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1. Introduction 
In this paper, we assess the performance of Tunisian high schools at allocating resources to provide 

education to the population. The Tunisian system being centralized, the resources are distributed by 

the State to high schools that manage them at the local level. In the absence of a market for 

secondary level education, efficiency measures can serve as an alternative method to control for 

performance. Specifically, efficiency measurement allows us to assess how well a decision-maker 

transforms inputs into outputs. In the Tunisian high school system, principals are responsible for 

day-to-day decisions, while investment decisions (e.g. school construction) are made centrally. 

Measuring efficiency as a proportional reduction in inputs implies that every input is under the 

control of the decision-maker. This is clearly not an appropriate model here and adjustments must 

be made to take into account the real choice set of the Tunisian principals. 

Data Envelopment Analysis (DEA) has proved to be a good tool to measure efficiency of such 

institutions. DEA estimation requires weak assumptions on the underlying technology and can 

easily handle quasi-fixed factors such as school size (usually not under the control of the principals) 

making it a good fit for us. The drawback is its failure to provide confidence intervals for the 

estimated efficiency measures, ignoring the sensitivity of the results to sampling variations. Seminal 

contributions by Banker (1993) and Kneip, Park and Simar (1998), among others, introduced the 

statistical approach into DEA so that frontier and efficiency measures are now understood to be 

statistical estimators. It has been shown that the probability distribution of a DEA estimator is 

difficult to identify, in particular in the multivariate case (Simar and Wilson, 2000b). In this case, 

the bootstrap methodology appears to offer the best solution to approximate the sampling 

distribution of this estimator. These contributions allowed DEA users to introduce statistical 

induction into the interpretation of their results. 

This paper combines quasi-fixed factors with a statistical approach to DEA estimation of efficiency 

scores to study the performance of Tunisian high schools and we provide estimates of the precision 

of the efficiency measures. To do so, we implement a DEA method based on the approach proposed 

by Banker and Morey (1986) to include the quasi-fixed inputs. The precision of the efficiency 
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measures is calculated using Simar and Wilson (1998, 2000a) methodology. We define a Data 

Generating Process (DGP) that allows us to use the smooth bootstrap methods to evaluate the 

estimator’s bias and to construct confidence intervals for the efficiency scores. We conclude with 

comparisons of the results obtained under the homogeneous and heterogeneous bootstrap. 

2. DEA Approach with Quasi-fixed Inputs 

There are many methods to handle non discretionary factors in the DEA analysis. These methods 

can be grouped into two categories: (a) One-stage models: these involve only one DEA analysis in 

which the non-discretionary factors are directly taken into account. (This approach is based on 

Banker and Morey (1986).) (b) Multi-stage models: these involve several, DEA and non DEA, 

sequential stages through which the effect of non-discretionary factors is eliminated from the 

original efficiency index. Fried and Lovell (1996), Silva Portela and Thanassoulis (2001) and 

Muñiz (2002), among others, and recently Simar and Wilson (2007) have proposed semi-parametric 

models where the efficiency (obtained from DEA estimators in the first stage) are regressed on 

exogenous variables (second stage).1 The theoretical difference between the two approaches is that 

a one-stage procedure assumes that non-discretionary factors are part of the technology, while in a 

multi-stage procedure these factors are assumed exogenous to the production process.  

In this paper, we use Banker and Morey’s model (i.e. a one-stage procedure) to deal with non-

discretionary inputs, which is a common method for this type of analysis. For an input oriented 

DEA estimator of the frontier, we obtain a variable input requirement set, consistent with the 

economic intuition. We also adopt the approach developed by Kneip, Park and Simar (1998) to 

develop a statistical model that includes quasi-fixed inputs and we use this model to characterize the 

DGP, thus justifying the use of bootstrap methods in DEA analysis. 

We suppose that all inputs and outputs are continuous variables and there are two types of inputs: 

variable (or discretionary) under the direct control of the decision maker and quasi-fixed (non 

discretionary) not under the control of the manager at decision time. 

2.1 The Frontier Model with Quasi-fixed Inputs 
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Consider a production process using variable inputs { }1, 1, ,ix x i m= = …  and quasi-fixed inputs 

{ }2, 1, ,jz z j m= = …  to produce an output vector { }, 1, ,ry y r s= = … . The production possibility 

set is given by: 

( ) ( ){ }1 2, , , ,  is feasiblem m sx z y x z y+ +
+Ψ = ∈ \ .         (1) 

The efficiency of a DMU is measured by the distance between the observed input-output mix from 

the optimal mix located on the frontier of Ψ. By choosing a direction to approach the frontier, the 

true input oriented efficiency measure in the sense of Farrell (1957) is defined to be a triplet 

( ), ,x z y ∈Ψ  satisfying:  

( ) ( ){ }, , min , ,x z y x z yθ θ θ=  ∈Ψ .           (2) 

The scalar θ  is interpreted as the maximal proportion by which the input vector x that produces y 

can be shrank so that it still produces y given the quasi-fixed input vector z. Therefore, the efficient 

input level is ( ) ( ), , ,x z y x z y xθ∂ =  and the efficient quantity of inputs is a proportion of the 

observed input quantities. 

2.2 The DEA estimator with quasi-fixed inputs 

Consider a sample (of DMUs) of size n defined as ( ){ }, , , 1, ,j j jx z y j n= … ⊆ Ψ . The DEA 

estimator of Ψ  is given by: 

( ){ }1 2

1 1 1 1
ˆ , , , , , 1j n j n j n j nm m s

DEA j j j j j j jj j j j
x z y x x z z y yλ λ λ λ= = = =+ +

+ = = = =
Ψ = ∈  ≥ ≥ ≤ =∑ ∑ ∑ ∑\ ,    (3) 

The estimated input oriented efficiency measure of the triplet ( ), ,x z y  is 

( ) ( ){ }ˆ ˆ, , min , , DEAx z y x z yθ θ θ=  ∈Ψ  with ( ) ( )ˆ0 , , 1, , ,x z y x z yθ< ≤ ∀ ∈Ψ  and the efficient 

variable input bundle is ( ) ( )ˆˆ , , ,x z y x z y xθ∂ = . By construction, we have that, Ψ̂ ⊆ Ψ  and 

( ) ( ) ( )ˆ, , , , ,  , ,x z y x z y x z yθ θ≤ ∀ ∈Ψ . 

3. The Statistical Model and the Bootstrap Method 

3.1 The Data Generating Process (DGP) 
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Given an output level, a stock of quasi-fixed inputs and an efficiency parameter, the stochastic 

content of the production process is completely characterized by identifying the variable inputs to a 

vector of random variables. When the production process is not efficient, x is not on the frontier of 

the variable input set. The specification of the DGP makes this explicit: for a given true frontier, the 

vector x is a random variable along the ray through the origin defined by ( ){ }, ,x x z yθ θ ∈Ψ . For 

this DGP, any particular combination ( ), ,j j jx z y  can be generated. That is, for decision making 

unit j we have ( ) ( )( ), , , / , ,j j j j j j j jx z y x z y z yθ∂=  where the efficient variable input level, 

( ),j jx z y∂ , is unknown but can be interpreted as a “parameter” to be estimated.  

Now, suppose instead that the efficiency measure, ] ]0,1jθ ∈ , is a random variable with a 

probability measure admitting a density ( )f i , then the DGP jℑ  generating jx , conditionally on the 

output jy , the quasi-fixed inputs jz , and a proportion of input observed is equivalently 

characterized by ( ),j jx z y∂  and f. That is, ( )( ), , , 1, ,j j jx z y f j n∂ℑ = = …  or ( ), fℑ = Ψ .  

3.2 A consistent estimator of the DGP 

To find a consistent estimator of the DGP ( ), fℑ = Ψ  is equivalent to find a consistent estimator of 

its components: the production set Ψ  and the density f. Based on Kneip, Park & Simar (1998), 

Essid, Ouellette and Vigeant (2007) have shown that Banker and Morey’s estimator, given by 

equation (3), is a consistent estimator of the production set. Thus, we only need to obtain a 

consistent estimator of the density of the θs. In this paper, we use two approaches to estimate the 

density: the homogenous and heterogeneous bootstrap methods. 

To estimate the density when the efficiency structure is homogenous, that is ( ) ( ), ,f z y fθη θ = , 

we smooth the probability density f with a kernel as in Simar and Wilson (1998).2 A smooth 

estimator can be obtained from the Gaussian kernel. 
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Under this simple form, it can be shown that the estimator of the density is not consistent in the 

neighborhood of one. To correct the bias, we follow the suggestion in Simar and Wilson (1998) and 

we use the reflection method developed by Schuster (1985) and Silverman (1986). The method 

consists in reflecting each estimate of the efficiency measure ˆ 1jθ ≤  with its image, given by 

ˆ2 1jθ− ≥ . The kernel estimator is then evaluated on the basis of 2n observations and is defined as 

follows: 

ˆ2 ( ) if 1ˆ ( )
0 otherwise

c g t t
f t

≤
= 


, where ( ) 1

ˆ ˆ21ˆ
2

j n j j
j

t t
g t

nh h h
θ θ

φ φ=

=

    − − +
 = +           

∑      (4) 

The bandwidth h is set following the normal reference rule (Silverman (1986)). 

The homogeneity assumption might be too restrictive, so we use the heterogeneous bootstrap to 

handle the possibility that the efficiency score θ  and ( ), ,z yη  are not independent, as we assumed 

above. The simulations use a multivariate Gaussian kernel to estimate the density ( ), , ,f z yθ η . It is 

assumed that the bandwidth matrix is diagonal with only one parameter, h. The support of 

( ), , ,f z yθ η , given by ] ] [ ] 1 2
10,1 0, / 2 m m sπ −

+ +Ω = × × ×\ \ , is bounded, and so the estimator 

( )ˆ , , ,f z yθ η  is not consistent in the neighborhood of the boundaries. Schuster-Silverman reflection 

method is used to correct the bias.3 The generalization of the procedure proposed by Simar and 

Wilson (2000a) to the case of quasi-fixed inputs is as follows: 

Let ˆ
j j j jP y z η θ =    where 1, ,j n= … , be the matrix of observations. The jth line of P 

contains observations written in polar coordinates on the jth DMU. Let ˆ2R j j j jP y z η θ = −   

be the matrix of the points reflected in the neighborhood of one. In that case, the ( )1 22n m m s× + +  

data matrix is given by: 

R

P
P

P
 

=  
 

�                (5) 
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We use the matrix P�  to construct a bias corrected estimator of f. Let 1Σ̂  and 2Σ̂  be estimators of the 

covariance matrix of P and RP , respectively and partition them as follows: 

11 12
1

21 22

ˆ S S
S S
 

Σ =  
 

 and 11 12
2

21 22

ˆ S S
S S

− 
Σ =  − 

          (6) 

where 11S  is the covariance matrix of ( , , )y z η , 22S  is the variance of θ̂  and 12 21
TS S=  is the vector 

of the covariance between ( , , )y z η  and θ̂  ( ( , , )y z η  and ˆ2 θ−  for 2Σ̂ ). As in Simar and Wilson 

(2000a), we use Campbell’s M-estimator method (Campbell, 1980) to obtain 1Σ̂  and then 2Σ̂ . The 

estimator of the density, f , is defined as follows: 

( ) ( )ˆ2   if ˆ
0  otherwise

c f u u
f u

 ∈Ω= 


,            (7) 

where ( )
1 2 1 21

1ˆ
2

jj n Rj
m m s j

u uu u
f u K K

nh h h
=

+ + =

 −  − 
= +         

∑  with ( ), , ,j j j j ju z yθ η=  and 

( )2 , , ,
jR j j j ju z yθ η= − , and ( )lK i  is the probability density of a normal vector with zero mean and 

variance-covariance matrix ˆ  , 1, 2l lΣ = . To calculate the bandwidth parameter we use once again 

Silverman’s normal rule. The complete algorithms for the smooth homogeneous bootstrap and 

smooth heterogeneous bootstrap methods with quasi-fixed inputs are presented in Appendix A. 

Let ( )ˆˆ ˆ , fℑ = Ψ  be a consistent estimator of DGP ℑ , generated as above. The estimator 

( )ˆ , ,j j jx z yθ  of ( ), ,j j jx z yθ  obtained from the original sample generated by ℑ , has an unknown 

sampling distribution, but we can implement a bootstrap procedure to find an approximation of this 

distribution. This is done by generating B samples, * ,  1, ,b b BΨ = …  of size n and using the DEA 

method to obtain B pseudo-estimators ( ){ }*
0 0 0

ˆ , , ,  1, ,b x z y b Bθ = …  for all 

( ) ( )0 0 0, , , , , 1, ,j j jx z y x z y j n= = … . Then, the empirical distribution of those pseudo-values 
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provides a Monte Carlo approximation of the sampling distribution of ( )*
0 0 0

ˆ , ,x z yθ  given the 

estimator ℑ̂ . 

3.3 Bootstrap and bias corrections 

Even though the DEA estimator is consistent, it is also biased. The bootstrap bias estimator is 

defined by n ( ) *ˆ ˆ ˆ   1, ,B j j jbias j nθ θ θ= − ∀ = … , where * *
1

ˆ ˆ(1/ ) b B
j bjb

Bθ θ=

=
= ∑ . A bias corrected DEA 

estimator is ( ) *ˆ̂ ˆ ˆ ˆ ˆ2 1, ,j j j j jbias j nθ θ θ θ θ= − = − ∀ = … . However, this correction introduce a new 

noise (Efron and Tibshirani, 1993) leading to the possibility that the standard error of the corrected 

estimator ˆ̂
jθ  be larger than the standard error of the original estimator ˆ

jθ . Consequently, the 

correction is applied only when ( )( ) *

2
* 2

ˆ
ˆ ˆ/ 3 1

j
j B jr bias

θ
θ σ= >  for all 1, ,j n= … , where 

( )*

2
2 * *
ˆ 1

ˆ ˆˆ (1/ )
j

b B
bj jb

B
θ

σ θ θ=

=
= −∑ . 

3.4 Bootstrap confidence intervals 

To construct the confidence intervals of the efficiency scores, we start from a procedure based on 

the estimation of the bias. Once again, this introduces an additional noise in the confidence interval 

estimation. To take this additional noise into account, Simar and Wilson (2000a, b) proposed a 

method that consists in finding values, aα  and bα  such that: 

( ) ( )( )0 0 0 0 0 0
ˆPr , , , , 1b x z y x z y aα αθ θ α− ≤ − ≤ − = − .        (8) 

The estimators of the bounds aα  and bα  are obtained from the empirical bootstrap distribution of 

the pseudo-estimators { }*ˆ , 1, ,jb b Bθ = …  satisfying 

( ) ( )( )*
0 0 0 0 0 0

ˆ ˆ ˆ ˆˆPr , , , , 1b x z y x z y aα αθ θ α− ≤ − ≤ − ℑ = − ,        (9) 

where 1 α−  is the size of the confidence interval. To obtain âα  and b̂α  we sort 

( ) ( )( )*
0 0 0 0 0 0

ˆ ˆ, , , , , 1, ,b x z y x z y b Bθ θ− = …  in ascending order and then we eliminate ( )0.5 100α ×  
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percent of the elements on the right and the left of the sorted list. The values âα  and b̂α  correspond 

to the left and right limits of the truncated series, with ˆâ bα α≤ . Consequently, the bootstrap 

approximation of (8) is: 

( ) ( )( )0 0 0 0 0 0
ˆ ˆ ˆPr , , , , 1b x z y x z y aα αθ θ α− ≤ − ≤ − ≈ − .      (10) 

The estimated ( )1 α− -percent confidence interval is then 

( ) ( ) ( )0 0 0 0 0 0 0 0 0
ˆˆ ˆˆ, , , , , ,x z y a x z y x z y bα αθ θ θ+ ≤ ≤ + .      (11) 

4. Data 

In Tunisia, schooling is divided into two steps: basic learning for the first nine years (576,088 

students in 2004-05), then secondary education for four years (508,790 students in 2004-05). At the 

end of these thirteen years, each student writes the baccalaureat exam. (The baccalauréat is the 

grade obtained at the end of high school; it is the equivalent of a high school diploma. In recent 

years, the average success rate has been about 70% of the 65,000 student taking the exam).4 

Recently, enrolment at the secondary level has substantially increased, 33% between 2000/01 and 

2004/05. This trend has been accompanied by a larger involvement of the State to satisfy human 

and material needs (new schools were built and hiring has increased). 

The administration of secondary teaching is centralized at the level of the Department of education. 

The Department of education creates the programs and determines the pedagogical content of these 

programs, it hires the teachers and administrative staff and dispatch them based on the estimated 

needs of the schools and finally it allocates the operating budget between the different institutions 

according to some general planning established by the government. Note that the larger share of 

high schools’ budget comes from State subsidies (85% of the budget). The private sector, local 

government and households account for the remaining share. As a consequence, schools are very 

vulnerable to budget changes orchestrated by the State. The high schools implement the general 

rules emanating from the Department of education on matters related to the programs and their 

content. The internal management requires, at the beginning of every academic year, that each 
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school determines their human resource needs (teaching and administrative staffs), provides an 

estimate of their operating budget requirement, and estimates the number of classrooms and 

laboratories needed for the year. The Department of education then tries to satisfy those 

requirements within the limits of its own budget.  

In this study, we consider that a high school is a multi-output firm and each output is associated to a 

service to be evaluated. We are trying to identify and evaluate how the material and physical means 

are used to produce the different services generated by the school. 

4.1 Measurement of the outputs 

The output of the learning activity is the result of the standard exams at the end of the last year of 

high school (RESBAC). It is a very rough measure because it does not take into account the 

admission conditions for some specific programs. However, since the data concerning the students’ 

performance at the beginning and at the end of their program are not available and since we cannot 

address the problems related to the identification of the shares of the learning attributable to the 

family and to the external environment in the school grades, we merely say that these standard 

exam results are an approximation of the value added to the student in the schooling system. 

The number of students enrolled in the school (STUDENTS) is used as a second output and serves 

two purposes. First, it is an indicator of the volume of the high school’s activity. Second, the 

number of students enrolled shows also that some value is added to the student independently from 

the fact that he or she may not graduate. Thus, it is also an indicator of the value added to students 

not completing their degree.5  

High schools also supply complementary services. In Tunisia, the residence service cannot be 

separated from the teaching activities, mostly for high schools located in rural regions. This activity 

is measured using the number of beds (BEDS) and meals served (MEALS). 

4.2 Measurement of the inputs 

The production of the outputs is done using human resources and materials. Factors that are not 

related directly to human resources can be difficult to measure quantitatively. The variable inputs 
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used in this study are the number of teachers (TEACHERS), the administrative and supporting staff 

(ADM), the technical staff and janitors (BLUECOL), and an index representing the material and 

office supplies (desk, stationery, equipment, furniture, etc.). The latter variable is not directly 

observed. To obtain the quantity of input effectively used by the school we construct a quantity 

index defined as the ratio of the budget for these categories and the consumer price index, to which 

we add the food expenditures to capture the food and accommodation service inputs.6 We use this 

new variable to proxy the materials used (F&MAT). Since we do not have data on the building used 

for the residences, we have used only two quasi-fixed inputs: the number of general classrooms 

(GENROOM) and the number of specialized classrooms (SPECROOM).7  

The data used come from two sources. The data for the academic year 2003/04, and for almost all 

high schools are from the “Bureau des études, de la planification et de la programmation” of the 

Tunisian Department of Education. The National Statistical Institute of Tunisia has provided the 

consumer price index (CPI) for the year 2004 (base year 2000). We have 166 institutions in our 

database for the academic year 2003-2004. Descriptive statistics are found in Table 1. 

INSERT TABLE 1 HERE 

5. Results 

The simulation results are summarized in Tables 2, 3, 4 and 5, while the complete results are 

available in Appendix B (). These results are obtained using a SAS algorithm with 1000 

replications.8 A look at Table 2 shows that before the bootstrap, almost 45% (75) of the DMUs are 

efficient, ( ˆ 1θ = ) and are therefore located on the estimated frontier. The practices of those efficient 

units are thus the reference for the high schools not considered efficient. In other words, the 

inefficient institutions use too much material and/or staff when compared to similar institutions 

located on the frontier. The scores of the inefficient high schools range between 0.716 and 0.998. 

The high school with the worst performance must give up almost 29% of the resources it uses to 

reach an efficient point. The least inefficient high school is not far from the best practices, however. 

This sums up the traditional interpretation of the results of an efficiency study using DEA. 
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However, as we will now show, such an interpretation can be misleading for the decision maker that 

allocates the resources at the Department of Education. We find that these results show a strong 

sensitivity to sampling variations and this tells us that we cannot compare the initial DEA results 

between DMUs freely. 

We also present in Table 2 a summary of both bootstrap simulations. The simulations did not 

change the proportion of efficient units; it is still equal to 45%. After correction for the bias, the 

distribution of the scores is larger; the average is lower by one percentage point for both bootstrap 

procedures, while the standard deviation increased to 0.098 from 0.069 in the case of the 

homogenous bootstrap and to 0.101 in the heterogeneous bootstrap case. It is also noticeable that 

the results obtained with both bootstrap procedures are very similar, showing the robustness of the 

analysis.  

[INSERT TABLE 2 HERE] 

Table 3 presents the distribution of the bias. It is non-negative in 117 cases for the homogenous 

bootstrap with an average value equal to 0.0288. Thirty five schools are efficient in all simulations 

and have a null bias. These results would confirm that the DEA estimator tends to over-estimate the 

real efficiency score. As noted above the correction is not made in all cases to avoid that the 

quadratic error of the corrected estimates become larger than the one of the original estimates. The 

correction is made for 12 high schools only. In most cases, the correction is not trivial and can be as 

large as 0.224. In the case of the heterogeneous bootstrap, the bias is corrected for 17 high schools 

and in some cases the correction is large, as it reaches 0.236. Contrary to what was expected, the 

average bias is negative and equal to -0.016 for the heterogeneous bootstrap. 

[INSERT TABLE 3 HERE] 

We present confidence interval estimation in Table 4. Confidence interval estimation increases the 

proportion of efficient units. In the case of the homogenous bootstrap, 107 schools have observed 

scores not significantly different than one at size equal to 95%. This number goes up to 119 with the 
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heterogeneous bootstrap. Consequently, based on the confidence interval inference, in both sets of 

simulations, high schools must give up 12.1% of their resources on average to be efficient.  

[INSERT TABLE 4 HERE] 

Specific examples are reported in Table 5 to shed some light on the contribution of the bootstrap 

procedure to the statistical content of the efficiency scores. For example, the difference between the 

initial DEA score of L1461 and L1462 is 0.019, a fairly small magnitude. A comparison of both 

high school bias corrected scores reveals a substantial difference under the homogenous bootstrap 

(0.146) and smaller but significant one under the heterogeneous bootstrap (0.043). 

The bootstrap simulations allow us to parallel the standard results of the classical theory on 

confidence intervals. For example, L42108 and L42114 are not efficient even after the bias 

correction. However, their respective confidence interval contains the value one (under both 

bootstrap methods). This means that the observed inefficiency is very likely due to sampling 

variations and not real. Therefore, the efficiency is said to be perverted by sampling variations. This 

parallels the standard t-test for an estimated parameter for which the value is tested to be equal to 

one under the null hypothesis. We are not able to reject the hypothesis that the DMUs are efficient. 

We are also conducted to revise the resources an institution must give up to become efficient.  

Another consequence of the sampling variation is that we have to compare institutions using a 

statistical reasoning. Looking at our results, we observe that the confidence intervals of many 

institutions overlap. In other words, it is often possible that two initial scores that appeared to differ 

are in fact in the same confidence region. For example, high schools L1461 and L1462 are in this 

situation. The initial efficiency scores are not identical but the difference is not statistically 

significant, based on the confidence interval. This shows that a comparison of the initial efficiency 

scores for these high schools is not appropriate and may lead us to wrong conclusions. 

[INSERT TABLE 5 HERE] 

An analysis of the precision of the estimators of the efficiency scores based on box plots (see 

Appendix C()) reveals two things. More than half of the efficient high schools keep generating 
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efficiency scores equal to one throughout the simulation process. The bias for these institutions is 

simply equal to zero. These schools can be interpreted as dominant. The efficiency measure of these 

institutions is characterized by a very high precision. The length of the boxes allows us to compare 

the dispersion of the values of the efficiency parameter generated by the simulation process. We 

note that the dispersion is not constant between schools leading to the conclusion that the precision 

of the efficiency rate estimator is not homogenous across schools. 

Finally, since we cannot calculate the optimal bandwidth in most cases, it is important to assess the 

sensitivity of the results to the choice of bandwidth. To do this, we have repeated the simulations 

with bandwidth taking values 0.5h and 1.5h and we have recalculated all confidence intervals for 

each simulation experiment.9 Comparisons of the results show that there is only a marginal 

difference between the confidence bounds, confirming the robustness of our results to the value of 

the bandwidth. 

6. Conclusion 

We have evaluated the statistical precision of efficiency measures for Tunisian high schools 

calculated with the DEA method. The paper shows how to use the bootstrap to estimate the bias of 

the efficiency measure estimator, how to estimate the sampling distribution and how to calculate the 

confidence intervals for each school. These results allow the decision maker to check the reliability 

and robustness of the efficiency measures. This also shows that sound statistical inference on the 

performance of schools with limited data, as it is often the case in developing countries, is possible. 

Our results prove the sensitivity of the standard DEA estimation to sampling variations and also 

confirm the proposition that DEA estimators tend to overestimate the real rate of efficiency in the 

case of the homogeneous bootstrap but it is not as clear cut in the case of the heterogeneous 

bootstrap. In both sets of simulations we have to conclude that on average the high school with a 

residence service must give up less then 12.1% of their resource to reach the frontier. In other 

words, it is possible to consider that this type of high school is fairly efficient overall. 
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Appendix A: Algorithm for the smooth bootstrap with quasi-fixed inputs 

A.1 Homogenous bootstrap 

Step 1: Compute ( )ˆ ˆ , ,   1, ,j j j j jx z y j nθ θ= ∀ = … . 

Step 2: Generate smoothed resampled pseudo-efficiencies as follows. First generate 

{ }*, 1, ,j j nρ = …  by resampling with replacement a sample of size n, from the empirical distribution 

{ }ˆ , 1, ,j j nθ = … . Then generate the sequence { }*, 1, ,j j nρ = …�  as follows: 

( )
( )

* * * *

*

* *

if   1

2 otherwise 

j j j j

j

j j

h h

h

ρ ε ρ ε
ρ

ρ ε

 + + ≤= 
− +

� , where ( )* 0,1j Nε ∼ . 
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Then, generate the pseudo-efficiencies *
jγ  for all 1, ,j n= …  using ( )* * * * 2 2

ˆˆ/ 1 /j j h
θ

γ ρ ρ ρ σ= + − +� , 

where * *
1

(1/ ) n
jj

nρ ρ
=

= ∑ . 

Step 3: Compute the pseudo variable inputs, * * ˆ(1/ ) 1, ,j j j jx x j nγ θ= = …  

Step 4: Compute the bootstrapped efficiency measures *ˆ , 1, ,j j nθ = …  using the pseudo variable 

inputs based on the following program: 

( ) { }* *
0 0 0 0 0 01 1 1 1

ˆ , , min ,  , , 1,  0 .j n j n j n j n
j j j j j j j jj j j j

x z y x x z z y yθ θ θ λ λ λ λ λ= = = =

= = = =
=  ≥ ≥ ≤ = ≥∑ ∑ ∑ ∑  

Step 5: Repeat steps 2-5 B times to obtain B efficiency measures for every DMU j, 

{ }*ˆ , 1, , , 1, ,bj j n b Bθ = = …… . 

A.2 Heterogeneous bootstrap 

Step 1: Compute ( )ˆ ˆ , ,   1, ,j j j j jx z y j nθ θ= ∀ = … .  

Step 2: Transform the variable inputs 1, ,jx j n∀ = … , expressed in Cartesian coordinates into polar 

coordinates and build the matrix P�  as in (5). 

Step 3: Compute the estimated variance-covariance matrices 1Σ̂  and 2Σ̂  as in (6). Then, calculate 

1L  and 2L  such that 1 1 1
ˆ TL LΣ =  and 2 2 2

ˆ TL LΣ =  using a Cholesky decomposition.  

Step 4: Draw with replacement n lines from the matrix P� . Denote this new matrix *P�  and compute 

the mean of each column of this matrix. The result is the ( )1 21 s m m× + +  vector *P . 

Step 5: Use a pseudo-random number generator to generate a ( )1 2n s m m× + +  matrix ε  from a 

standard i.i.d. normal distribution. Let jε  be the jth line of this matrix. Compute the 

( )1 2n s m m× + +  matrix *ε  where the jth line is the vector *
j l jLε ε=  with l=1,2 and such that if the 

jth line of the matrix *P�  is among the lines of the matrix P, then *
1j jLε ε=  and if the jth line of the 

matrix *P�  is among lines of the matrix RP , then *
2j jLε ε= .  
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Step 6: Compute the ( )1 2n s m m× + +  matrix ( ) ( )1/ 22 * * *1 nh MP h i Pε
−

Γ = + + + ⊗� , where 

(1/ ) T
n n nM I n i i= − , [ ]1 1T

ni = …  and ⊗  is the Kronecker product. 

Step 7: Partition the matrix Γ  into four blocks, 
( ) ( )1 2 2 1 11

1 2 3 4
n s m m n s n m nn m× + + × × ×× −

 Γ = Γ Γ Γ Γ  
, with ( )11 jγΓ = , 

( )22 jγΓ = , ( )33 jγΓ = , and ( )44 jγΓ =  for all 1, ,j n= … . Then define the jth line of the pseudo-value 

bootstrap matrix *T , of size ( )1 2n s m m× + + , as follows: 

( )
( )

1 2 3 4 4

*

1 2 3 4

, , ,       if  1

, , , 2    otherwise

j j j j j

j

j j j j

t
γ γ γ γ γ

γ γ γ γ

 ≤= 
−

. 

Step 8: Convert the polar coordinates of *T  back into Cartesian coordinates as follows: Use the jth 

line of 3Γ  to construct the matrix ( )( )1

3 3 3
1 1 1 1 2 1 1, , ,...,n m j j j j j j m jX x x tg x tg x tgγ γ γ× −=�  for all 1, ,j n= … , 

then calculate ( )2 1
0 0 0, ,xθ γ γ� �  for all ( ) ( )2 1 2 1

0 0 0, , , , , 1, ,j j jx x j nγ γ γ γ= =� � …  using the following 

program:10 

( ) { }2 1 2 2 1 1
0 0 0 0 0 01 1 1 1
, , min , , , 1, 0 .j n j n j n j n

j j j j j j j jj j j j
x x xθ γ γ θ θ λ γ λ γ γ λ γ λ λ= = = =

= = = =
=  ≥ ≥ ≤ = ≥∑ ∑ ∑ ∑� � � �  

This step implies solving n optimization programs. If the program has no immediate solution, repeat 

steps 4-7 until it works. Then, the pseudo-variable input vector is given by 

( )( )* 2 1 *, , / , 1, ,j j j j j jx x x j nθ γ γ θ= = …� � � . 

Step 9: Given ( )* 2 1, ,j j jx γ γ , compute ( )* * 2 1
0 0 0

ˆ , ,xθ γ γ  for all ( ) ( )* 2 1 * 2 1
0 0 0, , , , 1, ,j j jx x j nγ γ γ γ= = … , using 

the following program for 1, ,j n= … : 

( ) { }* * 2 1 * * 2 2 1 1
0 0 0 0 0 01 1 1 1

ˆ , , min , , , 1, 0 .j n j n j n j n
j j j j j j j jj j j j

x x xθ γ γ θ θ λ γ λ γ γ λ γ λ λ= = = =

= = = =
=  ≥ ≥ ≤ = ≥∑ ∑ ∑ ∑  

Step 10: Repeat steps 4-9 B times to obtain the bootstrapped estimators of the efficiency measures 

for each DMU j: { }*ˆ , 1, , , 1, ,bj j n b Bθ = = …… . 



 19

Table 1: Descriptive Statistics: 
High School with Residence in 2003-04 (166 High Schools) 

Variable Average Standard Error Minimum Maximum 
STUDENTS 1293.35 470.61 346 2769 

BEDS 247.3 200.92 0 931 
MEALS 346.71 191.37 16 931 

TEACHERS 72.4 23.82 26 145 
ADM 11.47 4.85 2 28 

BLUECOL 17.78 7.62 5 48 
F&MAT 916.78 335.58 322.86 1983.86 

GENROOM 26.84 8.74 11 59 
SPECROOM 10,71 4.08 3 24 

RESBAC 172.03 88.24 39 526 

Table 2: Distribution of the Efficiency Scores Before and After the Bootstrap 
After the bootstrap  Before the bootstrap Homogenous Heterogeneous 

Number of efficient units 75 75 75 
Total units 

Mean 
Standard deviation 

Min 
Max 

 
0.939 
0.069 
0.716 

1 

 
0.928 
0.098 
0.491 

1 

 
0.925 
0.101 
0.480 

1 
Inefficient units 

Mean 
Standard deviation 

Min 
Max 

 
0.889 
0.058 
0.716 
0.998 

 
0.870 
0.101 
0.491 
0.998 

 
0.864 
0.101 
0.480 
0.998 

Table 3: Distribution of the Bias 
 Homogenous bootstrap Heterogeneous bootstrap 

Number of units with positive bias 
With bias equal to 0 

Number of corrected scores 
Mean 

Standard deviation 
Min 
Max 

117 
35 
12 

0.028 
0.052 
-0.040 
0.224 

65 
0 

17 
-0.016 
0.089 
-0.202 
0.236 

Table 4: 95% Confidence Interval Estimation 
 Homogenous bootstrap Heterogeneous bootstrap 

Number of efficient units 107 119 
Lower limit Upper limit Lower limit Upper limit  

Mean 
Standard deviation 

Min 
Max 

0.879 
0.139 
0.433 

1 

0.993 
0.098 
0.621 
1.177 

0.879 
0.139 
0.433 

1 

1.103 
0.167 
0.600 
1.415 

Table 5: Specific Examples of Confidence intervals 
Homogenous bootstrap Heterogeneous bootstrap. 

School Original 
Score Corrected 

Score 95 % conf. int. Corrected 
Score 95 % conf. int. 

L1461 0.817 0.817 0.634 0.830 0.689 0.634 0.822 
L1462 0.798 0.671 0.596 0.801 0.646 0.596 0.829 

L42108 0.949 0.949 0.899 1.073 0.949 0.899 1.130 
L42114 0.976 0.976 0.952 1.117 0.976 0.952 1.124 
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1 We think that this type of models is more adapted to explain efficiency than to estimate it. For this reason we will not 
consider them in this study. 
2 Because Farrell’s measure is radial, we are allowed to write the input vector x in polar coordinates. That is, the 

modulus of x is ( ) Tx x x xω ω= = =  and the angle is [ ] 1 1( ) 0, / 2 mxη η π −= ∈  where 
11 1( )i mη η η η −= … … . This allows 

us to write the density as ( , , ) ( , , , )f x z y f z yω η=  and the correspondence between the modulus and θ  follows because 

the efficiency measure is radial. 
3As in Simar & Wilson (2000a) we restrict the reflection of θ  to the values in the neighbourhood of one. This amount 

to reflect [ ]
1 1 10, / 2 1, , 1i i mη π∈ = −…  in the neighborhood of zero and / 2π , 

2 2 20 1, ,iz i m≥ = …  in the neighborhood 

of zero and 0 1, ,ry r s≥ = …  in the neighborhood of zero, as well. 
4 The number of student is not evenly distributed over the four year cycle and is significantly smaller in the last year. 

This is often explained by large number of students repeating a year or quitting before completing the degree (the rates 

are respectively 15.4 and 13.2% the first year, 16.5% and 12.9% the second year, 9.8% and 6.9% the third year and 

finally 23.6% and 8.9% the last year). 
5 Articles in the literature have often used student cohorts with information on academic results, socio-economic 

conditions to measure the outputs (e.g. Silva Portela & Thanassoulis (2001) and Muñiz (2002)). Others (e.g. Ouellette 

& Vierstraete, 2005) have used enrolment to measure outputs, a standard procedure. Here we have census data with 

information on specific high schools (number of students, success rates, number of teachers, and so on) and information 

on a standard results. So, we can say that our approach is midway between the standard approach and the value added 

models. 
6 This implicitly supposes that the price index is equal to one over the sample period. 
7 Note that for some authors, the quasi-fixed inputs are the socio-economic conditions of the students. For example, 

Cohn, Millman & Chew (1975), Hanushek (1986), Muñiz (2002) among others show that these conditions influence 

directly the students’ performances. These socio-economic conditions seem to explain the efficiency results of the 

schools, more than some other factor entering directly in the production process. However, this is a drift from the 

optimal allocation of the resources. 
8 We have also conducted the same experiment for the Tunisian schools without residence. The results are qualitatively 

very close to the results for the first model. For this reason, we chose not to report the results here. An appendix 

containing the results for this model simulations and the corresponding interpretation are available from the authors 

upon request. 
9 The results of these simulations are available from the authors upon request. 
10 Simar et Wilson (2000a) have proposed to put *

1 1jx =�  in the transformation matrix X� , but this leads to 1j jθ = ∀� . 


