 55 Gy} + tips + Og,

and

. 1 6 - . . w
Rkt = —(57']@7,5 — 5@727)5 — VYk7t +pk‘,t + (1 + V)a]“t - H‘k,t (94)

A A 1 ~A A
—&{Y, — G + 51— s )Y + 55" Y, Gy} + tips + O3,

where & is defined as in (59) and also noting that py, relates to sectorial and
aggregate outputs following

Dit = 77_1(}}15 - Yk,t)-

Finally, (89) can be generally expressed as

0(1+v)

= 1 .
Vit = Et, Zﬁj t{*’ik[zk-,t + =25 1 Xp o] + 5

5 T} +tips + 05 (95)

=t

where Vi ; is defined in (90), Xkyt in (93) and 2z, in (94). One could finally
note that a first order approximation to (63) yields the known Phillips Curve
of the form:

The = w6 =0 )Y+ (040 )Yt + 074y (96)
~6Gy — (14 V)aky + i} + BE Ty 41 + O2.

3.3 Second Order Approximation to the Budget Constraint

We approximate the intertemporal government budget restriction by a second
order Taylor expansion. We take the definition of government’s intertemporal
budget constraint in the text

Wiy = E; Z Bj_tcj_osjv (97)

=t

where W; is defined as
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C;7 .
Wt: lf[t t—1»

and by as the real value at maturity of government debt in terms of one-period
riskless bond, or by = R:b:, and s; is given by

(98)

K
St = ZTk,tpk,tYk,t -Gy (99)
k=1
Expanding (97) yields:
= = ~ . 1 ~ ~
Wy=(1-B)E Y B H{-0C,+5 + olo+ 1)C? — oCiéi} + O3, (100)
j=t

where tilde variables are defined in (38) and where we have used the relation

- (C7%
W = . 101
— (101)
We can use relation (40) in order to simplify equation above to:
- S . 1 A A
Wy=(1-B)E Y B {-0C+5+ 50*203 —0C5} + 03, (102)

j=t
where hat variables are defined as in (39). In this sense, W; can be defined in

terms of log variables using the relation given (40). Using logs over (98), W,
can be defined as:

Wt == 8:71 — O'ét — Tt, (103)
where hat variables are defined as log deviations from steady state levels. Once
~ . 1.
W:W+§W+ij, (104)
holds, we have:
- . . 1., .
Wi =bi_y —0Cy =7+ 5 (b1 —0Ci - m)* + O3, (105)

We should also define §; in terms of log deviations from steady state levels.
Taking a second order Taylor expansion over (99) yields:

K
- . . N 1 . . A N 1.
SdSt = E ka[(Tk +pk,t+Yk,t) +§(Tk +pk,t+Yk,t)z] — Gy — EG? JrO;, (106)
k=1
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where hat variables are log deviations from steady state values and we have used
the relation in (40) for 74, Yi: and Gy as well as Y3, = myY. The term sq4 is
defined as

(107)

»

U

M1l
= @l

where

K
§=) 7V -G=7Y-G. (108)
k=1
Finally, for mathematical convenience, we choose to redefine (102) by mul-
tiplying both sides by sg4:
- - > . 1 R .
Wiy = saWi = (1 — B)E; Z B —05qC + 545, + 50_20,52 —0Csg5} + Og.
j=t
(109)
Hence, the second order approximation for the intertemporal budget con-

straint can be obtained by replacing (92), (105), (106) into (109). One can
notice that a first order approximation yields:

by —6(Yi = Gy) —m =
(') ) K .
(L= B)EY /sy > mut i+ Prr + Yieal+
j=t k=1
+ (6 —s5")Gy — 6V} + tips + OZ,

where, as underlined elsewhere, py, ¢ is a function of sectorial and overall outputs

and & and sg are, respectively, defined in (59) and (107).

3.4 Aggregate and Sectorial Output Relation

Sectorial demand expressed in,
Pl = Mks—, (110)
when log-linearized, yields

ﬁk,t = 77_1(Yt - Yk,t)- (111)

which establishes an exact (inverse) relation between sector relative price and
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sector relative product. Also, by substituting (110) and

11,

t
= —"Pri— 112
Pt I, Pr,t—1 (112)
over
K
I, ™" = ka (M 4pre—1)" ", (113)
k=1
one gets
K
-1 1 -1
Yt(n )/ _ ka/nyk(,?f )/777 (114)
k=1

which relates aggregate and sectorial outputs. Log linearization of (114) yields
1 K 1 K
0 —1\Yr2 _ % -1 ) 3
Vot 51— Hy? = ;mkyk,t +5(-n );kak)t +03.  (115)

4 Appendix D - Elimination of Linear Terms

4.1 Matrix Notation

We start by defining

ZCQZ[Yt Yl,t YK,t T1,t o MKt 7A'17t 7A'K7t} (116)

and
& =1G are - axe By - PRy |- (117)

For notational convenience, we also define the following terms:

v=1+v, (118)
wy=1—-n"14 (119)
xX=v+n, (120)

&=o0sg, (121)
s=6-n"1, (122)



0= - (123)
and
Vo
1—sgt = f?c = —we, (124)
in addition to the terms defined elsewhere:
sc=CJ/Y, (125)
sqa=35/Y. (126)

Using the definitions above, expression in (56) can be written in matrix notation
as

[ee]
1
Uy = QEy, Y B { ALy — s Agey — 24 Aely} + tips + O, (127)

2
t=to

where A, Ay, and A¢ are, respectively, (3K +1) x 1, (3K +1) x (3K +1) and
(3K + 1) x (2K + 1) matrices, such as:

A =[1 —=m(1=®) .. —mg(1l=®) 0 .. 0 0 .. 0], (128)
Al 0 0 0
o 42 o0 o
0 0 0 0

where ALl is a 1 x 1 matrix such as

Ai; = _(1 - &)7

A2 is a K x K diagonal matrix such as its typical k" element is

(Aii)kk =mg(l — P)o,
A2 is a K x K diagonal matrix such as its typical k" element is
mk(l — (I))

(Ai?ﬂ)ﬁ)kk - K 9,

and
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A0 0
0 Az g
ag=| 0 0 (130)
0 0 O
where
11 =
A£ = —

and Agz is a K x K diagonal matrix such as its typical k" element is

(Agz)k-k- = _mk(l - @)Ua

and where we have observed the following definitions:

R =

(1-9)= E(l__T)
0 Y
The Sectorial Phillips Curve expressed in (95) can also be written in matrix
notation. We start by substituting expressions for pj; into definitions for 2y ;
and )A(k.ﬂg, underlined in (94) and (93). Our aim is to separate quadratic and
linear terms. Quadratic and linear terms of random disturbances are placed
into tips. After some manipulation one obtains:

o0

. 1 .

Vieto = Fiy Z B to{C;)k,;Ut + éx;Cm,kxt + 2,Ce k&, } + tips + Og, (131)
Jj=to

for a generic sector k. As in (127), matrices Cy i, Cya i, and Cg  have, respec-

tively, dimension (3K +1) x 1, BK +1) x (3K +1) and (3K +1) x (2K + 1),
such as:

! _ 117 12/ 14/
.k — [ Cx,k C;c,k 0 Cﬁt‘,k‘ ]7

(132)

where C1/ is 1 x 1 matrix such as

11/
C:L‘,k = KgS

every k, C1? is 1 x K matrix such as
Y R, x,k
12/ _
(Cz,k) 1k = FEX
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and zeros elsewhere, C’l % is 1 x K matrix such as

(014/) _ K:k'(;
and zeros elsewhere; and
_ zx.k zx.k zx.k
Coox Cazn 0 Copy

such that C’i;k is 1 x 1 matrix

C:L‘:L‘ k 7’4314:[6—(‘]0 + §2]

for every k, C}2 ; is 1 x K matrix such that

(Cxx k) = KiSWy

and zeros elsewhere, all k, and C}2, = C2} ; Ci1, is 1 x K matrix, such as

(C’m k) = —KESo

and zero otherwise, for all k, and C;) | = C1V,; C22 | is K x K diagonal matrix
such that, all k,

(Cm;c k) = X"ik(v + w"})
C3 1 is K x K diagonal matrix such that, for all &,

xT

(CQLQL k)kk‘ = 6v

C?*  is K x K diagonal matrix such as

zx,k

(C’m k) = Kidwy

all k, C#4 k 1s K x K diagonal matrix such as

(CQLQL k) = H/k(s
for every k, and C’fz = C’f‘;' - Also, matrix C¢ i can be defined as
g,k 0 O
cz C%E 0%
Ceu= | Cor Cen et (134)
¢l 0 0

where Cgllk is 1 x 1 matrix, such that

C£11k = Kplwe + 6 +wylo
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for every k; C’glk is a K x 1 matrix, such as

21 ~
(Ci,k) 1k  RkWno
and zero elsewhere, CZ5 is K x K diagonal matrix such that
22 _ 2
(CE,k)kk = TRV
and zero elsewhere, ng;g is K x K diagonal matrix such that
23 _
(CEh) . = rorv
and zero otherwise, C2} is K x 1 matrix such that
41 _ ~—1
(C&k)k-l = kKOG
and zero elsewhere. We recall the definition for § as

T

5_1—?
in addition to the definitions from (118) to (126).

The government budget constraint can also be simplified in matrix notation.
Taking expression given in (102), we eliminate references for py +, and replace C,
and §; for their expressions in terms of endogenous variables x; and exogenous
processes &,. Grouping linear and quadratic terms, yields:

o

_ -~ 1 .
Wio = (1= B)Ey, Y 7" {Bla + §x;Bmxt + 2, Be&, } + tips + OF  (135)

Jj=to

where, as in (127) and (131), matrices By, Bz, and B¢ are, respectively, of
dimensions (3K +1) x 1, (3K +1) x (3K +1) and (3K +1) x (K +1), such as:

B, = [ —Gsq+ TNt wymuT . wymgT 0 . 0 maT ... mgT },
(136)
B41 B42 0 B44

such as Bll is 1 x 1 matrix such as

1

B;glg =6sq(we +6) —sn~ T,

for every k, B12 is 1 x K matrix such as
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(Bﬁ.)lk = —QWyMmyT,

12/ _ p21

xrx T

every k, B Bl is 1 x K matrix, such as

(Brz)y, = —Smat,

every k, B = C1¥: B22 is K x K diagonal matrix that

rxT )
22\ _ 2
(Biz) i = wiymaT,
every k, B2% is K x K diagonal matrix such as
24\ _ _
(Bmz)kk = wyMmyT,

every k, and B2 = B2Y: and B4} is a is K x K diagonal matrix, such that

44 =
(Bzz)k-k = mgT,
every k. Also:
Bél 0 0
B2 0 0
— 3
Be i o0 ol (138)
41
B 0 0
where B! is a 1 x 1 matrix such that
BH' =607 = Gsa(sg — 6),
for every k, BZ' is a K x 1 matrix such that
(Bgl)l€1 = GwymgT,
every k, Bgl is a K x 1 matrix such as
41 .
(B£ )kl = omyT,
every k.
Finally, (115) can be expressed in matrix notation as
0= g {Hz + §x;met} +03 (139)

=t

where we have used the fact that the definition for aggregate output in terms of
its sectorial counterparts expressed in (115) is valid at all dates. Matrices H,
and H,, have, respectively, dimension (3K + 1) x 1 and (3K + 1) x (3K + 1),
such as:
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o o oo

where H22 is a K x K diagonal matrix such as

(HZ2) e = =1

for every k.

4.2 Elimination of Linear Terms

OO OO

(140)

(141)

In order to eliminate linear terms in (127), we need to find a set a multipliers

1910, ...,ﬂg,ﬂg,ﬁH, such as

VCY + ..+ 05CK + 9B, +9gH, = A,

(142)

By solving the linear system of equations, one gets the following set of solu-

tion:
i)
I = —=
Py
_ P
7.9H = 1 — :T
and, for every k,
gk _ M1 —=7) P
¢ Kk T
where we have used the fact that 7 = 7y, all k, and defined:
1(1—7
p=1- 072107
i

and where s; stand for

(143)

(144)

(145)

(146)

(147)



Hence, using relations (127), (131), (135), (139) and (142) one can write:

oo

o0 K
By Y B0 ALy =By, Y BT 9GO +0p B, + 9 Hw, (148)

j=to j=to k=1

3 j=togl s ’ = E ﬁBWto
= 7Et0 Z B {§I'thm'xt + SUthft} + Z ﬂCVk,to + (1 — 6)
J=to k=1

where

K
k=1

and
K
De=> 9ECE + 0B
k=1

We use this last relations in order to rewrite (127)

= 1
Uiy = QB Y B ALwy — =2} Appy — 2, AeE,} + tips + O (149)

2
t=to

as

S|
Uy, = —QF;, Z Bt tO{ExQ[Am + Dyglze + 23[Ae + Del& 1

t=to

K IW,
+ 3 0V + 2R 4 tips + OF
,; T (1-8) v

[o ] _ 1 ’
U, = —QF;, Z Ik t“{ax;met + 2;Qc&,} + Ty, + tips + O (150)

t=to
where

W,
(1-5)

is a vector of predetermined variables and where @Q,, and Q¢ can be defined,
respectively, as

K
Ty, = QU _9EVis, + } (151)
k=1
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11 12 0 14

T T T
21 22 0 24

CQII 0 0 ii 0 ) ( )
41 42 0 44
T T T

11

where ()5, is a 1 X 1 matrix such as

P
= —(1=8) - [fwo + <21 - )+
P, 3 L i
— Flsalwo +5) - a7 + (1 - 2,

22 is a K x K diagonal matrix such as, for a generic k diagonal element,

@ P _®
(Q2) e = mad (1 = @)+ x(v +w,)(1 = )7 —wire — (1= S )n,

33 is a K x K diagonal matrix such as, for a generic k diagonal element,

(@), = On " mad (1= ) + (1 — 7)o,

1 is a K x K null matrix, once

P )
a4y _ _ _
(Qez) = mek.(l — 7))+ TIUT = 0,

12 a1 x K such as its typical k*"-column element is

P
( ;152;5) 1k = Tgw"lmk’

and Q%L = Q1%; Q1 a 1 x K null matrix once, for any k"-column element,

(QI2),, = momid (1 - )5 7} =0,

and Q4L = QLY and, finally, Q! is a K x K null matrix such as, for every k
diagonal element,

o
( iﬁ)kk = Twn[mk(l — 7_')5 —m;ﬁ] =0,

and Q12 = Q%Y. In the same fashion, we define the matrix Q¢ as
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Qll 0 0
Ql Q22 Q23

Q=175 5 S I (153)
QL 0 0

where Q¢ is a 1 x 1 matrix such as

~ - - e e - ~
Q' = =0+ [we + 6 +wyo(1 - T)T - T[an 17— Gsa(sg! —6)),

QEQ is a K x K diagonal matrix such as, for a generic k diagonal element,

(QF),, = —mi{(1 —@)v+ %(1 — 7%,

QF' a K x 1 dimension matrix such as its typical k'"-line element is

(Q?l)kl = —wpo—=mi(l —T) — =0wympT = —MpwynG—,

T T T

QF a K x K diagonal matrix such as its typical k""-line element is

(Qg?,)kl = mk%(l - T)v,

and Q‘gl a K x 1 dimension matrix of null elements once its typical k‘"-line
element is given by

(Qe')y = %ﬂmk(l —7)0 —my7} = 0.

As in Benigno and Woodford (2003) and Ferrero (2005), references to sector
tax rates have been eliminated. These are important for welfare considerations
only to the extent they influence the wedge between desired and actual levels of
sectorial and aggregate outputs. Only references to sectorial inflation measures,
sectorial and aggregate outputs remain, which imply (150) can be simplified
further by getting rid-off tax rates references and by separating terms referring
to sectorial and overall outputs from references to sectorial inflation. Proceeding
in such fashion yields

QX - - - ,
Uiy = =By, »_ B "{a), ,Quys + 22, ,Qcly + 2% ;Qrm i} + Ty + tips + O,

2 t=to
(154)
where z,; is a K + 1 x 1 vector containing only references to aggregate and
sectorial outputs measures, or
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x/y,t = [ Y/;t Y/l,t YK,t }7

Zr+ is a K x 1 vector containing only sectorial inflation measures, or
!
CL‘mt = [ it .- TKt J y
and @y, Q¢ and @, are given, respectively, by:

5 11 12
Q J— Txr xTxr
y = 21 22 |

xx xrx

Qﬂ::[ 2%}7

~ Qll 0 0 :|

Qe = [ le ng Qg?, )
where accurate specifications for submatrices Q%, and Q? are given in (152)
and (153). From (154), we now focus on the term

K K
Ty 1QyTyt = a0, Yy + Z My Yk:2,t +2 Z MGy, g5, Yt Vit (155)
k=1 k=1

where ¢ terms are defined according to

kS
o

qQy = *(1*5)*[5’WC+§2](1*7—)T*T[&Sd(w0+6—)*§77_17_']+(1*E§)wm (156)

K] K] _o
t = (1= B0+ xv+w)(1 )T g — (L -Z2)w, (157
[
Qy,yp = Tgwn- (158)

Under the assumption that wage markups is steady state as well as markups
over marginal costs are the same across sectors (p)y = p* and 0, = 0) , ¢
coefficients are all independent of k. We use the following proposition in order
to simplify (155) further:

Proposition 1 The following expression relating sum of sectorial output vari-
ances and covariances of sectorial outputs and aggregate output is of third order:

K K
Y § : ¥ E : -2 3
}/t kak,t — kak,t = Op.
k=1 k=1
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Proof. On one hand, from (114)

K

. . 1) & . .
Vo= > miYi = %(E Y2, — V2) + O3, (159)
k=1 k=1

On the other hand, from the definition of sectorial demand it is possible to
establish the following exact relation:

Pt =1 (Vi = Vo). (160)
Summing across sectors yields:

K

K
S by =07 (V= > miYi). (161)
k=1 k=1

From the definition of aggregate price level in terms of sectorial prices:

K
1= miph " (162)
k=1

Log-approximation on (162) yields:

K
E Mgkt =
=1

One can use (160) and (161) in order to replace for py ¢+, which yields:

K
(1-n) Z mpy ¢ + Op-
k=1

N~

K K K
y o € n7") oo 3 o 9 3
Y — kZZIkak-,t = - 5 (Y7 —2Y; ;kak,t + kZZI mYiy) + 0. (163)

Comparing (159) and (163) yields the result. m
Given proposition above, (155) is equivalent to:

K

xly,toxy,t = q Y7 + q/yk Z kak'Q,t + OZ’ (164)
k=1
where:

Gy = Dy + 24y -
We now focus on the second term of (154), containing the interactions be-
tween endogenous variables and exogenous processes:

K K

7, 1Qely = aycYiGe + ayc Z MY, G + Z Yt [y Gt Gy i ]
k=1 k=1
(165)
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where coefficients defined as

0 = =5+ [ + 5+ )01 =7 — 2ol T = salsg — o), (1660
Qo = (1= B — Z(1 = 7)0?, (167)

Gy = —wn&% (168)

Gy, = %(1 — (169)

are all independent of sector-specific characteristics.

Proposition 2 The following expression is, at least, of second order:

K
}/t — kayk-,t = 012)
k=1

Proof. Follows directly from (115). m

From above, the following holds:

Proposition 3 The following expression holds:

K
DA/; — kaYkﬂg]GAt = OS
k=1

Proof. From proposition above plus the fact that all exogenous processes are
O;. m
From (165), one can use above to get:

K
1 Qe&y = kaYk,t[q;kGGt + Qypar it + Gy firg] + O3, (170)
k=1

where
q;kG = qyG t+ Qy.G-

We now focus our attention on (164). The following lemma can help us
simplify the expression even further.
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Proposition 4 The following expression is of third order:
K
VP mYi =0
k=1

Proof. From the first proposition:

K K
Vi Y maYer =Y mpYi, = O3 (171)
k=1 k=1

From the second proposition:

K
Y, — kaffm =02 (172)
k=1
Replacing (172) over (171) yields:

K
-2 § 2 3
}/; - kak‘,t - Op’
k=1

once we notice that YtOZ is Og. [ ]

From (164):
. K K
x;,toxyyt =y [Y;&Z - Z kakZ,t] + [q;k + gy Z mkykz,t (173)
k=1 k=1
Applying the last Proposition above:
3 K
xly,toxy,t = q;’k Z kak-z,t + 02, (174)
k=1

where

Ty, = qy, + ay-

Replacing (170) and (174) over (154) yields the expression for the second
order approximation for the utility function:

Q

Uto - —5

0o K K
o Z Bt A, Z MYz, + Z Mk x iy} + Ty + tips + O,
t=to k=1 k=1

where
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O Ok
Ykt = Yk-,t - Yk,t

and

_Yl:,t = )‘y_kl[(QyG + kaG)Gt + Gypa Gkt + kaukﬂk,t] (175)

all k, and, most importantly,

Aye =y + 24y, + 4y, (176)

P
Mer = Ok H{(1— @) + T(l — 7)v} (177)
while terms such as gy, , g, , and g4, are defined from (156) to (158) and terms

such as ¢yG, ¢y, G5 Qypar and gy, ,, are defined from (166) to (169).

5 Appendix E - Concavity

The concavity properties of the second order quadratic approximation for the
utility function depend largely on the parameter values chosen. We are partic-
ular interested in determining the set of conditions that allow the second order
approximation to yield a unique solution to the approximated Ramsey problem.
Sufficient condition for concavity can be obtained if A-coefficients defined in the
last section are positive. We start out by considering the coefficients of sectorial
inflation:

)
Moy = Oﬁlzlmk{(l —P)+ T(l —T)v} >0,
all k, which holds if

(1-@)+ 2 (7)o >0,

The terms 1 —® and 1—7 will always be positive provided a upper bound for
tax rates in steady state. Considering also the implausibility of negative values
for the inverse of Frisch elasticity, then v > 0. ® is bounded bellow by 7, which
is always great than zero. A sufficient condition for Ay » > 0 is having a set of
parameter values such as T > 0, or

(c+x) A —=7)+dsq > 7,

which will always hold provided tax rates are not excessively high and once we
consider that v, ¢ and sy are all positive.

Having considered the conditions upon which the coefficients over inflation
variance are positive, we turn now to the conditions that ensure that the coeffi-
cients over sectorial output variances are also positive. We carry out a numerical
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analysis of the sensibility of values of A,, under the baseline calibration, largely
based of Rotemberge and Woodford (1998), Benigno and Woodford (2003) and
Ferrero (2005). That is characterized by: a wage markup in steady state (f,)
of 5%, a A set to .98, a within sector elasticity of substitution (6) of 10, a gov-
ernment expenses over GDP (G/Y) of 25%, 3 of 99%, which corresponds to
steady state interest rate of 4.1% year, a government primary surplus over GDP
(5) of 2.5%, a Frisch elasticity of labor supply (v) of .47, a coefficient of risk
aversion (o) of 2 and a cross-sector elasticity of substitution (7) of 4.5. The two
graphs below present sufficient conditions for concavity (i.e.: A, > 0) of the
linear-quadratic approximation to the utility function as some key parameter
values change. In the first graph we contrast different values for the elasticity
of substitution across sectors with steady state tax rate levels, while keeping
the other parameters confined to the basic calibration. Steady state taxation
level is confined between 5% to 50% of GDP, for a constant primary surplus of
2.5%. Onme should note that either changes in steady state taxation levels nor
changes in the elasticity of substitution across sectors affect sufficient conditions
for concavity in a significant extent. Concavity fails only when 7 is close to zero.

Coefficient of Sectorial Output Variances

i 0 e Government Expenses over GDP

Cross-Sector Elasticity of Substitution

Figurel: Sufficient Conditions for Concavity as a function of Cross-Sector
Elasticity of Substitution and Steady State Tax Rate.

The following graph explores sufficient conditions for concavity for a variety
of different values on the degree of risk aversion and on the elasticity of sub-
stitution across-sectors, while we fix the steady state tax rate level at 25% of
GDP and a primary surplus of 2.5%. Other parameter values equal those of
the baseline calibration. Concavity of utility function is attained for reason-
able parameters of risk aversion and substitution elasticity amongst goods from
different sectors.
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Coefficient of Sectorial Output VVariances

Cross-Sector Elasticity of Substituiton Risk Aversion

Figure 2: Sufficient Conditions for Concavity as a function of Cross-Sector
Elasticity of Substitution and Risck Aversion

6 Appendix F - Log-linear Approximation of Re-
strictions

6.1 Definition of Target Variables

Explicitly using the assumption that sector specific tax rates as well as wage
markups in steady state are the same across sectors, we can define the target
level of aggregate output using (175):

_Yk:*,t = )‘;kl[(QyG + Gy, G)Gt + Qyar Gkt + Ay py, ﬂk-,t]7 (178)

and

*Yt* = )‘y_kl[(QyG + qykG)Gt + Qypa, Gt + Qyyp, fug] (179)

where coefficients ¢ are defined elsewhere and a; and [i, are respectively defined
as:

K
ay = E mk-&k,t
k=1

and
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K
A ~w
My = E My fl -
k=1

6.2 Aggregate supply and cost-push disturbance term
We take the first order terms of AS equation in (95), valid for all k.

e = F{(E =Y+ 0 )Y + 0%k
—5G; — (1+ V)ans + iy} + BEim 141 + Oj-

Adding and subtracting, respectively, the terms referring to overall and sec-
torial output targets with the appropriate coefficients yield
Tt = ke{(0— n Yy + (v +77_1)yk-,t +0(Th,e — 7A_]t¢)} + BE Tk 141 + ke, (180)

for every k, where the definition for the cost-push term wy ; is given by

uge = kgl — (v + nil)A;quykﬂk]ﬂ}:,t (181)
and
0%k, = =[G +vINNaye + aee) + 681G — (6 — 17 A, Gy, 141(182)

—(6 =" dane = [(V+ 07 DA dya + (1 1))

can be understood as the target level for distortive taxation in sector k. Aver-
aging across sectors allows us to determine the generalized aggregate first order
approximation for the AS equation (Phillips Curve), similar to Carvalho (2006).

K
Tt = Z mklik{(5*7’]71)yt+(V+7’]71)yl@t+6(7A'k,t*’IA'ZJ)‘FUk,t}‘FﬁE{/TtJrl (183)
k=1

6.3 Budget Constraint and fiscal disturbance term

We start by taking a first order approximation to expression (109), yielding

o) K
Eikfl*&(ﬁfét)*ﬂt = (1-p) Z Bt_to{byﬁJr?S;l ka [f'k+wnYk,t]+bGGt},
t=to k=1

(184)
where we have defined for convenience the terms b, and bg, respectively, as
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by, = 5517"7771 -0,

and
bg=0— sgl.
Expression (184) can be written in recursive terms. Using the definition

for aggregate output in terms of sectorial outputs and the definitions for target
variables given in (175) and (182), we get:

K

by —byye — i+ G = (1= B)7s, " ka(%k,t ) + BEy[b] — Y1 — megal,
k=1
(185)
where
by =6+ (1—B)(by + Twys; ),
and
~ K A A
(o= [6— (1= B)b6lGr = b)Yy = (1= B)7s; ' Y mulih ) + 5BE(Y = Gii),
k=1
(186)

is a combination of exogenous processes. (, can be redefining in terms of struc-
tural shocks as

G = wfé’t +wias + w’fﬁ?} - wQGEthH — w5 By — wlzlEtﬁluﬂv (187)

W = 6 (1-B)bo+by A (6 a.6) —(1-B)(1=7)s7 [(G+1)A, gy )+,

wg = 6&[1 + A;kl(qu + qykG)]7

W(II By)‘;kl%kak - (1 - B)(l - 7—)5;1[(& + V))\;quykak + (1 + V)]?

a — ~ -1
wg = 0’,8)\yk Qyrans

W = Ay Gy, by — (1= B)(A = 7)sg" (G —n")]

and

b= 53)\"1
Wy = 06)\% Dy s, -
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6.4 Aggregate and Sectorial Output Relation
First order approximation to (115) yields:

K
Y, = Z ME Yt
k=1
which can be redefined in terms of deviation from aggregate and sectorial output

targets, yielding

K
Yt = Z MEYk,t-
k=1

6.5 Euler Equation and Equilibrium Interest Rate

Taking the first order approximation of the Euler equation in the main text
yields

Rt = &EtAY/thl — 5EtAét+1 + Et’fi't+1 + OZ,

where we have used the relation in (92) to substitute for C; in terms of ¥; and

G;. Expressing equilibrium interest rates in terms of aggregate output gap by
using definition in (175), which yields

Ry = 6E Ay i1 + Bymypyg — 5N, (aye + o) + B AG 1+
= 0N, Gy BeDanr — X, Gy, EeAfiggr + O,

7 Appendix G - Optimal Solution with Commit-
ment

For simplicity, define:

Setting up the Lagrangian:
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1 [e's) B K K
max §Eto{z BN Y M+ Y MMk aTh
k=1 k=1

{7Tt771'1,t,--»77r1,t7 —t
Yt Y1,ts-- YKt =to
~ ~ 7%
1t TR EDF T

+2my MT {71 — Ka[(6 — e+ (VA0 Dy + 671 — B — Ui} + e
+2mr M {mre—ri[(G—0"Dye+ @ +0yre + 07 kil = B i1 — i+

K
A2MPb; = byye =i — (1= B)Tsy " D muFre—BEb; —6yeir — o]+ 1+
k=1
K K
+2MP [y — > muyn ] + 2M7 [m =Y mpeme ]}
=1 =1
K
+2 mp M [—mg0] + 2M2  [mo] + 2M° [Gy0]
k=1

where M}’ denotes the multiplier of equation referred to variable z and where
the last line correspond to the preconditions that allow the problem to be valid
for all t > 0. As usual for a cashless economy case, the Euler equation defining
equilibrium interest rate as a function of exogenous shocks and evolution of
aggregate product is not relevant, serving only to determine the equilibrium
interest rates once optimal paths for sectorial outputs and inflations as well as
tax rates and debt level are already chosen. FOCs are given by:
With respect to ¢ i,

Ar kT + Mgy — My, = M. (188)
With respect to ¢

MF =M} — M), (189)

With respect to 7 ¢

1-7)(1—
M, = =D =B) (190)
; Ko
With respect to y;
K ~
= mM k(6 =) = MPby + MP_ 6+ MY =0, (191)
k=1
With respect to yi. ¢
Ayt — My [k (v +071)] = M = 0. (192)

With respect to by
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Mtb = EtMtb-'rl7 (193)
plus the problem’s constraints. Substituting (189) and (190) into (188) yields

the law of motion to sectorial inflation in terms of debt Lagrange Multiplier M,
that is:

Tt = YR (M — M_y), (194)
where . Lyt
N N IERLELI L
From (191),
MY =& M) — dyMP (195)
where

&1 =b, — (1-7)(1-B)s;'(6 —n"),
By = 5.
Taking (192), replacing for M, from (190) and isolating for yy ¢+ yields
Ykt = 801Mtb - 502Mtb—17 (196)
where ~
p1 =2, (@1 = (1=7)(1 = B)sz ' (v + 07 1),
_ 15
Yo = )\yk @2,

which establishes a relation between sectorial output and aggregate variables.

Summing up across sectors yields the aggregate output in terms of debt
Lagrange Multiplier:

Y = S M) — SoM? |, (197)

where we defined coefficients 31 and Yo, respectively as:

21 E(pl,

22 = Pa.

where definitions for ¢ coefficients are give elsewhere.
We now use (197), (196) and (194) over the sectorial Phillips Curve in order
to establish the law of motion for tax rates in each sector:
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YR(M) — M) = k(6 — 0 ") (1 MY — S MY )+
— k(v + 0 (@I M — oM 1) — kb — PR (EeMpyy — M) = upy.

Using (193):

Froa = (kid) R (M) — M}_) — k(6 — 07 )(E1 MY — S M)+
— k(v + 07 MY — oMY 1) — ug s}
or

Tht = ¢k,1Mtb - ¢k,2MtlLl — (kr0) Mg, (198)

where we have defined:
Or1 = (krd) " H{of — ki@ = T — k(v +1"Ner )

Pz = (k) YR — k(6 — 07182 — k(v + 17 o}
Finally, we considering government constraint. We use (197), (196), (194),
and (198) to get:

K
i1 = by S MY — Do MY ] — (MY — M{_y) meﬁﬁ
k=1

=

- (1- ﬁ)sgl?zmk[%,le - ¢k,2MtbA — (Kk0) Mg 4]+
k=1

K
— Bl — 5(S1Mp — SoMP ) — (B Mpyy — M) mypapf] + ¢, =0
k=1

Using (193) and by isolating terms M? and M} _,, it is possible to establish
the law of motion for debt value at maturity in terms of debt Lagrange Multiplier
and exogenous shocks:

K
by = By — MY+ oMY+ maF run + 87, (199)
k=1

where we have defined

K
=57 (by — B3)S1 + 0" + (1 - B)sg 7Y mudy ),

k=1

48



K
Qo =B H(by — B6)S2 + ¢ + (1= B)s7 7Y mudy s},

k=1

Fr= 671(1 — ,8)5(;17"(14165)_1

and
K
P = Z MYy
k=1

7.1 Determinacy under optimal policy

In order to prove determinacy we take the set of expressions resulting from
solving the set of first order conditions and restrictions applied for the problem
above. In this sense, we take (193), (194), (197), (196), (198), and (199) , and
write in terms of the following system of equations:

ToEizi 41 =iz + €441, (200)

where the vector for the system’s variables can be described as:

2t = ’ )

where notation 2 ; refers to the full set of sectorial variables z. This disposition

of variables allow to write I'; as an inferior triangular matrices whose eigenvalues
lie in the main diagonal. Matrix I'; can be defined as

1 * * % %k ok *

1 0 * % %k ok *

P =T 0 ok ok ok ok

I — 12;2 —_’Z 0 0 * * * =

708 =% 000 % x  x

b1 %5, 0 0 0 0 % =

G —fry 00 0 0 0
- 9 000 00 gt

49



and there are two non-zero eigenvalues, 1, stable, and 8%, unstable. Matrix I'y
is an identity matrix, whose eigenvalues equal one. We can redefine (200) as

Etzt+1 = Falrlzt + F61€t+1. (201)

Because I’y is identity, I'y ! is identity, and therefore Iy T, has the same
eigenvalues of I'y, one unstable, and other stable. As they match the number
of forward looking and backward looking variables, this fact alone allows us to
establish determinacy for (200).

Finally, it is relevant to notice that under commitment, optimal solution
imply that policy is conducted such a way that:

Etﬂ-k',t-i-l = 0, (202)
every k. It is somewhat a more strict condition than for an economy with
homogeneous stickiness. In order to see this, we take leads in (194), apply
expectation and use relation (193). In its turn, (202) for every k imply the
same behavior for aggregate inflation, or:
Etﬂ-t-‘rl =0. (203)
Also, for very k, (194) and (196) imply

$1

P2
AYpt = = Thit =~ Thyt— 204
P e (204
and the aggregate relation
by by
Ayt = w—iﬂ't — 1/}—72‘.7'(},1 (205)

Using (198), we define optimal sectorial taxation as a function of date ¢
sectorial inflation and output, as well as aggregate output.

e = (k) ™Mbt — KESY: — KXYkt — Unt } (206)
8 Appendix H: Cost-Push - Homogeneous Tax-

ation

The following figure presents the response of aggregate variables to a cost-push
shock in the median stickiness sector:
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