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Abstract

The paper develops the bootstrap theory and extends the asymp-
totic theory of rank estimators, such as the Maximum Rank Corre-
lation Estimator (MRC) of Han (1987), Monotone Rank Estimator
(MR) of Cavanagh and Sherman (1998) or Pairwise-Di¤erence Rank
Estimators (PDR) of Abrevaya (2003). It is known that under general
conditions these estimators have asymptotic normal distributions, but
the asymptotic variances are di¢ cult to �nd. Here we prove that the
quantiles and the variances of the asymptotic distributions can be con-
sistently estimated by the nonparametric bootstrap. We investigate
the accuracy of inference based on the asymptotic approximation and
the bootstrap, and provide bounds on the associated error. In the case
of MRC and MR, the bound is a function of the sample size of order
close to n�1=6. The PDR estimators belong to a special subclass of
rank estimators for which the bound is vanishing with the rate close
to n�1=2: The theoretical �ndings are illustrated with Monte-Carlo
experiments and a real data example.
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1 Introduction

Several semiparametric estimators recently introduced in the econometrics
literature are based on the rank correlation between the dependent and ex-
planatory variables. The �rst was suggested by Han (1987), and is called the
Maximum Rank Correlation estimator (MRC). It applies to the generalized
regression model, given by the relation

Y = D � F (X 0�0; ") : (1)

Here X and " are independent random variables, the function D is non-
decreasing, F is strictly increasing in both arguments, and �0 is a �nite-
dimensional vector of parameters. Binary choice models, censored regression
models, the Box and Cox transformation models, and proportional and addi-
tive hazard models are particular examples of (1). In general, the vector �0 is
identi�ed up to scale even if D; F; and the distribution of the error term are
not speci�ed. Given a sample (Xi; Yi); i = 1; :::; n; of i.i.d. observations, �0
can be consistently estimated by maximizing the rank correlation objective
function X

i6=j

1fYi > Yjg1fX 0
i� > X

0
j�g: (2)

with respect to � under a scale normalization restriction.
Another example is the Monotone Rank Estimator (MR) of Cavanagh

and Sherman (1998). Here �0 is identi�ed (up to scale) by the relation

E [S (Y ) jX] = f (X 0�0)

where f is an increasing, nonconstant function, and S (Yi) is either an increas-
ing function of Yi, or the sample rank of Yi (i.e. S (Yi) =

P
k 1 fYi > Ykg).

In the �rst case, MR is a maximization estimator with the objective functionX
i6=j

S (Yi)1fX 0
i� > X

0
j�g: (3)

In the second, the objective function isX
i;j;k distinct

1 fYi > Ykg1fX 0
i� > X

0
j�g: (4)
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Abrevaya (2003) considered a special case of the generalized regression
model, the transformation model

f (Y ) = X 0�0 + " (5)

where f is a strictly increasing unknown function, and X; " and �0 are as
above. He proposed two pairwise-di¤erence rank estimators of �0. The PDR3
estimator maximizes the objective functionX

i;j;k distinct

(1 fYi > Yjg � 1 fYj > Ykg)1
�
(Xi �Xj)

0 � > (Xj �Xk)
0 �
	
;

and the PDR4 estimator maximizes the objective function

X
i;j;k;l distinct

(1 fYi > Yjg � 1 fYk > Ylg)1
�
(Xi �Xj)

0 � > (Xk �Xl)
0 �
	
:

Estimators with similar structure have been proposed for such models as
the transformation model with observed or unobserved truncation (Abrevaya
(1999b), Khan and Tamer (2007)), the binary response model with panel data
(Lee (1999)) and a version of the generalized regression model for panel data
with �xed-e¤ects (Abrevaya (1999a)), among others. See also the papers by
Han (1987b), Asparouhova et al. (2002), and Chen (2002), who considered
a parametric and a nonparametric estimation of the link function f in the
transformation model using rank regression techniques.
Rank correlation estimators have several advantages. First, they rely on

relatively weak identi�cation assumptions. Second, as shown by Sherman
(1993), they are root-n-consistent and asymptotically normal. Most impor-
tantly, they do not require a choice of any tuning parameters (bandwidths,
etc.), unlike all other presently known asymptotically normal semiparametric
estimators (such as the average derivative method of Powell, Stock and Stoker
(1989), the semiparametric least-squares estimator of Ichimura (1993), the
sieve minimum-distance estimator of Ai and Chen (2003) or the semiparamet-
ric maximum likelihood method (for binary response models) of Klein and
Spady (1993)). This last property is useful for empirical work, as choosing
bandwidths or other tuning parameters is not always easy in practice.
Finally, rank estimators can be applied when the distribution of " has

heavy tails. The estimation of � in the transformation model (5) by the
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method of least-squares, for a known f , or the nonparametric methods min-
imizing a quadratic distance, e.g. estimators of Ai and Chen or Ichimura,
for an unknown f , is inconsistent if the second moment of " is in�nite. In
practical terms this means that these estimators can be sensitive to outliers.
Estimators like MRC or PDR, on the other hand, are root-n-consistent and
asymptotically normal even if the �rst absolute moment of " is in�nite.
This paper is concerned with inference in rank regressions. Test statis-

tics, their critical values, and con�dence intervals for components of �0 can be
constructed in the usual way based on the limiting normal distribution. Un-
fortunately, the variance of that distribution depends on moments of random
variables that are not directly observed (�rst and second-order derivatives
of certain conditional expectations), and special procedures are needed for
its estimation. Two methods that are available at present are the numerical
derivative method of Pakes and Pollard (1989), and a nonparametric method
of Sherman (1993) and Cavanagh and Sherman (1998). However, both have
drawbacks. First, they depend on tuning parameters (step sizes for numeri-
cal di¤erentiation or bandwidths for kernel regressions), which deprives rank
estimators of their primary appeal. No objective, data-driven mechanism
has been developed to set these parameters in practical applications. The
numerical derivative method involves a �nite-di¤erence approximation of the
second-order derivatives and can produce unstable results. The nonpara-
metric method, which avoids the estimation of the second-order derivatives,
requires considerable programming e¤ort, as the analytical expressions for
the variances that it uses are speci�c for each particular estimator, and are
sometimes very complicated (as in the case of PDR3, for example). Finally,
the nonparametric method is numerically intensive in large samples, with the
computational burden rising with the sample size as O (n2) for MRC or MR,
and O (n4) for PDR41.
Alternatively, the asymptotic distribution can be estimated by resampling

methods, particularly, the nonparametric bootstrap of Efron (1979). This
approach is free of tuning parameters, and is easy to implement. Unlike in
most other econometric settings, the bootstrap of rank correlation estimators
can be less computationally demanding than direct variance estimation, due
to availability of fast algorithms for evaluating their objective functions. For

1These and the following estimates of the computational complexity assume that the
full sample is used for inference. When n is large, inference can be performed, at the
expense of lower precision, using a randomly chosen subsample of data.
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example, one evaluation of the objective function can be reduced to only
O (n log n) operations for MR (Cavanagh and Sherman (1998)), and MRC
(Abrevaya (1999b)), and to O (n2 log n) operations for both PDR (Abrevaya
(2003)). The same e¢ cient algorithms can be used in the nonparametric
bootstrap, making it feasible and often more attractive computationally than
other alternatives.
Prior to our work, it has not been known if the nonparametric bootstrap

consistently estimates the asymptotic distribution of rank estimators. The
fact that an estimator is root-n-consistent and asymptotically normal does
not guarantee consistency of the bootstrap (see Abadie and Imbens (2006)
for a counterexample). Here we prove its consistency for rank regressions.
The regularity conditions that we require are, up to a minor quali�cation,
the same as the assumptions under which Sherman�s asymptotic normality
result holds.
Next, we investigate the accuracy of inference in rank regressions. The

normal distribution (with the true or estimated asymptotic variance) and
the bootstrap distribution approximate the �nite-sample distribution of rank
estimators with an error. While the error converges to zero as n grows (under
conditions of Sherman�s theorem and our bootstrap consistency theorem),
it may do so slowly. In practice, this means that the con�dence intervals
and tests of hypotheses constructed using either approximation may have
coverage probabilities and levels very di¤erent from the nominal ones when
the sample size is �nite.
The problem of the accuracy of inference is well understood in the case

of an estimator that is a smooth function of sample moments (see e.g. Bhat-
tacharya and Rao (1976) and Hall (1992)). Then, con�dence intervals based
on the normal approximation typically attain the desired coverage proba-
bility up to an error of order O

�
n�1=2

�
for one-sided con�dence intervals

and O (n�1) for two-sided symmetric con�dence intervals. In the case of
M -estimators with non-smooth criterion functions, the exact order of the
approximation error is known only in several special cases (such as the Least
Absolute Deviation estimator studied by De Angeles et al. (1993)). Some
results are available for nonparametric methods that are applicable to models
(1) or (5). Nishiyama and Robinson (2005) studied the accuracy of inference
for the normal and the bootstrap approximations for the average derivative
estimator and showed that it can achieve the same degree of accuracy as
in parametric methods. However, this conclusion relies on restrictive mo-
ment and smoothness conditions. Particularly, there is a hidden "curse-of-
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dimensionality" e¤ect: the conditional expectation E [Y jX 0�] has to have
progressively higher numbers of bounded derivatives in the single index X 0�
as the dimension of X grows, and progressively higher orders of kernels have
to be used in associated nonparametric regressions2.
Below we give an upper bound on the error of approximation of the �nite-

sample distributions of MRC, MR, and the other rank estimators listed above.
The bound is the same for approximations by both the bootstrap distribu-
tion and the normal distribution with the true variance. In the case of MRC,
the error converges to zero with the rate arbitrarily close to n�1=6: The rate
is slower for the MR estimator if the function S is not bounded, but it also
approaches the order of n�1=6 if S has su¢ ciently many �nite moments. The
result holds under mild regularity conditions and is not subject to the curse
of dimensionality. We further show that, under somewhat stronger assump-
tions, the PDR3 and PDR4 estimators have a much smaller approximation
error, close to n�1=2 in the case of PDR3 and exactly n�1=2 in the case of
PDR4. Therefore, in one-sided tests and con�dence intervals, the pairwise-
di¤erence rank estimators achieve the same order of accuracy as the classical
parametric estimators. We are not aware of existence of smoothing-based
nonparametric techniques applicable to model (5) that would achieve this
degree of precision of inference under the same regularity conditions.
Our work has a close connection to the statistical literature on the as-

ymptotics and the bootstrap of U -processes. However, we could not �nd any
previous work on the bootstrap of maximizers of general U -processes. Here
we develop such theory, and apply it to the rank estimators.
The paper is organized as follows. Section 2 presents the asymptotic and

bootstrap theory of rank estimators. Sections 3 illustrates the theory with
Monte-Carlo experiments and a real-data example. The proofs are developed
in Appendix. Section 4 concludes.

2The same is true for conditions under which the average derivative estimator is root-n-
consistent. The estimator by Ai and Chen also has a hidden curse of dimensionality, since
it requires progressively stronger smoothness properties of the unknown functions when
the dimension of the vector X grows. Other methods (e.g. Ichimura�s estimator) may not
have this problem. Unfortunately, the second-order asymptotic properties of Ichimura�s
estimator are not known. It is likely though that strong smoothness assumptions will be
needed for it to have the rate of convergence of order O

�
n�1=2

�
for the error between the

�nite-sample distribution of the estimator and the asymptotic normal distribution.
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2 Asymptotic Theory of Rank Estimators

2.1 The Class of Estimators and Asymptotic Normal-
ity Theorems

We �rst de�ne a class of estimators that includes all of the rank estimators
listed in Introduction. The following notation is used: Z is a vector space,
and P is a probability measure on Z;

H = fh�(z1; :::; zm) : � 2 � � Rdg

is a family of real-valued functions de�ned on Zm = Z�:::�Z (m � 2 times),
indexed by a vector of parameters �: It will be a matter of notational conve-
nience to assume that all functions h are symmetric in their z arguments:

h�(z1; :::; z; :::; z
0; :::; zm) = h�(z1; :::; z

0; :::; z; :::; zm):

Write Pm�kh; k = 0; :::;m; for the partial integral, relative to P , over the
last m� k arguments of h:�

Pm�kh
�
(z1; :::; zk) =

Z
h (z1; :::; zk; Zk+1; :::; Zm) dP (Zk+1) :::dP (Zm)

(in particular, P 0h = h).
Assume that the parameter of interest, �0; is a global maximum on �

of the expected value of h�, Pmh�: Given an i.i.d. sample of observations,
fZ1; :::; Zng ; from (Z; P ), one can construct a sample analog of Pmh�; a
U -process of order m indexed by �:

Gn;� = U
(m)
n h� �

(n�m)!
n!

X
i1;:::;im; distinct

h�(Zi1 ; :::; Zm) (6)

(a U -process considered for a speci�c � is called a U -statistic. See e.g. Ser�ing
(1980) on the basic properties of U -statistics).
The parameter �0 can be estimated by an approximate solution of the

sample analog of the population problem:

Gn;�n � sup
�2�

[Gn;� � rn;�] ; (7)

where the remainder term rn;� is introduced to ensure measurability of �n
as in Pakes and Pollard (1989) and may also represent the terms that do
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not have the structure studied below (e.g. the numerical error of solving the
maximization problem)3.
Under general conditions, �n is root-n-consistent for �0 and asymptotically

normal. Namely, let the following assumptions hold.

Assumption 1 � is a compact set; Pmh�; m � 2; is continuous on � and
�0 is its unique global maximum on �:

Assumption 2 H is a Euclidean class4 of symmetric functions for a Pm-
square-integrable envelope H (H is called an envelope for the class H if jhj �
H for each h 2 H).

Assumption 3 De�ne � �(z) = (Pm�1h�) (z) : There is an open neighbor-
hood N � � of �0 such that
(i) All mixed partial derivatives of � �(z) with respect to � of orders 1 and 2
exist on N .
(ii) There is a P -integrable function M(z) such that for all z and all � in N ,@2� �(z)� @2� �0(z) �M(z) k� � �0k ;
where @2� � is the Hessian matrix of � with respect to �:
(iii) The gradient of � �(z) with respect to � at �0, @� �0 (z) ; has �nite variance
relative to P .
(iv) The matrix A = �P [@2� �0 ] is �nite and positive de�nite.

Assumption 4 As � ! �0; P
2
h
(Pm�2h� � Pm�2h�0)

2
i
! 0:

These assumptions are a stylized version of assumptions of Sherman
(1993). Assumption 1 is standard for identi�cation. The second assump-
tion says that the class of functions over which maximization is performed
is not too big, which is necessary for consistency. Assumptions 3 and 4 re-
peat the continuity and smoothness conditions of Sherman for asymptotic
normality.
For example, in the case of MRC, let � = (�; 1)0 2 Rd+1 (to �x the scale,

the last component of � is set to 1). The function h� is a symmetrized

3Below we describe admissible orders of magnitude of rn;�:
4See Appendix, Section 5.3, for the de�nition and basic properties of Euclidean classes.
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version of the kernel in (2) (note that symmetrization does not change the
optimization problem):

h�(z1; z2) = (8)

1fy1 > y2g1f(�0; 1)(x1 � x2) > 0g
+1fy2 > y1g1f(�0; 1)(x2 � x1) > 0g

where z = (y; x). Han (1987) provided primitive conditions under which h�
satis�es Assumption 1. Sherman (1993) veri�ed that for a compact �; the
class of functions fh�(z1; z2)g is Euclidean for the envelope H = 1, and gave
conditions on the primitives of the model (1) under which Assumptions 3 and
4 are satis�ed. In particular, Assumption 4 will be satis�ed if the last com-
ponent of vector X; denoted xd+1; is continuously distributed conditionally
on the vector of the �rst d components, X . Also, the following condition is
su¢ cient for parts (i)-(iii) of Assumption 3: xd+1 is continuously distributed
conditionally on X and Y ; the conditional density, �xd+1jX ;Y , is three times
di¤erentiable in xd+1 for almost all X and Y and is uniformly bounded to-
gether with its derivatives up to order three; and P kXk3 < 15. Below, we
will refer to these, or similar, su¢ cient conditions repeatedly. Assumptions
1-4 were veri�ed for the other rank estimators in the corresponding papers
listed in Introduction. It is worth noting, however, that Assumptions 1-4 do
not rely on the speci�c structure of rank estimators, but rather on the fact
that they all maximize a U -process with su¢ ciently smooth leading terms.
The applicability of our theoretical results, therefore, extends beyond the
scope of rank estimators.
Theorem 1, which is essentially due to Sherman (1993) and Arcones, Giné

and Chen (1994), says that the estimator �n; after a proper normalization
and recentering, converges in distribution, uniformly, to a normal law.

Theorem 1 Let Assumptions 1-4 hold, and sup�2� jrn;�j = op (n�1) : De�ne
� = m2A�1V ar (@� �0)A

�1: Then �n is consistent for �0 in probability, and

sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

d��

���� = o (1) (9)

where Fn1=2(�n��0) is the c.d.f. of the random vector n1=2 (�n � �0) ; �� is the
c.d.f. of the normal distribution with mean zero and variance �, and A is
the collection of all measurable convex sets in Rd:

5Sherman assumed that X has bounded support, but P kXk3 <1 su¢ ces.

9



To use the result of Theorem 1 for inference, one needs an estimate of
the asymptotic variance �. The latter, however, depends on moments of
the derivatives of the unknown function � : As explained in Introduction,
estimation of these moments may be di¢ cult in practice.
Alternatively, the limiting distribution can be estimated by the non-

parametric bootstrap of Efron (1979). Speci�cally, let
n
Ẑ1; :::; Ẑn

o
be the

bootstrap sample, i.e. a collection of independent draws, with replacement,
from the sample fZ1; :::; Zng. The bootstrapped objective function Û (m)n h� is
formed as in (6) using Ẑi instead of Zi:

Ĝn;� = Û
(m)
n h� �

(n�m)!
n!

X
i1;:::;im; distinct

h�(Ẑi1 ; :::; Ẑm) (10)

The bootstrapped estimator, �̂n; is an approximate solution to the corre-
sponding maximization problem:

Ĝn;�̂n � sup
�2�

h
Ĝn;� � r̂n;�

i
(11)

with some remainder r̂n;�:
To prove consistency of the bootstrap, we make one more assumption.

It arises because the bootstrap draws, unlike the sample observations, are
statistically dependent unconditionally. Note that Assumptions 1-4 provide
no bounds on moments of function h if its arguments are statistically depen-
dent. The form of dependency that needs to be explicitly controlled in the
bootstrap is that of drawing the same sample realization of vector Z two or
more times. To state the assumption formally, de�ne the function

H!m (z1; :::; zm) = H
�
z!m(1); :::; z!m(m)

�
;

where !m is a permutation, with repetitions, of numbers f1; :::;mg; and the
function

h
[m�2]
� (z1; :::; zm�2) =

Z
h� (z1; :::; zm�2; Zm; Zm) dP (Zm) :

Assumption 5 (a) For all !m, PmH2
!m <1:

(b) As � ! �0; P
m�2h

[m�2]
� � Pm�2h[m�2]�0

! 0:

10



Assumption 5 is not restrictive for rank estimators. The moment con-
dition on H!m is usually immediate. It is trivially satis�ed for bounded
functions h (which is the case for the majority of rank estimators). The MR
estimator is an example when h may be unbounded, however, the condition
PS2 < 1; required by Assumption 2, also entails the moment condition in
Assumption 5 (a). The continuity condition on h[m�2]� is also not di¢ cult to
verify. For MRC, for example, it is satis�ed vacuously, because in this case
h
[m�2]
� � 0: For other estimators, e.g. pairwise-di¤erence rank estimators,
h
[m�2]
� 6= 0: However, Assumption 5, similarly to Assumption 4, holds if the
last component of the vector of regressors, xd+1; is distributed continuously
conditionally on the �rst d components.
We now give two results showing consistency of the bootstrap. The dis-

tribution of the test statistic, n1=2(�n � �0); can be approximated by the
conditional (on the data sample) distribution of the bootstrapped statistic,
n1=2(b�n��n), or by the normal c.d.f. with zero mean and the conditional vari-
ance of n1=2(b�n � �n). Both approaches are consistent, although the second
relies on slightly stronger regularity conditions.

Theorem 2 Let the assumptions of Theorem 1 and Assumption 5 hold, and
assume that sup� jr̂n;�j = op (n

�1) : Then the bootstrap estimator of the as-
ymptotic distribution of n1=2 (�n � �0) is consistent in probability:

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

���� = op (1) ; (12)

where F̂ is the conditional c.d.f. of the bootstrapped estimator.

Theorem 3 Let the assumptions of Theorem 1 hold, and, additionally, PmHp <
1; PMp < 1; P k@2� �0k

p
< 1; for a p > 2; and P sup� jrn;�j

2 = o (n�1) :
Then

V ar
�
n1=2(�n � �0)

�
! �:

If also PmHp
!m < 1 for each !m; P sup� jr̂n;�j

2 = o (n�1) ; and Assump-
tion 5 (b) holds, then the bootstrap estimator of the asymptotic variance of
n1=2 (�n � �0) is consistent in probability:dV ar hn1=2(b�n � �n)i!p �:

Here V ar is the �nite sample variance and dV ar is the bootstrap variance
conditional on the sample.
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2.2 Rates of Convergence: General Case

Theorems 1 and 2 do not provide insight on how well the bootstrap or the
normal approximations of the �nite-sample distributions of rank estimators
may perform in practice, when the sample size is �nite. Next we give bounds
on the approximation errors in (9) and (12). Here we consider the rank
estimators in general, and in the next subsection we deal with the special
case of the pairwise-di¤erence rank estimators.
The bounds that we �nd are closely related to the continuity properties

of the quantity appearing in Assumption 4. In the general case, we impose
the following condition.

Assumption 6 There exist numbers �; C > 0 such that for all �1; �2 in the
�-neighborhood of �0;

P 2
h�
Pm�2h�1 � Pm�2h�2

�2i � C k�1 � �2k : (13)

Note that for di¤erentiable kernels h one would normally have, by a Taylor
expansion argument, that

P 2
h�
Pm�2h�1 � Pm�2h�2

�2i
= O

�
k�1 � �2k2

�
: (14)

Assumption 6, therefore, re�ects a degree of nonsmoothness associated with
the criterion function of rank estimators. In fact, for estimators like MRC or
MR, both (13), and its reverse:

P 2
h�
Pm�2h�1 � Pm�2h�2

�2i � c k�1 � �2k : (15)

(for a constant c > 0) are generally true.
Consider, for example, MRC. One can see that

[h�1(z1; z2)� h�2(z1; z2)]
2 = jh�1(z1; z2)� h�2(z1; z2)j

(this is a consequence of a property of the indicator function: for any two sets
A; B; [1fAg � 1fBg]2 = j1fAg � 1fBgj). Suppose that xd+1i is continuously
distributed conditionally on Xi. Then, except on a set of P -measure zero,

jh�1(z1; z2)� h�2(z1; z2)j = 1 fy1 6= y2g � (16)��1fxd+12 > xd+11 + �01 (X1 �X2) g � 1fxd+12 > xd+11 + �02 (X1 �X2) g
��
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Suppose, further, that the density �xd+1jX is uniformly bounded and that
components of X are P -integrable. Then

P 2
�
(h�1 � h�2)

2� � 2 k�1 � �2kP kXk sup�xd+1jX : (17)

This is inequality (13), because in the case ofm = 2; Pm�2h� = h�: The same
inequality can be obtained without di¢ culty for all the other rank correlation
estimators using similar considerations.
To prove the reverse inequality (15) for MRC, assume that xd+1 has a

continuous density �xd+1jY;X conditionally on both Y and X . Then

P 2
�
(h�1 � h�2)

2� � k�1 � �2k �Z
1 fY1 6= Y2g j(X1 �X2)0n�1��2 j�dP (Y2;X2)dP (Y1; X1):

In this formula n�1��2 is the unit vector in the direction of �1� �2; P (Y2;X2)
and P (Y1; X1) are marginal c.d.f.s of, respectively, (Y;X ) and (Y;X) ; and

�(X1; Y2;X2) = min
u2�kX1�X2k�[�1;1]

�xd+1jY2;X2 (x
d+1
1 + u);

where � > 0 is so large that the compact � lies in the ball of radius �: If
�xd+1jY;X is everywhere positive (so that � > 0), and the set

fY1 6= Y2; (X1 �X2)0n�1��2 6= 0g

has a positive P�measure, then the reverse of (17) holds. For m = 2; this is
the same as inequality (15).
Inequality (15) can be veri�ed by similar methods for the other rank esti-

mators that maximize a U -processes of the second order, and for MR with the
sample rank function S (which e¤ectively maximizes a U -process of the third
order), but not for the pairwise-di¤erence estimators like PDR3 or PDR4.
For the latter, (14) holds instead (for small di¤erences �1��2). This property
lies at the origin of the improvement in accuracy of inference associated with
the pairwise-di¤erence rank estimators; see the next subsection.
In the bootstrap problem, we also need to account for the unconditional

statistical dependence between the bootstrap draws.

Assumption 7 There exist �; C > 0 such that for all �1; �2 in the �-
neighborhood of �0;�

Pm�2h
[m�2]
�1

� Pm�2h[m�2]�2

�2
� C k�1 � �2k :

13



Again, this condition is immediately true for MRC. For the other rank
estimators it can be veri�ed in the same way as Assumption 6, under the
same su¢ cient conditions.
For estimators satisfying Assumption 6 (and, for the bootstrap, Assump-

tion 7), the following bound holds.

Theorem 4 Let Assumptions 1-3 and 6 hold. Assume that P jsup�2� rn;�j =
O
�
n�3=2

�
; PM2 < 1, P k@2� �0k

2
< 1; P k@� �0k

4 < 1; and, for a p � 6;
PmHp <1: Then

sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

d��

���� = O��n�1=6 (log n)2=3� 1
1+2=3p

�
: (18)

If, additionally, P jsup�2� r̂n;�j = O
�
n�3=2

�
; PmHp

!m <1 for each !m; and
Assumption 7 holds, then

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

���� = Op��n�1=6 (log n)2=3� 1
1+2=3p

�
: (19)

The error with which the bootstrap quantiles of �̂n approximate the �nite-
sample quantiles of �n can be found from (18) and (19) by the triangle in-
equality. In the case of MRC (PmHp; PmHp

!m < 1 for all positive p), we
have

sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

dF̂n1=2(�̂n��n)

���� = Op �n�1=6+"� ;
where " > 0 can be taken arbitrarily small.

2.3 Rates of Convergence: Pairwise-Di¤erence Rank
Estimators

The bound obtained in the previous subsection converges to zero slowly. The
rate of convergence improves substantially, however, if the quantity on the
left hand side of (13) has stronger continuity properties. Namely, let the
following assumption hold.

Assumption 8 For s = 2 or 36; function f� = Pm�sh� is three times con-
tinuously di¤erentiable in a �0-neighborhood of �0. There exists a function

6If this condition is satis�ed with s > 3; then it is also satis�ed with s = 3; which is
su¢ cient for our analysis.
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L (z1; :::; zs), satisfying the condition P sL4 <1; such that

k@f�0k ;
@2f�0 ;@3f�0 � L

and, for all �1; �2 in the �0-neighborhood of �0;@3f�1 � @3f�2 � L k�1 � �2k :
(Here @kf�; k � 3; is the array of all partial derivatives of f of order k at
�; and

@kf� is the maximum in the absolute value over all elements of the
array.)

It is clear that Assumption 8 cannot hold for MRC or for the variant of
MR with the objective function given by a U -process of order 2, for which
inequality (15) is true. Nonetheless, it can be satis�ed by certain rank esti-
mators maximizing a U -process of order 3 or higher. Historically, the �rst
such example is Han�s estimator of the parameter of the Box-Cox transfor-
mation function (Han (1987b)). Another example is a modi�cation of Han�s
estimator proposed in Asparouhova et al. (2002). Abrevaya�s PDR3 and
PDR4 estimators also satisfy Assumption 8. Below we will concentrate on
Abrevaya�s estimators as they have broader applicability than the former two
estimators.
For instance, consider the objective function of the PDR3 estimator. The

symmetrized version of the kernel of the U -process is:

h� (z1; z2; z3) = (20)

(1 fy1 > y2g � 1 fy2 > y3g)
�
1f(x1 � x2)0 � > (x2 � x3)0 �g

�
+(1 fy2 > y3g � 1 fy3 > y1g)

�
1f(x2 � x3)0 � > (x3 � x1)0 �g

�
+(1 fy3 > y1g � 1 fy1 > y2g)

�
1f(x3 � x1)0 � > (x1 � x2)0 �g

�
where the scale of � is normalized by setting � = (�; 1) : We will now check
Assumption 8 with s = 2: To compute the value of function Pm�2h� one
should integrate out the pair (x3; y3) in every term in the above expression.
Once the d + 1-th component of the vector of regressors is integrated out,
the �rst term becomes

(1 fy1 > y2g � 1 fy2 > y3g)
Z +1

(2x2�x1)0��X30�
�xd+1jX3;y3 (x) dx:
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The derivative of this expression with respect to � is

(1 fy1 > y2g � 1 fy2 > y3g) (X1 + X3 � 2X2)
��xd+1jX3;y3

�
(2X2 �X1 �X3)0 � + 2xd+12 � xd+11

�
:

Similar expressions can be obtained for the other two terms in (20). The
following conditions are su¢ cient for Assumption 8: �xd+1jX ;Y is three times
di¤erentiable in xd+1 for almost all X and Y and is uniformly bounded to-
gether with its derivatives of orders up to 3; and P kXk12 < 1: By a sim-
ilar derivation, the PDR4 estimator (as well as the estimators of Han and
Asparouhova et al.) satis�es Assumption 8, with s = 3; under the same
su¢ cient conditions.
Not every rank estimator whose criterion function is a U -process of order

three satis�es Assumption 8. Consider the MR estimator with the sample
rank function S: After symmetrization,

h� (z1; z2; z3) =

1 fy1 > y3g1fx01� > x02�g
+1 fy3 > y2g1fx03� > x01�g
+1 fy2 > y1g1fx02� > x03�g:

The value of Pm�2h� is obtained by integrating out (x3; y3) : After that, the
�rst two terms will become di¤erentiable in �; while the last term will still
contain the indicator function 1fx02� > x01�g: It is clear that under general
conditions, inequality (15) will hold, which is incompatible with Assumption
8.
When Assumption 8 is satis�ed, the components of �n that it controls de-

crease rapidly with n: The following condition is imposed to ensure a similar
asymptotic behavior of the higher-order terms.

Assumption 9 Either m = s or there exist �; C > 0 such that for all �1; �2
in the �-neighborhood of �0;

P s+1
h�
Pm�(s+1)h�1 � Pm�(s+1)h�2

�2i � C k�1 � �2k :
Similarly to the previous cases, an extra condition is needed in the boot-

strap problem.
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Assumption 10 (a) Assumption 8 is satis�ed with a function L such that,
for every !s,

P sL4!s <1:
(b) If s = 2 or 3; and m > s; then there exist �; C > 0 such that for all �1;
�2 in the �-neighborhood of �0;

P s�1
��
Pm�(s+1)h

[m�2]
�1

� Pm�(s+1)h[m�2]�2

�2�
� C k�1 � �2k :

If s = 3 and m > 3, then, additionally,�
Pm�4h

[m�4]
�1

� Pm�4h[m�4]�2

�2
� C k�1 � �2k ;

where

h
[m�4]
� (z1; :::; zm�4)

=

Z
h� (z1; :::zm�4; Zm�1; Zm�1; Zm; Zm) dP (Zm�1) dP (Zm) :

For PDR3 and PDR4 (and Han�s and Asparouhova et al. estimators)
these conditions can be checked, for, respectively, s = 2 and s = 3; by the
same methods that were used to obtain (17). Moreover, in Assumption 9,
generally the reverse inequality is also true, which can be veri�ed by an
argument similar to the proof of inequality (15) for MRC.
The next theorem gives the rates of convergence for rank estimators satis-

fying Assumptions 8 and 9. For brevity, only the case of uniformly bounded
functions h is considered.

Theorem 5 Suppose that Assumptions 1-3, 8 and 9 hold, supZ;� jrn;�j =
O (n�2) ; and H is a constant. If Assumptions 8, 9 are satis�ed with s = 2;
let " > 0 be arbitrarily small, and if they are satis�ed with s = 3; let " be
zero. Then

sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

d��

���� = O �n�1=2+"� : (21)

If also supZ;� jr̂n;�j = O (n�2) ; Assumptions 5 (a) and 10 hold, then

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

���� = Op �n�1=2+"� : (22)
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3 Numerical Evidence

In this section we investigate the bootstrap properties of rank estimators
in �nite samples. We will consider two estimators: MRC and PDR4. As
explained in the previous sections, MRC has a wider scope of applications
(in particular, it can be applied to limited dependent variable models) and is
cheaper to compute. However, the theory of Chapter 2 suggests that inference
with MRC may be inaccurate in small samples. PDR4, on the other hand,
needs substantial computational capacity (the fastest available algorithm for
computing its objective function requires O (n2 log n) operations and O (n2)
memory cells). However, within the scope of its application, PDR4 can serve
as a good complement to MRC in small samples, where it achieves higher
precision of inference.

3.1 Monte-Carlo Experiments

In the Monte-Carlo experiments, MRC is applied to the binary choice model:

Yi = 1
n
X
(1)
i +X

(2)
i + �"i > 0

o
:

(In this case MRC and MR are numerically equivalent, so the evidence pre-
sented below illustrates the properties of MR as well.) Three distributions for
the �rst regressor are considered: the standard normal (a continuous case),
binomial (a discrete case) and the Student distribution with 1.5 degrees of
freedom. In the latter case, the �rst moment of X(1) is �nite, but its second
moment is in�nite. This is a situation where the nonparametric method for
computing the asymptotic variance of the estimator will be rather di¢ cult
to apply. In particular, the moment conditions of Theorem 4 in Sherman
(1993), under which the method is known to be consistent, are violated.
Also, the rule for choosing the bandwidths (proportionally to the sample
standard deviation of the estimated index X 0�̂) suggested by Cavanagh and
Sherman (1998) can result in arbitrarily large bandwidths and is not prac-
tical. The second regressor, X(2); is distributed as N (0; 1) independently
of X(1). It plays the role of a continuously distributed regressor needed for
point identi�cation of �: The error term, "; is also distributed as N(0; 1)
independently of both regressors. The scaling parameter �; therefore, deter-
mines the noise-to-signal ratio in the dataset. We consider two cases, � = 1
and � = 0:1:
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PDR4 is applied to the linear model:

Yi = X
(1)
i +X

(2)
i + "i:

The regressor X(1) can have the standard normal or the Student(1.5) distri-
bution. Regressor X(2) is distributed as a standard normal random variable
independently of X(1). The error term is independent of both regressors and
is distributed as either a standard normal or a standard Cauchy random
variable. The latter case serves to demonstrate the robustness properties of
PDR4 with respect to large errors. Note that for the Cauchy distributed
errors, P j"j = +1; so that the OLS or nonparametric minimum-square-
distance methods are not consistent in this case.
In rank regressions, identi�cation is achieved by imposing a scale normal-

ization on the vector of estimated coe¢ cients. Here we set the coe¢ cient at
the second regressor to be 1: The estimated model is then

yi = f
�
�X

(1)
i +X

(2)
i + "i

�
where f (x) = 1 fx > 0g in the binary choice model, and f (x) = x in the
linear model (function f does not have to be known for implementation of
MRC or PDR4) and "i is the error term. The value of � is found by maxi-
mizing the corresponding criterion function. The MRC objective function is
rather nonsmooth for our sample sizes, and its maximization is more di¢ cult
than that of the PDR4 objective function. We used the Nelder-Mead sim-
plex maximization algorithm with parameters adjusted in trial runs of the
program. For PDR4 estimator the standard maximization Matlab routine
fminsearch with default settings was enough. Both algorithms are iterative
procedures requiring a starting approximation of the solution. For the pop-
ulation problem, we took the true value �0 = 1. This option, of course, is
not available in real data applications, where a grid of initial values should
be considered. In the bootstrap we used both �0 and �n.
There are several asymptotically equivalent methods of computing the

bootstrap critical values for the test statistic n1=2 (�n � �0) that do not need
an explicit estimator of the asymptotic variance. In the percentile method the
quantiles of the test statistic are approximated by the conditional quantiles
of the bootstrapped recentered statistics n1=2

�
�̂n � �n

�
: In our experiments

with MRC, however, recentering of the bootstrapped estimator at �n led
to relatively inaccurate results. One alternative, based on the symmetry of
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the normal distribution, is the other percentile method, see Hall (1992), in
which the quantiles of the test statistics are approximated by the quantiles of
the statistic n1=2

�
�n � �̂n

�
: This procedure e¤ectively eliminates recenter-

ing since �n cancels out in the resulting con�dence intervals and criteria for
hypothesis testing. This method was used to compute one-sided (left-tailed
and right-tailed) and double-sided (equal-tailed) critical values. The rejec-
tion probabilities for the corresponding tests were similar, and, for the sake
of brevity, we report them only for the double-sided case7. There are other
procedures that do not require recentering at �n. One can approximate the
c.d.f. of the test statistic by the c.d.f. of the demeaned bootstrapped statis-
tic, n1=2

�
�̂n � P̂

h
�̂n

i�
; or by the c.d.f. of the normal distribution with zero

mean and variance estimated by the conditional variance of n1=2�̂n: These
two methods will be more convenient than the other percentile method for
inference about multidimensional �: The results for both are similar to the
case of the other percentile method and are omitted.
MRC was computed for sample sizes n = 200; 500, and 1000 (see Table

1). The coverage probabilities are reasonably accurate except in the case
with n = 200 and � = 0:1 where the bootstrap fails dramatically for all three
distributions of X(1): This should serve as a caution against using the boot-
strap when the signal-to-noise ratio is high and the sample size is moderate.
In this case the simulated distribution of MRC appears to have a mass point
at zero. The bootstrap gives a distribution with a much higher concentration
of mass at zero, and so underestimates both the quantiles and the variance
of the estimator. The phenomenon has to be taken into account when MRC
is used together with a speci�cation search: the bootstrap may reject models
with low noise more often than it should.
In the case of PDR4, the percentile method (involving recentering) and

the other percentile method gave close values of rejection probabilities. For
brevity we report only the values obtained for the equal-tailed tests by the
other percentile method, for sample sizes n = 50; 100; and 200 (Table 2).
It can be seen that bootstrap performs well even when the sample includes
only 50 observations.

7For a description of how rejection probabilities are computed, see Hall and Horowitz
(1996).
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Table 1. Rejection probabilities for equal-tailed t-test - MRC
nominal level 5% nominal level 10%

n = 200 500 1000 200 500 1000

Normal X(1)

� = 1 3.0 3.2 5.1 7.7 8.5 9.4
� = 0:1 25.0 5.9 3.6 31.2 10.6 8.1

Binary X(1)

� = 1 3.6 4.2 4.2 7.7 9.6 8.3
� = 0:1 31.9 5.5 2.8 35.0 9.2 5.9

Student (1.5) X(1)

� = 1 2.7 2.5 4.3 5.3 7.3 8.9
� = 0:1 33.8 6.8 3.5 38.6 10.1 7.2

Table 2. Rejection probabilities for equal-tailed t-test - PDR4
nominal level 5% nominal level 10%

n = 50 100 200 50 100 200

Normal X(1); " 5.9 4.8 5.8 12.8 10.1 10.3
Student (1.5) X(1); " 6.4 4.9 4.6 12.5 10.8 10.7
Normal X(1); Cauchy " 6.1 5.0 6.2 13.9 9.6 9.5

3.2 Empirical Example

The main purpose of this subsection is to provide a practical sense for us-
ing the bootstrap for rank estimators in real-data applications. We continue
the wage-equation example studied by Abrevaya (2003). The data set, con-
structed by Ruud (2000), is an extract from the March 1995 CPS, consisting
of 1,289 observations. The dependent variable is an hourly wage (WAGE).
The regressors are years of schooling (EDUC), years of potential work expe-
rience (EXPER) and its square (EXPSQ), a female indicator variable (FE-
MALE), a union indicator variable (UNION), and a nonwhite indicator vari-
able (RACE equal to 0 if white, 1 if not). The model is speci�ed as the
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transformation model with an unknown link function f :

f (WAGE) = �1EDUC + �2EXPER + �3EXPSQ

+�4FEMALE + �5UNION + �6RACE + "

(the traditional choice of f in such models is the logarithmic function). The
identi�cation assumption is that f is a strictly increasing function and " is
an i.i.d. error term distributed independently of the regressors.
The coe¢ cients are estimated by MRC and PDR4, with a scale normal-

ization �1 = 1: Abrevaya (2003) computed the estimates of the coe¢ cients.
He also applied the nonparametric method to estimate their standard errors.
As noted in Introduction, the nonparametric method is computationally in-
tensive, requiringO (n2) computations in the case of MRC andO (n4) compu-
tations in the case of PDR4. Also, it involves 3+d one-dimensional nonpara-
metric regressions (where d+1 is the dimension of the vector of covariates), so
that in the example considered here one has to run eight kernel regressions8.
As the implementation of each of them requires a choice of a bandwidth and
some other details (such as the form of the kernel and the trimming para-
meters in the denominator of the Nadaraya-Watson conditional expectation
estimator), the method contains an element of subjectivity.
Here we provide alternative estimates of the standard errors obtained

by the bootstrap. The computational burden of the bootstrap is of order
O (Bn log n) for MRC and O (Bn2 log n) for PDR4, where B is the number
of bootstrap iterations. We used B = 1000, although the estimates of the
standard errors did not change much after B = 200 iterations already. For
this sample size, the computation of the MRC objective function is much
faster than that of the PDR4 objective function, but the associated max-
imization problem for the former is more di¢ cult to solve numerically. In
the case of MRC we used the Nelder-Mead algorithm of optimization with
�ve di¤erent combinations of parameters and starting values (chosen in trial
runs) in each bootstrap iteration. For PDR4 we used the standard Matlab
maximization routine fminsearch with default settings and one starting vec-
tor of parameters, the estimated vector. The computational times for one
thousand bootstrap iterations were 34 minutes for MRC and 6.5 hours for

8For the PDR4 estimator, estimation of the asymptotic variance using formulas (A.13)-
(A.14) in Abrevaya (2003) involves 4+ d(d+1)

2 one-dimensional nonparametric regressions.
However, computing the nonparametric estimate of the conditional variance matrix in
these formulas can be avoided, and so the number can be reduced to 3 + d.
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PDR4, on an AMD Opteron 2.8 GHz processor9. The memory usage was 62
megabytes for MRC and about 400 megabytes for PDR4.
Table 3, reports the values of the estimated coe¢ cients and the standard

errors. It can be seen from this example that the bootstrap may give the
standard errors that are substantially di¤erent from the ones obtained by the
nonparametric method.

Table 3. Wage-Equation Estimation Results
MRC PDR4

coef. std. error coef. std. error
nonpar. boots. nonpar. boots.

EDUC 1.0000 - - 1.000 - -
EXPER .3590 .0559 .0502 .4068 .0487 .0432
EXPSQ -.5965 .1251 .1123 -.6741 .1140 .0977
FEMALE -2.2105 .3187 .2744 -2.3252 .3102 .2747
RACE -.9851 .4537 .2937 -1.2828 .4076 .3492
UNION 1.5178 .4482 .3022 1.8922 .4103 .3166

4 Conclusion

This paper provides the bootstrap theory and extends the asymptotic theory
of rank estimators, a class of methods that can be applied to popular semi-
parametric single-index models or used for robust estimation of parametric
models. Under general regularity conditions, rank estimators were previously
known to have an asymptotic normal distribution. Here we proved that the
parameters of that distribution can be estimated by the nonparametric boot-
strap. With the bootstrap, estimation and inference in rank regressions is en-
tirely free of any tuning parameters, a property not enjoyed by other available
semiparametric techniques. We have investigated the accuracy of such infer-
ence and provided bounds on the associated error. In the case of MRC or MR,
the bound is a function of the sample size of order close to n�1=6. Pairwise-
di¤erence rank estimators, however, have a special structure due to which
the bound is vanishing with the rate close to n�1=2: Thus, pairwise-di¤erence
estimators provide a remarkable example of a robust semiparametric method
whose �rst- and second-order asymptotic properties approach those of para-

9The objective functions of the two estimators were computed using the fast algorithm
of Abrevaya (1999) for MRC and a sorting-based algorithm for PDR4, both programmed
in C. The codes, compiled as Matlab functions, are available from the author upon request.
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metric methods. We have illustrated our theoretical results in �nite-sample
Monte-Carlo experiments, and demonstrated their practical usefulness in an
empirical example.

Acknowledgement

The author is grateful to Joel Horowitz and Elie Tamer for numerous helpful
discussions of the material presented in the paper and encouragement; Ja-
son Abrevaya, Federico Bugni, Shakheeb Khan, Rosa Matzkin, Robert Sher-
man, participants of the 2006 Annual Meeting of the Midwest Econometric
Group, the 2007 Meeting on Semiparametric and Nonparametric Methods in
Econometrics at Obervolfach (Germany), the 2007 North American Summer
Meeting of the Econometric Society, the econometrics seminar at California
Institute of Technology, and the economics seminars at the the Pennsylva-
nia State University, the University of Texas at Austin, Yale University, and
the Center for Economic and Financial Research at New Economic School
(Moscow, Russia) for important suggestions and comments.

References

Abadie A., and Imbens, G. (2006). On the failure of the bootstrap
for matching estimators, mimeo.

Abrevaya, J. (1999). Computation of the Maximum Rank Correla-
tion Estimator. Economics Letters, 62, 279-285.

Abrevaya, J. (1999a). Leapfrog estimation of a �xed-e¤ects model
with unknown transformation of the dependent variable. Journal
of Econometrics, 93, 203-228.

Abrevaya, J. (1999b). Rank estimation of a transformation model
with observed truncation. Econometric J., 2, 292-305.

Abrevaya, J. (2003). Pairwise-di¤erence rank estimation of the trans-
formation model. J. Bus. Econom. Statist. 21, no. 3, 437�447.

Ai, C.; Chen, X. (2003). E¢ cient estimation of models with condi-
tional moment restrictions containing unknown functions. Econo-
metrica 71, no. 6, 1795�1843.

24



Arcones, M. A. (1995). The asymptotic accuracy of the bootstrap of
U-quantiles. Ann. Statist. 23, no. 5, 1802�1822.

Arcones, M. A.; Chen, Z.; Giné, E. (1994). Estimators related to U-
processes with applications to multivariate medians: asymptotic
normality. Ann. Statist. 22, no. 3, 1460�1477.

Arcones, M. A.; Giné, E. (1992). On the bootstrap of U and V-
statistics. Ann. Statist. 20, no. 2, 655�674.

Arcones, M. A.; Giné, E. (1993). Limit theorems for U-processes.
Ann. Probab. 21, no. 3, 1494�1542.

Arcones, M. A.; Giné, E. (1994). U-processes indexed by Vapnik-
µCervonenkis classes of functions with applications to asymptotics
and bootstrap of U-statistics with estimated parameters. Stochas-
tic Process. Appl. 52, no. 1, 17�38.

Asparouhova, E.; Golanski, R.; Kasprzyk, K.; Sherman, R. P.; As-
parouhov, T. (2002). Rank estimators for a transformation model.
Econometric Theory 18, no. 5, 1099�1120.

Bhattacharya R., and Ranga Rao R. (1976). Normal Approximation
and Asymptotic Expansions, Wiley, New York.

Bickel, P.J., and Freedman, D.A. (1981). Some Asymptotic Theory
for the Bootstrap. The Annals of Statistics, 9, 1196-1217.

Bolthausen, E.; Götze, F. (1993). The rate of convergence for multi-
variate sampling statistics. Ann. Statist. 21, no. 4, 1692�1710.

Cavanagh, C., and Sherman, R. P. (1998). Rank Estimators for
Monotonic Index Models. Journal of Econometrics, 84, 351-381.

Chen, S. (2002). Rank estimation of transformation models. Econo-
metrica 70, no. 4, 1683�1697.

De Angelis, D., Hall, P., and Young G.A. (1993). Analytical and
Bootstrap Approximations to Estimator Distributions in L1 Re-
gressions. Journal of the American Statistical Association, 88,
1310-1316.

De la Peña, V. H. (1992). Decoupling and Khintchine�s inequalities
for U-statistics. Ann. Probab. 20, no. 4, 1877�1892.

Efron, B. (1979). Bootstrap methods: another look at the jackknife.
Ann. Statist. 7, no. 1, 1�26.

25



Giné, E.; Mason, D. M. (2007). On local U�statistic processes and
the estimation of densities of functions of several sample variables.
Annals of Statistics, to appear.

Giné E. and Zinn J. (1990). Bootstrapping general empirical mea-
sures. Annals of Probability 18, 851-869.

Giné E. and Zinn J. (1992). On Ho¤mann-Jørgensen�s inequality
for U-processes. In Probability in Banach spaces 8, Birkhauser
Progress in Probability Series, Vol. 30, pp. 80-91, (R. Dudley, J.
Kuelbs, M. Hahn eds.), Boston.

Hall, P. (1992). The bootstrap and Edgeworth expansion. Springer
Series in Statistics. Springer-Verlag, New York.

Hall P., and Horowitz J. (1996). Bootstrap Critical Values for Tests
Based on Generalized-Method-of-Moments Estimators, Econo-
metrica, 64, 891-916.

Han, A. K. (1987). Non-Parametric Analysis of a General Regression
Model. The Maximum Rank Correlation Estimator. Journal of
Econometrics, 35, 303-316.

Han, A. K. (1987b). A nonparametric analysis of transformations. J.
Econometrics 35, no. 2-3, 191�209.

Ichimura, H. (1993). Semiparametric least squares (SLS) and
weighted SLS estimation of single-index models. J. Econometrics
58, no. 1-2, 71�120.

Khan S., and Tamer E. (2007). Partial Rank Estimation of Duration
Models with General Forms of Censoring. Journal of Economet-
rics 136, 251-280.

Klein R.W., and Spady R.H. (1993). An E¢ cient Semiparametric
Estimator for Binary Response Models. Econometrica, 61, 387-
421.

Lee, M. (1999) A root-N consistent semiparametric estimator for
related-e¤ect binary response panel data. Econometrica, 67, 427�
433.

Nishiyama, Y.; Robinson, P. M. (2005). The bootstrap and the Edge-
worth correction for semiparametric averaged derivatives. Econo-
metrica 73, no. 3, 903�948.

26



Nolan, D., and Pollard, D. (1987). U-Processes: Rates of Conver-
gence. The Annals of Statistics, 15, 780�799.

Pakes, A., and Pollard, D. (1989). Simulation and the Asymptotics
of Optimization Estimators. Econometrica, 57, 1027�1057.

Pollard, D. (1985). New ways to prove central limit theorems. Econo-
metric Theory, 1, 295�313.

Pollard, D. (1989). Asymptotics via Empirical Processes (with Dis-
cussion). Statistical Science, 4, 341�366.

Powell J. L., Stock J. H., and Stoker T. M. (1989). Semiparametric
Estimation of Index Coe¢ cients. Econometrica, 57, 1403-1430.

Ruud, P. A. (2000), An Introduction to Classical Econometric The-
ory, Oxford, U.K.: Oxford University Press.

Ser�ing, R.J. (1980). Approximation Theorems of Mathematical Sta-
tistics. New York: Wiley.

Sherman, R.P. (1993). The Limiting Distribution of the Maximum
Rank Correlation Estimator. Econometrica, 61, 123-137.

Sherman, R.P. (1994). Maximal Inequalities for Degenerate U-
Processes with Applications to Optimization Estimators. Annals
of Statistics, 22, 439-459.

Van der Vaart, A.W., and Wellner, J.A. (1996). Weak Convergence
and Empirical Processes. New York: Springer-Verlag.

5 Appendix

Appendix contains the proofs of Theorems 1-5. It consists of four parts. The
structure of the proofs and their main ingredients are discussed in Section 5.1,
and the actual proofs are in Section 5.2. Section 5.3 brie�y reviews the known
results from the empirical process theory for U -processes, and provides the
necessary extensions. Section 5.4 contains an auxiliary lemma related to the
Berry-Esséen bound for M -estimators with a criterion function in the form
of a smooth U -process. Short versions of the proofs are presented; detailed
proofs are available from the author upon request.
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5.1 Main Tools of Proof

This subsection describes the main ideas underlying the proofs of Theorems
1-5. The essence of the analysis is to separate a smooth and a non-smooth
components of the objective function. The estimator �n is approximated
by a maximizer of the smooth component whose properties can be studied
using the Taylor expansion and the Berry-Esséen bounds. Then the empirical
process theory for U -processes is used to show that the contribution of the
nonsmooth remainder in the objective function to the distribution of �n is
small.
To simplify notation, we assume, without loss of generality, that �0 = 0;

and that the function h0 is identically zero.

5.1.1 Approximation

Consider an estimator, �n; that solves the problem

Gn;�n � sup
�2�

[Gn;� � rn;�] ;

and assume that the objective function Gn;� admits the representation

Gn;� = G
0
n;� + �n;�; (23)

where � 2 � � Rd; G0n;� is a smooth random function of �; and �n;� is a
remainder. An approximation to �n; denoted by �n; solves the problem

�n 2 argmax
�2�

G0n;�: (24)

If the remainder terms �n;�; rn;� are small in an appropriate sense, then the
di¤erence n1=2 (�n � �n) will also be small. The following theorems formalize
this idea.
The �rst theorem is useful for establishing the asymptotic normality of

�n (part (a)), and estimating its variance (part (b)). Here it is enough to
consider the representation (23) with

G0n;� � �0Wn �
1

2
�0A�

whereWn is a d�1 random vector, not depending on �; and A is a matrix of
constants. Then �n = A

�1Wn; as long as the vector on the right-hand side is
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an element of �: The �rst part of the theorem is a variant of Pollard�s (1985)
asymptotic normality theorem (see also Sherman (1993) and Arcones, Chen,
Giné (1994)), and the second part is a simple extension.

Theorem 6 Assume that 0 is an interior point of �; and A is a symmetric,
positive de�nite, constant matrix. (a) If �n !p 0; Wn = Op

�
n�1=2

�
; and for

every sequence of numbers �n ! +0;

sup
k�k��n

���n;���+ jrn;�j
n�1 + k�k2

!p 0; (25)

then
n1=2

�
�n � A�1Wn

�
!p 0:

(b) If, additionally, � is a bounded set, P kWnk2 = O (n�1) ; and for every
" > 0; and every sequence of numbers �n ! +0;

P fk�nk > "g = o
�
n�1

�
;

P
W 2

n

 1 fkWnk > "g = o
�
n�1

�
;

and

P

(
sup
k�k��n

���n;���+ jrn;�j
n�1 + k�k2

> "

)
= o

�
n�1

�
; (26)

then
P
n1=2 ��n � A�1Wn

�2 ! 0: (27)

Proof. (Sketch.) Denote tn = n1=2 (�n � A�1Wn) : When A�1Wn 2 �; by
the de�ning property of �n and (23),

t0nAtn � 2n
�
�n;A�1Wn+n�1=2tn � �n;A�1Wn

� rn;A�1Wn

�
: (28)

Fix " > 0; and let E";n be the event that

ktnk2 � "
�
1 + ktnk2 + n kWnk2

�
:

(a) By the assumptions in part (a) of the theorem and (28), P
�
E";n

�
=

o (1) ; which implies that tn = op (1) :
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(b) Assumptions of part (b) of the theorem and (28) imply that P
�
E";n

�
=

o (n�1) : Choose " < 1: We have:

P ktnk2 � P ktnk2 1E";n + P ktnk
2 1E";n

� "

1� "O (1) + 2nP k�nk
2 1E";n + 2nP kWnk2 1E";n

Since �n 2 � is bounded, nP k�nk2 1E";n = O (1) �nP
�
E";n

	
= o (1) : For the

last term,

nP kWnk2 1E";n � nP kWnk2
�
kWnk2 > 1

	
+ nP

�
E";n

	
= o (1) :

Therefore, P ktnk2 = o (1).
To assess the accuracy of the normal approximation, one needs to inves-

tigate the nature of the di¤erence between �n and �n more closely.

Theorem 7 . Suppose that equations (23) and (24) hold. Assume that there
exists a sequence of numbers an � 1; and numbers �; �0 > 0 and � 2 [0; 2)
such that the ball with center zero and radius �0 is in �; and
(i) For any � > 0; P fk�nk+ k�nk > �g = O (a�1n ) :
(ii)

P

�
Matrix @2G0n;� exists and is continuous, and

�@2G0n;� � �I for all k�k � �0

�
= 1�O

�
a�1n
�
:

(iii) For any 0 < � � �0,

P

(
sup
k�k��

�n;�n+� � �n;�n + rn;�n
n�1a�2n + � k�k2 + (n�1=2a�1n )

2�� k�k�
� 1

�0

)
= 1�O

�
a�1n
�
:

Then there exists a constant K such that

P
�
n1=2 k�n � �nk > Ka�1n

	
= O

�
a�1n
�
:
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Proof. Let �� = min
�
�0;

��0
4

	
: Let En be the union of event

fk�nk ; k�nk < ��g ;

the event in condition (ii), and the event in condition (iii) for � = ��: Con-
ditions (i)-(iii) imply that P

�
En
�
= O (a�1n ) : De�ne tn = n

1=2an (�n � �n) :
Since �n 2 �; we have

G0n;�n �G
0
n;�n

� �rn;� + �n;�n � �n;�n :

When on En; �n is an interior maximum and so the F.O.C., @G0n;�n = 0; is

satis�ed. Use this to expand the left-hand side around �n: for some
~�n �

��;

G0n;�n �G
0
n;�n

=
1

2
n�1a�2n t

0
n@

2G0
n;~�n
tn

� ��
2
n�1a�2n ktnk2 :

Therefore,

ktnk2 � 2

�
na2n

�
rn;� + �n;�n � �n;�n

�
� 2

��0

�
1 + �� ktnk2 + ktnk�

�
or (recall that �� � ��0

4
)

ktnk2 �
4

��0
(1 + ktnk�)

Because � 2 [0; 2); this implies that for some constant K = K (�; �0; �) > 0;

ktnk � K:

Taking into account the possibility of the event En; we have

P
�
n1=2 k�n � �nk > Ka�1n

	
= P

�
En
�
= O

�
a�1n
�
:

31



5.1.2 Hoe¤ding Decomposition and Its Bootstrap Version

When the estimator maximizes a U -process, representation (23) can be ob-
tained by the so-called Hoe¤ding decomposition (or the U -decomposition).
Let h� : Zm ! R be a symmetric, P -measurable function. Denote by �k:mh�
the projection of h� onto the space of functions of k arguments that are de-
generate with respect to the measure P; in the sense that their expectation
relative to P over any one argument, holding the other arguments constant,
is zero:

(�k;mh�) (z1; :::; zk) = (�z1 � P ) ::: (�zk � P )Pm�kh�
(where �z1h� = h� (z1; �)). Then

U (m)n h� = P
mh� +mPn�1;mh� +

mX
k=2

�
m

k

�
U (k)n (�k;mh)� : (29)

where Pn is the sample mean, i.e. the U -process of order 1 (see e.g. Arcones
and Giné (1992) for the U -decomposition in this notation).
The importance of the Hoe¤ding decomposition is that it isolates terms of

progressively higher order in n�1=2: The �rst term is the expectation of h� and
has the orderO (1) : The second term is the sample mean of a random variable
with zero mean; it has order Op

�
n�1=2

�
by the Central Limit Theorem. The

following terms are of order Op
�
n�k=2

�
: Representation (23) can be obtained

if the �rst few terms in (29) are twice di¤erentiable in �; so that they admit a
Taylor expansion with leading terms given by G0n;�; while the error term �n;�
will collect the remainder from the Taylor expansion and the higher-order
U -processes in (29). Speci�c decompositions will be considered below.
A similar decomposition is also needed for the bootstrap problem. In

the literature on the bootstrap of U -statistics, it is common to write the
Hoe¤ding decomposition of the bootstrapped process, Û (m)n h�; conditionally
on the sample of data fZigni=1, i.e. relative to the empirical measure Pn in
place of P: This approach makes the analysis of the higher-order processes
no more di¢ cult in the bootstrap problem than in the sample problem. It
is inconvenient for M -estimators, however, because the leading terms of the
U -decomposition relative to Pn may not have the smoothness properties of
the leading terms in (29). For example, the �rst term will be:

Pmn h� �
1

n2

X
i1;:::;im

h� (Zi1 ; Zi2 ; :::; Zim)
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which is not a di¤erentiable function of � for the rank estimators. Thus, the
Taylor expansion arguments leading to representation (23) for the sample
problem will not be directly applicable to the bootstrap problem.
Here we suggest a di¤erent approach. Write the Hoe¤ding decomposition

of the bootstrapped process in terms of the same functions �k:mh� (integrals
of h� relative to P ) that appear in (29):

Û (m)n h� = P
mh� +mP̂n (�1;mh�) +

mX
k=2

�
m

k

�
Û (k)n (�k:mh�) : (30)

(To obtain this formula, apply the summation operator Û (m)n to formula (2.5)
in Arcones and Giné (1992).) Now, the functional form, and therefore,
smoothness properties with respect to �; of the leading terms in Gn;� and
Ĝn;� are the same, and only the sample of data on which they are evaluated
di¤er.

5.1.3 Bounds on the Higher-Order U-Processes

To apply the approximation theorems, we need to check their equicontinuity
assumptions for the components of �n;� and �̂n;� given by the higher-order
U -processes in the Hoe¤ding decomposition. This is the most challenging
part of the proof, which is mostly deployed in Section 5.3. Here we give only
the �nal results relevant to our problem.
Given a function h (z1; :::; zm) ; de�ne the function

h[m�2s] (z1; :::; zm�2s) =Z
h (z1; :::; zm�2s; Zm�s+1; Zm�s+1; :::; Zm; Zm) dP (Zm�s+1) :::dP (Zm) :

For the sample problem, the following two bounds hold.

Lemma 8 (a) Let H = fh� : Zm ! Rg; m � 1; be a class of P -degenerate
symmetric functions, which is Euclidean for an envelopeH satisfying PmHp_2 <
1 for p � 1; and Hn be its subclasses. Then, as n!1,

nm=2
�
P sup
h2H

��U (m)n h
��p�1=p = O (1) :
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(b) If, additionally, suph2Hn
Pmh2 ! 0; then

nm=2
�
P sup
h2Hn

��U (m)n h
��p�1=p = o (1) :

(c) If, additionally to conditions in (a), PmHp_2
!m <1 for each !m; then

nm=2
�
P sup
h2H

���Û (m)n h
���p�1=p = O (1) :

(d) If, additionally to conditions in (b) and (c), for each s; 1 � s � m
2
;

suph2Hn
Pm�2s

�
h[m�2s]

�2 ! 0; then

nm=2
�
P sup
h2Hn

���Û (m)n h
���p�1=p = o (1) :

Lemma 9 Let H = fh� : Zm ! Rg; m � 2; be a class of symmetric, P -
degenerate functions, Euclidean for an envelope H. Assume that there exist
constants �0; C > 0 such that for all �1; �2 in the �0-neighborhood of 0;

Pm
�
(h�1 � h�2)

2� � C k�1 � �2k : (31)

Then

P

8<: sup
k~�k; k�k��0=2

���U (m)n

�
h~�+� � h~�

����
n�1a�2n + (n�1=2a�1n )

3=2 k�k1=2
> 1

9=; = O
�
a�1n
�
; (32)

with any an � 1 satisfying

an �
�
n1=6 (log n)�2=3

�1=(1+2=3p)
; if m = 2 and PmH6 <1;

an � n(m�1)=4�"; if m � 3 and PmHp <1 for all p:

In the last expression, " > 0 can be arbitrarily small10.
(b) If, additionally, the integrability conditions imposed on function H also

10Results for other combinations of m and p can be easily deduced from the proof. We
omit them for brevity.
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hold for functions H!m ; for all !m; and for all �1; �2; and for all s; 1 � s � m
2
;

in the �0-neighborhood of 0;

Pm�2s
��
h
[m�2s]
�1

� h[m�2s]�2

�2�
� C k�1 � �2k ;

then inequality (32) also holds (with the same rates an) with U
(m)
n changed

to Û (m)n :

5.2 Proofs of Theorems in Section 2

5.2.1 Asymptotic Normality and Consistency of the Bootstrap

Only the proof of Theorem 2 is provided. The proof of Theorem 1 is analogous
(and simpler), and is close to the proofs in Sherman (1993) and Arcones, Giné
and Chen (1994).
First, we obtain a quadratic approximation to the bootstrap objective

function Ûnh�: De�ne � � = Pm�1h� and A = �P [@2� 0] : By Assumptions 1
and 3, A is a symmetric, positive de�nite matrix; P [@� 0] = 0 (this is the �rst-
order condition in the population maximization problem), and P k@� 0k2 <
1: De�ne

R�(z) = [P
mh� +m�1;mh�] (z)�m�0@� 0 (z) +

1

2
�0A�:

Using this and the Hoe¤ding decomposition for the bootstrapped U -statistic,
we obtain

Û (m)n h� = �
0Ŵn �

1

2
�0A� + �̂n;� (33)

where Ŵn = mP̂n@� 0; and �̂n;� is the remainder:

�̂n;� = P̂nR� +

mX
k=2

�
m

k

�
Û (k)n (�k;mh�) : (34)

Let �0 > 0 be such that the neighborhood N in Assumption 3 contains the
ball of radius �0 with the center at zero. By Assumptions 3 (i), (ii), conditions
h0 � 0; P@� 0 = 0; and the second-order Taylor expansion around zero,���P̂nR���� � m�PM + P̂nM

�
k�k3 +m

�P̂n � P� @2� 0 k�k2 (35)
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for all k�k � �0:
Now we check conditions of Theorem 6. By the bootstrap Hoe¤ding

decomposition, Assumptions 2, 5 and Lemma 8 (c),

P sup
�2�

���Û (m)n h� � Pmh�
���! 0;

which together with the identi�cation assumption 1 implies consistency of �̂n
for 0: Clearly, Ŵn = Op

�
n�1=2

�
. Next, use (35) and integrability conditions

imposed in Assumption 3 to argue that P̂nR� satis�es condition (25), actually,
the stronger condition

sup
k�k��n

���P̂nR����
k�k2

!p 0

whenever �n ! +0:It is enough to show that P̂nM = Op (1) and
�
P̂n � P

�
@2� 0 =

op (1) under conditions PM < 1 and P k@2� 0k < 1: Both follow from the

following: if P jf j < 1 then
���P̂nf � Pf ��� = op (1) : In fact,

�
P̂n � P

�
f =�

P̂n � Pn
�
f + (Pn � P ) f: The second term is op (1) by the Law of Large

Numbers, and the �rst term is op (1) by the bootstrap weak law of large num-
bers given e.g. in Theorem 3.5 in Giné and Zinn (1990). Condition P jf j <1
is su¢ cient for condition (i) of that theorem. Then, P̂

����P̂n � Pn� f ��� =
op (1) : By the Chebyshev inequality, for any " > 0; P̂

n����P̂n � Pn� f ��� > "o =
op (1) : The left-hand side is bounded by 1: Integrate over P to obtain

P
n����P̂n � Pn� f ��� > "o = o (1) :

It remains to verify condition (25) for higher-order U -processes in (34).
Use the maximal inequality, Lemma 8 (c) (with p = 1). For k � 3;

P sup
�2�

���Û (k)n (�k;mh�)
��� = O �n�3=2� :

For k = 2; take a sequence �n ! +0 and apply the maximal inequality from
Lemma 8 (d) to classes Hn = f�2;mh� : k�k � �ng:

P sup
k�k��n

���Û (2)n (�2;mh)
��� = o �n�1� :
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Conclude that condition (25) is satis�ed for all k � 2.
By Theorem 6,

n1=2
�
�̂n � P̂nA�1@� 0

�
= op (1) :

A similar derivation for the sample problem gives

n1=2
�
�n � PnA�1@� 0

�
= op (1) :

Therefore,

�n � n1=2
�
�̂n � �n

�
� n1=2

�
P̂n � Pn

�
A�1@� 0 = op (1) : (36)

By Theorem 2.2 of Bickel and Freedman (1981), for almost all sequences
fZ1; Z2; :::g

n1=2
�
P̂n � Pn

�
A�1@� 0 ! N (0;�) :

Weak convergence to the multivariate normal distribution is always uniform
(Corollary 2.6, Theorem 3.1 and Corollary 3.2 of Bhattacharya and Rao
(1976)); therefore, for almost all sequences fZ1; Z2; :::g ;

sup
A2A

����Z
A

dF̂n1=2(P̂n�Pn)A�1@�0 �
Z
A

d��

����! 0: (37)

This and (36) imply the conclusion of Theorem 2:

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

���� = op (1) ; (38)

as follows. For " > 0; and a set A 2 A, de�ne A" = [fB (x; ") ; x 2 Ag ;
where B (x; ") is the open ball with center x and radius "; and A�" =
Rdn

�
RdnA

�"
: Both sets are in A (both are convex, the �rst is open and

the second is closed, so both are measurable), and A�" � A � A". It is
known that

sup
A2A

Z
A"nA�"

d�� � K (d;�) ";

see formula (3) and Corollary 3.2 in Bhattacharya and Rao (1976). We haveZ
A

dF̂n1=2(�̂n��n) �
Z
A"
dF̂n1=2(Ŵn�Wn) + P fk�nk � "g
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and Z
A

dF̂n1=2(�̂n��n) �
Z
A�"

dF̂n1=2(Ŵn�Wn) � P fk�nk � "g :

Then,

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

����
� sup

A2A

����Z
A

dF̂n1=2(P̂n�Pn)A�1@�0 �
Z
A

d��

����
+ sup
A2A

Z
A"nA�"

d�� + P fk�nk � "g :

Therefore, (38) holds.

5.2.2 Estimation of the Variance

Here we prove consistency of the asymptotic variance estimators given in
Theorem 3. We consider only the bootstrap problem, while the (simpler)
proof for the sample problem can be reconstructed using the same steps. We
check conditions of part (b) of Theorem 6. By condition PmHp < 1; for
p > 2; the bootstrap Hoe¤ding decomposition, and Lemma 8 (c), for each
" > 0 there is � > 0 such that

P
n�̂n > "o � ��pP sup

�2�

���Û (m)n h� � Pmh�
���p

= ��pO
�
n�p=2

�
= o

�
n�1

�
:

Next note that conditions PmHp <1; PMp <1; P k@2� 0kp <1; and the
Taylor expansion, imply that P k@� 0kp <1: Then by Rosenthal inequality,
P
Ŵn

p = O �n�p=2� ; and, therefore,
nP

Ŵn

2 1�Ŵn

2 > "�
� 1

(n"2)p�2
P
Ŵn

p = o �n�1� :
The extra integrability assumptions of Theorem 3 ensure that P̂nRn;� satis�es
condition (26). To check (26) for the higher-order U-processes, invoke Lemma
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8 (c) with p > 2: Theorem 3 implies

P
n1=2 ��̂n � A�1P̂n@� 0�2 ! 0:

By Chebyshev inequality,

P̂
n1=2 ��̂n � A�1P̂n@� 0�2 !p 0:

By Theorem 2.2 of Bickel and Freedman (1981),dV ar �n1=2A�1P̂n@� 0�� �!a:s: 0

so, dV ar �n1=2�̂n�� �!p 0:

5.2.3 Generic Bound for Rank Estimators

Here we prove Theorem 4 for the bootstrap problem. The proof for the sam-
ple problem follows the same steps. We use the same representation (33), but
check conditions of Theorem 7. The rate in Theorem 4, an; is determined by
the rate of convergence to zero of the U -process of order 2 in the remainder
�̂n;�; Û

(2)
n (�2;mh�) : It is given in Lemma 9. To apply it, consider the class

of functions
n
�h = �2;mh

o
: The class consists of P -degenerate functions of

two arguments. Note that by Jensen inequality, the condition on Pm�2h�;
Pm�2h

[m�2]
� in Assumptions 6, 7 imply the same condition for functions �h�;

�h
[m�2]
� . If the class fhg is Euclidean, then so is the class

n
�h
o
(see the prop-

erties of the Euclidean classes below). Also, the class
n
�h
o
inherits from the

class fhg its integrability properties (�niteness of moments). Lemma 9 (b)
gives the rate, an, with which condition (iii) of Theorem 7 is satis�ed for

Û
(2)
n (�2;mh�): an =

�
n1=6 (log n)�2=3

�1=(1+2=3p)
if PmHp

!m <1 for p � 6 and
all permutations !m: It now su¢ ces to check that the other conditions of
Theorem 7 are satis�ed with this rate and the probability 1�O

�
n�1=6

�
:

First, check condition (i). For �̂n, as in the previous subsection, for p = 6
(this is the minimal integrability assumption imposed in Theorem 4)

P
n�̂n > �o � ��p� P sup

�2�

���Û (m)n h� � Pmh�
���p

= ��p� O
�
n�p=2

�
= O

�
n�3

�
:
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Since by the Rosenthal inequality, P
Ŵn

4 = O (n�2) under condition

P k@� 0k4 <1;
P
nŴn

 > �o = O �n�2� :
Condition (ii) is trivial here because A is assumed to be a constant positive
de�nite matrix. As a consequence, �̂n = Ŵn except on an event of probability
O (n�2) : We, therefore, can neglect the distinction between �̂n and Ŵn:

Condition (iii) for higher-order U -processes in �̂n;�; Û
(k)
n (�k;mh�) (for an �

n1=6) is trivial because sup�
���Û (k)n (�k;mh�)

��� = Op
�
n�k=2

�
by Lemma 8 (c),

and the rate nk=2; k � 3; dominates the rate na2n; which is at most n4=3:
Condition (iii) for P̂nR� can be checked using[ the same methods as in

the previous proofs and] the extra integrability assumptions on M(z), @2� 0,
and @� 0 made in Theorem 4. We, therefore, have

P
nn1=2 ��̂n � A�1P̂n@� 0� > Ka�1n o = O �a�1n � :

A similar derivation gives

P
�n1=2 ��n � A�1Pn@� 0� > Ka�1n 	 = O �a�1n � :

Therefore,

P
n
�n �

n1=2 ��̂n � �n�� n1=2A�1 �P̂n � Pn� @� 0 > Ka�1n o(39)
= O

�
a�1n
�

for some K > 0:
Next we use the multivariate Berry-Esséen Theorem (Corollary 18.3 in

Bhattacharya and Rao (1976)). For the sample problem, under conditions
that V ar (@� 0) is a positive de�nite matrix and P k@� 0k3 <1; we have:

sup
A2A

����Z
A

dFA�1Pn@�0 �
Z
A

d��

���� � n�1=2c (d)P ��1=2A�1@� 03 ;
where c (d) is an absolute constant for each d:
For the bootstrap problem, let C0 be a constant such that

lim sup
n!1

Pn
��1=2n A�1@� 0

3 < C0(P � a:s);
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where �n = dV ar �n1=2A�1P̂n@� 0�. Such �nite constant exists by the law of
large numbers under conditions that �, A are positive de�nite and P k@� 0k3 <
1: Apply the Berry-Esséen Theorem conditionally on sequences of data for
which this condition is satis�ed. Then, P � a:s:;

lim
n!1

sup
A2A

����Z
A

dF̂A�1(P̂n�Pn)@�0 �
Z
A

d��n

���� � n�1=2c (d)C0
Integrate over P and take into account that the integrand is a sequence of
bounded functions, apply the Lebesgue dominated convergence theorem:

lim
n!1

P sup
A2A

����Z
A

dF̂A�1(P̂n�Pn)@�0 �
Z
A

d��n

���� � n�1=2c (d)C0
or, by the Chebyshev inequality,

sup
A2A

����Z
A

dF̂A�1(P̂n�Pn)@�0 �
Z
A

d��n

���� = Op �n�1=2� :
Finally, condition P k@� 0k4 <1; implies that �n� � = Op

�
n�1=2

�
: Then it

follows from the properties of the normal distribution that

sup
A2A

����Z
A

d��n �
Z
A

d��

���� = Op �n�1=2� :
So, we have

sup
A2A

����Z
A

dF̂A�1(P̂n�Pn)@�0 �
Z
A

d��

���� = Op �n�1=2� (40)

Now we obtain the uniform result of Theorem 4. We show it for the
bootstrap. Use (39) and (40), and the logic of the proof of uniformity in
consistency theorems. Let "n = Ka�1n : We have:

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

����
� sup

A2A

����Z
A

dF̂n1=2(P̂n�Pn)A�1@�0 �
Z
A

d��

����
+ sup
A2A

Z
A"nnA�"n

d�� + P fk�nk � "ng

= Op
�
n�1=2

�
+O ("n) +Op

�
a�1n
�
= Op

�
a�1n
�
:
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5.2.4 Better Rates Under Additional Smoothness Assumptions

Under additional Assumption 8, the degenerate U -processes of order up to
s � 2 in the Hoe¤ding decomposition of the criterion function Gn;� are all
smooth functions of �: Then one can approximate �n by the random vector
�n which solves the problem

�n 2 argmax
�2�

G0n;� � U (s)n h��

where

h�� =
sX
k=0

�
m

k

�
�k;mh� =

sX
k=0

�
m

k

�
�k;sf�

The bootstrapped estimator, �̂n can be approximated by

�̂n 2 argmax
�2�

Û (s)n h
�
�:

The properties of �n and �̂n can be found by powerful methods based on
the Taylor expansion and Berry-Esséen bounds for higher-order U -statistics.
Note �rst that by the Hoe¤ding decomposition, maximal and Chebyshev
inequalities, for any � > 0;

P fk�nk > �g = O
�
n�1=2

�
;

and
P fk�̂nk > �g = O

�
n�1=2

�
:

In particular, with probability at least 1� O
�
n�1=2

�
; �n � �0 coincides with

the solution to the �rst order condition:

U (2)n g�0+� = �n;�0+�

where g� =
�
Pm +m�1;s +

m(m�1)
2

�2;s

�
@f�; and �n;� =

Ps
k=3

�
m
k

�
U
(k)
n �k;s@f�:

Functions g�; �n;�; and �n satisfy the assumptions of Lemma 17 (in partic-
ular, Pm@g0 = Pm@f0 = 0; by the �rst-order condition in the population
problem), and, therefore, the following Berry-Esséen bound holds:

sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

d��

���� = O �n�1=2� (41)
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To obtain a similar bound for the bootstrap problem, apply Lemma 17
conditionally on the sample. With probability at least 1� O

�
n�1=2

�
; the

random vector �̂n� �n coincides with the solution to the equation:

Û (2)n g�n+� = �̂n;�n+�

where �̂n;� =
Ps

k=3

�
m
k

�
Û
(k)
n �k;s@f�: Note, in particular, that

P 2ng�n+� =
n� 1
n

Ung�n +
1

n2

nX
i=1

g�n (Zi; Zi)

= �n;�n +
1

n2

nX
i=1

g�n (Zi; Zi) ;

and, therefore, satis�es Assumption (ii) of Lemma 17 with K = Op (1) : Also
note that the conditional moments required to apply Lemma 17 are bounded
for almost all sequences of data fZ1; Z2:::g ; by the moment conditions on L
in Assumption 10 (a); therefore, cd in Lemma 17 will be Op (1) : Thus,

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��n

���� = Op �n�1=2� :
Under the assumption that P k@f�k4 <1; we can rewrite the last bound as

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

���� = Op �n�1=2� : (42)

The objective function for the estimators �n; �̂n; contains additional terms
given by:

�n;� =
mX

k=s+1

�
m

k

�
U (k)n (�k;mh�) + rn;�:

and

�̂n;� =

mX
k=s

�
m

k

�
Û (k)n (�k;mh�) + r̂n;�

To estimate the di¤erences �n � �n and �̂n � �̂n; use Theorem 7. Under
Assumption 8, by the Taylor expansion,

U (s)n h� = U
(s)
n h

�
� = �

0Wn �
1

2
�0An;��
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where
Wn = U

(s)
n @h

�
0

and, for A = �@2Ph0 = �@2Ph�0;

@2G0n;� = �A+ U (s)n @2 (h�0 � Ph�0) +O (L k�k)

Condition (i) of Theorem 7 is satis�ed with an = n1=2; for both �n and �n:
Condition (ii) follows from the previous display, positive de�niteness of A;
and the moment conditions on function L: If Assumptions 8, 9 are satis�ed
with s = 2; then condition (iii) of the Theorem is satis�ed with an = n1=2�";
where " > 0 is arbitrarily small, by Lemma 9 (a) (for the degenerate U -
process of order 3), and 8 (a) with su¢ ciently high p (for the degenerate
U -processes of order 4 and higher). If s = 3; then condition (iii) is satis�ed
with an = n3=4�"; by the same Lemmas (Lemma 9 now should be used for
the degenerate U -processes of order 4)11. Conditions (i-iii) can be veri�ed for
the bootstrap (i.e. relative to the unconditional distribution of the bootstrap
draws) in the same way. Particularly, condition (iii) directly follows from
Lemmas 8 (c) and 9 (b).
It follows that for some constant K > 0;

P
�
n1=2 k�n � �nk > Ka�1n

	
= O

�
a�1n
�

(43)

and
P
n
n1=2

�̂n � �̂n > Ka�1n o = O �a�1n � :
Combining the last to bounds we have

P
n
n1=2

��̂n � �n�� (�̂n � �n) > Ka�1n o = O �a�1n � : (44)

The sample version of Theorem 5 follows from (41) and (43), while its boot-
strap counterpart follows from (42) and (44).

11The result for s = 3 can be used to obtain the Edgeworth expansion for the distri-

bution functions of n1=2�n and n1=2
�
�̂n � �n

�
with the error term of order O

�
n�3=4+"

�
(Op

�
n�3=4+"

�
for the bootstrap), which implies that the symmetric con�dence intervals

for �n constructed using the bootstrap are Op
�
n�3=4+"

�
-accurate. The last bound may

not be tight, even with " omitted. This is similar to the case of the parametric estimators,
whose symmetric con�dence intervals are also more accurate than the one-sided ones, and
have the error of coverage probability Op

�
n�1

�
(see Hall (1992)). The derivation is te-

dious because it requires further terms in the Edgeworth expansion for �n and �̂n; and is
omitted.
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5.3 Bounds on Oscillations of U-Processes

Here we provide a brief discussion of the empirical process theory for U -
processes, and extensions to it, that eventually lead to Lemmas 8, 9. The
bounds listed here are relevant for the U -processes indexed by a Euclidean
class of functions. For the convenience of the reader we remind the de�nition.
Call function H an envelope of a class of functions H if jhj � H for each
h 2 H:

De�nition 10 (Nolan and Pollard (1987)) Let H be a class of real-valued
functions de�ned on the same set. Call H Euclidean for the envelope H if
there exist positive constants (referred to as Euclidean numbers in the sequel)
A and V such that for any measure �; for which 0 < �H <1;

N2("; d�) � A"�V ; 0 < " � 1:

Here, for h1; h2 2 H; d�(h1; h2) = �jh1�h2j2=�H2 and N2("; d�) is the pack-
ing number of H with respect to the pseudometric d�; i.e. the largest number
N such that there exist functions h1; :::; hN with the property d�(hi; hj) > �
for i 6= j:

A detailed review of the properties of Euclidean classes of functions can
be found in Nolan and Pollard (1987) and Pakes and Pollard (1989). In
particular, if H1 andH2 are two Euclidean classes for envelopes, respectively,
H1 andH2; then classH1+H2 � fh1 + h2 : hi 2 Hig is Euclidean for envelope
H1 + H2 and class H1 � H2 � fh1 � h2 : hi 2 Hig is Euclidean for envelope
H1 � H2: If H = fh : Zm ! Rg is A; V - Euclidean for envelope H; then
the class fjhj : h 2 Hg is A; V -Euclidean for the envelope H; and for any
probability distribution �; acting on variables z1; :::; zk; class

f�h(�; zk+1; :::; zm) : h 2 Hg

is A; V -Euclidean for the envelope �H (in particular, � may put mass 1 on
a value of (z1; :::; zk)).
It is convenient to introduce extra notation for the rest of this subsec-

tion. Throughout . will denote inequality up to a multiplicative constant.
The constant may depend on certain parameters of the model (typically, the
Euclidean numbers A and V , the order of the process m and so on), but
not on n or the sample data fZ1; :::; Zng : In particular, we will often use the
inequality (a+ b)p . ap + bp; a; b � 0; p > 0; where the constant depends
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on p only (for p 2 (0; 1) the constant is 1). Symbol k�kH will stand for the
supremum over a class of functions H.
Lemma 11 gives bounds for the �rst moment of the suprema of the de-

generate empirical and U -processes.

Lemma 11 Let H be a class of P -degenerate symmetric functions which is
Euclidean for an envelope H with PmH > 0. Then

P1 kUmn hkH

. n�m=2P1

24�Umn H2
�1=2 Z (kUmn h2kH=Umn H2)

1=2

0

(1� log ")m=2 d"

35
Here the multiplicative constant depends on m and the Euclidean numbers
A; V only.

Proof. Cases m = 1; 2 were considered in Pollard (1989), Theorem 4.2 (i),
and Nolan and Pollard (1987). Form > 1; the inequalities follow from Propo-
sitions 2.1, 2.2 and 2.6 in Arcones and Giné (1993) (see also the calculations
in (1994)).

Remark 12 The integral that appears in Lemma 11 (with kU
m
n h

2kH
Umn H

2 � x 2
(0; 1]) can be bounded from above and from below by multiples of function

Jm (x) = x
1=2

�
1� 1

m
log x

�m=2
;

which is increasing, concave, and bounded on x 2 (0; 1]: Furthermore, Jm (x) ;
m � 1; satis�es

(m=2)m=2 (log n)�m=2 Jm (x) � x1=2 _
�
n�1 log n

�1=2
for all x 2 (0; 1] and n � em (particularly, if x � n�1 log n, Jm (x) �
J (n�1 log n) by monotonicity).

The bound on P1 kUmn hkH is related to the "continuity modulus" of the
class H, kPmh2k1=2H .
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Lemma 13 Let H = fh : Zm ! Rg;m � 1; be a Euclidean class of sym-
metric, P -degenerate functions with envelope 1. Then for all n;

P1
U (m)n h


H .

�
n�1 log n

�m=2 Pmh21=2H +
�
n�1 log n

�(m+1)=2
; (45)

where the multiplicative constant depends on m and the Euclidean numbers
of the class only.

Proof. Follows from Theorem 8 in Giné and Mason (2007).

Lemma 14 Let H = fh : Zm ! Rg be a class of symmetric, P -degenerate
functions, Euclidean for an envelope H: If for p � 2; PmHp <1; then

P1
U (m)n h


H .

�
n�1 log n

�m=2 Pmh21=2H +
�
n�1 log n

�(m+1)=2�1=p
:

In these inequalities, the multiplicative constants depend on m; PmHp and
the Euclidean numbers of the class only.

Proof. First, we obtain

P1
U (m)n h2


H .

Pmh2H + �n�1 log n�1�2=p : (46)

Let HL; L � 1; be the class of functions fh1 fjhj � Lg : h 2 Hg : Note
that HL is Euclidean for the envelope L: Consider the case L = 1: By the
Hoe¤ding decomposition, Lemma 11 and Remark 12,

P1
U (m)n h2


H1

.
Pmh2H1

+ n�1=2P1J1

�Pn ��1;mh2�2
H1

�
+ n�1

.
Pmh2H1

+n�1=2P1
Pn ��1;mh2�2 log n1=2

H1

+ n�1 log n

Note that Pn ��1;mh2�2
H1

.
Pn �Pm�1h2�2

H1

+
Pmh4H1

�
PnPm�1h2H1

+
Pmh2H1

Therefore, (also using 2 jxyj � x2 + y2)

P1
U (m)n h2


H1

.
Pmh2H1

+ n�1 log n (47)

+
�
n�1 log n

�1=2
P1

PnPm�1h21=2H1
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Apply this inequality to the process Pn (Pm�1h2); denoting by X the expres-
sion P1 kPn (Pm�1h2)kH1

; and by C > 0 the multiplicative constant,

X � C
Pmh2H1

+ CX1=2
�
n�1 log n

�1=2
+ Cn�1 log n

One possibility is that X > 4C2n�1 log n; in which case the previous inequal-
ity gives

X � C
Pmh2H1

+
1

2
X + Cn�1 log n;

so that
X .

Pmh2H1
+ n�1 log n:

The other possibility is that X � 4C2n�1 log n: In both cases,

P1
Pn �Pm�1h2�H1

�
Pmh2H1

+ n�1 log n:

Substitute this into (47):

P1
U (m)n h2


H1
.
Pmh2H1

+ n�1 log n:

For an arbitrary L � 1; by rescaling,

P1
U (m)n h2


HL
.
Pmh2HL

+ L2n�1 log n:

Next, as

h2 = h21 fjhj � Lg+ h21 fjhj � Lg
� h21 fjhj � Lg+H21 fH � Lg ;

we have

P1
U (m)n h2


H

.
Pmh2H + L2 �n�1 log n�+ PH21 fH > Lg

=
Pmh2H + L2 �n�1 log n�+ o �L�p+2� :

Taking L = (n�1 log n)�1=p gives (46).
For a U -statistic of order m; use �rst Lemma 11 and Remark 12:

P1
U (m)n h


H .

�
n�1 log n

�m=2
P1

U (m)n h2

H

+
�
PmH2

�1=2 �
n�1 log n

�(m+1)=2
:

Now use (46).
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Lemma 15 (Ho¤mann-Jørgensen inequality for U-Processes indexed by Euclid-
ean classes of functions). Let H = fh : Zm ! Rg be a class of P -degenerate
symmetric functions which is Euclidean for a Pm-square-integrable envelope
H. Then for every p � 2

P1
U (m)n h

p
H .

�
P1

U (m)n h

H

�p
+ n�p(m+1)=2+1PmHp;

with a constant depending on m; p and Euclidean constants A; V of the class
only.

Proof. For m = 1 this inequality is well-known: it holds without constraints
on the capacity of the classH, see van der Vaart andWellner (1996), Theorem
2.14.5. For m � 2; Giné and Zinn (1992), Corollary 4, obtained the following
bound (also without capacity restrictions on H):

P1
U (m)n h

p
H .

�
P1

U (m)n h

H

�p
+P1max

im�n


�
n

m

��1 nX
i1;:::;im�1:(i1;:::;im�1)2I(m)n

h(Zi1 ; :::; Zim)


p

H

:

The second term can be bounded by

P1
nX

im=1


�
n

m

��1 nX
i1;:::;im�1:(i1;:::;im�1)2I(m)n

h(Zi1 ; :::; Zim)


p

H

. n�p+1P 0P1
U (m�1)n�1 h(�; Z 0)

p
H
;

where Z 0 is an independent copy of Zi; and P 0 integrates over Z 0: Using the
same argument for U (m�1)n�1 h(�; z); we have, for each �xed z:

P1
U (m�1)n�1 h(�; z)

p
H
.

�
P1

U (m�1)n�1 h(�; z)

H

�p
+n�p+1P 0P1

U (m�2)n�2 h(�; Z 0; z)
p
H
:

Euclidean property of the class H gives an upper bound for the �rst term:�
P1

U (m�1)n�1 h(�; z)

H

�p
. n�(m�1)p=2

�
PH (�; z)2

�p=2
where the multiplicative constant is the same for all z:
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Continue by induction, and use eventually the Ho¤mann-Jørgensen in-
equality for m = 1 for the remaining P -process:

P1
U (m)n h

p
H .

�
P1

U (m)n h

H

�p
+
m�1X
s=1

n(�p+1)s�(m�s)p=2PmHp

+n(�p+1)(m�1)n�1+1=pPmHp

.
�
P1

U (m)n h

H

�p
+ n�(m+1)p=2+1PmHp:

Now consider the bootstrap version of the U -process. As in the preceding
literature (e.g. Theorem 2.2 in Arcones and Giné (1994)) the goal is to relate
the moments of the bootstrapped process Û (m)n h to moments of a modi�ed
sample process, by using the symmetrization and poissonization techniques
suggested in Giné and Zinn (1990). Note, however, that decomposition (30)
requires the result under the assumption that h is P -degenerate, rather than
Pn-degenerate, as it was assumed by previous authors.
We need extra notation. Let Q(j)i ; i = 1; 2; :::; j = 1; :::;m; be i.i.d. (across

i and j) random variables, independent of all Zi; and having the Poisson
distribution with parameter 1=2: De�ne random vectors

~Zi =
�
Zi; Q

(1)
i ; :::; Q

(m)
i

�
;

let ~P be the distribution of each ~Zi; and ~h (~z1 ; :::; ~zm) be a symmetrized
version of the function

~h0 (~z1 ; :::; ~zm) = h (z1; :::; zm) q
(1)
1
� ::: � q(m)

m
;

where ~z =
�
z; q(1); :::; q(m)

�
. Note that functions ~h are degenerate relative to

the distribution ~P . The usefulness of the following lemma stems from the
fact that the class of functions ~H =

n
~h : h 2 H

o
inherits the capacity and

integrability properties (relative to ~P ) from those of the class H. In particu-
lar, if H is Euclidean for an envelope H (z1; :::; zm) ; then ~H is Euclidean for
a symmetrized version of the envelope H (z1; :::; zm) q(1)1

� ::: � q(m)
m
; denoted ~H:

Also, since all moments of Q(j)i are �nite, fZig and
n
Q
(j)
i

o
are independent,

~H has as many �nite moments relative to ~P ; as H does relative to P:
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Lemma 16 Let H = fh : Zm ! Rg be a class of P -degenerate real symmet-
ric functions. Assume that H has an envelope H, and PmHp < 1: Then

P
Û (m)n h

p
H
. P

 1nm X
i1;:::;im

~h
�
~Zi1 ; :::; ~Zim

�
p

~H

where the constant depends on m and p only.

Proof. Use Hoe¤ding decomposition of the bootstrapped statistic relative
to Pn (i.e. conditionally on the sample):

Û (m)n h =
mX
k=0

�
m

k

�
Û (k)n

�
�Pnk;mh

�
where �

�Pnk;mh�
�
(z1; :::; zk) = (�z1 � Pn) ::: (�zk � Pn)Pm�kn h�:

Next we show that for each k = 0; :::;m;

P
Û (k)n

�
�Pnk;mh

�p
H
. P

 1nm X
i1;:::;im

~h0
�
~Zi1 ; :::; ~Zim

�
p

~H

= P

 1nm X
i1;:::;im

~h
�
~Zi1 ; :::; ~Zim

�
p

~H

(the last equality is immediate).
Denote by E the expectation conditional on the sample Z1; :::; Zn. Letn

Ẑ
(j)
1 ; :::; Ẑ

(j)
n

o
be i.i.d. samples from Pn; independent across j = 1; :::; k;

denote by P̂ (j)n the bootstrap empirical measure that puts mass 1=n on each
Ẑ
(j)
i : Let N

(j)
1 ; :::; N

(j)
n be i.i.d. across i and j; independent from all Zi; Ẑ

(j)
i ;

and each distributed as a di¤erence between two independent Poisson r.v.
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with parameter 1/2. Then

E
Û (k)n

�
�Pnk;mh

�p
H

. E

 1nk X
i1;:::;ik distinct

�
�Pnk;mh

� �
Ẑ
(1)
i1
; :::; Ẑ

(k)
ik

�
p

H

. E

 1nk X
i1;:::;ik

�
�Pnk;mh

� �
Ẑ
(1)
i1
; :::; Ẑ

(k)
ik

�
p

H

= E
�P̂ (1)n � Pn

��
P̂ (k)n � Pn

�
Pm�kn h

p
H
=: (�)

Here the �rst inequality follows by the decoupling inequality of de la Peña
(1992), applied conditionally on Z1; :::; Zn. In the second inequality the LHS
is di¤erent from the RHS in that the latter includes summation over co-
inciding indices i1; :::; ik: The second inequality follows from the following
observation: for any r.v. Xh; Yh; if E [YhjXh] = 0; then, by the convexity
inequality, E kXh + YhkpH � E kXh + E [YhjXh]kpH = E kXhkpH :
Next we apply a poissonization argument. De�ne

X̂i1 = �z1

�
P̂ (2)n � Pn

�
:::
�
P̂ (k)n � Pn

�
Pm�kn h

���
z1=Ẑ

(1)
i1

;

and
Xi1 = �z1

�
P̂ (2)n � Pn

�
:::
�
P̂ (k)n � Pn

�
Pm�kn h

���
z1=Zi1

:

Let Ẑ :=
n
Ẑ
(2)
i2
; :::; Ẑ

(k)
ik
ji2; :::; ik = 1; :::; n

o
: Note, that conditionally on Ẑ;

X̂i1 are the bootstrap drops from the sample fX1; :::; Xng ; and E
h
X̂i1jẐ

i
=

1
n

P
i1
Xi1 : Apply the symmetrization inequality of Proposition 2.1 in Arcones

and Giné (1993), conditionally on Ẑ; it gives:

(�) = E
n�1X

i1

�
X̂i1 � EjẐX̂i1

�p
H

. E
n�1X

i1
"i1X̂i1

p
H
;

where f"i1g is a Rademacher sequence independent of all other r.v. in the
model. Next by the proof of Lemma 2.1 and Proposition 2.2 of Giné and
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Zinn (1990), applied to k�kp rather than k�k ; we obtain:

E
n�1X

i1
"i1X̂i1

p
H

. E
n�1X

i1
Q
(1)
i1
Xi1

p
H

= E
n�1X

i1
Q
(1)
i1
�Zi1

�
P̂ (2)n � Pn

�
:::
�
P̂ (k)n � Pn

�
Pm�kn h

p
H

(where the result that we use give the inequality for Q(1)i1 being distributed as
a di¤erence of two independent Poisson r.v. (with parameter 1=2). Use the
triangle inequality to obtain the inequality for Q(1)i1 being just the Poisson
r.v. with parameter 1/2).
Sequential application of this logic to the other arguments (with con-

ditioning on previously introduced Poisson r.v.), and integrating over the
distribution of the sample lead to the inequality

(�) . E
n�m X

i1;:::;im

Q
(1)
i1
:::Q

(k)
ik
h (Zi1 ; Zi2 ; :::; Zim)


p

H

:

Note that

E

n�m X
i1;:::;im

Q
(1)
i1
:::Q

(k)
ik
h (Zi1 ; Zi2 ; :::; Zim)


p

H

. E

n�m X
i1;:::;im

Q
(1)
i1
:::Q

(k)
ik
:::Q

(m)
im
h (Zi1 ; Zi2 ; :::; Zim)


p

H

= E

 1nm X
i1;:::;im

~h
�
~Zi1 ; :::; ~Zim

�
p

~H

by Jensen inequality and the fact that E
h
Q
(k+1)
ik+1

:::Q
(m)
im

i
> 0.

To complete the proof, integrate the bound over the sample measure.
Finally, we prove Lemmas 8 and 9.

Proof. (Lemma 8.) (a) For p = 1; see Corollary 4(i) in Sherman (1994).
For p � 2 use also the Ho¤man-Jørgensen inequality, Lemma 15. (b) For
p = 1; see the proof of Corollary 8 in Sherman (1994) (only straightforward
notational changes are required). For p � 2 use also the Ho¤man-Jørgensen
inequality, Lemma 15.
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(c) By Lemma 16 (see the construction of function ~h; ~z; and ~P there; in
particular, ~h is ~P -degenerate)

P
Û (m)n h

p
H
. P

 1nm X
i1;:::;im

~h
�
~Zi1 ; :::; ~Zim

�
p

~H

:

Let ~U (k)n denote the U -statistic based on the sample
n
~Zi1 ; :::; ~Zim

o
: Also, for

s � m� s; let !s be a permutation, with repetitions, having s elements from
the set f1; :::; sg : The permutation f1; :::;m� s; !s (1) ; :::; !s (s)g ; there-
fore, contains m � s distinct elements. Denote by em (!s) = m � s �
# f!s (1) ; :::; !s (s)g � m � 2s; the number of its non-repeating elements.
Denote by ~h!s the symmetrized version of the function

~h!s (~z1; :::; ~zs) = ~h
�
~z1; :::; ~zm�s; ~z!s(1); :::; ~z!s(s)

�
:

We can write:  1nm X
i1;:::;im

~h
�
~Zi1 ; :::; ~Zim

�
p

~H

.
 ~U (m)n

~h
p
~H
+

X
1�s�m=2

X
!s

n�s ~U (m�s)n
~h!s

p
~H

Note that functions ~h!s satisfy the condition

~P#f!s(1);:::;!s(s)g+1~h!s = 0:

Apply operators ~P k; k = m � s;m � s + 1:::;# f!s (1) ; :::; !s (s)g + 1; con-
secutively to both sides of the Hoe¤ding decomposition of ~U (m�s)n

~h!s relative
to the measure ~P (the corresponding projections are denoted � ~Pk;m�s); and
conclude that its elements of order k = 0; 1; :::; em (!s)� 1; are zero:

~U (s)n
~h!s =

m�sX
k=em(!s)

�
m� s
k

�
~U (k)n �

~P
k;m�s

~h!s :

Next note that every function � ~Pk;m�s~h!s satis�es the assumptions of part (a)
of the Theorem, so thatnk=2 ~U (k)n �

~P
k;m�s

~h!s

p
~H
= O (1)
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We then havenm
2 Û (m)n h

p
H

.
nm

2 ~U (m)n
~h
p
~H
+

X
1�s�m=2

X
!s

m�sX
k=em(!s)

n
m�2s�k

2

nk=2 ~U (k)n �
~P
k;m�s

~h!s

p
~H
:

Next note that in the above sum m � s � k � 0; and the equality can only
be achieved when k = em (!s) = m� 2s; that is when all elements of !s are
distinct. Finally, note that by the ~P -degeneracy of ~h; for !s = f1; 2; :::; sg ;
�
~P
m�2s;s

~h!s is a constant multiple of the function ~h
[m�2s] (~z1; :::; ~zm�2s) (be-

cause the other integrals in � ~Pm�2s;s~h!s involve integrating out non-repeating
~Zi; also note that ~h[m�2s] (~z1; :::; ~zm�2s) is ~P -degenerate).
Therefore,

P
nm

2 Û (m)n h
p
H

. P
nm

2 ~U (m)n
~h
p
~H
+

X
1�s�m

2

P
n(m�2s)=2 ~U (m�2s)n

~h[m�2s]
p
~H
+O

�
n�1=2

�
By part (a), the RHS is O (1).
(d) The inequality in the previous display still holds. We check that for

0 � s � m
2

P
n(m�2s)=2 ~U (m�2s)n

~h[m�2s]
p
~H
= o (1)

(where ~h[m] = ~h). This will follow from part (b) if we show that ~Pm�2s �~h[m�2s]�2
~Hn

! 0:

This follows from the extra condition in (d) and the construction of ~h from
h.
Proof. (Lemma 9.) (a) De�ne the class of functions

Hn =

(
h�;t =

h�+n�1=2a�1n t � h�
1 + ktk1=2

: k�k ; n�1=2a�1n ktk � �0

)
:

Note that Hn is Euclidean for the envelope 2H because it is a subclass of the
Euclidean class (

h�+t � h�
1 +

~t1=2 : k�k ; ktk � �0; ~t 2 Rd
)
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To prove the lemma, it is enough to show that

P
n
na2n

U (m)n h�;t

Hn
> 1

o
= O

�
a�1n
�
: (48)

By the Chebyshev inequality,

P
n
na2n

U (m)n h�;t

Hn
> 1

o
�
�
na2n

�p
P
U (m)n h�;t

p
Hn
:

The continuity modulus of class Hn satis�esPm �h�;t�2
Hn

� Cn�1=2a�1n :

By Lemmas 14 and 15,

P
U (m)n h�;t

p
Hn
.
�
n�1 log n

�pm=2 �
n�1=2a�1n

�p=2
+
�
n�1 log n

�p(m+1)=2�1
:

Therefore, (48) is satis�ed if

na2n
�
n�1 log n

�m=2 �
n�1=2a�1n

�1=2 � a�1=pn

and
na2n

�
n�1 log n

�(m+1)=2�1=p � a�1=pn :

These inequalities give

an �
�
nm=3�1=2 (log n)�m=3

� 1
1+2=3p

and

an �
�
n
m�1
4
� 1
2p (log n)

1
2p
�m+1

4

� 1
1+1=2p

:

from which the result follows immediately.
(b) Let Hn be as above. Use the inequality obtained in the proof of

Lemma 16 (c), rewritten as:

P
Û (m)n h�;t

p
H

. P
 ~U (m)n

~h�;t
p
~H
+

X
1�s�m

2

P
n�s ~U (m�2s)n

~h�;t[m�2s]
p
~H
+O

�
n�(m+1)=2

�
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From the additional assumptions made in part (b) of the Lemma, and by
construction of functions ~h, we have:Pm �~h�;t�2

Hn

� Cn�1=2a�1n ; (49)

and, for each s; 1 � s � m=2;Pm�2s �~h�;t[m�2s]�2
Hn

� Cn�1=2a�1n : (50)

The result now follows from part (a). In particular, notice that we will have

P
n�s ~U (m�2s)n

~h�;t[m�2s]
p
~Hn

. n�sp
�
n�1 log n

�p(m�2s)=2 �
n�1=2a�1n

�p=2
+ n�sp

�
n�1 log n

�p(m�2s+1)=2�1
= npm=2

�
n�1 log n

�p(m�2)=2 �
n�1=2a�1n

�p=2
+
�
n�1

�p(m+1)=2�1
(log n)p(m�1)=2�1

which is dominated by the bound for P
 ~U (m)n

~h�;t
p
~Hn

obtained in part (a)

under condition (49).

5.4 A Berry-Esséen Bound

Lemma 17 Let Z1; :::; Zn be i.i.d. random variables taking values in a prob-
ability space (Z; P ) (P may depend on n); and let g� : Z2 ! Rd; � 2 Rd be
a vector-function, symmetric in z1; z2. Let �n solve the system of equations

U (2)n g
(l)
� = �(l)n (�) ;

l = 1; :::; d: Assume that there are numbers �0; K > 0 such that for all n � 1:
(i) P

�
supk�k��0 k�n (�)k > n�1

	
� Kn�1=2:

(ii) kPg0k � Kn�1.
(iii)P k�1;2gk4 <1; P k�2;2gk2 <1:
(iv) g� is twice continuously di¤erentiable in the �0-neighborhood of 0; P�a:e:;
P k@2g0k4 < 1; P k@g0k3 < 1; and there is L (z1; z2) with P 2L3 < 1 such
that @2g�1 � @2g�2 � L k�1 � �2k ;
for all k�1k ; k�2k � �0:
(v) The d� d matrix � = [@Pg0]�1 V ar (2�1;2g0) [@Pg0]�1 is well de�ned and
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is positive de�nite (her V ar is the variance relative to P ).
Then for all n � 1;

sup
A2A

����Z
A

dFn1=2�n �
Z
A

d��

���� � cdn�1=2 + cdP fk�nk > �dg ;
where, for each d; cd and �d < �0 are continuous functions of K; P k�1;2g0k4 ;
P k�2;2g0k2 ; P k@2g0k3 ; P k@g0k4 ; PL3.

Proof. (Sketch.) Within the proof, . denotes an inequality up to a mul-
tiplicative constant that may depend on d only, and cd and �d satisfy the
conditions of the Theorem (but may change from line to line in the proof).
To reduce notation, we assume, without loss of generality, that �0 � 1 and
K � 1: It is enough to consider the case of k�nk < �0:
Step 1. Here we prove that, for all n � 1;

P
�
k�nk > n�1=3

	
� cdn�1=2:

Without loss of generality, assume in this step that @Pg0 = I (identity
matrix). Use the Taylor expansion around � = 0 and the Hoe¤ding decom-
position (we omit the index l):

�n (�) = U (2)n g�

= U (2)n g0 + fI + Pn@�1;2g~�g �

where ~� lies between 0 and �: By our assumptions, the class fPn@�1;2g�; k�k � �g
is Euclidean class for the envelope

M (z1; z2) = 1 + k@g0 (z1; z2)k+
@2g0 (z1; z2)+ 2pdL (z1; z2)

(see Lemma (2.13) of Pakes and Pollard (1989) and use the identity, for any
f;

@lf� = @lf0 +

Z �

0

@2l;lf~�d�
(l) = @lf0 + @

2
l;lf0 +

Z �

0

�
@2l;lf~� � @2l;lf0

�
d�(l):

The envelope is made bigger than necessary to simplify notation later on).
Therefore, (by the fact that P@�1;2g� = 0 for each non-random �; because
P�1;2g� = 0 and P k@g0k < 1; then apply the bound for the suprema for
the second moment to deal with the randomness in ~�)

P

�
kPn@�1;2g~�k �

1

2

�
. n�1PM2:
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Then

P
�
k�nk > n�1=3

	
. P

�
4
U (2)n g0 > n�1=3	+ P �2 k�n (�)k > n�1=3	+ n�1PM2

. Kn�1=2;

by the Hoe¤ding decomposition, Maximal and Chebyshev inequalities.
Step 2. Obtain the representation: for all n � 1;

�(l1) = U (2)n g
(l1)
� + Cl1;l2;l3�

(l1)�(l2) + �(l1)n (51)

where Cl1;l2;l3 are constants, function g
(l1)
� (z1; z2) does not depend on � and

satis�es P 2g� = 0; V ar [2�1;2g�] = �; P 2 k�1;2g�k3 < 1; P 2 k�2;2g�k2 < 1;
and

P
�
k�nk > cdn�1

	
� n�1=2cd + P

�
k�nk > �dn�1=3

	
:

In this step, assume, without loss of generality, that @Pg0 = I: By the
Hoe¤ding decomposition and the Taylor expansion, for each component l1;

0 = U (2)n g
(l1)
� � �(l1)n;� (52)

= U (2)n

�
g
(l1)
0 � P 2g(l1)0

�
+ f(I +Bn) �g(l1) � Cl1;l2;l3�(l2)�(l3)

+~�
(l1)

n (�)

where (Bn)l1;l2 = 2Pn@l2�1;2g
(l1)
0 ; Cl1;l2;l3 = �1

2
@l2;l3P

2g
(l1)
0 ; and

~�
(l1)

n (�) =
1

2

�
@l2;l3P

2g
(l1)
~�
� @l2;l3P 2g

(l1)
0

�
�(l2)�(l3)

+Pn@l2;l3�1;2g
(l1)
~�
�(l2)�(l3)

+U (2)n @l2�2;2g
(l1)
~�
�(l2) � �(l1)n;� + P

2g
(l1)
0

and ~� is in between 0 and � (in fact, ~� is di¤erent for each l1 and each term
above, but we will ignore this distinction). Using the identity

(I +Bn)
�1 = I �Bn (I +Bn)�1

= I �Bn +B2n (I +Bn)
�1

we can rewrite (52) as

�(l1) = U (2)n g
(l1)
� + Cl1;l2;l3�

(l1)�(l2) + �(l1)n (�)
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where

g(l1)� (z1; z2) = �
�
g
(l1)
0 (z1; z2)� P 2g(l1)0

�
� 2@l2�1;2g

(l1)
0 (z1) � �1;2g(l2)0 (z2) ;

(in particular, the random vector g� satis�es the above properties), and

�(l1)n (�) = U (2)n
�
� (I �Bn)

�
g0 � P 2g0

�
� g�

	(l1)
�
�
B2n (I +Bn)

�1 U (2)n
�
g0 � P 2g0

�	(l1)
+
�
Bn (I +Bn)

�1�
l1;l2

Cl2;l3;l4�
(l3)�(l4)

�
n
(I +Bn)

�1 ~�n (�)
o(l1)

:

Using the bound in Step 1, one can see that all terms in this expression
satisfy the restriction on �n (�) :
Step 3. Now use representation (51) to obtain the Berry-Esséen bound.
Consider the system of equations

�(l1) = (l1) + Cl1l2l3�
(l2)�(l3): (53)

By the Implicit Function Theorem and the Taylor expansion, there are num-
bers �� > 0; K1 > 0; and bl1l2l3 ; continuously depending on Cl1l2l3 ; such that
if kk � ��; and � is the solution of (53) satisfying k�k � ��; then

�(l1) = (l1) + b
(2)
l1l2l3

(l2)(l3) + �(l1) ()

and
k� ()k � K1 kk3 :

Let n = U
(2)
n g� + �n: By the Hoe¤ding decomposition, the properties of

g� and �n; and the Chebyshev inequality,

P fknk > ��g . cdn�1=2 + P
�
k�k > �dn�1=3

	
; (54)

and

P
�
k� (n)k � n�1; knk � ��

	
. n�1=2

�
P k�1;2g�k3 + P k�2;2g�k2

�
:

Next, consider the statistic Tn de�ned as follows:

T (l1)n = U (2)n g� + bl1l2l3
1

n2

X
i6=j

n
�1;2g

(l2)
�i � �1;2g

(l3)
�j

o
;
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where �1;2g
(l2)
�i � �1;2g(l2)� (Zi) :

Note that

n1=2P
n����(l1)n � T (l1)n

��� � n�1; knk � ��; k�nk � ��o (55)

. P k�1;2g�k2 + P k�1;2g�k3 + P k�2;2g�k2 :

Using (54) and (55), we conclude that

�n = Tn + �n

P
�
k�nk > n�1

	
� cdn�1=2 + P

�
k�k > �dn�1=3

	
: (56)

Tn has a form of a U -statistic of order 2 with zero mean. Its variance is
n�1� up to a term of order O (n�2) :
The Berry-Esséen bound for Tn follows from Theorem 2 of Bolthausen

and Götze (1993):

sup
A2A

����Z
A

dFn1=2Tn �
Z
A

d��

���� � cdn�1=2:
The conclusion of the theorem follows from the last result and (56) by an
argument similar to that at the end of Section 5.2.3.
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