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Bayesian Model Averaging and Identi�cation of Structural Breaks
in Time Series.

Abstract.

Bayesian model averaging is used for testing for multiple break points in uni-
variate series using conjugate normal-gamma priors. This approach can test for
the number of structural breaks and produce posterior probabilities for a break at
each point in time. Results are averaged over speci�cations including: station-
ary; stationary around trend; and, unit root models, each containing di¤erent
types and numbers of breaks and di¤erent lag lengths. The procedures are used
to test for structural breaks on 14 annual macroeconomic series and 11 natural
resource price series. The results indicate that there are structural breaks in
all of the natural resource series and most of the macroeconomic series. Many
of the series had multiple breaks. Our �ndings regarding the existence of unit
roots, having allowed for structural breaks in the data, are largely consistent with
previous work.

Keywords: Bayesian Model Averaging, Structural Breaks, Unit Root, Macro-
economic Data, Natural Resource data.

1. INTRODUCTION
Marriott and Newbold (2000) was one of the �rst papers in the econometrics

literature to apply the concept of Bayesian model averaging (BMA) to the prob-
lem of detecting structural breaks. Key to this approach is the idea that results
from a number of models can be aggregated provided the marginal likelihood of
each model can be calculated. In e¤ect, Marriott and Newbold (2000) estimate
a large number of models treating the break points as discrete parameters to
be estimated. Models with and without breaks are compared on the basis of
posterior odds, and if models containing breaks have higher odds, then it is
concluded that the series contain breaks. The BMA approach avoids the need
to pretest for unit roots or number of lags since the results of models with and
without unit roots, or di¤erent numbers of lags, can be aggregated.
This paper builds on the Bayesian approach of Marriott and Newbold (2000)

but constructs the marginal likelihoods using normal-gamma priors. The nu-
merical simpli�cations that this approach a¤ords allows us to deal easily with
3 breaks which would be impractical using the Marriott and Newbold (2000)
approach since they require the numerical calculation of integrals. Furthermore,
in addition to testing for structural breaks we also construct break probabilities
for every point in the sample.
Although the central aim of this paper is to examine structural breaks, as

with other papers in this area, we also address the issue of whether the data
contain unit roots. This is imperative since the behaviour of stationary series
with breaks can sometimes mimic the behaviour of unit root series and vice
versa. Even when using BMA, priors may give di¤erent weights to models with
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and without unit roots, and may play a signi�cant role in testing for structural
breaks.
The existing Bayesian literature on unit roots, and/or structural break test-

ing has not adopted a conjugate normal gamma prior approach. The debate has
mainly pivoted around the issue of what form a �non-informative�or �objective�
prior should take in the time series setting. Applying the linear normal-gamma
conjugate approach in a time series setting is recognised to have drawbacks.
If the central aim is to discriminate between unit root processes and non-unit
root processes, adopting normal-gamma priors will not, in some senses, be op-
timal since normal-gamma priors will not always lead to a good discrimination
between unit root processes and highly autocorrelated, stationary (or trend sta-
tionary) processes relative to an analysis using certain other priors. Moreover,
Bayes Ratios (BRs) and posterior odds are known to be highly sensitive to
prior choice. In this paper we do not attempt to be �objective�in the sense of
adopting priors that have no e¤ect on subsequent �ndings. Our main aim is to
elucidate and use a Bayesian approach to structural break identi�cation using
BMA. However, in doing so we also aim to demonstrate that, providing the
models and the priors are constructed carefully, the normal-gamma conjugate
approach has the ability to discriminate between alternative data generating
processes, including those with and without unit roots.
The strength of the approach developed and adopted here is that it enables a

larger number of di¤erent speci�cations to be estimated (compared to Classical
speci�cations), all of which will play some role in identifying structural breaks.
Therefore, we are not forced to rely on a fragile pretesting procedure. Our
point here is not to dismiss �objective�or �robust�Bayesian analysis. Instead
it is to recognise that these approaches come with greater computational cost,
thus limiting the number of models and breaks that can averaged.

The paper will proceeds as follows. The main theoretical and philosophical
strands in the unit root and structural break literature will be reviewed in Sec-
tion 2. Section 3 will discuss model construction and estimation along with the
presentation of Monte Carlo evidence to illustrate the performance of our ap-
proach. Next, in Section 4 we will analyse macroeconomic and natural resource
data using the theory developed in Section 3. We apply our procedures to two
well known data sets. The �rst is the extended Nelson and Plosser (1982) data
set (extended by Schotman and van Dijk, 1991). The second data set is the
natural resource prices in Ahrens and Sharma (1997) and Lee et al. (2006). In
Section 5 will conclude.

2. BACKGROUND
Since the work of Chow (1960), economists have frequently tested for struc-

tural change in regressions, requiring the separation of the sample into two or
more parts with equality tests of the coe¢ cients across equations, or the removal
of dummy variables in models. In the case of time series regressions this type
of test requires that the point where a structural break may have occurred is
pre-speci�ed. Unfortunately, the location of the structural break can be piv-
otal in determining the outcome of tests, and often the potential break point is
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unknown.
The literature on �structural breaks�has been intrinsically entwined with the

literature on whether unit roots exist in the lag polynomials that characterise
the autoregressive behaviour of series. Nelson and Plosser (1982) highlighted the
fact that many macroeconomic series may have unit roots. However, a popular
alternative to the unit root hypothesis is that the variables are stationary around
a broken trend (or broken trends). This implies that there may be structural
changes in the equations that are used to characterise the univariate behaviour
of the data, and these structural changes may bias tests for unit roots, if they
are not accounted for. Perron (1989) and Rapporport and Reichlan (1989)
presented evidence that once structural breaks were dealt with, the majority of
the Nelson and Plosser series set rejected unit roots.
The consequences of structural shifts on unit root tests have been extensively

studied by, among others, Perron (1989, 1994), Perron and Vogelsang (1992),
Banerjee et al. (1992), Lee (1996), and Zivot and Andrews (1992). Approaches
that assume that the data are stationary with potential breaks are pursued in
Bai and Perron (1998) and Bai (1999). A recent review of Classical approaches
is given in Perron (2005).
In spite of the impressive array of techniques, problems with Classical ap-

proaches remain. Many Classical practitioners remain content to adopt model
selection procedures that allow their prior beliefs to in�uence their results, see-
ing no contradiction in maintaining that informative priors should play no role
in econometric analysis. However, most applied investigators also know that
they are often faced with a choice between competing hypotheses that can-
not be rejected with con�dence, each potentially leading to di¤erent subsequent
conclusions. BMA frees the investigator from some of the dilemmas of model se-
lection. Using BMA the investigator does not need to make an explicit decision
about unit roots or the type of break or the number of lags in a model. More-
over, a Bayesian approach can deliver a probability that a break has occurred in
a given period. A Classical approach cannot construct such a measure.
Bayesian approaches to unit root testing have been investigated since the

early 1990s and two comprehensive reviews are given in Chapter 8 of Maddala
and Kim (1998) and Chapter 6 of Bauwens et al. (1999). However, relative
to the large Classical literature on unit root vs structural break determination,
the Bayesian econometrics literature is relatively small. Chib (1998) develops
a general approach to the estimation of multiple change points that requires
a Monte Carlo Markov Chain (MCMC) algorithms. Marriott and Newbold
(2000) and Kim et al. (2003) use approaches that require either numerical
integration or MCMC. Koop and Potter (2004) explore model selection and
BMA in dynamic models using normal-gamma priors (with G-Priors), but do
not explicitly address structural breaks or unit roots.
As with Koop and Potter (2004) and Fernandez et al. (2001) (who do not

deal with structural breaks) our approach relies on the use of normal gamma
conjugate priors. It is the use of these priors that allows the closed form ex-
pression for the marginal likelihood to be derived and avoids the need for Gibbs
sampling or numerical integration since the posterior is also of a known form.
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This enables us to allow for up to 3 breaks for series of around 100 observations,
or 2 breaks if the series are much longer (e.g. 1000), without the need to resort
to MCMC. This is as many breaks as current Classical approaches practically
permit and more than those in current Bayesian approaches1 . The number of
breaks must be limited if a brute force approach is adopted because a large
number of models require estimation if one allows breaks to be at any point
in the series. The number of potential models increases rapidly with the num-
ber of breaks and approaches that require numerical integration (e.g. Marriott
and Newbold, 2000) cannot practically deal with BMA using 3 breaks, so our
approach is advantageous in this respect. Similar to Chib (1998) the marginal
likelihoods are used here to construct the posterior probabilities of a break at
each point. This approach is able to identify breaks even when the number of
breaks is larger than 3 or 4 because many points in the series may be identi�ed
as having high break probabilities, even if the models explicitly allow for fewer
breaks.
Readers familiar with the area unit root testing literature will know that the

paper by Sims and Uhlig (1991) started a sometimes heated debate around the
issue, by claiming that �unit root discontinuity�present in classical theory was
not present in Bayesian theory. Moreover, they showed that the adoption of a
uniform prior delivered results that were unfavorable to the existence of unit
roots in macroeconomic series. Responses by Phillips (1991), Schotman and van
Dijk (1991), Berger and Yang (1994) and Lubrano (1995), and more recently
Marriott and Newbold (2000) and Marriott et al. (2003) recognised that a
uniform prior was informative in this context, and could be biased towards the
rejection of unit roots2 . Phillips (1995) also o¤ers criteria that are essentially
based on limiting Bayes Factors, that also o¤ers insights into the impact of non-
stationarity on selection procedures. Through this debate it was recognised that
the Bayesian approach did not perhaps o¤er the universal approach that was
seen as a major advantage by Sims and Uhlig (1991). The importance of this
issue cannot be ignored when testing for structural breaks, because the decision
about whether the data contains unit roots has implications for break testing.
Nevertheless, as in Marriott and Newbold (2003) and Marriott et al. (2003)
we argue that employing informative priors is justi�able. Conjugate priors, in
particular, open up avenues that could not be explored without having closed
form solutions for the marginal likelihood.
In view of the fact that prior speci�cation can in�uence the results we exper-

iment with a number of priors in order to assess their impact. We also examine
the support for the unit root hypothesis using these priors. Evidence is pre-
sented that a normal-gamma approach does not lead to drastic reductions in

1Chib�s (1998) method allows for many breaks but he illustrates this method for Binary
and Poisson data only.

2Readers should not jump to the conclusion that relatively �at priors such as a normal with
a high variance always favour a stationary model. This depends on how a test is constructed.
Using the marginal likelihood, a di¤use priors will tend to favour the model with the least
parameters. Therefore, if the unit root model has the fewest parameters a di¤use prior will
favour rather than discriminate against a unit root model.
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the ability of the procedures to discriminate between unit root and stationary
processes relative to priors that are �less informative�. Our Monte Carlo evi-
dence also shows that, given our priors, break models are seldom selected if the
underlying data generating process has no breaks. On the other hand, when
we apply our methods to real data, strong support for structural breaks are
commonly found.

3. MODEL CONSTRUCTION AND ESTIMATION
3.1. Model Speci�cation
For a variable of interest (yt) the autoregressive model used herein is of the

form:
� (L) yt = �+ �t+Bt + et (1)

for t = 1; :::::T , where � (L) is a polynomial lag, et is assumed to be normally
distributed iid random variable. Bt is a �break function�, the construction of
which is discussed below. 3

3.2. Break functions
De�ne the following functions:

Spike: �j;t = 1 if t = j and 0 otherwise (2)

Intercept shift: "j;t = 1 if t � j and 0 otherwise

Trend Shift : �j;t =
t

T
if t � j and 0 otherwise

The general forms of �breaks�considered in this paper are linear combinations
of the components in [2]. Allowing for several types of break at a particular
point, de�ne:

bj;t = '1;j�j;t + '2;j"j;t + '3;j�j;t (3)

A break function need not contain all three components, since 'p;j may be zero
for p = 1; 2; or 3. The break function Bt in [1] is then de�ned as

Bt =
X
j2�

bj;t (4)

where � is a vector of integers (strictly increasing from 1 to T) identifying the
break points. For example, if � = f3; 8g the model would have break points at
periods t = 3 and t = 8.

3.3. Model Features
Models can usefully be di¤erentiated according to:

� The type of breaks included in the model (choice of 'p;j);

� The number of breaks (choice of n);
3Other exogenous variables could be included in the model, but we ignore them for sim-

plicity of exposition.
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� The timing of the breaks (choice of � given n); and,

� Other attributes of the model (By �other attributes�, we mean restrictions
on the coe¢ cients within the polynomial lag and restrictions on the values
of � and/or �:)

3.4. Narrowing the Candidate Models
The model space will be reduced by considering subclasses that are popular

in the literature. With regard to the �other attributes�we will not consider
restrictions on �: That is, all models will contain an intercept. The number of
lags in the autoregressive equation will be 3, 2, or 1. In common with much of
the literature, model [1] is reperameterised as:

�yt = �+ �yt�1 + �
t

T
+Bt +

lX
i=1

��i�yt�i + et: (5)

Readers should note that the restriction � = 0 has important implications for
the long run impact of Bt (along with the other deterministic components) on
yt: For example, a �spike��j;t will have a transitory impact if �2 < � < 0, but
will result in a permanent shift in yt should the series contain a unit root � = 0:
Likewise an intercept shift "j;t will result in a mean shift in the former case, but
a change in the trend of the series in the later.
Three basic submodels are considered: the Unit Root (UR); Stationary (ST);

and, Stationary Around Trend (STAT), as follows:

1) UR: �yt = �+Bt +
lX
i=1

��i�yt�i + et (6)

2) ST: �yt = �+ �yt�1 +Bt +

lX
i=1

��i�yt�i + et (7)

3) STAT: �yt = �+ �yt�1 + �
t

T
+Bt +

lX
i=1

��i�yt�i + et (8)

Strictly speaking, for models 2) and 3) to be stationary and stationary
around trend respectively, � is required to obey the condition that �1 < �+1 <
1: Otherwise, the series may contain unit roots or be "explosive". We do not
employ inequality restrictions that exclude the possibility of unitary or explosive
roots in models 2) and 3). Therefore, the labels ST and STAT for models 2) and
3) are not strictly correct. However, we continue to refer to these models as sta-
tionary and trend stationary because we believe that there is little probability
that the series display explosive behaviour. Accordingly, any empirical support
for models 2) and 3) over 1) is indicative of stationary or trend stationary be-
haviour. Also, when adopting priors for � in models 2) and 3) the competing
ST and STAT models will be estimated informatively with little prior mass out-
side the stationary region. Nevertheless, formally models 2) and 3) permit the
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possibility of explosive behaviour and unit roots. The UR and ST models are
nested within the STAT model, so these models are distinguished according to
their restrictions. Within each possible model we allow for di¤erences in the
number of lags, and the number of breaks, but restrict the break types. This
leads a further di¤erentiation of the models. In order to be more explicit, de�ne
a vector

(u; k; �1; �2; �3; n; l) (9)

where: u = 1 if there is a unit root restriction and 0 otherwise; k = 1 if there
is a trend in the model and zero otherwise; �p = 1 if 'p;j is not restricted to
zero and 0 otherwise (for all j); and, n is the number of breaks. Each model
is de�ned by this vector and denoted M (u; k; �1; �2; �3; n; l) : If n = 0 then the
values of �i become redundant (since they de�ne non-existent breaks). Our
candidate models are:

UR :M (1; 0; 1; �2; 0; n; l) where �2 = 0 or 1 (10)

ST :M (0; 0; 0; 1; 0; n; l) (11)

STAT :M (0; 1; 0; 1; v3; n; l) where v3 = 0 or 1 (12)

Trend shifts in the UR models are not considered because we discount the
possibility that the series in question have trends in their �rst di¤erences. The
reason why there are no spike shifts in the ST or STAT models is that spikes in
these models could not characterised as breaks, because they would only have
a transitory impact on yt: For the breaks and the number of lags in each of the
models we consider, n is restricted to the values 0,1,2 or 3 and l is restricted
to the values 0,1,2 (1,2,3 lags in the autoregressive form [1]) For T=100 there
are around 2.5 million sub models, all of which require estimation. Evidently,
it becomes problematic to extend this to 4 breaks since the number of models
increases to around 50 million, hence, the fact that we limit the number of
breaks to 3.

3.5. The Marginal Likelihood
The model [5] can be more succinctly expressed as:

�yt = x0t;m�m + z
0
t + et (13)

with the elements of z0t being included in all models. The elements of x
0
t;m vary

over models. Herein, only the intercept is treated as common to all models (i:e:
z0t = 1). Therefore:

x0t;m =
�
yt�1; t=T; f�j;tgj ; f"j;tgj ; f�j;tgj ;�yt�1; :::::;�yt�k

�
(14)

The m denotes a particular model associated with a choice of regressors. The
model [13] can be expressed in linear regression form:

�yt = w0t;m m + et

w0t;m =
�
x0t;m; z

0
t

�
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and in matrix form as:

�Y = Wm m + e (15)

Wm = (Xm : Z)

 0m =
�
�0m; 

0�
The log likelihood function (treating the �rst l+1 lags of the dependent variable
as being �xed points of initialisation) is:

lnL
�
 m; �

2
�
= �T

2
ln
�
2��2

�
� (�Y �Wm m)

0
(�Y �Wm m)

2�2
(16)

Specifying conjugate normal-gamma priors:

f
�
 mj�2

�
= fN

�
 mj� m; �2Vm

�
f
�
��2

�
� fG

�
��2jc0; d0

�
Vm =

�
Qm 0
0 V

�
(17)�

� m
�0

=
�
��
0
m; �

0
�

(where fG
�
�2jc0; d0

�
is the gamma distribution with mean c0d0 and fN (xj�; V0)

speci�es a normal distribution for x with mean � and variance V0). The hyper
parameters for the priors are � m; Vm; c0; and d0:
Comparing models with common fztg, with the same priors on ; the mar-

ginal likelihood of the model is:

lm /

0@ jQmj����Q�1m +X 0
mMzXm

��1���
1A� 1

2

(18)

�
�
2d0 +�Y

0
m

�
Mz �MzXm

�
Q�1m +X 0

mMzXm

��1
X 0
mMz

�
�Ym

��c0�T
2

where �Ym = �Y �Wm
� m and Mz = I � Z

�
V �1 + Z 0Z

��1
Z 0: Given equal

prior odds on the two models, the Bayes Ratio

Bm;j =
lm
lj

(19)

represents the posterior odds in favour of model m over model j. Improper
priors can be placed on the coe¢ cients of the variables that are included in all
models since V �1 can be set to zero and the marginal likelihood above can still
be computed. However, Q�1m needs to be set to some positive de�nite matrix
in order for the marginal likelihood to be valid. Priors are discussed in more
depth in Section 3.8.

3.6. Identifying Break Points
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De�ne the quantity lm which is proportional to the marginal likelihood of
the mth model, de�ned by a set of regressors Xm:

lm = l (Xm) (20)

For the models m 2 M (M being all the models that are assigned a positive
probability), the posterior probability of a model is:

p (m) =
� (m) lmP
s2M � (s) ls

(21)

where �(s) is the prior probability attached to the model s and
P

s2M �(s) = 1:
Herein we assign equal prior weight to all models. Therefore, �(s) = � (j) for
all s and j so that � (m) plays no role in the calculation of [21].
The posterior probability of a break at time t is the sum of the probabilities

over all models that contain a break at that point. De�ning M (t) as being the
set of all models withinM that contain a break at t, the posterior probability
of a break at t is:

�(t) =
X

m2M(t)

p (m) : (22)

This approach is somewhat di¤erent to Classical methods since it does not
attempt to estimate a unique point for the structural break. Even with only
one permissible break, posterior probabilities are constructed for a break at each
point.

3.7. Testing for Breaks and Other Model Attributes
Higher posterior probabilities of a break appearing at one or more break

points would support the contention that a series contains at least one struc-
tural break. However this does not constitute a test for a break (or breaks).
A Bayesian test for breaks can be constructed by treating the break points as
discrete parameters. The marginal likelihood of models with a set number of
breaks can then be obtained by integrating out the discrete parameters (the
break points). Accordingly, assuming that all models have the same prior prob-
ability, the marginal likelihood of the �n break model�can be obtained using:

l (n) /
P

m2models with n breaks lm

number of models with n breaks
(23)

Support for a given number of breaks can then be compared by examining the
Bayes Ratios (BRs) using l (0) ; :::::l (n) : The same approach can be used to
assess the support for other attributes of the model. For example, the marginal
likelihood for the �unit root model�is obtained using:

l (UR) /
P

m2models with Unit Root lm

number of models with a Unit Root
(24)

Therefore, the BRs for UR vs ST, ST vs STAT, UR vs STAT can be constructed.
Together this provides a rich set of information about the behaviour of the data.
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3.8. Priors
The impact of V on the marginal likelihood becomes negligible as its lim-

its go to in�nity (and �0 becomes irrelevant also). Likewise, d0 and c0 have a
negligible impact on the marginal likelihood as their values tend to zero. There-
fore, V �1 ; c0; d0 are set to zero: However, Q�1m cannot be set to zero. In one
sense large variance values for the diagonal values for Qm is �non-informative�.
However, it is not �non-informative�if non-informative were to mean that our
priors played little or no role in model selection. Large values for Qm e¤ectively
translate into large penalties for additional parameters in the model. In �nite
samples the values of Qm can always be set su¢ ciently large so that the most
parsimonious model will be selected. The reasons for this type of outcome, that
are not speci�c to time series, are discussed in Poirier, 1999, Chapter 9. (Using
[5] this would be a unit root model with no structural breaks and no lags).
One possible way to set the priors is to use the �G-Prior� approach (the

approach used by Fernandez et al. 2001, and in a time series setting by Koop
and Potter, 2004). However, there are a number of objections that can be raised
about this approach. The use of G-Priors requires the moment matrix to form
the variance matrix of the normal prior for the coe¢ cients in the model. Using
lags of the dependent variable to formulate the prior is problematic from a
purist Bayesian perspective. This objection aside, the rationale for the G-Prior
(apart from the further simpli�cations of the marginal likelihood that it a¤ords)
is usually premised on the assumption of stationary regressors However, in a
time series setting, the regressors may contain trends. Moreover, where the data
contains deterministic �spikes�it is not invalid to make the argument that the
prior is somehow proportional to �one observation�of the data. Therefore, the
G-Prior approach can lead to setting the prior precision of some parameters
close to zero and others to in�nity. In the absence of a clear understanding of
what G-Priors represent in the the current setting this approach is unattractive.
An alternative approach to prior speci�cation is to use �training data� (e.g.

Conigliani and Spezzaferri, 2007). This method allows investigators to be non-
informative in the sense that the hyper parameters are based on a subset of the
data. Training priors can give more robust results with regard to unit roots.
However, training priors are problematic in the case where there are structural
changes. For example, if a break point is at the end of the sample, then one
cannot use an early part of the data set to construct a prior for the coe¢ cient
on this break variable. For this reason we do not use training priors.
The �rst step we take in our approach is to adopt the reparameterisation of

our model. Assume that the original series is y�t ; and that the data is trans-
formed as:

yt =
y�t �min y�t

max y�t �min y�t
(25)

The model is, as before,

�yt = �+ �yt�1 + �
t

T
+Bt +

lX
i=1

��i�yt�i + et: (26)
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Whereas (using y�t ) before we had no clear basis to formulate a prior view about
the parameters � and those that determine Bt, such a basis now exists since
yt is now bounded between 0 and 1. Accordingly, the value of � is likely to
lie within the interval (1,-1), as are the parameters f'ig, � and ��i . However,
this still leaves room for variation in priors. Following earlier work (Marriott
and Newbold, 1988, 2000) we explored the performance of priors using a Monte
Carlo study. Each of the marginal priors were of the form [27], with the joint
priors being the product of the marginals:

� � N (0; v�) (27)

� � N (�0; v�)

��i � N

 
0;

1

(i+ 1)
2

!
'i � N (0; v') :

The variances for the lags are recommended by Doan et al. (1984). For �0 we
experimented with values equal to 1

2 ;�
1
4 , �

1
2 and �

3
4 . For the prior variances

fvg we experimented with values of 1
10 ;

1
5 ;

1
2 and 1. After extensive experimen-

tation we adopted the values of �0 = �0:5, v� = 1
2 ; v� =

1
2 ; and v' =

1
10 :

Our selection criteria were the degree to which BRs could discriminate between
unit root, stationary and stationary around trend series (with varying degrees
of serial correlation). We also required that the priors did not spuriously detect
breaks, but were able to detect moderately large breaks. The priors in [27]
cannot be directly used as priors within the normal-gamma framework because
these require speci�cation of v = �2h. Therefore, having speci�ed v, h = ��2v
needs to be chosen. Therefore, we use a plug in method h = �̂�2v where �̂
is the standard deviation of the di¤erenced series (the estimate of �̂ assum-
ing the series is a random walk). Using this plug-in means that our method
would be characterised as an �Empirical Bayes�procedure rather than purely
Bayesian. Alternative approaches to obtain �̂ could be to use estimates of the
errors from an autoregression, or from an autoregression with trend. However,
in our Monte-Carlo studies this had a relatively small e¤ect on the results, even
when the generating process was no longer a random walk. A subset of the
Monte-Carlo results are discussed in Section 3.9.

3.9. Monte Carlo Experiments
Readers are reminded that our procedures do not require us to make a de-

�nitive decision about whether there is a unit root in the data because we are
taking a BMA approach. Nevertheless, models that have high BRs will receive
a greater weight when averaging. For this reason it is important to set hyper
parameters for the priors, in order to have a good ability to discriminate be-
tween di¤erent data generating processes. In order to ensure this, and to guide
us in our selection hyper parameters �0, v�; v�; v' , we conducted a wide range
of Monte Carlo experiments.
In Table 1 we present the results for a subset of the Monte-Carlo trials using
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priors that we use in the empirical section (�0 = �0:5, v� = 1
2 ; v� =

1
2 ; and

v' =
1
10 ). We only present these results due to the need for brevity.

{Approximate Position of Table 1}

The BRs were derived using the model averaging procedures discussed in the
preceding sections. The data generating process is as speci�ed in [1] with no
breaks and one lag (and AR(1) with and without a trend) with 100 observations
(the approximate length of our data sets in the empirical section). In Monte
Carlo trials (available on request) we also established that using the priors in
[27] demonstrated a good ability to correctly predict lag lengths. The results in
Table 1 relate only to the ability of our procedures to discriminate between unit
root, stationary and stationary around trend processes. The data generating
process is described in the �rst three columns. Rho refers to the value of the
autoregressive coe¢ cient in the model. Therefore, if Rho equals to one, this
represents a unit root process. For values of Rho less than one, the process
is stationary if Alpha is 0 and trend stationary if Alpha is 1. The value of
the variance of the error for all trials was set equal to one. The results were
approximately invariant for larger and smaller values of Alpha with the exception
that as the ratio of Alpha to the variance of the error became small they tended
to be more similar to the stationary (rather than trend stationary) results.
Di¤erent values ofMu delivered similar results to those below for the stationary
models (Mu is the intercept). For the unit root model, as Mu tended to zero
the results tended to those where Mu=0.
The numbers in the remaining columns give the proportion of the time that

the BR favoured one model over another at a given level (2, 12 and 1). The
column labelled UR/ST compares the unit root (UR) model relative to the
stationary (ST) model. The column labelled UR/STAT compares the UR model
relative to the STAT Model etc. The inequalities columns labelled > 2, > 1

2
and > 1 indicate whether the BR was larger than 2, 0.5 or 1.respectively. For
example, the value in the fourth column associated with the third line (Theta=1,
Mu=0 and Alpha=0 ) indicates that in 68% of trials the BR for UR model
relative to the ST model was more than 2 (2,500 trials were conducted to produce
each cell in Table 1).
The salient points from Table 1 are:

� Breaks are spuriously detected (in the sense that they have higher BRs)
in a relatively small proportion of the trials. For example, using a BR of
one or more to indicate preference for a given model, models with breaks
are incorrectly preferred less than 14% of the time (the �gures in the last
column).

� The procedures have a relatively good ability to discriminate between unit
root processes and stationary processes if the generating process has a unit
root. A unit root is correctly preferred (using BR>1) in around 80% of
trials when the series has no drift and around 96% of trials if the series
contains drift as well as a unit root.
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� Stationary, highly serially correlated series with an autoregressive coef-
�cient of 0.9 or above are classi�ed relatively frequently as unit root
processes. This occurs particularly if there is a deterministic trend in
the series also. In order to be able to recognise a stationary process rel-
ative to a unit root process, the autoregressive coe¢ cient has to be less
than 0.8, and if there is a trend, less than 0.7.

Alternative values for the prior hyper parameters can alter the results in
Table 1. However, priors that uniformly improved the performance could not
be found. Priors that lead to an improvement in the ability to correctly prefer
a stationary model or trend stationary model lead to a decline in the ability to
recognise a unit root process and vice versa The performance of the approach
above is comparable to existing results reported in the literature. For example,
the Monte Carlo work in Marriott and Newbold (1998) using priors that, in
theory, should be better at discriminating between unit root and stationary
processes seem to perform only slightly better (see also Table 1 of Gonigliani
and Spezzaferri, 2007). Therefore, we proceed using these priors in the empirical
section with one proviso: stationary series or trend stationary series that are
highly serially correlated will tend to receive a high weight from a unit root
model using the BMA procedure.

4. EMPIRICAL SECTION
4.1 Data.
The data is in two parts: The macroeconomic series (the extended Nelson

and Plosser data) and the natural resource series series. Both these sets of
data have already been described and extensively analysed in the economics
literature. For a description of the macroeconomic data, readers are referred to
Nelson and Plosser, (1982) Schotman and van Dijk (1991), and for the natural
resource data, Arhens and Sharma (1997) For brevity we do not repeat these
descriptions herein. All series are annual and are logged prior to estimation.

4.2. Results.
The results of our empirical study are contained in Table 2 and Figures 1 and

2. Table 2 contains the BRs that indicate the relative support for the models
outlined in Section 3. Readers are reminded that each of these BRs result from
integrating across all possible models and do not indicate that one particular
model has been selected. A high BR for a particular model or model attribute
indicates only that models with these features were given a high weight in the
averaging procedure. For example, the BR of 9.81 for a model with 3 lags (in the
autoregressive representation) for consumer prices in the second row of Table
2, indicates that at least some models with 3 lags were highly supported and
therefore received greater weight. Figures 1 and 2 are plots of the data and the
posterior probabilities for a structural break at each point in time (calculated
as outlined in Section 3.6). Figure 1 contains plots for the macroeconomic data
and Figure 2 contains plots for the natural resource data. For these �gures, the
axis values on the left gives the probability of a break, associated with the bars
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within the plot. The axis values on the right give the logged value of the series,
which is also included in the plot.

4.2.1 Macro Data
These results are presented in rows 2 to 15 of Table 2 and Figure 1.

Approximate Position of Table 2, Figures 1 and 2 (Note - some of
the data in Table 2 need to be corrected - real wage/gas preferred

models)

With regard to lag length, 6 of the 14 series support 2 lags, 5 support 3
lags and 3 support 1 lag. In previous studies the macro data have been for the
most part been characterised by AR(2) or A(3) processes, depending on the lag
selection procedures that have been adopted. Therefore, these results are in
accordance with previous work in this respect. Readers are reminded that the
Doan et al. (1984) priors that we adopt give declining prior variances to the
parameters on the lags (where they have a mean of zero), which also tend to
decrease the penalty for an additional lag. Without these declining variances,
the BRs are likely to support fewer rather than more lags.
Moving to the summary of the BRs (the last two columns), we �nd that 8 of

the series are characterised as having unit roots, with the other 6 being station-
ary around trend. Only one of the series (Unemployment) supports stationarity
(ST) over a unit root (UR) (0.01 in column 7), but the stationary model (ST)
is dominated by the stationary around trend model (STAT) (6.31 in column 5).
Although the procedures herein allow for structural breaks, these results are
in striking conformity with what would be found using a standard Augmented
Dickey Fuller (ADF) test. For the ADF results presented for these series in
Bauwens et al. (1999) the characterisation for all variables (vis-a-vis trends) is
the same except for Unemployment. The ADF characterises Unemployment as
ST (here STAT is preferred). In view of the fact that the Monte Carlo results
suggest our priors tend to favour unit root processes, this result is not likely to
be due to bias imparted from our priors. Our results regarding unit roots also
largely concur with Zivot and Andrews (1992) who conclude that 8 out of the
14 series contain unit roots. The di¤erence being that our procedures support
a unit root for Nominal GNP, and reject it for the Employment series.
With regard to breaks, 8 of the macro series support the existence of breaks,

4 of which support 3 breaks, 3 of which support 2 breaks and 1 supports only
one break. The posterior break probabilities in Figure 1 indicate the points at
which there are high probabilities for such breaks. Figure 1 demonstrates that,
once again, the �ndings with regard to structural breaks are similar to previous
work. Zivot and Andrews (1992) �nd potential structural breaks at 1929 for 8
of the 14 series. Our analysis identi�es evidence of potential breaks at, or close
to 19304 in around 10 of the 14 series (the beginning of the Great Depression,

4 In our approach a break in 1930 will be indicated if there is a large shift between the 1929
and 1930 period (not 1930-31). Thus, a break indicated in 1930 could equally well be labelled
as a 1929 break. Therefore, our results are consistent with Zivot and Andrews.
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after the Crash of October 1929). However, we also �nd that there is evidence
of a break at 1921 for a number of the series (Consumer prices, Money Stock,
Nominal GNP, Nominal Wages). The remaining breaks vary, but with war years
�guring commonly (1917, 1939, 1941 and 1946). Therefore, even when allowing
for multiple structural breaks, the evidence suggests that, for the US at least,
large structural breaks are a pre-Second World War phenomena.

4.2.2 Natural Resource Series
There is evidence to indicate that natural resource prices are stationary

(around broken means) in 4 out of the 11 series. These results fall in between
the empirical �ndings of Agbeyegbe (1993), Berck and Roberts (1996) who �nd
predominantly unit root behaviour and Lee et al. (2006) who allow for two
structural breaks and quadratic trends, and Ahrens and Sharma (1997), who
found that 6 out of 11 natural resource price series reject unit roots having
allowed for a structural break. Notably, we �nd that 7 out of the 11 series
contain at least 3 breaks. Given that previous work has allowed for at most two
breaks, this is a signi�cant �nding.
The behaviour of natural resource prices is di¤erent to the macroeconomic

series. This is clear from visual plots, but also from the modelling results. The
macroeconomic series tend to be characterised by smoother evolution, either
through deterministic or stochastic trends, whereas the natural resource prices
are more erratic and punctuated by very large �episodic�shifts. The variation
in the series, whether it be through noise or through �structural shifts�, makes
any judgement about the direction of trends hazardous, as will be any fore-
casting procedure that is based on the historical behaviour of the data. The
increasing demand for natural resources will inevitably be a force to drive nat-
ural resource prices upwards in the long run. However, the supply of natural
resources, though destined for ultimate decline, is punctuated by discoveries of
new stocks, innovation and productivity improvements in extraction methods
and by the strategies of participants with market power.
The importance of market power is illustrated by the timing of the breaks.

The posterior break probabilities are presented in Figure 2. These do not display
the consistent pattern of the macroeconomic series, except that Coal, Gas and
Petroleum (and Silver) all indicate potential breaks in 1974. This coincides with
the �rst �oil shock� associated with the OPEC oil embargo of October 19735 .
We do not �nd great similarities to the work of Lee et al. (2006). However, we
contend that an inspection of the plots in Figure 2 supports the breaks identi�ed
herein, rather than that of Lee et al. For example, in the case of coal, Lee et
al. consistently choose 1972 as the break point. along with 1902, 1915, 1949
depending on the methods that they use. However, examining the middle pane
on the top row of plots in Figure 2, the big shift (for coal) clearly seems to
occur between the 1973-74 period, as suggested by our results. Likewise, the
very big changes in Gas and Petroleum prices occur between 1973-74, which is
again identi�ed using the procedures herein.

5As with the macro series we remind readers that a break in 74 is indicative of a shift
between 73 and 74 (not 74 and 75).
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5. CONCLUSIONS
This paper introduces a BMA approach to testing for multiple break points

in univariate series using conjugate normal-gamma priors. This approach is
able to test for a number of structural breaks, averaging over a number of spec-
i�cations including stationary, stationary around trend and unit root models,
each containing di¤erent types of breaks and di¤erent lag lengths. Unlike most
previous papers in the literature, we also estimate posterior break probabilities
at every point in the sample.
The normal-gamma approach, though not optimal in some respects, is shown

to be highly advantageous since it can deal with up to 3 structural breaks,
through the marginal likelihoods analytically expressed, thus removing the need
for MCMC procedures or numerical integration. Monte Carlo work demon-
strated that the normal-gamma approach has reasonable power to discriminate
between unit root and stationary processes relative to other methods.
The procedures are used to test for structural breaks on 14 annual macro-

economic series and 11 natural resource price series over the last century and
to construct posterior break probabilities. The results indicate that there are
structural breaks in all of the natural resource series and most of the macro-
economic series. Most of the series with structural breaks have multiple breaks.
Our �ndings regarding unit roots, having allowed for structural breaks in the
data, are largely consistent with previous work. For example, with regard to the
macroeconomic series, our conclusions about unit roots vs (trend) stationarity
are the same as a standard Augmented Dickey Fuller test in 12 of the 14 series.
Consistent with previous work, we �nd that a number of the natural resource
series are consistent to being stationary around broken means or trends.
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Table 1: Monte Carlo Results
Data Generating Proportion BR greater than 0.5, 1 and 2
Process
Rho Drift Trend UR/ST UR/STAT STAT/ST Break/No Break

2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1
1 No . 0.7 0.9 0.8 0.7 0.9 0.8 0.2 0.6 0.4 0.0 0.03 0.02
1 Yes . 1.0 1.0 1.0 0.9 1.0 1.0 0.6 0.9 0.8 0.0 0.02 0.02

0.9 No No 0.2 0.5 0.3 0.3 0.6 0.5 0.08 0.3 0.2 0.08 0.3 0.1
0.9 No Yes 1.0 1.0 1.0 0.8 0.9 0.9 0.9 1.0 1.0 0.0 0.01 0.0
0.8 No No 0.0 0.1 0.1 0.04 0.2 0.1 0.04 0.2 0.1 0.07 0.3 0.1
0.8 No Yes 1.0 1.0 1.0 0.5 0.7 0.6 1.0 1.0 1.0 0.0 0.02 0.01
0.7 No No 0.0 0.0 0.0 0.0 0.02 0.0 0.03 0.2 0.1 0.06 0.3 0.1
0.7 No Yes 1.0 1.0 1.0 0.08 0.3 0.2 1.0 1.0 1.0 0.0 0.01 0.01
0.6 No No 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.2 0.1 0.05 0.3 0.1
0.6 No Yes 1.0 1.0 1.0 0.0 0.04 0.02 1.0 1.0 1.0 0.0 0.02 0.0
0.5 No No 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.2 0.05 0.05 0.3 0.01
0.5 No Yes 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.02 0.0

0.0 No No 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.2 0.04 0.02 0.4 0.1
0.0 No Yes 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.01 0.0

-0.5 No No 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.03 0.02 0.5 0.2
-0.5 No Yes 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.01 0.04 0.01

UR,ST and STAT refer to models as they are described in the text
All �gures are the proportion of trials that one model is preferred over another using the Bayes Ratio

>2 indicates that the numerator model had Bayes Ratio twice that of the denominated model
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Table 2: Structural Break Results - Macro and Natural Resources

No of Lags*
1 2 3

STAT
ST

UR
STAT

UR
ST

1 BRK
0 BRK

2 BRK
0 BRK

3 BRK
0 BRK

Best
Model
(Breaks)

Macro
Series
Cons Price 0.0 0.4 9.8 2.0e+5 214.9 4.31e+7 4575.2 4.32e+7 1.92e+09 UR (3)
Velocity 3.9 0.7 0.2 1.15 1.36 1.57 0.2 0.08 0.04 UR (0)
Unemploy 0.0 3.6 1.1 6.31 0 0.01 1.3 1.52 69.3 STAT(3)
Real Wage 0.9 1.9 0.6 4 1.8 7.2 0.11 0.03 0.01 UR (0)
GNP PC 0.0 1.4 2.8 4111 0.01 23.61 0.78 8.9 4.92 STAT (2)
Stock Pri 1.7 0.3 1.5 1.6 79.1 126.37 17.02 14.42 7.2 UR (1)
Real GNP 0.0 1.9 2.0 8451 0.01 113.04 0.24 2.72 1.13 STAT (2)
Money 0.0 3.4 1.2 8.83 1266 1.1e+04 0.14 0.06 0.02 UR (0)
GNP DEF 0.0 5.2 0.8 9.22 2127 1.9e+04 1.8e+04 2.8e+04 1.99e+04 UR (2)
Wages 0.1 1.9 1.9 5.63 17.1 96.5 0.32 0.15 0.12 UR (0)
Interest 1.3 0.6 1.1 0.37 621.5 228.4 22.8 451.6 2.37e+04 UR (3)
Employ 0.1 3.4 1.0 219.5 0.17 37.61 0.3 0.06 0.04 STAT (0)
Nom GNP 0.0 1.6 2.4 117.1 976 1.1e+05 6.06 35.85 44.55 UR (0)
Ind Outp 0.8 2.0 0.5 1439 0.04 58.82 0.08 0.18 0.11 STAT (0)

Natural
Res
Prices
Aluminium 0.0 0.3 12.6 1.2 150.9 180.9 193.9 2309 8.7e+04 UR (3)
Coal 1.1 1.1 0.8 0.72 3.9e+04 27701 3698 4.1e+04 2.2e+05 UR (3)
Copper 0.7 1.7 0.8 0.39 0.04 0.02 1.16 1.51 1.79 ST (3)
Iron 1.1 0.5 1.6 0.59 0.7 0.42 1.96 1.65 1.34 ST (1)
Lead 4.9 0.5 0.2 0.39 0.o 0.0 0.77 1.39 1.33 ST (2)
Gas 0.0 1.0 4.0 3.28 0.07 0.22 5.23 18.15 153.8 STAT(3)
Nickel 0.8 0.3 2.9 0.49 2260 1098 7803 4.2e+05 4.2e+05 UR (2)
Petroleum 1.0 2.0 0.4 0.92 0.01 0.01 5.73 3.89 4.5 ST (1)
Silver 0.0 0.0 1434 0.6 7556 4511 2.3e+05 1.5e+11 3.7e+11 UR (3)
Tin 3.1 0.7 0.4 3.55 6.76 23.98 1.96 4.84 9.26 UR (3)
Zinc 0.0 0.1 117 558.9 1.4e+04 7.8e+06 372 1.8e+11 1.6e+13 UR (3)

* 1= 1 Lag
2 or 3 Lags 2= 2 lags

1 or 3 lags 3= 3 lags
1 or 2 lags

22



Consumer

0

0.2

0.4

0.6

0.8

1

1.2

18
63

18
69

18
75

18
81

18
87

18
93

18
99

19
05

19
11

19
17

19
23

19
29

19
35

19
41

19
47

19
53

19
59

19
65

19
71

19
77

19
83

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

18
72

18
78

18
84

18
90

18
96

19
02

19
08

19
14

19
20

19
26

19
32

19
38

19
44

19
50

19
56

19
62

19
68

19
74

19
80

19
86

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Unemployment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

18
93

18
99

19
05

19
11

19
17

19
23

19
29

19
35

19
41

19
47

19
53

19
59

19
65

19
71

19
77

19
83

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Real Wage

0

0.05

0.1

0.15

0.2

0.25

0.3

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

19
75

19
81

19
87

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

GNP Per Captia

0

0.2

0.4

0.6

0.8

1

1.2

19
12

19
18

19
24

19
30

19
36

19
42

19
48

19
54

19
60

19
66

19
72

19
78

19
84

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Stock Prices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

18
74

18
80

18
86

18
92

18
98

19
04

19
10

19
16

19
22

19
28

19
34

19
40

19
46

19
52

19
58

19
64

19
70

19
76

19
82

19
88

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Real GNP

0

0.2

0.4

0.6

0.8

1

1.2

19
12

19
18

19
24

19
30

19
36

19
42

19
48

19
54

19
60

19
66

19
72

19
78

19
84

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Money Stock

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

18
92

19
00

19
08

19
16

19
24

19
32

19
40

19
48

19
56

19
64

19
72

19
80

19
88#N

/A
#N

/A
#N

/A

B
re

ak
 P

ro
ba

bi
lit

ie
s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

GNP Deflator

0

0.2

0.4

0.6

0.8

1

1.2

18
92

18
98

19
04

19
10

19
16

19
22

19
28

19
34

19
40

19
46

19
52

19
58

19
64

19
70

19
76

19
82

19
88

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

19211865
1881

1930

1930

1945

19411899

1941

1946
1930

1939

1931-32

1930

1939

1932
1921

1943

1917

1921

23



Wages

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

19
75

19
81

19
87

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Interest

0

0.2

0.4

0.6

0.8

1

1.2

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

19
75

19
81

19
87

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Employment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

18
93

18
99

19
05

19
11

19
17

19
23

19
29

19
35

19
41

19
47

19
53

19
59

19
65

19
71

19
77

19
83

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Nom GNP

0

0.2

0.4

0.6

0.8

1

1.2

19
12

19
18

19
24

19
30

19
36

19
42

19
48

19
54

19
60

19
66

19
72

19
78

19
84

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Industrial Production

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

18
66

18
72

18
78

18
84

18
90

18
96

19
02

19
08

19
14

19
20

19
26

19
32

19
38

19
44

19
50

19
56

19
62

19
68

19
74

19
80

19
86

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

1921

1932
1981

1986
1895 1930

1930

1932
1921 1930

1939

Figure 1.

24



Aluminum

0

0.2

0.4

0.6

0.8

1

1.2

18
98

19
04

19
10

19
16

19
22

19
28

19
34

19
40

19
46

19
52

19
58

19
64

19
70

19
76

19
82

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
gg

ed
 V

al
ue

Coal

0

0.2

0.4

0.6

0.8

1

1.2

18
73

18
79

18
85

18
91

18
97

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

19
75

19
81

19
87

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Copper

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

18
73

18
79

18
85

18
91

18
97

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

19
75

19
81

19
87

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
gg

ed
 V

al
ue

Iron

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

18
73

18
79

18
85

18
91

18
97

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
gg

ed
 V

al
ue

Gas

0

0.2

0.4

0.6

0.8

1

1.2

19
22

19
28

19
34

19
40

19
46

19
52

19
58

19
64

19
70

19
76

19
82

19
88

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Nickel

0

0.2

0.4

0.6

0.8

1

1.2

19
16

19
22

19
28

19
34

19
40

19
46

19
52

19
58

19
64

19
70

19
76

19
82

19
88

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ilit
ie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Silver

0

0.2

0.4

0.6

0.8

1

1.2

18
73

18
79

18
85

18
91

18
97

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

19
75

19
81

19
87

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Petroleum

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

18
73

18
79

18
85

18
91

18
97

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

19
75

19
81

19
87

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Lead

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

18
73

18
79

18
85

18
91

18
97

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

19
75

19
81

19
87

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

1908
1915

1885

1920

1974 1917

1899 1980

1952

1974

1985

1921
1988

1979

1875 1974

1974

1979

Tin

0

0.2

0.4

0.6

0.8

1

1.2

18
88

18
94

19
00

19
06

19
12

19
18

19
24

19
30

19
36

19
42

19
48

19
54

19
60

19
66

19
72

19
78

19
84

19
90

#N
/A

#N
/A

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

Zinc

0

0.2

0.4

0.6

0.8

1

1.2

18
73

18
79

18
85

18
91

18
97

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

19
75

19
81

19
87

#N
/A

#N
/A

Br
ea

k 
Pr

ob
ab

ili
tie

s

0

0.2

0.4

0.6

0.8

1

1.2

Lo
gg

ed
 V

al
ue

1986

1933

1916
1958

Figure 2

25



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
   
 
  
 
  
 
 
 

http://www.kent.ac.uk/kbs/research-information/index.htm 


