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the model’s parameters. Necessary and sufficient conditions for convergence to the full in-

formation rational expectations solution are given, and the core of an algorithm for the 

Bayesian updating of beliefs is provided. In the course of this a new class of full information 

rational expectations equilibria is described and some of its desirable properties proven.  
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1. Introduction 

In this thesis, we solve the problem of forming macroeconomic rational expectations under partial infor-

mation about a model’s parameters. We find necessary and sufficient conditions for convergence to the 

full information solution and we develop the core of an algorithm for the updating of beliefs. This pro-

vides a fully rational alternative to the statistical learning literature, popularized by Evans and Honkapohja 

(2001), which has been influential in recent years. We begin with the motivation for this project. 

1.1. Expectations in macroeconomics 

Expectations are inextricably tied up with the optimising agent framework that underlies almost all mod-

ern economics. In choosing whether to invest in stock, we consider whether the dividends we expect to 

get from it are more than adequate compensation for the price asked. More generally, whenever an 

agent is making a decision that will potentially deliver costs or rewards in the future, then they must form 

expectations of what that reward might be. Consumers choose current consumption to maximise their 

expectations of lifetime utility. Firms make pricing and investment decisions to maximise the expected 

value of the stream of profits that will result. Central banks choose the interest rate to minimise the ex-

pected future deviation of inflation and output from their targets. Indeed, almost all economic decisions 

have a forward-looking aspect to them, and so require the formation of expectations. 

What makes expectations particularly interesting to macroeconomists are the many macroeconomic vari-

ables that are affected by their own expectations. If when a firm chooses a price for their product they 

know they may be constrained to stick to that price for several periods, then they will optimally choose 

their price taking not only their current marginal costs into account, but also their expectations about the 

marginal costs they may face in the future. With price a mark-up over marginal costs such a set-up leads 

to current inflation depending on current expectations of future inflation (Calvo 1983; Walsh 2003: 234-

40). Similarly the optimization decisions of households lead current output to depend on households’ ex-

pectations of future output (Walsh 2003: 232-34). Many contemporary macroeconomic models take a 

dynamic stochastic general equilibrium (DSGE) approach in which the optimisation decisions of house-

holds, firms, investors and the central bank are combined, which leads to expectations of one macroeco-
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nomic variable having consequences for the path of virtually every other variable considered. Clearly 

then, precisely how these expectations are formed will have significant consequences for the path the 

economy actually takes. 

Traditionally the literature has been divided between full information “rational expectations” on the one 

hand and various partial information, boundedly rational schemes on the other. Neither is entirely satis-

factory. On the one hand, the knowledge and mental capacities ascribed to agents under rational expec-

tations are surely infeasible in general; on the other hand, though, there are at least some agents in the 

economy, often those with most influence, who really could not be sensibly modelled as anything other 

than fully rational. Most boundedly rational schemes also suffer from exceptionally poor performance in 

certain specific settings, meaning that in some circumstances even the least rational agents in the econ-

omy may realise the flaws in the way they form expectations. It is also hard to interpret the predictions of 

partial information boundedly rational models as until now has there has been no partial information full 

rationality benchmark to compare them against. Finally, since there are so many ways in which an agent 

can fail to be fully rational, any boundedly rational scheme will always seem somewhat arbitrary unless 

sound reasons can be given for one form rather than another. 

1.2.  “Rational expectations” 

1.2.1. Calculating rational expectations 

If we have a model of some part of the economy and values for all the model’s parameters, and we take 

that model to be true, how should we rationally form expectations of the model’s variables? This is the 

question to which “rational expectations” were the answer, an answer first formulated by Muth (1961) 

and later popularized by Lucas (1972) and Sargent et al. (1973). Broadly, rational expectations are just 

mathematical expectations; complications arise, though, when these expectations directly affect the 

model’s variables. 

Consider as a first example an industry in which supply decisions must be taken a period prior to the reali-

sation of demand, due to the time taken by production. If markets clear and we take a locally linear ap-

proximation of the supply and demand curves then we will have an equation of the form: 
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𝑐𝐷 −𝑚𝐷𝑝𝑡 + 𝜈𝐷,𝑡 = 𝑐𝑆 + 𝑚𝑆𝔼𝑡−1𝑝𝑡 + 𝜈𝑆,𝑡  

where 𝐷 and 𝑆 subscripts denote demand and supply side parameters respectively, 𝑝𝑡  is the price level 

and 𝜈∙,𝑡  are unpredictable shocks (i.e. 𝔼𝑡−1𝜈∙,𝑡 = 0)1. To find the rational expectations solution, we take 

expectations conditional on the 𝑡 − 1 information set of both sides, giving: 

 𝑐𝐷 −𝑚𝐷𝔼𝑡−1𝑝𝑡 = 𝑐𝑆 + 𝑚𝑆𝔼𝑡−1𝑝𝑡  ⇒  𝔼𝑡−1𝑝𝑡 =
𝑐𝐷 − 𝑐𝑆
𝑚𝐷 + 𝑚𝑆

  

Substituting this back into the original equation gives us that: 𝑝𝑡 =
𝑐𝐷−𝑐𝑆

𝑚𝐷+𝑚𝑆
+

𝜈𝐷 ,𝑡−𝜈𝑆 ,𝑡

𝑚𝐷
. This then is the 

value 𝑝𝑡  would take if all agents in the economy had formed rational expectations with knowledge of the 

values of the parameters 𝑐𝐷 , 𝑐𝑆 ,𝑚𝐷  and 𝑚𝑆. Because “rational expectations” are only rational when eve-

ryone in the economy knows that everyone else is rational, it is important to note that strictly construed 

“rational expectations” are an equilibrium concept. Were it the case that almost everyone in the econ-

omy (irrationally) expected next period’s price to be zero, then the rational expectation of the next period 

price would instead approximately equal 
𝑐𝑆−𝑐𝐷

𝑚𝐷
. In light of this, we shall term a solution to a model under 

rational expectations a rational expectations equilibrium or REE2. 

The models we will chiefly be concerned with in this thesis will not admit such simple REE as the one just 

given for the Cobweb model. In particular, we will focus on models in which current expectations of fu-

ture values influence the current value of those variables, rather than those in which only past expecta-

tions matter. Most DSGE and New Keynesian models take this “𝑡-dated” form. The canonical example is 

asset pricing under risk neutrality, with a constant, non-stochastic real interest rate. It is straightforward 

to see that in this situation, 𝑝𝑡 =  1 + 𝑟 −1𝔼𝑡𝑝𝑡+1 + 𝑑𝑡 , where 𝑝𝑡  is the period 𝑡 asset price and 𝑑𝑡  is the 

dividend paid at the start of that period (so in particular 𝑑𝑡  is in the period 𝑡 information set). In general, 

this has many REE. For example, let 휂𝑡  be any white noise process, then we can impose 𝑝𝑡 = 𝔼𝑡−1𝑝𝑡 + 휂𝑡  

and still get a solution, since stacking these equations we have: 

 1 − 1 + 𝑟 −1

1 0
  

𝑝𝑡
𝔼𝑡𝑝𝑡+1

 =  
0 0
0 1

  
𝑝𝑡−1

𝔼𝑡−1𝑝𝑡
 +  

𝑑𝑡
휂𝑡
  

                                                            
1 This is the Cobweb model considered by Muth (1961). 

2 This concept was introduced in Radner (1979). 
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i.e. 
 

𝑝𝑡
𝔼𝑡𝑝𝑡+1

 =  
0 1 + 𝑟
0 1 + 𝑟

  
𝑝𝑡−1

𝔼𝑡−1𝑝𝑡
 +  

0 1 + 𝑟
−1 1 + 𝑟

  
𝑑𝑡
휂𝑡
  

 

It is common when considering rational expectations solutions to such problems to restrict attention to 

those satisfying some stationarity condition. These are often justified by the transversality conditions of 

the optimization problem from which the equations arrived, or by an appeal to agents’ assumption that 

the future is not radically different from the present. In this model, it turns out that if 𝑑𝑡~NIID 𝜇,𝜎2 , for 

sensible values of 𝑟 there is always a stationary solution taking the form 𝑝𝑡 = 𝑐 + 𝑑𝑡  for some unknown 

parameter 𝑐. When this holds we must have 𝔼𝑡𝑝𝑡+1 = 𝑐 + 𝜇, so identifying coefficients 𝑐 =  1 +

𝑟 −1 𝑐 + 𝜇 , i.e. 𝑐 =
𝜇

𝑟
. This method of guessing solutions based on the state variables of the problem is 

due to McCallum (1983; 1999) and is known as the minimal state variables (MSV) solution. Unfortunately, 

for more complex models finding MSV solutions is numerically cumbersome (Binder and Pesaran 1996) 

and it will not in any case find all solutions of the original model. Instead the solution method we shall use 

in this paper owes its intellectual debt to that of Blanchard and Kahn (1980). 

1.2.2. Indeterminacy 

General linear expectational models often have many REE. Although the early DSGE literature confined 

itself to models in which there was a unique solution, recently models exhibiting indeterminacy have 

been given more serious consideration. Indeterminacy may arise from increasing returns to scale (Ben-

habib and Farmer 1994), market imperfections (Benhabib and Nishimura 1998), search externalities 

(Howitt and McAfee 1988), variable mark-ups (Woodford 1987), collusion (Rotemberg and Woodford 

1992), the interaction of monetary policy and cash in advance constraints (Woodford 1994), policy feed-

back (Blanchard and Summers 1987; Taylor 1998), sticky prices (Benhabib et al. 1998), endogenous 

growth (Benhabib and Gali 1995) and several other sources3. Indeed, the theoretical evidence at least is 

almost overwhelming in support of some level of indeterminacy. 

Indeterminacy can also potentially explain many macroeconomic puzzles. Benhabib and Farmer (1999) 

suggest it may have a role to play in explaining price stickiness, Auray and Fève (2007) suggest it may ex-

                                                            
3 This literature is extensively surveyed in Benhabib and Farmer (1999). 
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plain the price puzzle and Benhabib and Farmer (2000) suggest it may help explain the real effects of an 

increase in the money supply. All of this suggests that indeterminacy is empirically important as well. 

Our interest in indeterminacy stems from two facts. Firstly, the traditional macroeconomic learning litera-

ture has had most problems with learning under indeterminacy, (which is something we will discuss 

later), and secondly, intuitively rational learning should perform best under indeterminacy, since under 

indeterminacy the set of expectations consistent with stability will be much larger, and thus it will be eas-

ier to end up within it. In light of the previous remarks, we assert that these problems with traditional 

learning under indeterminacy should be taken seriously and not dismissed as being the result of poor 

modelling choice, and we can be optimistic for the performance of rational learning, even if it turns out to 

perform badly under determinacy. 

1.2.3. Problems with “rational expectations” 

We have already hinted at many of the problems with the REE concept. It is objected firstly that agents do 

not have the information to form rational expectations and secondly that they lack the mental capabilities 

to act on that information in the required way. 

The first objection is uncontroversial. Even professional macroeconomists still have a great deal of uncer-

tainty as to the precise impact of a monetary policy shock, for example. Finding out the parameters of a 

macro-model invariably requires undertaking at least some econometrics – a procedure that will never 

produce certainty, only posterior probability distributions over the values those parameters might take. It 

really does then seem hard to justify assuming that all agents in the economy actually form expectations 

under full information. 

The second objection leaves more room for debate. It might be argued that it only takes a few agents in 

the economy forming expectations rationally for the whole economy soon to acquire rational expecta-

tions4. For example, given sufficient liquidity it only takes a single risk-neutral agent with rational expecta-

                                                            
4 Precisely this is shown within the context of a simple model in Blume and Easley (1993: 38). In particular, they 

show that if all traders in a simple economy have logarithmic preferences and some traders are Bayesian learners 

who put positive probability on the correct model, then in the long run, assets are correctly priced. 
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tions participating in futures markets for all futures prices to correspond to their prices under rational 

expectations. Indeed even non-futures markets reveal significant amounts about market expectations of 

the future paths of output and the interest rate. The media then notice such signals and broadcast them 

back to the wider population, in effect giving every agent in the economy free access to a set of almost 

rational forecasts for major macroeconomic variables. Of course, agents may well ignore this information 

or act on it in irrational ways, but this is not an argument against ascribing them rational expectations so 

much as one against modelling their micro-behaviour as fully rational. 

The validity of the second criticism then depends on both the strength of the transmission mechanism of 

expectations and the extent to which forming fully rational expectations is computationally feasible for 

those working at investment banks. We will be better placed to answer the latter of these two questions 

once we have analysed what rational expectations look like under partial information. In any case, 

though, it seems the full information assumption implicit in the classical REE framework is sufficiently du-

bious to warrant a search for alternatives. 

1.3. Bounded rationality 

1.3.1. Adaptive expectations 

The earliest models of macroeconomic expectations formation (e.g. Cagan 1954) took the form: 

𝑡𝑥𝑡+1 = 𝜆𝑥𝑡 +  1 − 𝜆 𝑡−1𝑥𝑡  

where 𝑡  is a period 𝑡 non-rational expectation operator, 𝜆 is an arbitrary parameter and 𝑥𝑡  is the process 

of interest. With 𝜆 = 1 the variable is not expected to change from its current value and with 𝜆 = 0 ex-

pectations can take any constant value, independent of time. With 𝜆 ∈  0,1 , expectations adjust slug-

gishly to changes in the level of 𝑥𝑡 , which can be thought of as something like a learning process. This 

form of learning seems reasonable when the REE solution for 𝑥𝑡  takes the form 𝑥𝑡 = 𝜇 + 휀𝑡  (a form we 

saw was taken in the Cobweb model when 𝑥𝑡  is the price level) and where there is some constant prob-

ability in each period of a structural break that changes the value of 𝜇. When 𝜇 is constant over time the 

learning procedure will soon settle down to satisfying 𝑡𝑥𝑡+1 ≈ 𝔼𝑡𝑥𝑡+1 providing both 𝑥𝑡  and 𝑡𝑥𝑡+1 are 

asymptotically stationary (though even asymptotically for 𝜆 > 0 there is greater variance in the 𝑥𝑡  proc-
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ess than there would be in the REE) (G. W. Evans and Honkapohja 2001: 49), but the learning procedure is 

nonetheless also capable of responding to changes in 𝜇. 

It is worthwhile comparing these models’ properties to those in which we instead have: 

𝑡𝑥𝑡+1 = 𝑡−1𝑥𝑡 +  1 − 𝑡−1 𝑡−1𝑥𝑡   ⇒   𝑡𝑥𝑡+1 =
1

𝑡
 𝑥𝑠

𝑠=𝑡

𝑠=1

 

i.e. 𝑡𝑥𝑡+1 is the sample mean of 𝑥1 ,… , 𝑥𝑡 . If it was genuinely the case that for all 𝑡, 𝑥𝑡 = 𝜇 + 휀𝑡 , then this 

would be the unique fully rational way of forming expectations. Unfortunately, if everyone else is learning 

at the same time then in models containing expectations it will not in general be the case that 𝑥𝑡 = 𝜇 +

휀𝑡 , though this may be approximately true for large 𝑡 if the REE solution takes this form. Consideration of 

these decreasing-gain learning procedures gives an alternative interpretation of the constant gain case: if 

we consider a large population of agents all of differing ages each of whom is undertaking decreasing-gain 

learning, then, providing agents’ life-spans are not changing through time, constant gains may, in the ag-

gregate, be a reasonable approximation5. 

However, crude learning procedures such as these are utterly unsuited to modelling any situation in 

which the REE solution is not of the form 𝑥𝑡 = 𝜇 + 휀𝑡 , since then 𝔼𝑡𝑥𝑡+1 would not be constant and so, 

even in the best possible case in which everyone else in the economy has rational expectations, there 

would still be no possible way in which 𝑡𝑥𝑡+1 could be even approximately asymptotically rational. 

1.3.2. Statistical learning à la Evans and Honkapohja 

Evans and Honkapohja’s work (henceforth E&H)6 (e.g. G. W. Evans and Honkapohja 2001) is designed to 

address this criticism. They assume agents estimate the parameters of the REE solution by usual econo-

metric techniques such as ordinary least squares (OLS). Due to the “online” nature of the learning, it is 

                                                            
5 This result is highly dependent on the age structure of the population, and the value of 𝜆 for which this comes 

closest to holding will be a function of the population’s structure. We will discuss this issue in more detail in § 1.3.3. 

6 The origins of this literature go back at least as far as Bray (1982), but most of the ideas later used and popularised 

by E&H, not least the stochastic approximation techniques, were introduced by Marcet and Sargent (1989). 
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usually convenient to express this in recursive least squares (RLS) form. For example if the REE solution 

has the AR 1  form 𝑥𝑡 = 𝜔 𝑥𝑡−1 + 𝜇 + 휀 𝑡 , then the estimates 𝜇 𝑡  and 𝜔 𝑡  of 𝜇  and 𝜔  would be updated by: 

 
 
𝜇 𝑡
𝜔 𝑡
 =  

𝜇 𝑡−1

𝜔 𝑡−1
 + 𝑡−1𝑅𝑡

−1  
1

𝑥𝑡−1
  𝑥𝑡 − 𝜇 𝑡−1 − 𝜔 𝑡−1𝑥𝑡−1  

 

where 𝑅𝑡  is the estimated covariance matrix of 휀 𝑡  (assumed IID) which is updated according to: 

 
𝑅𝑡 = 𝑅𝑡−1 + 𝑡−1   

1 𝑥𝑡−1

𝑥𝑡−1 𝑥𝑡−1
2  − 𝑅𝑡−1  

 

This is fully rational learning if and only if it is actually the case that for all 𝑡, 𝑥𝑡 = 𝜔 𝑥𝑡−1 + 𝜇 + 휀 𝑡 . Again, 

this will not be true in general if the economy is affected by expectations and everyone is learning at the 

same time. For example, if 𝑥𝑡 = 𝑎𝔼𝑡𝑥𝑡+1 + 𝑏𝑥𝑡−1 + 𝜇 + 휀𝑡  (so 𝜔 =  1 ±  1 − 4𝑎𝑏 2𝑎 , 𝜇 =

𝜇  1 − 𝑎 − 𝑎𝜔    and 휀 𝑡 = 휀𝑡  1 − 𝑎𝜔   ) then, if expectations are formed according to the learning pro-

cedure given above, it will actually be the case that: 

𝑥𝑡 = 𝑎 𝜔 𝑡−1𝑥𝑡−1 + 𝜇 𝑡−1 + 𝑏𝑥𝑡−1 + 𝜇 + 휀𝑡 =  𝑎𝜔 𝑡−1 + 𝑏 𝑥𝑡−1 +  𝑎𝜇 𝑡−1 + 𝜇 + 휀𝑡  

This means agents are estimating evolving parameters as being in fact constant, so their learning proce-

dure is misspecified and consequently cannot be fully rational. 

E&H derive some general convergence conditions for this type of learning. The current model under con-

sideration serves as a good illustration of its performance7. When the REE is fully stable, so one solution 

for 𝜔  is in the unit circle and one is outside it8, locally at least, RLS learning will always converge to the 

unique stable REE. However, under indeterminacy, at most one of the two MSV solutions is locally stable 

under RLS learning and, indeed, in one non-null region of indeterminacy there is a zero probability of con-

vergence to either of these two MSV solutions under RLS learning. This demonstrates that the learning 

method posited by E&H may fail catastrophically in certain circumstances and illustrates our claim above 

that statistical learning performs particularly badly under indeterminacy. 

                                                            
7 See Figure 8.7 of “Learning and Expectations in Macroeconomics” (G. W. Evans and Honkapohja 2001: 203). 

8 That this is the condition is shown in § 2.2. 
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When applying their work to real world data, E&H tend to switch from decreasing to constant gain, both 

to allow for structural breaks and because in real world agents die taking their accumulated knowledge 

with them. The convergence properties of constant gain learning are more complicated, as even in the 

limit the estimated parameters will be stochastic, which in certain circumstances can cause periodic 

jumps from one basin of attraction (i.e. an REE solution) to another. Nevertheless, they prove that in cer-

tain circumstances even constant gain learning will converge in the mean to an REE solution.  

1.3.3. Problems with Evans and Honkapohja’s work 

The chief problem with E&H’s approach to learning lies in its fundamental misspecification. They attempt 

to justify this by noting that “the misspecification may not even be statistically detectable during the tran-

sition *to a steady state+” (G. W. Evans and Honkapohja 2001: 32), but this will certainly fail to hold in 

situations in which RLS learning does not even converge. In these circumstances, surely even the least 

rational agents would realise their misspecification. Worse still, this criticism applies not just to regions in 

which RLS fails to converge to anything, but also to those in which some, but not all, stationary REE have a 

basin of attraction under RLS, such as those described above. To see this, suppose that we are in an econ-

omy of this AR 1  form with parameters in an indeterminate region in which the lower solution is 

uniquely stable under RLS, and suppose that until period 𝑡, all the agents had full information and were 

forming expectations in line with the higher of the two REE solutions. If from period 𝑡 onwards these fully 

informed agents started slowly dying and being replaced with uninformed agents of infinite lifespan, then 

we would expect the economy still to remain near its original REE, as the uninformed agents should be 

able to learn the equilibria the informed agents had been playing until that point. However, if the unin-

formed agents were learning by RLS, then their probability of convergence to the larger solution would 

still be zero, providing the informed agents all died off in a finite period. 

E&H wish to use RLS convergence as a justification for picking one REE rather than another. However, 

given that even boundedly rational agents would realise RLS was failing in such circumstances, at best, 

they have shown criteria for RLS being an acceptable approximation to learning. 

Additional problems are caused by E&H’s reliance on constant gain learning in order to get empirical pre-

dictions. Even if all agents learned by RLS, constant-gain learning would still not necessarily be a reason-
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able model of aggregated expectations. For example, if we take the continuous time version of the model 

described in § 1.3.1, then if 𝑝𝑎  is the density of people of age 𝑎 in the population, for (continuous time) 

RLS to aggregate to (continuous time) constant gain learning, it is easy to see that we require ∫
𝑝𝑎

𝑎

∞

𝑘
𝑑𝑎 =

𝜆𝑒−𝜆𝑘  since these are the contributions of the 𝑥𝑡−𝑘  data point to aggregated RLS and constant gain learn-

ing respectively. This can only hold if 𝑝𝑎 = 𝜆2𝑎𝑒−𝜆𝑎 , which our numerical calibrations have shown to be a 

poor model of actual data: in particular, it requires there to be far too many over 80s as this distribution 

has relatively fat tails. Therefore, in general we expect the dynamics in a population of agents, all of 

whom are learning by RLS, to differ substantially from the dynamics under constant gain learning. 

Both our claim that stability under RLS learning cannot be validly used as an equilibrium selection device 

and our claim that it is invalid to use constant gain learning as an approximation to aggregate learning are 

fundamental criticisms of the E&H approach. A perhaps yet more damning one, though, comes from our 

suggestion that the only reasonable model may be that expectations are rational in aggregate, given the 

expectational transition mechanisms present in the economy, and given the many agents who have 

strong financial incentives for rationality. This approach of full rationality but partial information is what 

we pursue in this thesis. 

1.4. Full rationality, limited information 

That economic agents may be fully rational and yet not have full information is certainly not a new idea. 

There have been substantial tranches of literature devoted to learning in general equilibrium and learning 

in games. Two fairly comprehensive surveys are Blume and Easley (1993) and Blume et al. (1982). The 

“rational” part enters from the use of Bayes’ Law for the updating of beliefs. If one accepts the Savage 

axioms (Savage 1954) as defining rationality, then Bayesian learning is the only rational kind of learning 

there is. Though far from uncontroversial, for the duration of this thesis we will suppose the Savage axi-

oms are a given, so “rational learning” and “Bayesian learning” are synonymous. 

The first thing to note is that much of the existing literature has been concerned with estimating unob-

served variables rather than estimating the model’s parameters. This covers estimating current values of 

variables that are only available with a lag, estimating variables subject to measurement error and esti-
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mating the permanent component of variables subject to transitory shocks. The fully general solution to 

this under homogeneous beliefs in a macroeconomic linear REE context was given in Pearlman et al. 

(1986), and is (broadly) based on Kalman filter methods (Kalman 1960). Since we are attempting to an-

swer the same question as E&H, ours is an entirely different problem to this and Kalman filtering tech-

niques will not be applicable. That said, future work could examine learning under uncertainty both about 

unobserved variables and about the model’s parameters. 

Another thing to note is that a good deal of the literature deals with heterogeneity in beliefs and hence in 

expectations, the most famous example of which is Townsend (1983) which deals with this in an unob-

served variables context. In assuming homogeneity, we will escape many issues connected with this. 

Another source of apparent complication in the existing literature is the placing of learning within the 

contexts of a very specific general equilibrium model that has not gone through the usual macroeconomic 

“mashing” process of log-linearization, assumed certainty equivalence etc. to get it into a standard linear 

expectational reduced form. This means that learning is very closely tied in to the particular agent doing 

the learning and that inter-temporal optimization needs to take into account how beliefs might be revised 

in future. Townsend (1978) and the subsequent literature it spawned all fall into this category. 

A significant explanation for the success of the E&H approach to learning is that it is entirely generic and 

plugs straight into the linear expectational reduced form, which would normally be calculated anyway in 

order to find the full information REE in an analytically tractable way. Admittedly, there are some very 

good reasons, when one is concerned with modelling strict rationality, for not log-linearizing and assum-

ing certainty equivalence, since at best the reduced form that results is a local approximation to the true 

behaviour described by the model. However, many of these reasons are just as valid under full informa-

tion as they are under partial, and yet few quibble with the ascription of “rationality” to the full informa-

tion REE solution that results from solving the reduced form. In light of this, we will be solely concerned 

with linear expectational reduced forms and we will treat them as if they were complete and exact de-
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scriptions of the micro-founded models from which they arose9. This means that, much as in E&H, learn-

ing will be performed by a representative agent and will be unrelated to utility. 

To the best of our knowledge, the problem of forming partial information rational expectations (in the 

macroeconomic sense) has never been addressed. In particular, it is the combination of parameter learn-

ing and having to choose expectations in order to (attempt to) stay on the stable path that is novel. There 

has been some literature on the related problem of optimal control under parameter uncertainty, includ-

ing Prescott (1972), Easley and Kiefer (1988) and Kiefer and Nyarko (1989), but the complications present 

in these papers (chiefly coming from trade-offs between learning speed and the control target) do not 

give any great insights into the problems we will encounter below, which is unsurprising since our learn-

ing is utility independent and our “control target” is binary (“end up on the stable path” or “don’t”). Our 

task is made particularly difficult by the fact that if agents are far enough off the stable path then they 

may never be able to return to it, even if they later know better where it is, since expectational errors 

must be unpredictable from the period in which the expectations were formed. 

1.5. The model 

1.5.1. Core details 

We will be solely concerned with models with the standard 𝑡-dated expectations form: 

 𝑅1𝑦𝑡 = 𝑆𝔼𝑡𝑦𝑡+1 + 𝑇1𝑦𝑡−1 + 𝑊𝑧𝑡 + 𝜆𝑦 + 𝛾𝑦𝑡 + 𝜈𝑦 ,𝑡    

 𝑅2𝑧𝑡 = 𝑇2𝑧𝑡−1 + 𝜆𝑧 + 𝛾𝑧𝑡 +  𝜈𝑧 ,𝑡   

  𝜈𝑡 =  
𝜈𝑦 ,𝑡

𝜈𝑧 ,𝑡
 ~NIID 0,Ξ   

                                                            
9 The approximation implicit in this is close to what Cogley and Sargent (2008) call an “anticipated-utility” model, 

after Kreps (1998). In these models, agents treat parameters as uncertain when learning, but as constants when 

forming decisions. They show that at least in their model the anticipated utility approximation is close to the fully 

rational solution. Our agents are slightly more sophisticated than this, though, because they only treat expectations 

as constants when forming decisions. The formation of the actual expectation each period will fully account for un-

certainty as to the model’s parameters, which is not true in the Evans and Honkapohja approach for example. 
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where 𝑦𝑡  is a vector of endogenous variables (in the sense that they can be influenced by expectations) 

and 𝑧𝑡  is a vector of exogenous variables (in the sense that they are not affected by expectations). A large 

proportion of DSGE models take this form, which justifies our focus on it, and as in the standard REE lit-

erature, we shall assume agents have homogenous beliefs. However, unlike this literature, we shall not 

assume that agents are aware of the entire past history of the economy before their “birth”10, or that 

they know 𝑅1 ,𝑅2 , 𝑆,𝑇1 ,𝑇2 ,𝑊,Ξ, 𝜆, 𝛾 with certainty; in fact we will not even assume agents know which 

variables are exogenous. We do however assume that all agents ascribe probability 1 to all variables as-

ymptotically growing at a sub-exponential rate, i.e. that for all 𝑠 ∈ ℤ, there is some polynomial 𝑝𝑠 𝑡  such 

that as 𝑡 → ∞, 𝔼𝑠𝑥𝑡 − 𝑝𝑠 𝑡 → 0. This could be justified by assuming that agents are reluctant to assign 

probability to the future being significantly different from the past. We have included a linear time trend 

in this core model to allow for growth, as even removing a linear trend is not a trivial operation in small 

samples when there is uncertainty about other parameters as well. 

This model can be simplified if we let 𝑥𝑡 ≔  
𝑦𝑡
𝑧𝑡
  and assume 𝑅2 is invertible as then: 

 𝐶𝑥𝑡 = 𝐴𝔼𝑡𝑥𝑡+1 + 𝐵𝑥𝑡−1 + 𝜇 + 𝛿𝑡 + 휀𝑡  (1.1) 

where 𝐴𝑡 =  
𝑆𝑡 0
0 0

 , 𝐵 =  
𝑇1 𝑊𝑅2

−1𝑇2

0 𝑅2
−1𝑇2

 , 𝐶 =  
𝑅1 0
0 𝐼

 , 𝜇 =  
𝜆𝑦 + 𝑊𝑅2

−1𝜆𝑧

𝑅2
−1𝜆𝑧

 , 𝛿 =  
𝛾𝑦 + 𝑊𝑅2

−1𝛾𝑧

𝑅2
−1𝛾𝑧

  and 

where 휀𝑡 =  
𝜈𝑦 ,𝑡 + 𝑊𝑅2

−1𝜈𝑧 ,𝑡

𝑅2
−1𝜈𝑧 ,𝑡

 ~NIID 0, Σ , where Σ =  
𝐼 𝑊𝑅2

−1

0 𝑅2
−1  Ξ  

𝐼 0

𝑅2
−1 ′𝑊 ′ 𝑅2

−1 ′ . 

We will take this equation as our general form from here on. This is valid as in general agents are uncer-

tain which variables are exogenous, so there are no restrictions they can place with certainty on the struc-

ture of this equation’s parameters. 

                                                            
10 This can better be thought of as a model of a major structural change to the economy in period 𝒷 − 1, after which 

everyone has to start their learning again from scratch. A major change in political institutions or central bank mone-

tary policy regime is the usual example. In future work we will give “birth” its more literal meaning and assess learn-

ing in an overlapping generations model (without the assumption of homogeneity of beliefs). 
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1.5.2. Canonical form 

Let us now define the innovation process by 휂𝑡 ≔ 𝑥𝑡 − 𝔼𝑡−1𝑥𝑡  for all 𝑡 ∈ ℤ. We can stack this definition 

together with (1.1) to get the canonical form: 

  
𝐶 −𝐴
𝐼 0

  
𝑥𝑡

𝔼𝑡𝑥𝑡+1
 =  

𝐵 0
0 𝐼

  
𝑥𝑡−1

𝔼𝑡−1𝑥𝑡
 +  

𝜇
0
 +  

𝛿
0
 𝑡 +  

𝐼
0
 휀𝑡 +  

0
𝐼
 휂𝑡  

 

So defining 𝑣𝑡 =  
𝑥𝑡

𝔼𝑡𝑥𝑡+1
 , Γ0 =  

𝐶 −𝐴
𝐼 0

 , Γ1 =  
𝐵 0
0 𝐼

 , 𝜇 =  
𝜇
0
 , 𝛿 =  

𝛿
0
 , Ψ =  

𝐼
0
  and Π =  

0
𝐼
  we have: 

 Γ0𝑣𝑡 = Γ1𝑣𝑡−1 + 𝜇 + 𝛿 𝑡 + Ψ휀𝑡 + Π휂𝑡  (1.2) 

Beyond requiring that 𝑣𝑡 =  
𝑥𝑡

𝔼𝑡𝑥𝑡+1
 , our solution method will not depend at all on the precise internal 

block structure of Γ0 , Γ1 , 𝜇 , 𝛿 ,Ψ and Π. However, it is worth noting that if 𝐴 is invertible then we can pre-

multiply by Γ0
−1 =  

0 𝐼
−𝐴−1 𝐴−1𝐶

  giving: 

 
𝑣𝑡 =  

0 𝐼
−𝐴−1𝐵 𝐴−1𝐶

 𝑣𝑡−1 +  
0

−𝐴−1𝜇
 +  

0
−𝐴−1𝛿

 𝑡 +  
0

−𝐴−1 휀𝑡 +  
𝐼

𝐴−1𝐶
 휂𝑡  

(1.3) 

If 휂𝑡  is taken to be an arbitrary white noise process, then this is the full set of solutions including explosive 

ones. The challenge in both the full and partial information cases is to restrict 휂𝑡  in order to guarantee 

that 𝔼𝑠𝑣𝑡  is asymptotically polynomial in 𝑡. 
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2. Full information solution 

We begin by solving the canonical form under full information. We do this both to introduce the mathe-

matical machinery and because we wish eventually to find necessary and sufficient conditions for the ex-

pectational errors under partial information to converge to those under full, which, unsurprisingly, re-

quires a solution for these errors in both circumstances. We will also introduce the concept of a “Feasible 

Rational Expectations Equilibria” in this chapter, without which finding the partial information REE would 

be incredibly difficult, if not impossible. 

2.1. Information sets 

In what follows, we will mark all variables that are different under full information by a superscript ∗. This 

is necessary to make it perfectly clear that 𝑥𝑡  (the economy’s state when everyone has limited informa-

tion) is not the same random variable as 𝑥𝑡
∗ (the economy’s state under full information). We will also de-

note expectations taken under this information set at 𝑡 by 𝔼𝑡
∗. So we replace 𝑣𝑡  by 𝑣𝑡

∗ =  
𝑥𝑡
∗

𝔼𝑡
∗𝑥𝑡+1

∗  . 

We suppose that everyone was born at time −∞ and so knows the complete history of the economy (in-

cluding contemporaneous values of 𝑥𝑡
∗11) and that they also know the values of 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 with cer-

tainty. We suppose they know the data generating process for 휀𝑡  and that Σ is of full rank. Furthermore, 

we suppose that at 𝑡 agents know the value of 휁𝑡 , a vector of all the sunspot shocks that may possibly af-

fect the economy. Additionally, we suppose that agents know arbitrary matrices 𝑀휀  and 𝑀휁  of size 

 dim 𝑥𝑡
∗ − 𝑞 × dim 𝑥𝑡

∗ and  dim 𝑥𝑡
∗ − 𝑞 × dim 휁𝑡  respectively (where 𝑞 is a known constant whose 

value will be defined later in terms of 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿), which determine the aggregation of sunspots vari-

                                                            
11 Allowing 𝑥𝑡

∗ to be in the time 𝑡 information set is not completely uncontroversial, since in the real world data of-

ten takes a while to arrive. However this is not the level on which to incorporate such insights, since the micro-

foundations of these models invariably use information sets in which 𝑥𝑡  is either observable or at least in equilib-

rium perfectly predictable at 𝑡. (For example in Calvo pricing models (Calvo 1983), firms set prices equal to a con-

stant mark-up over nominal marginal cost, which itself depends on the actual aggregate price level that period.) We 

trust that micro-founded model builders would have written 𝔼𝑡−1 instead of 𝔼𝑡  if they did not think the agent in 

question had access to contemporaneous variables. 
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ables into a combined sunspot term. We will require that 𝔼𝑡−1
∗ 휁𝑡 = 0, which is to say that sunspots are 

unpredictable. We also assume that 휁𝑡  is independent of all other random variables (so in particular 

𝔼𝑡−1
∗  휁𝑡휀𝑡

′  = 0). This assumption is harmless, as the actual sunspot term will be given by 𝑀휀휀𝑡 + 𝑀휁휁𝑡 . 

More precisely then, the time 𝑡 information set for all agents is given by: 

ℐ𝑡
∗ ≔    𝑥𝑡

∗, 휁𝑡 

𝑡

𝑠=−∞

 ∪  𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿,𝑀휀 ,𝑀휁  ∪    휀𝑠~NIID 0, Σ  

∞

𝑠=−∞

 ∪  Σ is of full rank 

∪    𝔼 휁𝑠 = 0 and 휁𝑠  is independent of 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿, 휀𝑡 , 휀𝑡−1 ,… , 휀𝑡+1 , 휀𝑡+2 ,…  

∞

𝑠=−∞

 

∪  the economy's law of motion is of the form of (1.1) 

∪  the economy is asymptotically growing at a sub-exponential rate  

Note that we have not assumed that 휀𝑡 , 휀𝑡−1 ,… is in the ℐ𝑡
∗ information set. This is because in the partial 

information case (where there is some uncertainty over 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿) it is very hard to justify assuming 

that 휀𝑡 , 휀𝑡−1 ,…  is known at 𝑡; econometric data sources do not have series of shock values, rather 

econometricians estimate a theoretically justified model from output, inflation etc. and then infer esti-

mates of the shock series. In addition, were 휀𝑡  known at 𝑡, then after at most 3 dim 𝑥𝑡 + 2 observations 

of 𝑥𝑡 , 𝔼𝑡𝑥𝑡+1, 𝑥𝑡−1 and 휀𝑡  the parameters 𝐴,𝐵,𝐶, 𝜇 and 𝛿 would be known with certainty (since Σ is of full 

rank), which would be a rather poor model of “learning”, particularly as it would lead to all shocks being 

fully identified, something certainly not true in most macroeconomic contexts.  

Now despite 휀𝑡  not being in ℐ𝑡
∗, if we take expectations of (1.1), then we have: 

 𝔼𝑡
∗휀𝑡 = 𝐶𝑥𝑡

∗ − 𝐴𝔼𝑡
∗𝑥𝑡+1

∗ − 𝐵𝑥𝑡−1
∗ − 𝜇 − 𝛿𝑡 = 휀𝑡   

Thus under the ℐ𝑡
∗ information set agents will know 휀𝑡  anyway. However, this result clearly relies on the 

inclusion of 𝐴,𝐵,𝐶, 𝜇, 𝛿 in ℐ𝑡
∗; if there is any uncertainty at all as to their values then agents will not be 

able to work out 휀𝑡  with certainty. In light of this, and since we are chiefly concerned with learning in this 

thesis, we will be particularly interested in REE in which 𝔼𝑡
∗𝑥𝑡+1

∗  is expressible as linear in 

𝑥𝑡
∗, 𝑥𝑡−1

∗ ,… , 휁𝑡 , 휁𝑡−1 ,… and so in particular is not a function of 휀𝑡 , 휀𝑡−1 ,…. We will term such equilibria 
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“Feasible Rational Expectations Equilibria” or FREE12. It is worth pointing out that trivially the MSV solu-

tion is always feasible in this sense, since it will only include contemporaneous shocks. 

2.2. The univariate special case 

We commence with an analysis of the univariate case. This provides a gentle introduction to the mathe-

matical methods and the procedure for finding FREE solutions, and gives a convenient way of checking 

our algebra in the harder cases. It also makes clear the limitations of the MSV solution method. 

2.2.1. Stability analysis 

Suppose temporarily that 𝑥𝑡  is one dimensional, so 𝐴 = 𝑎, 𝐵 = 𝑏 and 𝐶 = 𝑐 for some scalars 𝑎, 𝑏 and 𝑐. If 

𝑎 = 0, then the model is in AR 1  form and so there is a non-explosive solution if and only if 𝑐 = 0 (in 

which case 𝔼𝑡
∗𝑥𝑡+1

∗ = 0) or  
𝑏

𝑐
 ≤ 1 (in which case 𝔼𝑡

∗𝑥𝑡+1
∗ =

𝑏

𝑐
𝑥𝑡
∗ + 𝜇 + 𝛿 𝑡 + 1 ). 

If 𝑎 ≠ 0, then from (1.3): 

 
 

𝑥𝑡
∗

𝔼𝑡
∗𝑥𝑡+1

∗  =  
0 1

−
𝑏

𝑎

𝑐

𝑎

  
𝑥𝑡−1
∗

𝔼𝑡−1
∗ 𝑥𝑡

∗ +  
0

−
𝜇

𝑎
 +  

0

−
𝛿

𝑎

 𝑡 +  
0

−
1

𝑎

 휀𝑡 +  
1
𝑐

𝑎
 휂𝑡

∗ 
 

(2.1) 

The eigenvalues 𝜔1, 𝜔2 of  
0 1

−
𝑏

𝑎

𝑐

𝑎

  satisfy 𝜔2 −
𝑐

𝑎
𝜔 +

𝑏

𝑎
= 0, so: 

 
𝜔1 =

𝑐 −  𝑐2 − 4𝑎𝑏

2𝑎
, 𝜔2 =

𝑐 +  𝑐2 − 4𝑎𝑏

2𝑎
 

 

If   𝜔1 ≤ 1 and  𝜔2 ≤ 1 then the system is stable13, so expectations are indeterminate. If precisely one 

eigenvalue satisfies  𝜔 ≤ 1, then the system is saddle path stable and expectations will be determinate. 

If  𝜔1 > 1 and  𝜔2 > 1 then the system is unstable independent of expectations. 

                                                            
12 It may be objected that for an REE to be feasible, in fact 𝔼𝑡

∗𝑥𝑡+1
∗  should not even depend on 휁𝑡 , 휁𝑡−1 ,…. There is 

certainly some validity to this objection, but the direct observability of 휁𝑡  may be justified by noting that the source 

of 휁𝑡 ’s variance is in some sense a choice variable, since expectations are. We may think of agents as calculating the 

determinate parts of their expectations and then choosing to use e.g. the deviation between the expected and ac-

tual number of goals scored in Premiere League matches to determine the other components of their expectations. 



 

 

21 Full information solution 

May 1, 2008 

Note that when 𝑐2 − 4𝑎𝑏 < 0, both eigenvalues are complex and  𝜔1 
2 =  𝜔2 

2 =
𝑏

𝑎
. Thus, in this case, 

the system will be stable and indeterminate if 
𝑏

𝑎
≤ 1 and explosive otherwise. 

When 0 ≤ 𝑐2 − 4𝑎𝑏, both eigenvalues are real. In this case  𝜔1 = 1 if and only if  𝜔2 = 1 if and only if 

𝑐 = 𝑎 + 𝑏 or 𝑐 = −𝑎 − 𝑏. Now 
𝜕 𝜔1 

2

𝜕𝑐
≤ 0 and 

𝜕 𝜔2 
2

𝜕𝑐
≥ 0. Thus  𝜔1 ≤ 1 if and only if 𝑐 ≥ − 𝑎 + 𝑏  and 

 𝜔2 ≤ 1 if and only if 𝑐 ≤  𝑎 + 𝑏 . 

2.2.2. Fully stable cases 

In the fully stable cases either 𝑐2 − 4𝑎𝑏 < 0 and 
𝑏

𝑎
≤ 1 or 0 ≤ 𝑐2 − 4𝑎𝑏 and − 𝑎 + 𝑏 ≤ 𝑐 ≤  𝑎 + 𝑏 . In 

these cases rational expectations impose no restrictions on 휂𝑡
∗, so the full set of solutions satisfies 

휂𝑡
∗ = 𝑚휀휀𝑡 + 𝑚휁

′ 휁𝑡 , where 𝑚휀 = 𝑀휀  is a scalar and 𝑚휁
′ = 𝑀휁  is a row vector (i.e. in this case, 𝑞 = 1). We 

are particularly interested in FREE solutions in which 𝔼𝑡𝑥𝑡+1 does not depend on 휀𝑡 , 휀𝑡−1 ,…. We can ac-

complish this if we are prepared to further restrict 𝑚휀 . In particular, if we assume 𝑚휀 ≠ 0 then 

휀𝑡 =
휂𝑡
∗−𝑚휁

′ 휁𝑡

𝑚휀
 so from the bottom row of (2.1) and the definition of 휂𝑡

∗, the FREE solutions satisfy: 

 
𝔼𝑡
∗𝑥𝑡+1

∗ = −
𝑏

𝑎
𝑥𝑡−1
∗ +

𝑐

𝑎
𝔼𝑡−1
∗ 𝑥𝑡

∗ −
𝜇

𝑎
−
𝛿

𝑎
𝑡 −

1

𝑎

휂𝑡
∗ −𝑚휁

′ 휁𝑡

𝑚휀
+
𝑐

𝑎
휂𝑡
∗ 

=
1

𝑎
 𝑐 −

1

𝑚휀
 𝑥𝑡

∗ −
𝑏

𝑎
𝑥𝑡−1
∗ +

1

𝑎𝑚휀
𝔼𝑡−1
∗ 𝑥𝑡

∗ −
𝜇

𝑎
−
𝛿

𝑎
𝑡 +

1

𝑎

𝑚휁
′

𝑚휀
휁𝑡  

 

The condition that 𝑚휀 ≠ 0 is also necessary for the existence of a FREE. To see this suppose for a contra-

diction that 𝑚휀 = 0 but that: 

 𝔼𝑡
∗𝑥𝑡+1

∗ = 𝓇𝑥𝑡
∗ + 𝓈휁𝑡 + other terms known at 𝑡 − 1  

Then 0 = Cov𝑡−1 휂𝑡
∗, 휀𝑡 = Cov𝑡−1 𝑥𝑡

∗, 휀𝑡 , so we also have: 

                                                                                                                                                                                                  
13 In the sense of exhibiting polynomially bound, i.e. non-explosive, growth. We are thus treating unit roots as sta-

ble. This is valid given our particular definition of explosiveness since expectations of a unit root process, though 

time dependent, are nonetheless polynomial. For example if 𝑥𝑡 = 𝑥𝑡−1 + 1 + 𝑡 + 휀𝑡  then 𝔼𝑡𝑥𝑡+𝑘 = 𝑥𝑡 + 𝑘 + 𝑘𝑡 +

1

2
𝑘 𝑘 + 1 , which is quadratic in 𝑘. It is possible to treat unit roots as explosive and ensure asymptotic linearity, but 

this considerably complicates the derivations. 
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0 = Cov𝑡−1 𝑐𝑥𝑡
∗, 휀𝑡 = Cov𝑡−1 𝑎𝔼𝑡

∗𝑥𝑡+1
∗ + 𝑏𝑥𝑡−1

∗ + 𝜇 + 𝛿𝑡 + 휀𝑡 , 휀𝑡 = Cov𝑡−1 𝑎𝔼𝑡
∗𝑥𝑡+1

∗ + 휀𝑡 , 휀𝑡  

= 𝑎𝓇 Cov𝑡−1 𝑥𝑡
∗, 휀𝑡 + 𝑎𝓈 Cov𝑡−1 휁𝑡 , 휀𝑡 + Var𝑡−1 휀𝑡 = Σ 

However Σ is of full rank, so we have a contradiction from 0 = Σ ≠ 0.  

To obtain the general solution for 𝑥𝑡
∗, we instead use the definition of 휂𝑡

∗ to replace the expectational 

terms in the bottom row of (2.1), which implies: 

 
𝑥𝑡+1
∗ =

𝑐

𝑎
𝑥𝑡
∗ −

𝑏

𝑎
𝑥𝑡−1
∗ −

𝜇

𝑎
−
𝛿

𝑎
𝑡 + 𝑚휀휀𝑡+1 −

1

𝑎
휀𝑡 + 𝑚휁

′ 휁𝑡+1 (2.2) 

This is an ARMAX 2,1,1  process and thus is more general than the usual “MSV” AR 1  one. To show that 

generically these two forms are not equivalent we suppose there exist 𝒜,𝒞,𝒟,ℳ휀 ,ℳ휁  such that: 

 𝑥𝑡+1
∗ = 𝒜𝑥𝑡

∗ + 𝒞 + 𝒟𝑡 + ℳ휀휀𝑡+1 + ℳ휁휁𝑡+1  

(This is the sunspot augmented MSV form.) So for any ℬ: 

 𝑥𝑡+1
∗ =  𝒜 − ℬ 𝑥𝑡

∗ + ℬ𝒜𝑥𝑡−1
∗ + 𝒞 + ℬ𝒞 − ℬ𝒟 + 𝒟 1 + ℬ 𝑡 + ℳ휀휀𝑡+1 + ℬℳ휀휀𝑡

+ ℳ휁휁𝑡+1 + ℬℳ휁휁𝑡  

 
 

(2.3) 

For this to be equivalent to (2.2) we must be able to equate terms, which at least requires that ℬℳ휁 = 0. 

If ℬ = 0, then the ℬℳ휀휀𝑡  term disappears, which is always present in (2.2), thus in fact we must have 

ℳ휁 = 0, which can only possibly hold if 𝑚휁
′ = 0 too. When this is the case, equating terms we have: 

𝒜 −ℬ =
𝑐

𝑎
,     ℬ𝒜 = −

𝑏

𝑎
,     𝒞 + ℬ𝒞 − ℬ𝒟 = −

𝜇

𝑎
,     𝒟 1 + ℬ = −

𝛿

𝑎
,    ℳ휀 = 𝑚휀 ,     ℬℳ휀 = −

1

𝑎
 

⇒  
ℬ = −

1

𝑎𝑚휀
 and 𝒜 = 𝑏𝑚휀  

 

But then from the first equation 𝑏𝑚휀 +
1

𝑎𝑚휀
=

𝑐

𝑎
, so this can only hold if we are also prepared to restrict 

𝑚휀 , illustrating how many solutions are ruled out by the imposition of the MSV form. 

2.2.3. Saddle-path stable cases 

In the saddle-path stable cases 0 ≤ 𝑐2 − 4𝑎𝑏 and either 𝑐 < − 𝑎 + 𝑏  (for  𝜔1 > 1) or 𝑐 >  𝑎 + 𝑏  (for 

 𝜔2 > 1). Without loss of generality we assume the latter holds, so  𝜔1 ≤ 1 and  𝜔2 > 1. Now by the 
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Schur decomposition14 (Horn and Johnson 1985: 79) of  
0 1

−
𝑏

𝑎

𝑐

𝑎

  there exist possibly complex matrices 𝑍 

and Ω, where 𝑍 is unitary15 and Ω is upper triangular with 𝜔1 and 𝜔2 on its diagonal such that: 

 
0 1

−
𝑏

𝑎

𝑐

𝑎

 = 𝑍Ω𝑍𝐻 =  
𝑧11 𝑧12

𝑧21 𝑧22
  
𝜔1 𝜔12

0 𝜔2
  
𝑧11
𝐻 𝑧21

𝐻

𝑧12
𝐻 𝑧22

𝐻   

where 𝑍𝐻  denotes the Hermitian or conjugate transpose of 𝑍. We note the following implied identities 

that will prove useful below: 

 

 
−𝑧21

𝐻
𝑏

𝑎
𝑧11
𝐻 + 𝑧21

𝐻
𝑐

𝑎

−𝑧22
𝐻
𝑏

𝑎
𝑧12
𝐻 + 𝑧22

𝐻
𝑐

𝑎

 = 𝑍𝐻  
0 1

−
𝑏

𝑎

𝑐

𝑎

 = Ω𝑍𝐻 =  
𝜔1𝑧11

𝐻 + 𝜔12𝑧12
𝐻 𝜔1𝑧21

𝐻 + 𝜔12𝑧22
𝐻

𝜔2𝑧12
𝐻 𝜔2𝑧22

𝐻   

 
(2.4) 

 
 

𝑧21 𝑧22

−𝑧11

𝑏

𝑎
+ 𝑧21

𝑐

𝑎
−𝑧12

𝑏

𝑎
+ 𝑧22

𝑐

𝑎

 =  
0 1

−
𝑏

𝑎

𝑐

𝑎

 𝑍 = 𝑍Ω =  
𝑧11𝜔1 𝑧11𝜔12 + 𝑧12𝜔2

𝑧21𝜔1 𝑧21𝜔12 + 𝑧22𝜔2
  

 
(2.5) 

A third identity follows from 𝑍’s unitarity, namely: 

 1

 𝑍 
 
𝑧22 −𝑧12

−𝑧21 𝑧11
 = 𝑍−1 = 𝑍𝐻 =  

𝑧11
𝐻 𝑧12

𝐻

𝑧21
𝐻 𝑧22

𝐻   
 

(2.6) 

Now if we let 𝑤𝑡
∗ ≔ 𝑍𝐻  

𝑥𝑡
∗

𝔼𝑡
∗𝑥𝑡+1

∗   and we pre-multiply (2.1) by 𝑍𝐻  then we have: 

 
𝑤𝑡
∗ =  

𝜔1 𝜔12

0 𝜔2
 𝑤𝑡−1

∗ + 𝑍𝐻  
0

−
𝜇

𝑎
 + 𝑍𝐻  

0

−
𝛿

𝑎

 𝑡 + 𝑍𝐻  
0

−
1

𝑎

 휀𝑡 + 𝑍𝐻  
1
𝑐

𝑎
 휂𝑡

∗ 
 

(2.7) 

The bottom row of this is given by: 

 
𝑤2,𝑡
∗ = 𝜔2𝑤2,𝑡−1

∗ − 𝑧22
𝐻
𝜇

𝑎
− 𝑧22

𝐻
𝛿

𝑎
𝑡 − 𝑧22

𝐻
1

𝑎
휀𝑡 +  𝑧12

𝐻 + 𝑧22
𝐻
𝑐

𝑎
 휂𝑡

∗ 
 
 

Since  𝜔2 > 1, this equation is explosive, so we solve forward following Sims (2002: 9), giving ∀𝑘 ∈ ℕ: 

                                                            

14 We could as well have just diagonalized  
0 1

−
𝑏

𝑎

𝑐

𝑎

  in the usual way, but by using the Schur decomposition here we 

hope to make the comparison between the univariate and non-univariate cases clearer. 

15 That is to say the conjugate transpose of 𝑍 is 𝑍’s inverse. 
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𝑤2,𝑡
∗ = 𝜔2

−𝑘𝑤2,𝑡+𝑘
∗ − 𝜔2

−𝑠  𝑧12
𝐻 휂𝑡+𝑠

∗ − 𝑧22
𝐻  

𝜇

𝑎
+
𝛿

𝑎
 𝑡 + 𝑠 +

1

𝑎
휀𝑡+𝑠 −

𝑐

𝑎
휂𝑡+𝑠
∗   

𝑘

𝑠=1

 
 

Taking 𝑡 dated expectations then gives: 

 
𝑤2,𝑡
∗ = 𝔼𝑡

∗𝑤2,𝑡
∗ = 𝜔2

−𝑘𝔼𝑡
∗𝑤2,𝑡+𝑘

∗ +  𝜔2
−𝑠𝑧22

𝐻  
𝜇

𝑎
+
𝛿

𝑎
 𝑡 + 𝑠  

𝑘

𝑠=1

 
 

By assumption 𝔼𝑡
∗𝑤2,𝑡+𝑘

∗  grows at an asymptotically polynomial rate and thus is dominated by 𝜔2
−𝑘 . This 

means that in the limit as 𝑘 → ∞: 

 
𝑤2,𝑡
∗ =  𝜔2

−𝑠𝑧22
𝐻  

𝜇

𝑎
+
𝛿

𝑎
 𝑡 + 𝑠  

∞

𝑠=1

=
𝑧22
𝐻

𝑎
 
𝜇 + 𝛿 𝑡 + 1 

 𝜔2 − 1 
+

𝛿

 𝜔2 − 1 2
  

 

(where we have used standard formulae for geometric series, proved in the matrix case in appendix A, 

§ 5). If we let 𝜙𝜇 ≔
𝑧22
𝐻

𝑎
 
𝜔2 𝜇+𝛿 −𝜇

 𝜔2−1 2
 , then we can write: 

 
𝑤2,𝑡
∗ = 𝜙𝜇 +

𝑧22
𝐻 𝛿𝑡

𝑎 𝜔2 − 1 
 

 
(2.8) 

Now conveniently16: 

 
 1 −

𝑧11
𝐻 𝑎 + 𝑧21

𝐻 𝑐

𝑧12
𝐻 𝑎 + 𝑧22

𝐻 𝑐
 𝑍𝐻  

1
𝑐

𝑎
 =   𝑧11

𝐻 + 𝑧21
𝐻
𝑐

𝑎
 −  𝑧12

𝐻 + 𝑧22
𝐻
𝑐

𝑎
 
𝑧11
𝐻 𝑎 + 𝑧21

𝐻 𝑐

𝑧12
𝐻 𝑎 + 𝑧22

𝐻 𝑐
 = 0 

 

Thus if we pre-multiply (2.7) by  1 −
𝑧11
𝐻 𝑎+𝑧21

𝐻 𝑐

𝑧12
𝐻 𝑎+𝑧22

𝐻 𝑐
 =  1 −

𝜔1𝑧21
𝐻 +𝜔12𝑧22

𝐻

𝜔2𝑧22
𝐻  =  1

𝜔1z12−𝜔12𝑧11

𝜔2𝑧11
  (this is valid 

assuming 𝑧11 ≠ 0), by (2.4) and (2.6) we will obtain an expression for the linear combination of 𝑥𝑡
∗ and 

𝔼𝑡
∗𝑥𝑡+1

∗  that is pre-determined, namely: 

 1
𝜔1z12 −𝜔12𝑧11

𝜔2𝑧11
 𝑤𝑡

∗ =  𝜔1

𝜔1z12

z11
 𝑤𝑡−1

∗ +
𝜇

𝑎𝜔2 𝑍 
 𝑧22 −𝜔1z12  

+
𝛿

𝑎𝜔2 𝑍 
 𝑧22 − 𝜔1z12 𝑡 +

1

𝑎𝜔2 𝑍 
 𝑧22 − 𝜔1z12 휀𝑡  

=  𝜔1

𝜔1z12

z11
 𝑤𝑡−1

∗ +
𝜇

𝑎𝜔2𝑧11
+

𝛿

𝑎𝜔2𝑧11
𝑡 +

1

𝑎𝜔2𝑧11
휀𝑡  

(where we have used (2.5) and (2.6) to simplify). Stacking this equation with (2.8) gives: 

                                                            
16 This trick comes from Sims (2002). 
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1

𝜔1z12 − 𝜔12𝑧11

𝜔2𝑧11

0 1

 𝑤𝑡
∗ =  

𝜔1

𝜔1z12

z11

0 0

 𝑤𝑡−1
∗ +

 
 
 
 
 

𝜇

𝑎𝜔2𝑧11

𝑧22
𝐻

𝑎
 
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
 
 
 
 
 
 

+

 
 
 
 
 

1

𝑎𝜔2𝑧11

𝑧22
𝐻

𝑎 𝜔2 − 1  
 
 
 
 

𝛿𝑡 +  

1

𝑎𝜔2𝑧11

0

 휀𝑡  

Finally pre-multiplying by 𝑍  
1

𝜔1z12−𝜔12𝑧11

𝜔2𝑧11

0 1
 

−1

=  𝑧∙1 𝑧∙1
𝜔12𝑧11−𝜔1z12

𝜔2𝑧11
+ 𝑧∙2  and again simplifying us-

ing (2.5) and (2.6) gives the solution: 

 
𝑥𝑡
∗

𝔼𝑡
∗𝑥𝑡+1

∗  = 𝜔1𝑧∙1  𝑧11
𝐻 +

z12

z11
𝑧12
𝐻 0  

𝑥𝑡−1
∗

𝔼𝑡−1
∗ 𝑥𝑡

∗  

+
1

𝑎
 𝑧∙1

1

𝜔2
 
𝜇

𝑧11
+
𝜔12𝑧11 −𝜔1z12

 𝑍 
 
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
  + 𝑧∙2𝑧22

𝐻  
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
   

+
1

𝑎 𝜔2 − 1  𝑍 
 𝑧∙1  

 𝑍 

𝑧11
− 𝑧12 + 𝑧∙2𝑧11 𝛿𝑡 +

𝑧∙1
𝑎𝜔2𝑧11

휀𝑡  

To obtain the general solution for 𝑥𝑡
∗ we take the top row of this equation and simplify, which gives: 

𝑥𝑡
∗ = 𝜔1  

𝑧11𝑧22

 𝑍 
−

z12𝑧21

 𝑍 
 𝑥𝑡−1

∗ +
𝜇

𝑎𝜔2
+

1

𝑎
 

1

𝜔2
 
 𝑍 − 𝜔2𝑧12𝑧11

 𝑍 
 +

𝑧12𝑧11

 𝑍 
  
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
  

+
1

𝑎 𝜔2 − 1  𝑍 
  𝑍 − 𝑧11𝑧12 + 𝑧12𝑧11 𝛿𝑡 +

1

𝑎𝜔2
휀𝑡  

= 𝜔1𝑥𝑡−1
∗ +

𝜇

𝑎𝜔2
+

1

𝑎𝜔2
 
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
 +

1

𝑎 𝜔2 − 1 
𝛿𝑡 +

1

𝑎𝜔2
휀𝑡  

Thus we have shown that: 

 
𝑥𝑡
∗ = 𝜔1𝑥𝑡−1

∗ +  
𝜇

𝑎 𝜔2 − 1 
+

𝛿

𝑎 𝜔2 − 1 2
 +

𝛿

𝑎 𝜔2 − 1 
𝑡 +

휀𝑡
𝑎𝜔2

 
 

which straight-forward calculation shows to agree with the usual AR 1  “MSV” solution. Pushing this 

forward one period and taking expectations we have the following FREE form expectation: 

 
𝔼𝑡
∗𝑥𝑡+1

∗ = 𝜔1𝑥𝑡
∗ +  

𝜇 + 𝛿

𝑎 𝜔2 − 1 
+

𝛿

𝑎 𝜔2 − 1 2
 +

𝛿

𝑎 𝜔2 − 1 
𝑡 

 

2.2.4. Proposition 1 

The previous sections have shown that in the univariate case under stability (𝑐2 − 4𝑎𝑏 < 0 and 
𝑏

𝑎
≤ 1 or 

0 ≤ 𝑐2 − 4𝑎𝑏 and − 𝑎 + 𝑏 ≤ 𝑐 ≤  𝑎 + 𝑏 ) there is always an ARMAX 2,1,1  form REE, which is a FREE if 
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and only if 𝑀휀  is of full rank, and that in the univariate case under saddle-path stability (0 ≤ 𝑐2 − 4𝑎𝑏 and 

either 𝑐 < − 𝑎 + 𝑏  or 𝑐 >  𝑎 + 𝑏 ), there is an AR 1  form REE, providing 𝑧11 ≠ 0, which in fact is al-

ways a FREE. 

2.3. Solution to the general canonical form 

We now turn to solving the generalized canonical form (1.2) in full generality. To do this we broadly fol-

low Lubik and Schorfheide’s (2003) extension to the irregular case of Sims’s (2002) method for solving 

rational expectations models, which is itself more general than that of Blanchard and Kahn (1980) since it 

avoids some invertibility assumptions and enables linear combinations of variables to be jointly prede-

termined. This method is particularly convenient for our purposes since it proceeds by first solving for the 

expectational error, which, to assess the convergence of the partial information case, is what we shall be 

interested in. 

Our chief innovations are the inclusion of the drift and linear terms, which are important as being able to 

accurately remove a linear trend is non-trivial in the partial information case; the derivation of a simpler 

condition for existence of REEs for a large class of models; the addition of FREE restrictions, which will 

play a role in the partial information case; and the explicit derivation of VARMAX form solutions for 𝑥𝑡
∗. 

2.3.1. Set-up 

By the generalized complex Schur decomposition (also known as the QZ decomposition) (Quarteroni et al. 

2000: 225) of the matrices Γ0 and Γ1 defined in § 1.5.2, there always exist possibly complex matrices 𝑄, 𝑍, 

Λ =  𝜆𝑖 ,𝑗  𝑖 ,𝑗
 and Ω =  𝜔𝑖 ,𝑗  𝑖 ,𝑗

 such that 𝑄𝐻Λ𝑍𝐻 = Γ0, 𝑄𝐻Ω𝑍𝐻 = Γ1, 𝑄 and 𝑍 are unitary and Λ and Ω are 

upper triangular. 

Now let 𝑤𝑡
∗ = 𝑍𝐻𝑣𝑡

∗ for all 𝑡 ∈ ℤ, then if we pre-multiply (1.2) by 𝑄 we have: 

 Λ𝑤𝑡
∗ = Ω𝑤𝑡−1

∗ + 𝑄 𝜇 + 𝛿 𝑡 + Ψ휀𝑡 + Π휂𝑡
∗   
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Providing Γ0 and Γ1 do not have zero eigenvalues corresponding to the same eigenvector17 the QZ de-

composition always exists and the set   
𝜔 𝑖𝑖

𝜆𝑖𝑖
  𝑖 ∈  1,… , dim 𝑣𝑡  ⊆ ℝ ∪  ∞  is unique even though the 

decomposition itself is not (Sims 2002: 9, 20). Thus, without loss of generality we may assume that for 

𝑖 < 𝑗,  
𝜔 𝑖𝑖

𝜆𝑖𝑖
 <  

𝜔𝑗𝑗

𝜆𝑗𝑗
 . Let 𝑢  be the number of 𝑖 for which  

𝜔 𝑖𝑖

𝜆𝑖𝑖
 ≤ 1 and consider a partition of the matrices 

under consideration in which in each case the top left block is of dimension 𝑢 × 𝑢 18. We then write: 

 
 
Λ11 Λ12

0 Λ22
  
𝑤1,𝑡
∗

𝑤2,𝑡
∗  =  

Ω11 Ω12

0 Ω22
  
𝑤1,𝑡−1
∗

𝑤2,𝑡−1
∗  +  

𝑄1∙

𝑄2∙
  𝜇 + 𝛿 𝑡 + Ψ휀𝑡 + Π휂𝑡

∗  
(2.9) 

Note that this decomposition means that only Λ11  and Ω22  are guaranteed to be invertible. 

2.3.2. Derivation of restrictions 

The second block of (2.9) is purely explosive by construction; thus we solve it forward following Sims 

(2002: 9). From this block we have that for all 𝑘 ∈ ℕ+: 

 
𝑤2,𝑡
∗ =  Ω22

−1Λ22 
𝑘𝑤2,𝑡+𝑘

∗ −  Ω22
−1Λ22 

𝑠−1Ω22
−1𝑄2∙ 𝜇 + 𝛿  𝑡 + 𝑠 + Ψ휀𝑡+𝑠 + Π휂𝑡+𝑠

∗  

𝑘

𝑠=1

 
 

So if we take 𝑡 dated expectations and then take the limit as 𝑘 → ∞, since the components of 𝔼𝑡
∗𝑤2,𝑡+𝑘

∗  

are asymptotically polynomial by assumption and thus dominated by  Ω22
−1Λ22 

𝑘 , we have that: 

𝑤2,𝑡
∗ = 𝔼𝑡

∗𝑤2,𝑡
∗ = −𝔼𝑡

∗  Ω22
−1Λ22 

𝑠−1Ω22
−1𝑄2∙ 𝜇 + 𝛿  𝑡 + 𝑠 + Ψ휀𝑡+𝑠 + Π휂𝑡+𝑠

∗  

∞

𝑠=1

 

= −   Ω22
−1Λ22 

𝑠

∞

𝑠=0

 Ω22
−1𝑄2∙  𝜇 + 𝛿  𝑡 + 1  −   𝑠 Ω22

−1Λ22 
𝑠−1

∞

𝑠=0

  Ω22
−1Λ22 Ω22

−1𝑄2∙𝛿  

where all sums are well defined since the eigenvalues of Ω22
−1Λ22  are strictly in the unit circle by construc-

tion, which is shown to be a necessary and sufficient condition for convergence in appendix A, § 5. In fact 

by the formulae derived in that appendix: 

                                                            
17 This means that there is one or more equation that places no restrictions on either 𝑣𝑡  or 𝑣𝑡−1. This will create an 

additional source of indeterminacy in 𝑣𝑡  and may also imply that one or more components of 휀𝑡  and 휂𝑡
∗ are linear 

combinations of the others. We, like both Sims and Lubik & Schorfheide, will not pursue this avenue. 

18 Again, this means that we are not treating unit roots as explosive.  
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 𝑤2,𝑡
∗ = − 𝐼 − Ω22

−1Λ22 
−1Ω22

−1𝑄2∙  𝜇 + 𝛿  𝑡 + 1  −  𝐼 − Ω22
−1Λ22 

−2 Ω22
−1Λ22 Ω22

−1𝑄2∙𝛿  

=  Λ22 − Ω22 
−1𝑄2∙  𝜇 + 𝛿  𝑡 + 1  +  2Λ22 − Ω22 − Λ22Ω22

−1Λ22 
−1Λ22Ω22

−1𝑄2∙𝛿  

= 𝜙𝜇 +  Λ22 − Ω22 
−1𝑄2∙𝛿 𝑡 

 
 
 
 
  

(2.10) 

where: 

  𝜙𝜇 ≔  Λ22 − Ω22 
−1𝑄2∙ 𝜇 + 𝛿  +  2Λ22 − Ω22 − Λ22Ω22

−1Λ22 
−1Λ22Ω22

−1𝑄2∙𝛿  (2.11) 

If 𝑤2,𝑡
∗  takes this form then 𝔼𝑡+1

∗ 𝑤2,𝑡
∗ = 𝔼𝑡

∗𝑤2,𝑡
∗  which from the forward solution is true if and only if: 

 
 
 
 
 
 

−𝔼𝑡+1
∗   Ω22

−1Λ22 
𝑠−1Ω22

−1𝑄2∙ 𝜇 + 𝛿  𝑡 + 𝑠 + Ψ휀𝑡+𝑠 + Π휂𝑡+𝑠
∗  

∞

𝑠=1

= −𝔼𝑡
∗  Ω22

−1Λ22 
𝑠−1Ω22

−1𝑄2∙ 𝜇 + 𝛿  𝑡 + 𝑠 + Ψ휀𝑡+𝑠 + Π휂𝑡+𝑠
∗  

∞

𝑠=1

 

 

⇔  Ω22
−1𝑄2∙ Ψ휀𝑡+1 + Π휂𝑡+1

∗  = 0  

(Here we have followed Mavroeidis and Zwols (2007).) Thus as Ω22
−1 is of full rank, we require that 휂𝑡  is 

chosen each period such that: 

 𝑄2∙Ψ휀𝑡 + 𝑄2∙Π휂𝑡
∗ = 0 (2.12) 

This is identical to the condition derived by Lubik and Schorfheide from a canonical form omitting the 

constant and linear terms (Lubik and Schorfheide 2003: 5). 

If we then take the singular value decomposition (SVD) (Horn and Johnson 1985: 414) of 𝑄2∙Π and 𝑄2∙Ψ 

we can write: 

 
𝑄2∙Π = 𝑈𝐷𝑉𝐻 =  𝑈∙1 𝑈∙2  

𝐷11 0
0 0

  
𝑉∙1
𝐻

𝑉∙2
𝐻 = 𝑈∙1𝐷11𝑉∙1

𝐻  
(2.13) 

and 
𝑄2∙Ψ = 𝑈 𝐷 𝑉 𝐻 =  𝑈 ∙1 𝑈 ∙2  

𝐷 11 0
0 0

  
𝑉 ∙1
𝐻

𝑉 ∙2
𝐻 = 𝑈 ∙1𝐷 11𝑉 ∙1

𝐻  
 

where 𝑈, 𝑉, 𝑈  and 𝑉  are unitary and 𝐷11  and 𝐷 11  have strictly positive diagonals and zeroes elsewhere.  

With this we can write down a necessary and sufficient condition (Sims 2002: 13, 20) for the existence of 

an 휂𝑡
∗ satisfying (2.12), namely that: 



 

 

29 Full information solution 

May 1, 2008 

 𝑈∙1𝑈∙1
𝐻𝑈 ∙1 = 𝑈 ∙1 (2.14) 

This is necessary as if we pre-multiply (2.12) by 𝑈∙1𝑈∙1
𝐻 , from the unitarity of 𝑈: 

 0 = 𝑈∙1𝑈∙1
𝐻0 = 𝑈∙1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻휀𝑡 + 𝑈∙1𝑈∙1

𝐻𝑈∙1𝐷11𝑉∙1
𝐻휂𝑡

∗ = 𝑈∙1𝑈∙1
𝐻𝑈 ∙1𝐷 11𝑉 ∙1

𝐻휀𝑡 + 𝑄2∙Π휂𝑡
∗ 

= 𝑈∙1𝑈∙1
𝐻𝑈 ∙1𝐷 11𝑉 ∙1

𝐻휀𝑡 − 𝑄2∙Ψ휀𝑡 =  𝑈∙1𝑈∙1
𝐻𝑈 ∙1 − 𝑈 ∙1 𝐷 11𝑉 ∙1

𝐻휀𝑡  

 

So since 휀𝑡  can take any value it can certainly take the value 𝑉 ∙1𝐷 11
−1𝓋 for some arbitrary vector 𝑣, so by 

the unitarity of 𝑉  for all 𝓋,  𝑈∙1𝑈∙1
𝐻𝑈 ∙1 − 𝑈 ∙1 𝓋 = 0, which means condition (2.14) must be satisfied. 

We note here something not mentioned in Lubik and Schorfheide (2003) or Sims (2002): when the matrix 

 Ψ Π  is invertible19, condition (2.14) holds if and only if 𝑈∙1𝑈∙1
𝐻 = 𝐼. The “if” direction is trivial and the 

“only if” direction follows from the fact that by the unitarity of 𝑄: 

𝐼 = 𝑄2∙𝑄2∙
𝐻 = 𝑄2∙ Ψ Π  Ψ Π −1  Ψ

H

ΠH
 
−1

 Ψ
H

ΠH
 𝑄2∙

𝐻  

=  𝑈 ∙1𝐷 11𝑉 ∙1
𝐻 𝑈∙1𝐷11𝑉∙1

𝐻  Ψ Π −1  Ψ
H

ΠH
 
−1

 Ψ
H

ΠH
 𝑄2∙

𝐻  

so from (2.14), pre-multiplying this by 𝑈∙1𝑈∙1
𝐻  we have: 

𝑈∙1𝑈∙1
𝐻 =  𝑈∙1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻 𝑈∙1𝑈∙1

𝐻𝑈∙1𝐷11𝑉∙1
𝐻  Ψ Π −1  Ψ

H

ΠH
 
−1

 Ψ
H

ΠH
 𝑄2∙

𝐻  

=  𝑈 ∙1𝐷 11𝑉 ∙1
𝐻 𝑈∙1𝐷11𝑉∙1

𝐻  Ψ Π −1  Ψ
H

ΠH
 
−1

 Ψ
H

ΠH
 𝑄2∙

𝐻 = 𝐼 

as required. 

                                                            
19 This trivially holds when the law of motion is known to be given by (1.1), as in the case under consideration, as this 

means  Ψ Π = 𝐼. Indeed it is very hard to conceive of a realistic model in which it does not hold, as it would 

mean that there was some linear combination of equations in the model which was entirely non stochastic (i.e. it 

lacked both an 휀𝑡  term and an 휂𝑡  one). It may be argued that simple Taylor rules take precisely this form, but firstly 

they can easily be substituted in to the other equations giving a system with one fewer equation and secondly most 

models of any degree of sophistication include an interest-rate targeting shock so their Taylor rule equation is in fact 

stochastic. 
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We now demonstrate sufficiency of (2.14) by writing down an explicit solution. First let 𝑞 ≔ rank𝑄2∙Π, so 

that 𝐷11  is of dimension 𝑞 × 𝑞. Then following Lubik and Schorfheide (2003: 9), we posit the following set 

of solutions for the forecast errors 휂𝑡
∗: 

 휂𝑡
∗ =  −𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙Ψ + 𝑉∙2𝑀휀 휀𝑡 + 𝑉∙2𝑀휁휁𝑡  (2.15) 

(This is valid as 𝑀휀  and 𝑀휁  are of size  dim 𝑥𝑡
∗ − 𝑞 × dim 𝑥𝑡

∗ and  dim 𝑥𝑡
∗ − 𝑞 × dim 휁𝑡  respectively.) 

When (2.14) holds this satisfies (2.12) as by the unitarity of 𝑉: 

𝑄2∙Π휂𝑡
∗ = 𝑈∙1𝐷11𝑉∙1

𝐻휂𝑡
∗ =  −𝑈∙1𝐷11𝑉∙1

𝐻𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ + 𝑈∙1𝐷11𝑉∙1
𝐻𝑉∙2𝑀휀 휀𝑡 + 𝑈∙1𝐷11𝑉∙1

𝐻𝑉∙2𝑀휁휁𝑡  

= −𝑈∙1𝑈∙1
𝐻𝑄2∙Ψ휀𝑡 = −𝑈∙1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻휀𝑡 = −𝑈 ∙1𝐷 11𝑉 ∙1

𝐻휀𝑡 = −𝑄2∙Ψ휀𝑡  

where the penultimate step used (2.14). It is immediate from this solution for the forecast errors that 

there is a unique solution if and only if 𝑞 = dim 𝑥𝑡
∗, in which case the last two terms drop out. 

2.3.3. Derivation of the stacked form solution 

Now by (2.13) and the unitarity of 𝑈 and 𝑉: 

  𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ Π = 𝑄1∙Π 𝐼 − 𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑈∙1𝐷11𝑉∙1
𝐻 = 𝑄1∙Π 𝐼 − 𝑉∙1𝑉∙1

𝐻  

= 𝑄1∙Π𝑉∙2𝑉∙2
𝐻  

 
 

(2.16) 

So from (2.15) and unitarity again: 

  𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ Π휂𝑡
∗ = 𝑄1∙Π𝑉∙2𝑉∙2

𝐻  −𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ + 𝑉∙2𝑀휀 휀𝑡 + 𝑉∙2𝑀휁휁𝑡  

= 𝑄1∙Π𝑉∙2 𝑀휀휀𝑡 + 𝑀휁휁𝑡  

 

Thus if we now follow Sims (2002) and Mavroeidis and Zwols (2007) and pre-multiply (2.9) by 

 𝐼 −𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻  we have: 

 Λ11 Λ12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22  
𝑤1,𝑡
∗

𝑤2,𝑡
∗   

=  Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22  
𝑤1,𝑡−1
∗

𝑤2,𝑡−1
∗  +  𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙  𝜇 + 𝛿 𝑡 + Ψ휀𝑡 + Π휂𝑡

∗  

=  Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22  
𝑤1,𝑡−1
∗

𝑤2,𝑡−1
∗  +  𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙  𝜇 + 𝛿 𝑡 + Ψ휀𝑡 

+ 𝑄1∙Π𝑉∙2 𝑀휀휀𝑡 + 𝑀휁휁𝑡  
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Now stacking this equation with our solution for the explosive terms, (2.10), we can write: 

 Λ11 Λ12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22

0 𝐼
  
𝑤1,𝑡
∗

𝑤2,𝑡
∗  =  Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻Ω22

0 0
  
𝑤1,𝑡−1
∗

𝑤2,𝑡−1
∗   

+  𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙

0
 Ψ휀𝑡 +  

𝑄1∙Π𝑉∙2
0

  𝑀휀휀𝑡 + 𝑀휁휁𝑡  

+  
 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙ 𝜇 

𝜙𝜇
 +  

 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ 

 Λ22 − Ω22 
−1𝑄2∙

 𝛿 𝑡 

The matrix multiplying the left hand side is clearly invertible since Λ11  is by construction. In fact by the 

block inverse formula: 

 
 Λ11 Λ12 − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻Λ22

0 𝐼
 
−1

=  Λ11
−1 −Λ11

−1 Λ12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 

0 𝐼
  

 

So if we now pre-multiply both sides by: 

 
𝐻 ≔ 𝑍  Λ11

−1 −Λ11
−1 Λ12 − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻Λ22 

0 𝐼
  

(2.17) 

we have: 

𝑣𝑡
∗ = 𝐻  Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻Ω22

0 0
 𝑍𝐻𝑣𝑡−1

∗ + 𝐻  𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙

0
 Ψ휀𝑡

+ 𝐻  
𝑄1∙Π𝑉∙2

0
  𝑀휀휀𝑡 + 𝑀휁휁𝑡 + 𝐻  

 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ 𝜇 
𝜙𝜇

 

+ 𝐻  
 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙ 

 Λ22 − Ω22 
−1𝑄2∙

 𝛿 𝑡 

= 𝑍∙1Λ11
−1 Ω11𝑍∙1

𝐻 +  Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝑍∙2
𝐻 𝑣𝑡−1

∗ + 𝑍∙1Λ11
−1 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙ Ψ휀𝑡

+ 𝑍∙1Λ11
−1𝑄1∙Π𝑉∙2 𝑀휀휀𝑡 + 𝑀휁휁𝑡 + 𝐻  

 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ 𝜇 
𝜙𝜇

 

+ 𝐻  
 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙ 

 Λ22 − Ω22 
−1𝑄2∙

 𝛿 𝑡 

where 𝑍 has been partitioned conformably with 𝑤𝑡 . If we now define: 

 Θ𝑣 ≔ 𝑍∙1Λ11
−1 Ω11𝑍∙1

𝐻 +  Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝑍∙2
𝐻   

Θ휀 ≔ 𝑍∙1Λ11
−1 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙ Ψ + 𝑍∙1Λ11

−1𝑄1∙Π𝑉∙2𝑀휀 , Θ휁 ≔ 𝑍∙1Λ11
−1𝑄1∙Π𝑉∙2𝑀휁  
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휃𝜇 ≔ 𝐻  

 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ 𝜇 
𝜙𝜇

 , 휃𝛿 = 𝐻  
 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙ 

 Λ22 − Ω22 
−1𝑄2∙

 𝛿  
 

and partition these matrices and vectors conformably with 𝑣𝑡
∗, then we can write: 

 
 

𝑥𝑡
∗

𝔼𝑡
∗𝑥𝑡+1

∗  =  
Θ𝑣,11 Θ𝑣,12

Θ𝑣,21 Θ𝑣,22
  

𝑥𝑡−1
∗

𝔼𝑡−1
∗ 𝑥𝑡

∗ +  
휃𝜇 ,1∙

휃𝜇 ,2∙
 +  

휃𝛿 ,1∙

휃𝛿 ,2∙
 𝑡 +  

Θ휀 ,1∙

Θ휀 ,2∙
 휀𝑡 +  

Θ휁 ,1∙

Θ휁 ,2∙
 휁𝑡  

(2.18) 

2.3.4. VARMAX form solution 

To make the implications of this for the path of 𝑥𝑡
∗ clear we explicitly derive a VARMAX form solution. 

From the bottom row of (2.18), the definition of 휂𝑡
∗ and (2.15): 

𝔼𝑡
∗𝑥𝑡+1

∗ = Θ𝑣,21𝑥𝑡−1
∗ + Θ𝑣,22 𝑥𝑡

∗ +  𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ− 𝑉∙2𝑀휀 ,𝑞 휀𝑡 − 𝑉∙2𝑀휁 ,𝑞휁𝑡  

+휃𝜇 ,2∙ + 휃𝛿 ,2∙𝑡 + Θ휀 ,2∙휀𝑡 + Θ휁 ,2∙휁𝑡  

= Θ𝑣,22𝑥𝑡
∗ + Θ𝑣,21𝑥𝑡−1

∗ + 휃𝜇 ,2∙ + 휃𝛿 ,2∙𝑡 +  Θ𝑣,22 𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ− 𝑉∙2𝑀휀 ,𝑞 + Θ휀 ,2∙ 휀𝑡  

+ Θ휁 ,2∙ − Θ𝑣,22𝑉∙2𝑀휁 ,𝑞  휁𝑡  

So again by the definition of 휂𝑡
∗ and (2.15): 

𝑥𝑡+1
∗ = Θ𝑣,22𝑥𝑡

∗ + Θ𝑣,21𝑥𝑡−1
∗ + 휃𝜇 ,2∙ + 휃𝛿 ,2∙𝑡 +  Θ𝑣,22 𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙Ψ− 𝑉∙2𝑀1,𝑞 + Θ휀 ,2∙ 휀𝑡

+  −𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ + 𝑉∙2𝑀휀 ,𝑞 휀𝑡+1 +  Θ휁 ,2∙ − Θ𝑣,22𝑉∙2𝑀휁 ,𝑞  휁𝑡 + 𝑉∙2𝑀휁 ,𝑞휁𝑡+1 

which is in VARMAX 2,1,2  form rather than the usually considered “MSV” VAR 1  form, again illustrat-

ing the restrictions implicit in looking for MSV form solutions. 

2.3.5. FREE solutions 

We not look for a FREE solution, which requires us to find an expression for 𝔼𝑡
∗𝑥𝑡+1

∗  which does not de-

pend on 휀𝑡 , 휀𝑡−1 ,…. Just as in the univariate case, the key to doing this is to express 휀𝑡  as a function of 휂𝑡
∗ 

and 휁𝑡 . 

Now from our solution for 휂𝑡
∗, (2.15): 

 
휂𝑡
∗ =  𝑉∙1 𝑉∙2  

−𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ
𝑀휀

 휀𝑡 +  𝑉∙1 𝑉∙2  
0
𝑀휁

 휁𝑡  
 

So since 𝑉 is unitary, if we pre-multiply by 𝑉𝐻  we have: 
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−𝐷11

−1𝑈∙1
𝐻𝑈 ∙1𝐷 11𝑉 ∙1

𝐻

𝑀휀
 휀𝑡 = 𝑉𝐻휂𝑡

∗ −  
0
𝑀휁

 휁𝑡  
 

(2.19) 

For 휀𝑡  to be uniquely determined given 휂𝑡
∗ and 휁𝑡  we thus require  

−𝐷11
−1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻

𝑀휀
  to be invertible. 

Thus we must have that 𝑀휀  is of full rank and that its rows are linearly independent of those of 

𝐷11
−1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻 , which also must be of full rank, i.e. rank𝐷11

−1𝑈∙1
𝐻𝑈 ∙1𝐷 11𝑉 ∙1

𝐻 = 𝑞. We will now investi-

gate under what circumstances this final condition holds. 

Note that by the rank-nullity theorem, rank𝐷11
−1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻 = dim 𝑥𝑡

∗ − dim ker𝐷11
−1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻; so 

rank𝐷11
−1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻 = 𝑞, if and only if, dim ker𝐷11

−1𝑈∙1
𝐻𝑈 ∙1𝐷 11𝑉 ∙1

𝐻 = dim 𝑥𝑡
∗ − 𝑞. Suppose then for 

some vector 𝓋 ≠ 0, 𝐷11
−1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻𝓋 = 0. Pre-multiplying this equation by  𝑉 ∙1𝐷 11

−1𝑈 ∙1
𝐻𝑈∙1𝐷11, by (2.14) 

and the unitarity of 𝑈  we have that 𝑉 ∙1𝑉 ∙1
𝐻𝓋 = 0. However, by the unitarity of 𝑉 , ker𝑉 ∙1 =  0 20. Thus, 

ker𝑉 ∙1𝑉 ∙1
𝐻 = ker𝑉 ∙1

𝐻 = span𝑉 ∙2 21, so 𝓋 ∈ span𝑉 ∙2. Note also that if 𝓋 ∈ span𝑉 ∙2 then by the unitarity of 

𝑉 , 𝐷11
−1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻𝓋 = 0, so this is sufficient as well as necessary for 𝓋 ∈ ker𝐷11

−1𝑈∙1
𝐻𝑈 ∙1𝐷 11𝑉 ∙1

𝐻 . This 

means by the above that rank𝐷11
−1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻 = 𝑞, if and only if 𝑉 ∙2 has dim 𝑥𝑡

∗ − 𝑞 rows (since they 

are linearly independent by the unitarity of 𝑉 ), i.e. if and only if rank𝑄2∙Ψ = 𝑞. 

Now by (2.14), 𝑄2∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ = 𝑄2∙Ψ, thus span𝑄2∙Ψ ⊆ span𝑄2∙Π so rank𝑄2∙Ψ ≤ rank𝑄2∙Π =

𝑞. Thus if it is to be the case that rank𝑄2∙Ψ = 𝑞, since span𝑄2∙Ψ ⊆ span𝑄2∙Π, we must in fact have that 

span𝑄2∙Ψ = span𝑄2∙Π, which is true if and only if in addition to (2.14) we also have: 

 𝑈 ∙1𝑈 ∙1
𝐻𝑈∙1 = 𝑈∙1 (2.20) 

Note that this condition is independent of both the condition for the existence of a REE (2.14) and the 

condition for the REE to be unique, which is that 𝑄1∙Π = 𝑄1∙Π𝑉∙1𝑉∙1
𝐻  (Sims 2002: 11). Note also that it 

                                                            
20 𝓌 ∈ ker𝑉 ∙1 implies 𝑉 ∙1𝓌 = 0, so pre-multiplying by 𝑉 ∙1

𝐻, by unitarity we have 𝓌 = 0. The converse is trivial. 

21 𝓌 ∈ ker𝑉 ∙1
𝐻  implies 𝑉 ∙1

𝐻𝓌 = 0. Now let  
𝓌 1

𝓌 2
 ≔  

𝑉 ∙1
𝐻

𝑉 ∙2
𝐻
  𝓌. By unitarity then if we pre-multiply by 𝑉  we have 

𝓌 =  𝑉 ∙1 𝑉 ∙2  
𝓌 1

𝓌 2
 . Thus 𝑉 ∙1

𝐻 𝑉 ∙1 𝑉 ∙2  
𝓌 1

𝓌 2
 = 0 which implies by unitarity that 𝓌 1 = 0, i.e. 𝓌 = 𝑉 ∙2𝓌 2. The 

converse is again trivial. 
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holds trivially in the fully stable (fully indeterminate) case, since then 𝑈∙1 and 𝑈 ∙1 have 0 rows. Finally note 

that when  Ψ Π  is invertible, so 𝑈∙1𝑈∙1
𝐻 = 𝐼, this is equivalent to the condition that 𝑈 ∙1𝑈 ∙1

𝐻 = 𝐼. 

The above argument implies that 휀𝑡  is uniquely determined given 휂𝑡
∗ and 휁𝑡  if and only if condition (2.20) 

holds and 𝑀휀  is of full rank with rows which are linearly independent of those of 𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ. In this case 

 
−𝐷11

−1𝑈∙1
𝐻𝑄2∙Ψ

𝑀휀
  is invertible and: 

 
휀𝑡 =  

−𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ
𝑀휀

 
−1

 𝑉𝐻휂𝑡
∗ −  

0
𝑀휁

 휁𝑡  
 

Now let: 

 
Φ휂 ≔  

−𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ
𝑀휀

 
−1

𝑉𝐻 , Φ휁 ≔ − 
−𝐷11

−1𝑈∙1
𝐻𝑄2∙Ψ

𝑀휀
 
−1

 
0
𝑀휁

  
 

where Φ휂  has dim 𝑥𝑡
∗ columns. Then from (2.18): 

 𝔼𝑡
∗𝑥𝑡+1

∗ = Θ휀 ,2∙Φ휂𝑥𝑡
∗ + Θ𝑣,21𝑥𝑡−1

∗ +  Θ𝑣,22 − Θ휀 ,2∙Φ휂 𝔼𝑡−1
∗ 𝑥𝑡

∗ + 휃𝜇 ,2∙ + 휃𝛿 ,2∙𝑡 

+ Θ휁 ,2∙ + Θ휀 ,2∙Φ휁 휁𝑡  

 
 

(2.21) 

This is in FREE form as required. 

It now just remains to prove that condition (2.20) and 𝑀휀  being full rank with rows which are linearly in-

dependent of those of 𝐷11
−1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻  (which we have established holds if and only if  

−𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ
𝑀휀

  

is invertible) are necessary for there to be a FREE as well as sufficient. As in the univariate case we pro-

ceed by contradiction and assume that  
−𝐷11

−1𝑈∙1
𝐻𝑄2∙Ψ

𝑀휀
  is not invertible, but that: 

 𝔼𝑡
∗𝑥𝑡+1

∗ = ℛ𝑥𝑡
∗ + 𝒮휁𝑡 + other terms known at 𝑡 − 1  

First let 𝑈 𝐷 𝑉 𝐻 = 𝑈 ∙1𝐷 11𝑉 ∙1
𝐻  be the SVD of  

−𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ
𝑀휀

 . Since it is square but not invertible 𝑈 ∙2 must 

have a positive number of columns. Then by (2.19) and the unitarity of 𝑈 : 

 
0 = 𝑈 ∙2

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻휀𝑡 = 𝑈 ∙2

𝐻  
𝑉∙1
𝐻 0

𝑉∙2
𝐻 −𝑀휁

  
휂𝑡
∗

휁𝑡
  ⇒  𝑈 ∙2

𝐻𝑉𝐻휂𝑡
∗ = 𝑈 ∙2

𝐻  
0
𝑀휁

 휁𝑡  
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Thus 0 = Cov𝑡−1 𝑈 ∙2
𝐻𝑉𝐻휂𝑡

∗, 휀𝑡 = Cov𝑡−1 𝑈 ∙2
𝐻𝑉𝐻𝑥𝑡

∗, 휀𝑡 = 𝑈 ∙2
𝐻𝑉𝐻 Cov𝑡−1 𝑥𝑡

∗, 휀𝑡 . Now 𝑉𝐻  is invertible 

which means that ker𝑈 ∙2
𝐻𝑉𝐻 = 𝑉 ker𝑈 ∙2

𝐻 22 = 𝑉 span𝑈 ∙1
𝐻 23, thus there exists a rank  

−𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ
𝑀휀

 ×

dim 𝑥𝑡
∗ matrix 𝒰 such that Cov𝑡−1 𝑥𝑡

∗, 휀𝑡 = 𝑉𝑈 ∙1
𝐻𝒰. Now since 𝒰 has fewer rows than columns, if 

𝑈 𝐷 𝑉 𝐻 = 𝑈 ∙1𝐷 11𝑉 ∙1
𝐻  is the SVD of 𝒰, then 𝑉 ∙2

𝐻  must have a positive number of rows. Cov𝑡−1 𝑥𝑡
∗,𝑉 ∙2

𝐻휀𝑡 =

Cov𝑡−1 𝑥𝑡
∗, 휀𝑡 𝑉 ∙2 = 𝑉𝑈 ∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻𝑉 ∙2 = 0, by the unitarity of 𝑉 . Thus: 

0 = Cov𝑡−1 𝐴𝔼𝑡
∗𝑥𝑡+1

∗ + 𝐵𝑥𝑡−1
∗ + 𝜇 + 𝛿𝑡 + 휀𝑡 ,𝑉 ∙2

𝐻휀𝑡 = Cov𝑡−1 𝐴𝔼𝑡
∗𝑥𝑡+1

∗ + 휀𝑡 ,𝑉 ∙2
𝐻휀𝑡  

= 𝐴ℛ Cov𝑡−1 𝑥𝑡
∗,𝑉 ∙2

𝐻휀𝑡 + 𝐴𝒮 Cov𝑡−1 휁𝑡 , 휀𝑡 𝑉 ∙2 +  Var𝑡−1 휀𝑡 𝑉 ∙2 = Σ𝑉 ∙2 

However Σ is of full rank, so we must have that 𝑉 ∙2 = 0, which gives the required contradiction from 

0 = 𝑉 ∙2
𝐻𝑉 ∙2 = 𝐼 as by the above 𝑉 ∙2

𝐻  has a positive number of rows. This brings us to: 

2.3.6. Proposition 2 

The canonical form (1.2) has one or more REEs, given belief in non-explosiveness, if and only if condition 

(2.14) is satisfied. These REEs are FREEs if and only condition (2.20) is satisfied and 𝑀휀  is of full rank with 

rows which are linearly independent of those of 𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ. All REEs (and consequently FREEs) are ex-

pressible in VARMAX 2,1,2  form. 

                                                            
22 Let 𝓋 ∈ ker𝑈 ∙2

𝐻𝑉𝐻  and let 𝓌 = 𝑉𝐻𝓋. Then 𝓋 = 𝑉𝓌, so 0 = 𝑈 ∙2
𝐻𝑉𝐻𝓋 = 𝑈 ∙2

𝐻𝑉𝐻𝑉𝓌 = 𝑈 ∙2
𝐻𝓌, i.e. 𝓌 ∈ ker𝑈 ∙2

𝐻 , 

thus 𝓋 ∈ 𝑉 ker𝑈 ∙2
𝐻 . Conversely if  𝓋 ∈ 𝑉 ker𝑈 ∙2

𝐻 , then 𝓋 = 𝑉𝓌 for some 𝓌 satisfying 0 = 𝑈 ∙2
𝐻𝓌, so 𝓋 ∈ ker𝑈 ∙2

𝐻𝑉𝐻 . 

23 By an identical argument to that made in footnote 21. 
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3. Partial information solution 

We now turn to the partial information case. Forming rational expectations under learning is considerably 

harder than in the full information case. Intuitively, this is because partial information will mean the 

agents will never be exactly on the stable path, and may perhaps never be able to get back on it, once 

they know better where it is, without violating the requirement under full rationality that 𝔼𝑡−1휂𝑡 = 0. If 

they have a chance to return to the stable path, it is by exploiting the fact that their expectational errors 

may be predictable by an individual with more information. This is the avenue we shall pursue. 

We approach this in two parts, firstly by working out how expectations are formed with minimal assump-

tions on information sets and no assumptions on where beliefs are coming from, and then by analysing 

the resulting solution under Bayesian belief updating with sensible information sets. 

3.1. Expectation formation with exogenous beliefs 

3.1.1. Set-up 

Let all agents have identical beliefs about 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 and let the period 𝑡 information set be ℐ𝑡  for all 

agents, where 𝒞 ⊆ ℐ𝑡 ⊆ ℐ𝑡
∗ ∪  a FREE solution exists  with 𝒞 given by: 

𝒞 ≔  𝑀휀 ,𝑀휁 ∪    휀𝑠~NIID 0, Σ  

∞

𝑠=−∞

 ∪  Σ is of full rank  

∪    𝔼 휁𝑠 = 0 and 휁𝑠  is independent of 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿, 휀𝑡 , 휀𝑡−1 ,… , 휀𝑡+1 , 휀𝑡+2 ,…  

∞

𝑠=−∞

  

∪  the economy's law of motion is of the form of (1.1)  

∪  the economy is asymptotically growing at a sub-exponential rate  

∪  conditions (2.14) 3.14  and (2.20) 3.20  hold  

∪  ∀ Γ0 , Γ1 ,𝜇 , 𝛿 ,Ψ,Π, Σ :𝑀휀  is of full rank with rows linearly independent of those of 𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ  

Note that we are now treating 𝑀휀 ,𝑀휁  not as matrices but as functions from  Γ0 , Γ1 , 𝜇 , 𝛿 ,Ψ,Π, Σ -tuples to 

matrices. That is to say 𝑀휀  and 𝑀휁  determine how the sunspot term would be formed given the parame-

ters of the economy. We will however abuse notation slightly and write e.g. 𝑀휀  rather than 
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𝑀휀 Γ0 , Γ1 , 𝜇 , 𝛿 ,Ψ,Π, Σ  where no confusion will arise. Assuming agents know these functions, 𝑀휀  and 𝑀휁 , 

is not ideal, but it greatly simplifies the maths and may be justified by noting that these are choice vari-

ables, so we are just assuming coordinated choices. This in turn could be justified by assuming that there 

are psychological processes identical across all individuals that lead people to include sunspots of a par-

ticular form, or by assuming that in-period communication leads to everyone having the same sunspots. 

In future work we will investigate learning under uncertainty about 𝑀휀  and 𝑀휁  as well. 

As in the previous chapter, we shall solve the canonical form (1.2) rather than assuming (1.1) holds, in 

order to facilitate applying this to more general models. We will however assume that  Ψ Π  is invert-

ible, which it certainly is when (1.1) holds. As noted in footnote 19, there are virtually no realistic models 

for which this does not hold, at least not if we are allowed to substitute out equations24; to put it crudely, 

economics is never an exact science. We do however have an additional reason for assuming  Ψ Π  is 

invertible when dealing with learning. Were this not the case, then after a finite number of periods a lin-

ear combination of equations would be known with certainty, which introduces countless technical diffi-

culties in the belief updating equations and does not concord with the econometrician’s experience of 

uncertainty about everything. 

Our goal in this chapter is to find necessary and sufficient conditions for convergence to the full informa-

tion case. However, if we are to do so it is important that we first specify exactly what we actually mean 

by this. That we should be asymptotically on the full information stable path is certainly a base require-

ment. We will additionally require though that as 𝑡 → ∞, the difference between full and partial informa-

tion expectational errors tends to 0, which is a weak form of convergence of expectations requirement, 

since it is independent of the convergence or otherwise of 𝑥𝑡 − 𝑥𝑡
∗. Note that both of these conditions are 

satisfied by the form of convergence examined by E&H since they look at convergence of the coefficients 

of the actual law of motion to those of a (possibly sunspot augmented) MSV solution (G. W. Evans and 

Honkapohja 2001). With this definition in hand, we begin the task of finding such necessary and sufficient 

conditions. 

                                                            
24 And in fact even market clearing or account balance equations rarely hold exactly due to measurement error. 



 

 

38 Rational macroeconomic learning in linear expectational models 

Tom Holden 

3.1.2. Derivation of restrictions 

We proceed to solve the model much as in the previous chapter. As there, we know that: 

 
 
Λ11 Λ12

0 Λ22
  
𝑤1,𝑡

𝑤2,𝑡
 =  

Ω11 Ω12

0 Ω22
  
𝑤1,𝑡−1

𝑤2,𝑡−1
 +  

𝑄1∙

𝑄2∙
  𝜇 + 𝛿 𝑡 + Ψ휀𝑡 + Π휂𝑡  

(3.1) 

(note the lack of stars) and again we solve the explosive bottom block forward. This means for all 𝑘 ∈ ℕ+: 

 
𝑤2,𝑡 =  Ω22

−1Λ22 
𝑘𝑤2,𝑡+𝑘 −  Ω22

−1Λ22 
𝑠−1Ω22

−1𝑄2∙ 𝜇 + 𝛿  𝑡 + 𝑠 + Ψ휀𝑡+𝑠 + Π휂𝑡+𝑠 

𝑘

𝑠=1

 
 

(3.2) 

So if we take expectations under the ℐ𝑟
∗ information set25 (𝑟 ≥ 𝑡) and then take the limit as 𝑘 → ∞, since 

the components of 𝔼𝑟
∗𝑤2,𝑡+𝑘  are asymptotically polynomial by our assumptions above and thus domi-

nated by  Ω22
−1Λ22 

𝑘 , we have that: 

𝑤2,𝑡 = 𝔼𝑟
∗ 𝑤2,𝑡 = −𝔼𝑟

∗   Ω22
−1Λ22 

𝑠−1Ω22
−1𝑄2∙ 𝜇 + 𝛿  𝑡 + 𝑠 + Ψ휀𝑡+𝑠 + Π휂𝑡+𝑠 

∞

𝑠=1

 

= −   Ω22
−1Λ22 

𝑠

∞

𝑠=0

 Ω22
−1𝑄2∙  𝜇 + 𝛿  𝑡 + 1  −   𝑠 Ω22

−1Λ22 
𝑠−1

∞

𝑠=0

  Ω22
−1Λ22 Ω22

−1𝑄2∙𝛿  

−   Ω22
−1Λ22 

𝑠Ω22
−1𝑄2∙Ψ휀𝑡+𝑠+1

𝑟−𝑡−1

𝑠=0

−   Ω22
−1Λ22 

𝑠Ω22
−1𝑄2∙Π휂𝑡+𝑠+1

𝑟−𝑡−1

𝑠=0

 

−   Ω22
−1Λ22 

𝑠Ω22
−1𝑄2∙Π𝔼𝑟

∗ 휂𝑡+𝑠+1 

∞

𝑠=𝑟−𝑡

 

where all sums are well defined since the eigenvalues of Ω22
−1Λ22  are strictly in the unit circle by construc-

tion, which is necessary and sufficient for convergence by the results of appendix A, § 5. Now let: 

 
𝜗𝑟 ,𝑡 ≔   Ω22

−1Λ22 
𝑠Ω22

−1𝑄2∙Π𝔼𝑟
∗ 휂𝑡+𝑠+1 

∞

𝑠=𝑟−𝑡

 

=  Ω22
−1Λ22 

𝑟−𝑡   Ω22
−1Λ22 

𝑠Ω22
−1𝑄2∙Π𝔼𝑟

∗ 휂𝑟+𝑠+1 

∞

𝑠=0

=  Ω22
−1Λ22 

𝑟−𝑡𝜗𝑟 ,𝑟  

 
 
 
 

(3.3) 

                                                            
25 There is no additional benefit taking expectations under the ℐ𝑟  information set at this point, since we can always 

retrieve ℐ𝑟  expectations from ℐ𝑟
∗ ones using the law of iterated expectations. 
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(Note that when ℐ𝑟 = ℐ𝑟
∗, 𝜗𝑟 ,𝑟 = 0. However, in general this will not hold since 휂𝑟+1 is defined relative to 

the ℐ𝑟  information set, which is a subset of the ℐ𝑟
∗ one.) Using this definition and the formulae derived in 

the aforementioned appendix, we then have that: 

𝑤2,𝑡 = 𝜙𝜇 +  Λ22 − Ω22 
−1𝑄2∙𝛿 𝑡 −   Ω22

−1Λ22 
𝑠Ω22

−1𝑄2∙Ψ휀𝑡+𝑠+1

𝑟−𝑡−1

𝑠=0

−   Ω22
−1Λ22 

𝑠Ω22
−1𝑄2∙Π휂𝑡+𝑠+1

𝑟−𝑡−1

𝑠=0

− 𝜗𝑟 ,𝑡  

⇒  𝑤2,𝑡 = 𝜙𝜇 +  Λ22 − Ω22 
−1𝑄2∙𝛿 𝑡 − 𝜗𝑡 ,𝑡  (3.4) 

& 𝑤2,𝑡 = 𝜙𝜇 +  Λ22 − Ω22 
−1𝑄2∙𝛿 𝑡 − Ω22

−1𝑄2∙Ψ휀𝑡+1 − Ω22
−1𝑄2∙Π휂𝑡+1 − 𝜗𝑡+1,𝑡   

where 𝜙𝜇  is defined as before by (2.11). Equating both right hand sides and pre-multiplying by Ω22  we 

thus have that: 

  𝜚𝑡 = 𝑄2∙Ψ휀𝑡 + 𝑄2∙Π휂𝑡  (3.5) 

where: 𝜚𝑡 ≔ Ω22 𝜗𝑡−1,𝑡−1 − 𝜗𝑡 ,𝑡−1 = Ω22𝜗𝑡−1,𝑡−1 − Λ22𝜗𝑡 ,𝑡  (3.6) 

As in the previous chapter, we posit an explicit solution for 휂𝑡 , namely: 

 휂𝑡 = 𝑉∙1𝐷11
−1𝑈∙1

𝐻𝜚𝑡 +  −𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ + 𝑉∙2𝑀휀 휀𝑡 + 𝑉∙2𝑀휁휁𝑡 + 𝑉∙2𝜉𝑡  (3.7) 

where 𝜉𝑡  is some pseudo-sunspot, possibly a time varying function of the other random variables in the 

system, chosen so as to not violate 𝔼𝑡휂𝑡+1 = 0. (Note we do not require that 𝔼𝑡
∗𝜉𝑡+1 = 0 or even neces-

sarily that 𝔼𝑡 𝜉𝑡+1 dim 𝜉𝑡+1 = 0 due to the possible conditional covariance between 𝑉∙2 and 𝜉𝑡 .) This 

satisfies (3.5) since by the unitarity of 𝑉 and the fact that together condition (2.14) and the invertibility of 

 Ψ Π  implies 𝑈∙1𝑈∙1
𝐻 = 𝐼, we have: 

𝑄2∙Π휂𝑡 = 𝑈∙1𝐷11𝑉∙1
𝐻휂𝑡  

= 𝑈∙1𝐷11𝑉∙1
𝐻𝑉∙1𝐷11

−1𝑈∙1
𝐻𝜚𝑡 +  −𝑈∙1𝐷11𝑉∙1

𝐻𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ + 𝑈∙1𝐷11𝑉∙1
𝐻𝑉∙2𝑀휀 휀𝑡  

+𝑈∙1𝐷11𝑉∙1
𝐻𝑉∙2𝑀휁휁𝑡 + 𝑈∙1𝐷11𝑉∙1

𝐻𝑉∙2𝜉𝑡  

= 𝑈∙1𝑈∙1
𝐻𝜚𝑡 − 𝑈∙1𝑈∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻휀𝑡 = 𝜚𝑡 − 𝑄2∙Ψ휀𝑡  

It is also clearly as general a solution as is possible while still satisfying (3.5). 
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Equation (3.7) has three important consequences. Firstly, it implies necessary and sufficient conditions for 

convergence, namely that: 

 lim
𝑡→∞

𝜉𝑡 = lim
𝑡→∞

𝜗𝑡 ,𝑡 = 0 (3.8) 

This is sufficient since by (3.6) if 𝜗𝑡 ,𝑡  tends to 0 as 𝑡 → ∞ then so does 𝜚𝑡  and that 𝜚𝑡  and 𝜉𝑡  tend to 0 as 

𝑡 → ∞ is trivially sufficient for 휂𝑡 − 휂𝑡
∗ → 0. Now note that the matrix 𝑉  𝐷11

−1𝑈∙1
𝐻 0

0 𝐼
  is invertible as 

𝑈∙1𝑈∙1
𝐻 = 𝐼, thus that  𝜚𝑡  and 𝜉𝑡  tend to 0 as 𝑡 → ∞ is necessary for 휂𝑡 − 휂𝑡

∗ to tend to 0. But in fact from 

equation (3.4), lim𝑡→∞ 𝜗𝑡 ,𝑡 = 0 is also necessary, else asymptotically we would be off the stable path.  

Secondly, if we pre-multiply (3.6) by 𝑉∙2
𝐻 , using the unitarity of 𝑉, we have that: 

 𝑉∙2
𝐻휂𝑡 = 𝑉∙2

𝐻𝑉∙1𝐷11
−1𝑈∙1

𝐻𝜚𝑡 +  −𝑉∙2
𝐻𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙Ψ + 𝑉∙2

𝐻𝑉∙2𝑀휀 휀𝑡 + 𝑉∙2
𝐻𝑉∙2𝑀휁휁𝑡 + 𝑉∙2

𝐻𝑉∙2𝜉𝑡  

= 𝑀휀휀𝑡 + 𝑀휁휁𝑡 + 𝜉𝑡  

 
 

(3.9) 

which will eventually be used to estimate past values of 𝜉𝑡 . Thirdly, since ℐ𝑡−1 ⊆ ℐ𝑡−1
∗ , 𝔼𝑡−1𝔼𝑡−1

∗  휂𝑡 =

𝔼𝑡−1 휂𝑡 = 0, so by (3.6): 

 0 = 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻 Ω22𝜗𝑡−1,𝑡−1 − Λ22𝜗𝑡 ,𝑡  + 𝔼𝑡−1 𝑉∙2𝜉𝑡  (3.10) 

which will turn out to be our chief rationality constraint. This equation also means that if it is ever known 

under the ℐ𝑡−1 information set that 𝑉∙2 has no columns (i.e. it is known that the model is fully determi-

nate), then for some vector 𝜍𝑡  satisfying 𝔼𝑡−1𝜍𝑡 = 0: 

𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22𝜗𝑡 ,𝑡 = 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22𝜗𝑡−1,𝑡−1 + 𝜍𝑡  

Thus as 𝑈∙1𝑈∙1
𝐻 = 𝐼 by condition (2.14) and the invertibility of  Ψ Π : 

 𝜗𝑡−1,𝑡−1 = Ω22
−1Λ22𝜗𝑡 ,𝑡 − Ω22

−1𝑈∙1𝐷11𝑉∙1
𝐻𝜍𝑡   

As Ω22
−1Λ22  has eigenvalues in the unit-circle, this suggests26 that expectations of 𝜗𝑡 ,𝑡  are explosive, violat-

ing the belief in convergence unless we are in fact already on the stable path and we have enough infor-

mation to stay on it for good. This in turn suggests that it is the lingering possibility that in fact the model 

is fully stable that enables a return to the stable path. Indeed, we conjecture that providing we are uncer-

                                                            
26 But does not imply, since possibly Ω22

−1𝑈∙1𝐷11𝑉∙1
𝐻  and 𝜍𝑡  are conditionally correlated. 
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tain where the stable path is, convergence in non-fully-stable cases is impossible, unless beliefs put posi-

tive probability on full-stability (full indeterminacy) at all times. 

3.1.3. Derivation of the stacked form solution 

Now by (2.16), (3.7) and the unitarity of 𝑉: 

 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ Π휂𝑡
∗ 

= 𝑄1∙Π𝑉∙2𝑉∙2
𝐻 𝑉∙1𝐷11

−1𝑈∙1
𝐻𝜚𝑡 +  −𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙Ψ + 𝑉∙2𝑀휀 휀𝑡 + 𝑉∙2𝑀휁휁𝑡 + 𝑉∙2𝜉𝑡  

= 𝑄1∙Π𝑉∙2 𝑀휀휀𝑡 + 𝑀휁휁𝑡 + 𝜉𝑡  

Thus if we pre-multiply (3.1) by  𝐼 −𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻 , exactly as in the previous chapter we have: 

 Λ11 Λ12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22  
𝑤1,𝑡

𝑤2,𝑡
  

=  Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22  
𝑤1,𝑡−1

𝑤2,𝑡−1
 +  𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙  𝜇 + 𝛿 𝑡 + Ψ휀𝑡 + Π휂𝑡  

=  Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22  
𝑤1,𝑡−1

𝑤2,𝑡−1
 +  𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙  𝜇 + 𝛿 𝑡 + Ψ휀𝑡 

+ 𝑄1∙Π𝑉∙2 𝑀휀휀𝑡 + 𝑀휁휁𝑡 + 𝜉𝑡  

Again as in the previous chapter, we now stack this equation with our solution for the explosive terms, 

(3.4), we can write: 

 Λ11 Λ12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22

0 𝐼
  
𝑤1,𝑡

𝑤2,𝑡
 =  Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻Ω22

0 0
  
𝑤1,𝑡−1

𝑤2,𝑡−1
  

+  𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙

0
 Ψ휀𝑡 +  

𝑄1∙Π𝑉∙2
0

  𝑀휀휀𝑡 + 𝑀휁휁𝑡 + 𝜉𝑡  

+  
 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙ 𝜇 

𝜙𝜇
 +  

 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ 

 Λ22 − Ω22 
−1𝑄2∙

 𝛿 𝑡 −  
0
𝐼
 𝜗𝑡 ,𝑡  

Thus if we now pre-multiply both sides by 𝐻 (defined as in (2.17)) we have: 

𝑣𝑡 = 𝐻  Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22

0 0
 𝑍𝐻𝑣𝑡−1 + 𝐻  𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙

0
 Ψ휀𝑡

+ 𝐻  
𝑄1∙Π𝑉∙2

0
  𝑀휀휀𝑡 + 𝑀휁휁𝑡 + 𝜉𝑡 + 𝐻  

 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ 𝜇 
𝜙𝜇

 

+ 𝐻  
 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙ 

 Λ22 − Ω22 
−1𝑄2∙

 𝛿 𝑡 − 𝐻  
0
𝐼
 𝜗𝑡 ,𝑡  
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= 𝑍∙1Λ11
−1 Ω11𝑍∙1

𝐻 +  Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝑍∙2
𝐻 𝑣𝑡−1 + 𝑍∙1Λ11

−1 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ Ψ휀𝑡

+ 𝑍∙1Λ11
−1𝑄1∙Π𝑉∙2 𝑀휀휀𝑡 + 𝑀휁휁𝑡 + 𝜉𝑡 + 𝐻  

 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙ 𝜇 
𝜙𝜇

 

+ 𝐻  
 𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻𝑄2∙ 

 Λ22 − Ω22 
−1𝑄2∙

 𝛿 𝑡 + 𝑍∙1Λ11
−1 Λ12 − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻Λ22 𝜗𝑡 ,𝑡 − 𝑍∙2𝜗𝑡 ,𝑡  

Thus with Θ𝑣 , Θ휀 , Θ휁 , 휃𝜇  and 휃𝛿  defined as in § 2.3.3, and Θ𝜗 , Θ𝜉  and 휄𝑡 ,𝑙  given by: 

 Θ𝜗 ≔ 𝑍∙1Λ11
−1 Λ12 − 𝑄1∙Π𝑉∙1𝐷11

−1𝑈∙1
𝐻Λ22 − 𝑍∙2 , Θ𝜉 ≔ 𝑍∙1Λ11

−1𝑄1∙Π𝑉∙2  

 휄𝑡 ,𝑙 ≔ Θ𝜗𝔼𝑡
∗𝜗𝑡+𝑙 ,𝑡+𝑙 + Θ𝜉𝔼𝑡

∗𝜉𝑡+𝑙   

we can write: 

 𝑣𝑡 = Θ𝑣𝑣𝑡−1 + 휃𝜇 + 휃𝛿 𝑡 + Θ휀휀𝑡 + Θ휁휁𝑡 + 휄𝑡 ,0 (3.11) 

We note here that trivially our condition (3.8) is sufficient for 휄𝑡 ,0 to tend to 0 as 𝑡 → ∞ and hence, by 

(2.18), sufficient for  𝑣𝑡 − 𝑣𝑡
∗ to tend to 0 as well. 

3.1.4. Solution for the off stable path term 

Equation (3.11) would be identical to the solution under partial information (2.18) were it not for the 휄𝑡 ,0 

term. In this section, we concentrate initially on finding an expression for the 𝜗𝑡 ,𝑡  component, which by 

equation (3.4) measures the distance off the saddle path. It is not at all obvious a priori whether its defini-

tion in terms of future expectational errors actually restricts the values it can take. We approach this 

problem by using equation (3.11) to derive a solution for these expectations of future errors. 

Pushing equation (3.11) forward one period and then iterating 𝑘 times before finally taking 𝑡 dated full-

information expectations, we have that: 

 
𝔼𝑡
∗𝑣𝑡+𝑘 = Θ𝑣

𝑘𝑣𝑡 +  Θ𝑣
𝑘−𝑗

 휃𝜇 + 휃𝛿 𝑡 + 𝑗 + 휄𝑡 ,𝑗  

𝑘

𝑗=1

 
 

Now: 

 
 Θ𝑣 − 𝐼  Θ𝑣

𝑘−𝑗

𝑘

𝑗=1

=  Θ𝑣
𝑘−𝑗+1

𝑘

𝑗=1

− Θ𝑣
𝑘−𝑗

𝑘

𝑗=1

=  Θ𝑣
𝑘 − 𝐼  

 

and: 
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 Θ𝑣 − 𝐼   𝑗 − 1 Θ𝑣
𝑘−𝑗

𝑘

𝑗=1

=   𝑗 − 1 Θ𝑣
𝑘−𝑗+1

𝑘

𝑗=1

−  𝑗 − 1 Θ𝑣
𝑘−𝑗

𝑘

𝑗=1

 

=   𝑗 − 1 Θ𝑣
𝑘− 𝑗−1 

𝑘

𝑗=1

− 𝑗Θ𝑣
𝑘−𝑗

𝑘

𝑗=1

+  Θ𝑣
𝑘−𝑗

𝑘

𝑗=1

=  Θ𝑣
𝑘−𝑗

𝑘

𝑗=1

− 𝑘𝐼 

Thus assuming  Θ𝑣 − 𝐼  is invertible (which is certainly true whenever there are no unit roots), by the 

above, for 𝑘 ∈ ℕ: 

𝔼𝑡
∗𝑣𝑡+𝑘 = Θ𝑣

𝑘𝑣𝑡 +  Θ𝑣 − 𝐼 −1 Θ𝑣
𝑘 − 𝐼  휃𝜇 + 휃𝛿 𝑡 + 1   

+ Θ𝑣 − 𝐼 −1  Θ𝑣 − 𝐼 −1 Θ𝑣
𝑘 − 𝐼 − 𝑘𝐼 휃𝛿 +  Θ𝑣

𝑘−𝑗
휄𝑡 ,𝑗

𝑘

𝑗=1

 

But: Θ𝜈
𝑘 Θ𝜈 − 𝐼 = Θ𝜈

𝑘+1 − Θ𝜈
𝑘 =  Θ𝜈 − 𝐼 Θ𝜈

𝑘   

So pre- and post- multiplying by  Θ𝑣 − 𝐼 −1 we have that Θ𝜈
𝑘 Θ𝜈 − 𝐼 −1 =  Θ𝜈 − 𝐼 −1Θ𝜈

𝑘 , thus: 

𝔼𝑡
∗𝑣𝑡+𝑘 = Θ𝑣

𝑘𝑣𝑡 +  Θ𝑣
𝑘 − 𝐼  Θ𝑣 − 𝐼 −1  휃𝜇 + 휃𝛿 𝑡 + 1   

+  Θ𝑣
𝑘 − 𝐼  Θ𝑣 − 𝐼 −1 − 𝑘𝐼  Θ𝑣 − 𝐼 −1휃𝛿 +  Θ𝑣

𝑘−𝑗
휄𝑡 ,𝑗

𝑘

𝑗=1

 

Thus for 𝑘 > 0: 

𝔼𝑡
∗휂𝑡+𝑘 = 𝔼𝑡

∗ 𝑥𝑡+𝑘 − 𝔼𝑡+𝑘−1𝑥𝑡+𝑘 =  𝐼 0 𝔼𝑡
∗𝑣𝑡+𝑘 −  0 𝐼 𝔼𝑡

∗𝑣𝑡+𝑘−1 

= 𝒟𝑘𝑣𝑡 +  𝒟𝑘 −  𝐼 −𝐼   Θ𝑣 − 𝐼 −1  휃𝜇 + 휃𝛿 𝑡 + 1  +  𝒟𝑘 −  𝐼 −𝐼   Θ𝑣 − 𝐼 −2휃𝛿  

− 𝑘𝐼 − 𝑘 − 1 𝐼  Θ𝑣 − 𝐼 −1휃𝛿 +  𝐼 0 휄𝑡 ,𝑘 +  𝒟𝑘−𝑗 휄𝑡 ,𝑗

𝑘−1

𝑗=1

 

where 𝒟𝑘 ≔  𝐼 0 Θ𝑣
𝑘 −  0 𝐼 Θ𝑣

𝑘−1 =   𝐼 0 Θ𝑣 −  0 𝐼  Θ𝑣
𝑘−1. This is true for any information set 

and any values for 𝜇  and 𝛿 , providing the conditions at the start of this chapter are satisfied. Therefore it 

is certainly true in the case when ℐ𝑡 = ℐ𝑡
∗, 𝜇 = 𝛿 = 0 and we are on the saddle-hyper-plane. In this case 

휃𝜇 = 휃𝛿 = 0 and 휄𝑡 ,𝑘 = 0 for all 𝑡, 𝑘. Thus we have that for 𝑘 > 0, 0 = 𝔼𝑡
∗휂𝑡+𝑘

∗ = 𝔼𝑡
∗휂𝑡+𝑘 = 𝒟𝑘𝑣𝑡 . Now 

note that in this case, 0 = 𝑤2,𝑡
∗ = 𝑤2,𝑡 , thus 𝑣𝑡 = 𝑣𝑡

∗ = 𝑍∙1𝑤1,𝑡
∗ = 𝑍∙1𝑤1,𝑡 . Also note that “acting as god” 

we can choose initial conditions (holding the shock series constant) without violating rationality such that 
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𝑤1,𝑡  takes any value; thus it must be the case that 0 = 𝒟𝑘𝑍∙1, at least when ℐ𝑡 = ℐ𝑡
∗ and 𝜇 = 𝛿 = 0. In 

fact though, this must be true no matter what ℐ𝑡 , 𝜇  and 𝛿  are, as examining the definition of 𝒟𝑘  we see 

that it does not depend on any of these things (though it will not be true more generally that 0 = 𝒟𝑘𝑣𝑡  

since we may be off the saddle-hyper-plane). 

Now by the unitarity of 𝑍, for 𝑘 > 0: 

 Θ𝑣
𝑘 = 𝑍∙1Λ11

−1 Ω11Λ11
−1 𝑘−1 Ω11𝑍∙1

𝐻 +  Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝑍∙2
𝐻   

Therefore for 𝑘 > 1, 𝒟𝑘 = 0. Note for future reference that 0 = 𝒟𝑘𝑍∙1 also implies that 𝒟1Θ𝜗 = −𝒟1𝑍∙2 

and 𝒟1Θ𝜉 = 0, so 𝒟1휄𝑡 ,𝑙 = −𝒟1𝑍∙2𝔼𝑡
∗𝜗𝑡+𝑙 ,𝑡+𝑙 . Also by the unitarity of 𝑍 we have that: 

 𝒟1 = 𝒟1𝐼 = 𝒟1 𝑍∙1𝑍∙1
𝐻 + 𝑍∙2𝑍∙2

𝐻 = 𝒟1𝑍∙2𝑍∙2
𝐻   

Thus by (3.4) and the just derived equation for 𝒟1휄𝑡 ,𝑙 : 

 𝒟1𝑣𝑡 = 𝒟1𝑍∙2𝑍∙2
𝐻𝑣𝑡 = 𝒟1𝑍∙2𝑤2,𝑡 = 𝒟1𝑍∙2𝜙𝜇 + 𝒟1𝑍∙2 Λ22 − Ω22 

−1𝑄2∙𝛿 𝑡 + 𝒟1휄𝑡 ,0  

This means that: 

𝔼𝑡
∗휂𝑡+1 = 𝒟1𝑍∙2𝜙𝜇 + 𝒟1𝑍∙2 Λ22 − Ω22 

−1𝑄2∙𝛿 𝑡 + 𝒟1휄𝑡 ,0 +  𝒟1 +  −𝐼 𝐼   Θ𝑣 − 𝐼 −1  휃𝜇 + 휃𝛿 𝑡 + 1   

+ 𝒟1 +  −𝐼 𝐼   Θ𝑣 − 𝐼 −2휃𝛿 +  −𝑘𝐼  𝑘 − 1 𝐼  Θ𝑣 − 𝐼 −1휃𝛿 +  𝐼 0 휄𝑡 ,1 

and that for 𝑘 > 1: 

𝔼𝑡
∗휂𝑡+𝑘 =  −𝐼 𝐼  Θ𝑣 − 𝐼 −1  휃𝜇 + 휃𝛿 𝑡 + 1  +  −𝐼 𝐼  Θ𝑣 − 𝐼 −2휃𝛿  

+ −𝑘𝐼  𝑘 − 1 𝐼  Θ𝑣 − 𝐼 −1휃𝛿 +  𝐼 0 휄𝑡 ,𝑘 + 𝒟1휄𝑡 ,𝑘−1 

Now as before, we note that the equation for 𝔼𝑡
∗휂𝑡+𝑘  just derived must hold for any information set, so in 

particular it holds when ℐ𝑡 = ℐ𝑡
∗ and we are on the saddle-hyper-plane. As 휄𝑡 ,𝑙 = 0 in this case this means 

that for all 𝑡 and for all 𝑘 > 1: 

0 = 𝔼𝑡
∗휂𝑡+𝑘

∗ = 𝔼𝑡
∗휂𝑡+𝑘  

=  −𝐼 𝐼  Θ𝑣 − 𝐼 −1  휃𝜇 + 휃𝛿 𝑡 + 1  +  −𝐼 𝐼  Θ𝑣 − 𝐼 −2휃𝛿 +  −𝑘𝐼  𝑘 − 1 𝐼  Θ𝑣 − 𝐼 −1휃𝛿  

This can only hold if  −𝐼 𝐼  Θ𝑣 − 𝐼 −1휃𝛿 = 0 and: 
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 0 =  −𝐼 𝐼  Θ𝑣 − 𝐼 −1휃𝜇 +  −𝐼 𝐼  Θ𝑣 − 𝐼 −2휃𝛿 +  0 −𝐼  Θ𝑣 − 𝐼 −1휃𝛿   

Again, since the variables in these equalities are independent of the information set they must in fact 

hold for any information set. Thus: 

𝔼𝑡
∗휂𝑡+1 = 𝒟1  𝑍∙2𝜙𝜇 + 𝑍∙2 Λ22 − Ω22 

−1𝑄2∙𝛿 𝑡 + 휄𝑡 ,0 +  Θ𝑣 − 𝐼 −1  휃𝜇 + 휃𝛿 𝑡 + 1  +  Θ𝑣 − 𝐼 −2휃𝛿   

+ 𝐼 0 휄𝑡 ,1 

and for 𝑘 > 1, 𝔼𝑡
∗휂𝑡+𝑘 =  𝐼 0 휄𝑡 ,𝑘 + 𝒟1휄𝑡 ,𝑘−1. 

Now again we have that this 𝔼𝑡
∗휂𝑡+1 equation must hold when ℐ𝑡 = ℐ𝑡

∗ and we are on the saddle-hyper-

plane, so as 휄𝑡 ,0 = 휄𝑡 ,1 = 0 in this case it must be that: 

0 = 𝔼𝑡
∗휂𝑡+1

∗ = 𝔼𝑡
∗휂𝑡+1 

= 𝒟1  𝑍∙2𝜙𝜇 + 𝑍∙2 Λ22 − Ω22 
−1𝑄2∙𝛿 𝑡 +  Θ𝑣 − 𝐼 −1  휃𝜇 + 휃𝛿 𝑡 + 1  +  Θ𝑣 − 𝐼 −2휃𝛿   

As before we note that since none of these variables depend on the information set this must in fact hold 

whatever ℐ𝑡  is. Thus in fact for all 𝑘 > 0: 

 𝔼𝑡
∗휂𝑡+𝑘 =  𝐼 0 휄𝑡 ,𝑘 + 𝒟1휄𝑡 ,𝑘−1 (3.12) 

We can now use this equation to tackle the off-stable path term 𝜗𝑡+𝑙 ,𝑡+𝑙 . From its definition (3.3), for 

𝑙 ≥ 0: 

𝔼𝑡
∗𝜗𝑡+𝑙 ,𝑡+𝑙 =   Ω22

−1Λ22 
𝑘−1Ω22

−1𝑄2∙Π   𝐼 0 휄𝑡 ,𝑙+𝑘 + 𝒟1휄𝑡 ,𝑙+𝑘−1 

∞

𝑘=1

 

Now as noted above, 𝒟1휄𝑡 ,𝑙 = −𝒟1𝑍∙2𝔼𝑡
∗𝜗𝑡+𝑙 ,𝑡+𝑙 , thus: 

 Ω22
−1𝑄2∙Π𝒟1𝑍∙2 + 𝐼 𝔼𝑡

∗𝜗𝑡+𝑙 ,𝑡+𝑙

+   Ω22
−1Λ22 

𝑘−1Ω22
−1 Λ22Ω22

−1𝑄2∙Π𝒟1𝑍∙2 − 𝑄2∙Π 𝐼 0 Θ𝜗  𝔼𝑡
∗𝜗𝑡+𝑙+𝑘 ,𝑡+𝑙+𝑘

∞

𝑘=1

=   Ω22
−1Λ22 

𝑘−1Ω22
−1𝑄2∙Π 𝐼 0 Θ𝜉𝔼𝑡

∗𝜉𝑡+𝑙+𝑘

∞

𝑘=1
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This is an infinite order difference equation, but luckily we can reduce it to a first order one. Let 𝔩𝑙  and 𝔯𝑙  

be the left and right side respectively of this equation. Additionally let: 

 𝒦 ≔ Ω22
−1𝑄2∙Π𝒟1𝑍∙2 + 𝐼, ℒ ≔ Ω22

−1 Λ22Ω22
−1𝑄2∙Π𝒟1𝑍∙2 − 𝑄2∙Π 𝐼 0 Θ𝜗    

and ℛ ≔ Ω22
−1𝑄2∙Π 𝐼 0 Θ𝜉   

Then: 
𝔩𝑙 −𝒦𝔼𝑡

∗𝜗𝑡+𝑙 ,𝑡+𝑙 =   Ω22
−1Λ22 

𝑘−1ℒ𝔼𝑡
∗𝜗𝑡+𝑙+𝑘 ,𝑡+𝑙+𝑘

∞

𝑘=1

 
 

 
and 𝔯𝑙 =   Ω22

−1Λ22 
𝑘−1ℛ𝔼𝑡

∗𝜉𝑡+𝑙+𝑘

∞

𝑘=1

 
 

Therefore for 𝑙 ≥ 1: 

 
𝔩𝑙−1 −𝒦𝔼𝑡

∗𝜗𝑡+𝑙−1,𝑡+𝑙−1 = ℒ𝔼𝑡
∗𝜗𝑡+𝑙 ,𝑡+𝑙 +   Ω22

−1Λ22 
𝑘ℒ𝔼𝑡

∗𝜗𝑡+𝑙+𝑘 ,𝑡+𝑙+𝑘

∞

𝑘=1

 

= ℒ𝔼𝑡
∗𝜗𝑡+𝑙 ,𝑡+𝑙 + Ω22

−1Λ22 𝔩𝑙 −𝒦𝔼𝑡
∗𝜗𝑡+𝑙 ,𝑡+𝑙  

 

 
𝔯𝑙−1 = ℛ𝔼𝑡

∗𝜉𝑡+𝑙 +   Ω22
−1Λ22 

𝑘ℛ𝔼𝑡
∗𝜉𝑡+𝑙+𝑘

∞

𝑘=1

= ℛ𝔼𝑡
∗𝜉𝑡+𝑙 + Ω22

−1Λ22𝔯𝑙  
 

So as 𝔩𝑙−1 = 𝔯𝑙−1 and 𝔩𝑙 = 𝔯𝑙 : 

 𝒦𝔼𝑡
∗𝜗𝑡+𝑙−1,𝑡+𝑙−1 +  ℒ − Ω22

−1Λ22𝒦 𝔼𝑡
∗𝜗𝑡+𝑙 ,𝑡+𝑙 = ℛ𝔼𝑡

∗𝜉𝑡+𝑙   

This holding for all 𝑙 ≥ 1 is sufficient for there to be a solution to the infinite order difference equation, as 

for all 𝑙 ≥ 0: 

𝔯𝑙 =   Ω22
−1Λ22 

𝑘−1ℛ𝔼𝑡
∗𝜉𝑡+𝑙+𝑘

∞

𝑘=1

 

=   Ω22
−1Λ22 

𝑘−1 𝒦𝔼𝑡
∗𝜗𝑡+𝑙+𝑘−1,𝑡+𝑙+𝑘−1 +  ℒ − Ω22

−1Λ22𝒦 𝔼𝑡
∗𝜗𝑡+𝑙+𝑘 ,𝑡+𝑙+𝑘 

∞

𝑘=1

 

=   Ω22
−1Λ22 

𝑘−1ℒ𝔼𝑡
∗𝜗𝑡+𝑙+𝑘 ,𝑡+𝑙+𝑘

∞

𝑘=1

+   Ω22
−1Λ22 

𝑘𝒦𝔼𝑡
∗𝜗𝑡+𝑙+𝑘 ,𝑡+𝑙+𝑘

∞

𝑘=0

−  Ω22
−1Λ22 

𝑘𝒦𝔼𝑡
∗𝜗𝑡+𝑙+𝑘 ,𝑡+𝑙+𝑘

∞

𝑘=1

 

=   Ω22
−1Λ22 

𝑘−1ℒ𝔼𝑡
∗𝜗𝑡+𝑙+𝑘 ,𝑡+𝑙+𝑘

∞

𝑘=1

+ 𝒦𝔼𝑡
∗𝜗𝑡+𝑙 ,𝑡+𝑙 = 𝔩𝑙  
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so we do not need to worry about initial conditions. Now let: 

 
𝒜 ≔  Ω22

−1Λ22𝒦 − ℒ ℛ , ℬ ≔  𝒦 0 , 𝓈𝑡 ,𝑙 ≔  
𝔼𝑡
∗𝜗𝑡+𝑙 ,𝑡+𝑙

𝔼𝑡
∗𝜉𝑡+𝑙

  
 

It follows from the first order form just derived then that for all 𝑙 ≥ 1: 

 𝒜𝓈𝑡 ,𝑙 = ℬ𝓈𝑡 ,𝑙−1  

Now let 𝑈 𝐷 𝑉 𝐻 = 𝑈 ∙1𝐷 11𝑉 ∙1
𝐻  be the SVD of 𝒜, then from pre-multiplying by 𝑈 ∙1𝑈 ∙1

𝐻 , by the unitarity of 𝑈  

we have that for all 𝑙 ≥ 1: 

 ℬ𝓈𝑡 ,𝑙−1 = 𝒜𝓈𝑡 ,𝑙 = 𝑈 ∙1𝐷 11𝑉 ∙1
𝐻𝓈𝑡 ,𝑙 = 𝑈 ∙1𝑈 ∙1

𝐻𝑈 ∙1𝐷 11𝑉 ∙1
𝐻𝓈𝑡 ,𝑙 = 𝑈 ∙1𝑈 ∙1

𝐻ℬ𝓈𝑡 ,𝑙−1 (3.13) 

As ever we demonstrate this condition is sufficient by exhibiting a solution, in this case: 

 𝓈𝑡 ,𝑙 = 𝑉 ∙1𝐷 11
−1𝑈 ∙1

𝐻ℬ𝓈𝑡 ,𝑙−1 + 𝑉 ∙2𝓇𝑡 ,𝑙  (3.14) 

for some undetermined variable 𝓇𝑡 ,𝑙 . This satisfies 𝒜𝓈𝑡 ,𝑙 = ℬ𝓈𝑡 ,𝑙−1 since by the unitarity of 𝑉  and the just 

derived condition: 

𝒜𝓈𝑡 ,𝑙 = 𝑈 ∙1𝐷 11𝑉 ∙1
𝐻𝓈𝑡 ,𝑙 = 𝑈 ∙1𝐷 11𝑉 ∙1

𝐻𝑉 ∙1𝐷 11
−1𝑈 ∙1

𝐻ℬ𝓈𝑡 ,𝑙−1 + 𝑈 ∙1𝐷 11𝑉 ∙1
𝐻𝑉 ∙2𝓇𝑡 ,𝑙 = 𝑈 ∙1𝑈 ∙1

𝐻ℬ𝓈𝑡 ,𝑙−1 = ℬ𝓈𝑡 ,𝑙−1 

Now let 𝑍 Ω 𝑍 𝐻  be the Schur decomposition of 𝑉 ∙1𝐷 11
−1𝑈 ∙1

𝐻ℬ, with eigenvalues ordered by increasing 

modulus. As ever we partition these matrices so that the top and/or leftmost block corresponds to the 

fully stable eigenvalues (which here we take to be those with modulus strictly less that 1). Pre-multiplying 

(3.14) by 𝑍 𝐻  then and writing 𝓆𝑡 ,𝑙 = 𝑍 𝐻𝓈𝑡 ,𝑙 , we have that: 

 
 
𝓆𝑡 ,1,𝑙

𝓆𝑡 ,2,𝑙
 =  

Ω 11 Ω 12

0 Ω 22

  
𝓆𝑡 ,1,𝑙−1

𝓆𝑡 ,2,𝑙−1
 +  

𝑍 ∙1
𝐻

𝑍 ∙2
𝐻 𝑉

 
∙2𝓇𝑡 ,𝑙  

 

Now our necessary and sufficient condition for convergence, (3.8), is equivalent to the condition that 

𝓈𝑡 ,𝑙 → 0 as 𝑡 → ∞, for which it is certainly necessary that 𝑠𝑡 ,𝑙 → 0 as 𝑙 → ∞. So as the bottom block of the 

equation above is explosive (or at least a random walk), the following conditions are necessary for con-

vergence:  

 𝑍 ∙2
𝐻𝓈𝑡 ,0 = 0 (3.15) 

and: 𝑍 ∙2
𝐻𝑉 ∙2 = 0 (3.16) 
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Therefore: 

 𝓈𝑡 ,𝑙 = 𝑍 ∙1Ω 11𝑍 ∙1
𝐻𝓈𝑡 ,𝑙−1 + 𝑍 ∙1𝑍 ∙1

𝐻𝑉 ∙2𝓇𝑡 ,𝑙  (3.17) 

i.e. 
𝓈𝑡 ,𝑙 = 𝑍 ∙1Ω 11

𝑙 𝑍 ∙1
𝐻𝓈𝑡 ,0 +  𝑍 ∙1Ω 11

𝑘 𝑍 ∙1
𝐻𝑉 ∙2𝓇𝑡 ,𝑙−𝑘

𝑙−1

𝑘=0

 
 

Note that since 𝑍 ∙2
𝐻𝓈𝑡 ,0 = 0, 𝑍 ∙1𝑍 ∙1

𝐻𝓈𝑡 ,0 = 𝓈𝑡 ,0, so if we define a new variable 𝛼𝑡  by 𝛼𝑡 ≔ 𝑍 ∙1
𝐻𝓈𝑡 ,0, then 

𝑍 ∙1𝛼𝑡 = 𝑍 ∙1𝑍 ∙1
𝐻𝓈𝑡 ,0 = 𝓈𝑡 ,0. Therefore for all 𝑙 ≥ 0: 

 
𝓈𝑡 ,𝑙 = 𝑍 ∙1Ω 11

𝑙 𝛼𝑡 +  𝑍 ∙1Ω 11
𝑘 𝑍 ∙1

𝐻𝑉 ∙2𝓇𝑡 ,𝑙−𝑘

𝑙−1

𝑘=0

 
 

Now by the law of iterated expectations, for all 𝑙,𝑚 ≥ 0, 𝔼𝑡
∗𝓈𝑡+𝑚 ,𝑙 = 𝓈𝑡 ,𝑙+𝑚 , thus for 𝑙,𝑚 ≥ 0: 

  
𝑍 ∙1Ω 11

𝑙 𝔼𝑡
∗𝛼𝑡+𝑚 +  𝑍 ∙1Ω 11

𝑘 𝑍 ∙1
𝐻𝑉 ∙2𝔼𝑡

∗𝓇𝑡+𝑚 ,𝑙−𝑘

𝑙−1

𝑘=0

= 𝑍 ∙1Ω 11
𝑙+𝑚𝛼𝑡 +  𝑍 ∙1Ω 11

𝑘 𝑍 ∙1
𝐻𝑉 ∙2𝓇𝑡 ,𝑙+𝑚−𝑘

𝑙+𝑚−1

𝑘=0

 

 
 
 
 
 

(3.18) 

Thus from the 𝑙 = 0 case, 𝑍 ∙1𝔼𝑡
∗𝛼𝑡+𝑚 = 𝓈𝑡 ,𝑚  for all 𝑚 ≥ 0, so pre-multiplying this equation by 𝑍 ∙1

𝐻 : 

 
𝔼𝑡
∗𝛼𝑡+𝑚 = Ω 11

𝑚 𝛼𝑡 +  Ω 11
𝑘 𝑍 ∙1

𝐻𝑉 ∙2𝓇𝑡 ,𝑚−𝑘

𝑚−1

𝑘=0

 
 

(3.19) 

Now from (3.18) and (3.19) we also have that for 𝑙,𝑚 ≥ 0: 

 
 𝑍 ∙1Ω 11

𝑙+𝑘𝑍 ∙1
𝐻𝑉 ∙2𝓇𝑡 ,𝑚−𝑘

𝑚−1

𝑘=0

+  𝑍 ∙1Ω 11
𝑘 𝑍 ∙1

𝐻𝑉 ∙2𝔼𝑡
∗𝓇𝑡+𝑚 ,𝑙−𝑘

𝑙−1

𝑘=0

=  𝑍 ∙1Ω 11
𝑘 𝑍 ∙1

𝐻𝑉 ∙2𝓇𝑡 ,𝑙+𝑚−𝑘

𝑙+𝑚−1

𝑘=0

 
 

 
⇒  0 =  𝑍 ∙1Ω 11

𝑘 𝑍 ∙1
𝐻𝑉 ∙2 𝓇𝑡 ,𝑙+𝑚−𝑘 − 𝔼𝑡

∗𝓇𝑡+𝑚 ,𝑙−𝑘 

𝑙−1

𝑘=0

 
 

So pre-multiplying the 𝑙 = 1 case by 𝑍 ∙1
𝐻 : 

 0 = 𝑍 ∙1
𝐻𝑉 ∙2 𝓇𝑡 ,1+𝑚 − 𝔼𝑡

∗𝓇𝑡+𝑚 ,1   

Therefore by (3.16): 

 0 =  
0
0
 = 𝑍 𝐻𝑉 ∙2 𝓇𝑡 ,1+𝑚 − 𝔼𝑡

∗𝓇𝑡+𝑚 ,1   
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⇒  0 = 𝑉 ∙2
𝐻𝑍 0 = 𝑉 ∙2

𝐻𝑍 𝑍 𝐻𝑉 ∙2 𝓇𝑡 ,1+𝑚 − 𝔼𝑡
∗𝓇𝑡+𝑚 ,1 = 𝓇𝑡 ,1+𝑚 − 𝔼𝑡

∗𝓇𝑡+𝑚 ,1  

Therefore it seems sensible to define another variable 𝛽𝑡 ≔ 𝓇𝑡 ,1, so for all 𝑚 ≥ 1, 𝓇𝑡 ,𝑚 = 𝔼𝑡
∗𝛽𝑡+𝑚−1, 

which means that we can rewrite (3.19) as: 

 
𝔼𝑡
∗𝛼𝑡+𝑚 = Ω 11

𝑚 𝛼𝑡 +  Ω 11
𝑘−1𝑍 ∙1

𝐻𝑉 ∙2𝔼𝑡
∗𝛽𝑡+𝑚−𝑘

𝑚

𝑘=1

 
 

Since 𝓈𝑡 ,𝑚 = 𝑍 ∙1𝔼𝑡
∗𝛼𝑡+𝑚  for all 𝑚 ≥ 0, this also gives us our final solution for 𝓈𝑡 ,𝑚 . Note too that since by 

(3.16), 𝑍 ∙1𝑍 ∙1
𝐻𝑉 ∙2 = 𝑉 ∙2, we have 𝛽𝑡 = 𝑉 ∙2

𝐻𝑍 ∙1 𝔼𝑡
∗𝛼𝑡+1 − Ω11𝛼𝑡 , given any sequences  𝛼𝑡 𝑡  and  𝔼𝑡

∗𝛼𝑡+1 𝑡 , 

we can always choose 𝛽𝑡  so as to make 𝔼𝑡
∗𝛼𝑡+1 rational according to this equation. Thus we can think of 

this solution as only restricting 𝔼𝑡
∗𝛼𝑡+𝑚  for 𝑚 > 1. 

We must also have that 𝔼𝑡−1휂𝑡 = 0  so by (3.10): 

 0 = 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 + 𝔼𝑡−1   −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝛼𝑡  
(3.20) 

Finally note that this solution for 𝓈𝑡 ,𝑚  implies that we can rewrite equation (3.11) as: 

 𝑣𝑡 = Θ𝑣𝑣𝑡−1 + 휃𝜇 + 휃𝛿𝑡 + Θ휀휀𝑡 + Θ휁휁𝑡 +  Θ𝜗 Θ𝜉  𝑍 ∙1𝛼𝑡  (3.21) 

3.1.5. Towards a FREE solution 

We will now use the just derived results to put the solution into a form that does not depend on 휀𝑡 . From 

our solution for 휂𝑡 , (3.7), similarly to equation (2.19) we have: 

 
 
−𝐷11

−1𝑈∙1
𝐻𝑈 ∙1𝐷 11𝑉 ∙1

𝐻

𝑀휀
 휀𝑡 = 𝑉𝐻휂𝑡

∗ −  
0
𝑀휁

 휁𝑡 −  
0
𝐼
 𝜉𝑡 −  𝐷11

−1𝑈∙1
𝐻

0
 𝜚𝑡  

 
 

As we are assuming condition (2.20) and that 𝑀휀  is of full rank with rows which are linearly independent 

of those of 𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ,  
−𝐷11

−1𝑈∙1
𝐻𝑄2∙Ψ

𝑀휀
  is invertible by the arguments of § 2.3.5 and: 

 
휀𝑡 =  

−𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ
𝑀휀

 
−1

 𝑉𝐻휂𝑡
∗ −  

0
𝑀휁

 휁𝑡 −  
0
𝐼
 𝜉𝑡 −  𝐷11

−1𝑈∙1
𝐻

0
 𝜚𝑡  

 

Now we let Φ휂  and Φ휁  be defined as in § 2.3.5 and we additionally define: 

 
Φ𝜉 ≔ − 

−𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ
𝑀휀

 
−1

 
0
𝐼
 , Φ𝜚 ≔ − 

−𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ
𝑀휀

 
−1

 𝐷11
−1𝑈∙1

𝐻

0
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(where Φ휂  has dim 𝑥𝑡
∗ columns), which means that from equations (3.6) and (3.21): 

𝔼𝑡𝑥𝑡+1 = Θ휀 ,2∙Φ휂𝑥𝑡 + Θ𝑣,21𝑥𝑡−1 +  Θ𝑣,22 − Θ휀 ,2∙Φ휂 𝔼𝑡−1𝑥𝑡 + 휃𝜇 ,2∙ + 휃𝛿 ,2∙𝑡 +  Θ휁 ,2∙ + Θ휀 ,2∙Φ휁 휁𝑡  

+Θ휀 ,2∙Φ𝜚Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 +  Θ𝜗 ,2∙ − Θ휀 ,2∙Φ𝜚Λ22 Θ𝜉 ,2∙ + Θ휀 ,2∙Φ𝜉  𝑍 ∙1𝛼𝑡  

where Θ𝜗  and Θ𝜉  have been partitioned conformably with 𝑣𝑡 . 

Now by (3.4): 

 𝐼 0 𝑍 ∙1𝛼𝑡−1 = 𝜗𝑡−1,𝑡−1 = 𝜙𝜇 +  Λ22 − Ω22 
−1𝑄2∙𝛿  𝑡 − 1 − 𝑍∙2

𝐻  
𝐼
0
 𝑥𝑡−1 − 𝑍∙2

𝐻  
0
𝐼
 𝔼𝑡−1𝑥𝑡  

Consequently: 

 𝔼𝑡𝑥𝑡+1 = Θ휀 ,2∙Φ휂𝑥𝑡 +  Θ𝑣,21 − Θ휀 ,2∙Φ𝜚Ω22𝑍∙2
𝐻  

𝐼
0
  𝑥𝑡−1 

+  Θ𝑣,22 − Θ휀 ,2∙Φ휂 − Θ휀 ,2∙Φ𝜚Ω22𝑍∙2
𝐻  

0
𝐼
  𝔼𝑡−1𝑥𝑡  

+ 휃𝜇 ,2∙ + Θ휀 ,2∙Φ𝜚Ω22𝜙𝜇 − Θ휀 ,2∙Φ𝜚Ω22 Λ22 − Ω22 
−1𝑄2∙𝛿   

+ 휃𝛿 ,2∙ + Θ휀 ,2∙Φ𝜚Ω22 Λ22 − Ω22 
−1𝑄2∙𝛿  𝑡 +  Θ휁 ,2∙ + Θ휀 ,2∙Φ휁 휁𝑡  

+ Θ𝜗 ,2∙ − Θ휀 ,2∙Φ𝜚Λ22 Θ𝜉 ,2∙ + Θ휀 ,2∙Φ𝜉  𝑍 ∙1𝛼𝑡  

 
 
 
 
 
 
 
 
 

(3.22) 

To progress further it will be convenient to specify information sets more precisely, which is what we will 

now proceed to do. 

3.2. Endogenous beliefs 

3.2.1. Additional assumptions 

Now although we are still assuming homogeneity, unlike in the full information case, § 2.1, we will not 

assume agents are aware of 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 or of what happened more than one period before their 

“birth” in period 𝒷. We will also assume that at all points in time beliefs are continuous (i.e. atom-less) 

and put positive probability on full indeterminacy, which can be justified by the argument made in § 3.1.2. 

Moreover, we assume that the true distribution from which “nature” chose the variables 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 

“before the start of time” is absolutely continuous (Young 2004: 97) with respect to the agent’s initial pri-

ors over these variables (before any observations of 𝑥𝑡  or 휁𝑡  have been made) and that the agent’s initial 
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priors are absolutely continuous with respect to the true distribution. This condition means that the true 

process generating 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 puts positive probability on them being in some set if and only if the 

agent’s initial priors also put positive probability on their being in that set. In the game theoretic strategy 

learning literature it is common to assume absolute continuity of the truth with respect to beliefs27, but 

the converse which we assume here is less common in that literature. However, the current problem is 

analogous to an extensive form game with nature moving first then the other player (the unique repre-

sentative agent) repeatedly moving from then on under uncertainty as to nature’s first move. Applying 

the weak perfect Bayesian equilibrium concept (Mas-Colell et al. 1995: 285) to this would imply the far 

stronger restriction that the representative agent’s initial priors should actually be equal to the probabil-

ity distribution from which nature chose 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿; this provides some justification for our assump-

tion. We will use these absolute continuity conditions for two purposes, firstly to ensure that the agent 

puts positive probability on a neighbourhood of the true values and secondly to ensure that anything be-

lieved to happen with probability 1 does indeed happen with probability 1 and vice versa. 

It may be noted that in light of this last assumption we can write “almost surely” (abbreviated “a.s.”) 

without any ambiguity as to whether it is over beliefs or the truth. 

3.2.2. Information sets 

From the discussion in § 2.1 then, the only sensible28 period 𝑡 information set is: 

ℐ𝑡 =    𝑥𝑡 , 휁𝑡 

𝑡

𝑠=𝒷−1

 ∪ 𝒞 

                                                            
27 For example the absolute continuity of the truth with respect to player’s beliefs is the main condition in the Kalai 

Lehrer theorem that guarantees that the play of an infinitely repeated stage game played by rational Bayesian play-

ers comes arbitrarily close to equilibrium behaviour (Kalai and Lehrer 1991).  

28 In the traditional learning literature, it has been common to “forget” what exactly the information set is under full 

information and assume that contemporaneous values are not available. However as Ellison and Pearlman (2008) 

point out, there is “no point in investigating convergence to RE unless one compares like with like”. This is particu-

larly important in the current work since we do not have bounded rationality to fall back on in order to justify not 

using the same information set for forming expectations of both the model’s parameters and 𝑥𝑡+1. 
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(Note that we do allow 휁𝑡  to be observable; as mentioned in footnote 12 this can be justified by the reali-

sation that the source of 휁𝑡 ’s variation is a choice variable.) 

Since this satisfies 𝒞 ⊆ ℐ𝑡 ⊆ ℐ𝑡
∗ ∪  a FREE solution exists  all the results of § 3.1 apply. 

3.2.3. Application of the Martingale Convergence Theorem 

Let ℐ∞ ≔  ℐ𝑡
∞
𝑡=𝒷−1 , then by the conditional expectation form of Doob’s Martingale convergence theo-

rem (Doob 1953), for any function 𝐺 of 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿, as 𝑡 → ∞, 𝔼𝑡𝐺
a.s.
  𝔼∞𝐺, where 𝔼∞  denotes expec-

tations under the ℐ∞  information set29. To reiterate, by our absolute continuity assumptions, this means 

convergence with probability 1 under both beliefs and the true distribution. We want to place strong 

enough restrictions on beliefs to ensure that for the 𝐺’s we are interested in, 𝔼∞𝐺 = 𝐺 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 , 

i.e. expectations converge to the truth. We claim that the following is a sufficient condition: 

 ∃𝓉 ≥ 𝒷 s.t. ∀𝑡 ≥ 𝓉 : rank Cov 휁𝑡 ,𝔼𝑡𝑥𝑡+1 = dim 𝑥𝑡  (3.23) 

We shall see in § 3.3 that, at least in the univariate case, given beliefs put positive probability on full inde-

terminacy, this is really quite a weak condition. 

To see the sufficiency of (3.23), suppose first that 𝐶 was invertible and we estimated the equation: 

 𝑥𝑡 = 𝐶−1𝐴𝔼𝑡𝑥𝑡+1 + 𝐶−1𝐵𝑥𝑡−1 + 𝐶−1𝜇 + 𝐶−1𝛿𝑡 + 𝐶−1휀𝑡   

(i.e. the original law of motion (1.1) pre-multiplied by 𝐶−1) by a standard systems instrumental variables 

(SIV) regression such as three stage least squares (Wooldridge 2002: 183-208), using 휁𝑡  as an instrument 

for 𝔼𝑡𝑥𝑡+1 and discarding all observations prior to 𝓉 . (Using instrumental variables is necessary as 𝔼𝑡𝑥𝑡+1 

is correlated with 휀𝑡 , so ordinary least squares is not consistent.) Since by our assumption that 

Cov 휁𝑡 ,𝔼𝑡𝑥𝑡+1  is of full rank and the fact that 휁𝑡  is independent of 휀𝑡 , this is a fully valid instrument, 

hence by the asymptotic properties of generalized method of moments instrumental variables regres-

sions (Wooldridge 2002: 190), in the limit as 𝑡 → ∞ we would know the variables 

𝐶−1𝐴,𝐶−1𝐵,𝐶−1Σ𝐶′−1 ,𝐶−1𝜇,𝐶−1𝛿 with certainty. Now pre-multiplying (1.1) by any full rank matrix be-

                                                            
29 Strictly speaking, this should be formulated in terms of filtrations on the probability space’s 𝜎-algebra, but increas-

ing mathematical rigour in this manner does not affect our results. 
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fore putting it into canonical form cannot possibly affect the solution for 𝑥𝑡 , thus the solution must be 

identical to the one obtained when Γ0 =  𝐼 −𝐶−1𝐴
𝐼 0

 , Γ1 =  𝐶
−1𝐵 0
0 𝐼

 , 𝜇 =  𝐶
−1𝜇
0

 , 𝛿 =  𝐶
−1𝛿
0

 , 

Ψ =  
𝐼
0
 , Π =  

0
𝐼
  and 휀𝑡~NIID 0,𝐶−1Σ𝐶′−1  (i.e. when Σ has been “redefined” to 𝐶−1Σold𝐶′

−1, where 

Σold is its former value). Consequently since up to here our solution (either full or partial information) has 

not depended on the precise form (1.1) and only on the canonical form (1.2), in the limit as 𝑡 → ∞ when 

𝐶 is invertible running this SIV regression would tell you every variable that is only a function of 

Γ0 , Γ1 , 𝜇 , 𝛿 ,Ψ,Π, Σ, which includes, amongst others, the following: 

Θ𝑣 ,Θ휀 ,Θ휁 ,Θ𝜗 ,Θ𝜉 ,휃𝜇 ,휃𝛿 ,Φ휂 ,Φ휁 ,Φ𝜚 ,Φ𝜉  

and in fact any variable mentioned in § 3.1.2-3.1.5. 

Then, since the singular matrices form a null set in the space of all matrices of any given size, by the con-

tinuity of beliefs, 𝐶 must be believed to be invertible with probability 1. Thus by absolute continuity of 

the truth with respect to beliefs, 𝐶 must also be invertible with probability 1 under the true distribution. 

Now anyone in possession of the ℐ∞  information set can perform the infinite sample version of the 

aforementioned regression30 and so since their priors put positive probability on a neighbourhood of the 

truth, we have the following lemma: 

3.2.4. Lemma 1 

For any function 𝐺 of Γ0 , Γ1 , 𝜇 , 𝛿 ,Ψ,Π, Σ, as 𝑡 → ∞, 𝔼𝑡𝐺
a.s.
  𝐺. 

3.2.5. Additional restrictions under this information set 

Using the information set defined in § 3.2.2 we can now solve for the unknown term in (3.22), 𝛼𝑡 . We first 

define some convenient notation. For all matrices/vectors 𝒜 let: 

 𝜖𝑡 𝒜 ≔ 𝒜 − 𝔼𝑡 𝒜   

so 𝔼𝑡𝜖𝑡 𝒜 = 0. Thus by taking expectations of both sides of (3.22) under the ℐ𝑡  information set: 

                                                            
30 That classical consistency implies Bayesian consistency in this way is basically a consequence of Theorem 2.2 of 

Blume and Easley (1993: 6). 
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𝔼𝑡   Θ𝜗 ,2∙ − Θ휀 ,2∙Φ𝜚Λ22 Θ𝜉 ,2∙ + Θ휀 ,2∙Φ𝜉  𝑍 ∙1𝛼𝑡 −  Θ𝜗 ,2∙ − Θ휀 ,2∙Φ𝜚Λ22 Θ𝜉 ,2∙ + Θ휀 ,2∙Φ𝜉  𝑍 ∙1𝛼𝑡

= 𝜖𝑡 Θ휀 ,2∙Φ휂  𝑥𝑡 + 𝜖𝑡  Θ𝑣,21 − Θ휀 ,2∙Φ𝜚Ω22𝑍∙2
𝐻  

𝐼
0
  𝑥𝑡−1

+ 𝜖𝑡  Θ𝑣,22 − Θ휀 ,2∙Φ휂 − Θ휀 ,2∙Φ𝜚Ω22𝑍∙2
𝐻  

0
𝐼
  𝔼𝑡−1𝑥𝑡

+ 𝜖𝑡 휃𝜇 ,2∙ + Θ휀 ,2∙Φ𝜚Ω22𝜙𝜇 − Θ휀 ,2∙Φ𝜚Ω22 Λ22 − Ω22 
−1𝑄2∙𝛿  

+ 𝜖𝑡 휃𝛿 ,2∙ + Θ휀 ,2∙Φ𝜚Ω22 Λ22 − Ω22 
−1𝑄2∙𝛿  𝑡 + 𝜖𝑡 Θ휁 ,2∙ + Θ휀 ,2∙Φ휁  휁𝑡  

Now the right hand side of this equation (which we shall denote 𝔢𝑡 ) is uniquely pinned down in the ℐ𝑡
∗ in-

formation set, but the left hand side still has degrees of freedom since 𝛼𝑡  is free; 𝛼𝑡  then must be chosen 

so as to satisfy: 

 𝔄𝑍 ∙1𝛼𝑡 = 𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡 − 𝔢𝑡  (3.24) 

where 𝔄 ≔  Θ𝜗 ,2∙ − Θ휀 ,2∙Φ𝜚Λ22 Θ𝜉 ,2∙ + Θ휀 ,2∙Φ𝜉  . Now dim 𝔢𝑡 = dim 𝑥𝑡 , so for this to have a solution 

that does not restrict the right hand side we must have: 

 dim 𝑥𝑡 ≤ rank𝔄𝑍 ∙1 ≤ min rank𝔄 , rank𝑍 ∙1 ≤ rank𝔄 ≤ rows𝔄 = dim 𝑥𝑡  (3.25) 
 

Note that amongst other things this implies that dim𝛼𝑡 ≥ dim 𝑥𝑡 . Let us then write 𝑈 𝐷 𝑉 𝐻  for the SVD of 

𝔄𝑍 ∙1, therefore since 𝔄𝑍 ∙1 has full row rank, we can write 𝑈 𝐷 𝑉 𝐻 = 𝑈  𝐷 ∙1 0  
𝑉 ∙1
𝐻

𝑉 ∙2
𝐻
 = 𝑈 𝐷 ∙1𝑉 ∙1

𝐻 , where 

𝐷 ∙1 is invertible and is of size dim 𝑥𝑡 × dim 𝑥𝑡 . 

Therefore by (3.24) for some unrestricted variable 𝛾𝑡 : 

𝛼𝑡 = 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡 − 𝑉 ∙1𝐷 ∙1

−1𝑈 𝐻𝔢𝑡 + 𝑉 ∙2𝛾𝑡  

(It is easy to see this is sufficient for (3.24) as well.) This implies no restrictions whatsoever on 

𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡 31, since pre-multiplying both sides by 𝑈 𝐷 ∙1𝑉 ∙1
𝐻  and taking expectations we have: 

𝔼𝑡 𝑈 𝐷 ∙1𝑉 ∙1
𝐻𝛼𝑡 = 𝔼𝑡 𝑈 𝐷 ∙1𝑉 ∙1

𝐻𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡 − 𝑈 𝐷 ∙1𝑉 ∙1

𝐻𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻𝔢𝑡 + 𝑈 𝐷 ∙1𝑉 ∙1

𝐻𝑉 ∙2𝛾𝑡  

= 𝔼𝑡 𝑈 𝐷 ∙1𝑉 ∙1
𝐻𝛼𝑡  

                                                            
31 This is the motivation for looking for solutions that do not restrict the right hand side of (3.24). 
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(since 𝔼𝑡𝔢𝑡 = 0). However, 𝔼𝑡 𝔄𝛼𝑡  is restricted by condition (3.20). From the just derived solution for 𝛼𝑡  

we can rewrite this condition as: 

0 = 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 + 𝔼𝑡−1   −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡  

− 𝔼𝑡−1   −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻𝔢𝑡 + 𝔼𝑡−1   −𝑉∙1𝐷11

−1𝑈∙1
𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙2𝛾𝑡  

Letting 𝒯 ≔  −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻, by the law of iterated expectations: 

𝔼𝑡−1  𝔼𝑡𝒯𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡  

= 𝔼𝑡−1 𝒯𝔢𝑡 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 − 𝔼𝑡−1   −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙2𝛾𝑡  

so for some vector 𝜍 𝑡  satisfying 𝔼𝑡−1𝜍 𝑡 = 0 and 𝔼𝑡𝜍 𝑡 = 𝜍 𝑡 : 

𝔼𝑡𝒯𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡 

= 𝔼𝑡−1 𝒯𝔢𝑡 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 − 𝔼𝑡−1   −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙2𝛾𝑡 + 𝜍 𝑡  

Now first note that 𝒯 is dim 𝑥𝑡 × dim 𝑥𝑡 . Also note that when Λ22  is invertible we have: 

𝑈 𝐷 ∙1𝑉 ∙1
𝐻𝑍 ∙1

𝐻  
−Λ22

−1𝑈∙1𝐷11𝑉∙1
𝐻

𝑉∙2
𝐻   −𝑉∙1𝐷11

−1𝑈∙1
𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙1𝐷 ∙1

−1𝑈 𝐻 = 𝐼 

since condition (2.14) and the invertibility of  Ψ Π  implies 𝑈∙1𝑈∙1
𝐻 = 𝐼. Therefore: 

𝒯−1 = 𝔄𝑍 ∙1𝑍 ∙1
𝐻  
−Λ22

−1𝑈∙1𝐷11𝑉∙1
𝐻

𝑉∙2
𝐻   

By the continuity of beliefs, Λ22  is believed to be invertible with probability 1, thus 𝒯 is also believed to 

be  invertible with probability 1, which by our absolute continuity assumption implies that 𝒯 actually is 

invertible with probability 1. Consequently by Lemma 1, with probability 1, 𝔼𝑡𝒯 →  𝒯 as 𝑡 → ∞, so by the 

continuity of the map taking 𝔼𝑡𝒯 to the modulus of its eigenvalue with smallest absolute value (Hinrich-

sen and Pritchard 2005: 399), with probability 1 there exists some point in time after which 𝔼𝑡𝒯’s eigen-

values are all bounded away from 0, so 𝔼𝑡𝒯 is also invertible after this point. (Quite how long this takes 

will generically depend on the realised shock sequence.) This provides some justification for the following 

assumption, which we will show to be sufficient for there being a solution for 𝛼𝑡  that satisfies (3.20): 
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 ∀𝑡 ≥ 𝒷:𝔼𝑡𝒯 is invertible (3.26) 

By the previous remark, this can be thought of as ruling out any overly outlandish priors, which is a similar 

restriction to the idea of local convergence used by E&H. When this holds: 

𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡 =  𝔼𝑡𝒯 
−1𝔼𝑡−1 𝒯𝔢𝑡 −  𝔼𝑡𝒯 

−1𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1  

− 𝔼𝑡𝒯 
−1𝔼𝑡−1   −𝑉∙1𝐷11

−1𝑈∙1
𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙2𝛾𝑡 +  𝔼𝑡𝒯 

−1𝜍 𝑡  

Thus: 

𝛼𝑡 = 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻 𝔼𝑡𝒯 

−1𝔼𝑡−1 𝒯𝔢𝑡 − 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻 𝔼𝑡𝒯 

−1𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 

− 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻 𝔼𝑡𝒯 

−1𝔼𝑡−1   −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙2𝛾𝑡 + 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻 𝔼𝑡𝒯 

−1𝜍 𝑡 − 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻𝔢𝑡  

It just remains for us to check what conditions on 𝛾𝑡  and 𝜍 𝑡  are necessary to ensure that condition (3.20) 

holds. When 𝛼𝑡  satisfies this equation we have: 

𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 + 𝔼𝑡−1   −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝛼𝑡  

= 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 + 𝔼𝑡−1 𝒯 𝔼𝑡𝒯 
−1𝔼𝑡−1 𝒯𝔢𝑡  

− 𝔼𝑡−1  𝒯 𝔼𝑡𝒯 
−1𝔼𝑡−1 𝑉∙1𝐷11

−1𝑈∙1
𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1  

− 𝔼𝑡−1  𝒯 𝔼𝑡𝒯 
−1𝔼𝑡−1   −𝑉∙1𝐷11

−1𝑈∙1
𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙2𝛾𝑡  + 𝔼𝑡−1 𝒯 𝔼𝑡𝒯 

−1𝜍 𝑡 − 𝔼𝑡−1 𝒯𝔢𝑡  

= 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 + 𝔼𝑡−1  𝔼𝑡𝒯  𝔼𝑡𝒯 
−1𝔼𝑡−1 𝒯𝔢𝑡  

− 𝔼𝑡−1   𝔼𝑡𝒯  𝔼𝑡𝒯 
−1𝔼𝑡−1 𝑉∙1𝐷11

−1𝑈∙1
𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1  

− 𝔼𝑡−1   𝔼𝑡𝒯  𝔼𝑡𝒯 
−1𝔼𝑡−1   −𝑉∙1𝐷11

−1𝑈∙1
𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙2𝛾𝑡  + 𝔼𝑡−1  𝔼𝑡𝒯  𝔼𝑡𝒯 

−1𝜍 𝑡 

− 𝔼𝑡−1 𝒯𝔢𝑡  

= 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 + 𝔼𝑡−1 𝒯𝔢𝑡 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 

− 𝔼𝑡−1   −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙2𝛾𝑡 + 𝔼𝑡−1 𝜍 𝑡 − 𝔼𝑡−1 𝒯𝔢𝑡  

= −𝔼𝑡−1   −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙2𝛾𝑡  

(where the simplification in the middle block came from the law of iterated expectations), thus we must 

have −𝔼𝑡−1   −𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22 𝑉∙2 𝑍 ∙1𝑉 ∙2𝛾𝑡 = 0. Ideally we would now chose 𝜍 𝑡  and 𝛾𝑡  to maximise the 
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convergence speed subject to this restriction on 𝛾𝑡  and the restrictions that 𝔼𝑡−1𝜍 𝑡 = 0 and 𝔼𝑡𝜍 𝑡 = 𝜍 𝑡 , 

since  beyond these conditions rationality imposes no restrictions on 𝜍 𝑡  and 𝛾𝑡 . Unfortunately though, this 

is not analytically tractable, so instead we will just assume: 

 𝜍 𝑡 = 𝛾𝑡 = 0 (3.27) 

which trivially satisfies these conditions and should nonetheless be near optimal as it minimises the vari-

ance of these terms, though not necessarily of the whole expression. This means: 

 𝛼𝑡 = 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻 𝔼𝑡𝒯 

−1𝔼𝑡−1 𝒯𝔢𝑡 

− 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻 𝔼𝑡𝒯 

−1𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 − 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻𝔢𝑡  

 
 

(3.28) 

Finally using (3.22) and (3.28), when (3.26) holds we can write down our fully feasible solution for 𝔼𝑡𝑥𝑡+1: 

 
𝔼𝑡𝑥𝑡+1 = 𝔼𝑡 Θ휀 ,2∙Φ휂  𝑥𝑡 + 𝔼𝑡  Θ𝑣,21 − Θ휀 ,2∙Φ𝜚Ω22𝑍∙2

𝐻  
𝐼
0
  𝑥𝑡−1 

+𝔼𝑡  Θ𝑣,22 − Θ휀 ,2∙Φ휂 − Θ휀 ,2∙Φ𝜚Ω22𝑍∙2
𝐻  

0
𝐼
  𝔼𝑡−1𝑥𝑡  

+𝔼𝑡 휃𝜇 ,2∙ + Θ휀 ,2∙Φ𝜚Ω22𝜙𝜇 − Θ휀 ,2∙Φ𝜚Ω22 Λ22 − Ω22 
−1𝑄2∙𝛿   

+𝔼𝑡 휃𝛿 ,2∙ + Θ휀 ,2∙Φ𝜚Ω22 Λ22 − Ω22 
−1𝑄2∙𝛿  𝑡 + 𝔼𝑡 Θ휁 ,2∙ + Θ휀 ,2∙Φ휁  휁𝑡  

+ 𝔼𝑡𝒯 
−1𝔼𝑡−1 𝒯𝔢𝑡 −  𝔼𝑡𝒯 

−1𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1  

 
 
 
 
 
 
 
 
 
 

(3.29) 

These two extra terms have a fairly straightforward intuitive explanation: the first one is correcting for 

mistakes that with the newly available information you now realise you made last period and the second 

is correcting for being off the stable path. 

Given period 𝑡 beliefs (i.e. a probability distribution over 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿) this solution could be computed 

numerically by fairly standard Monte-Carlo methods. The only minor complications come firstly from the 

𝔼𝑡−1 𝒯𝔢𝑡 , which requires a nested Monte-Carlo simulation (as 𝔢𝑡  contains 𝔼𝑡  terms), and secondly from 

the 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 . By (3.28) we can express this in terms of 

𝔼𝑡−2 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−2 , so we potentially have an infinite backwards regress. Conveniently 

though, since we are assuming that the agent was “born” at 𝒷, we may just take 

𝔼𝒷−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝒷−1 = 0, so preventing this problem. 

We now look for necessary and sufficient conditions for convergence to happen with probability 1. 



 

 

58 Rational macroeconomic learning in linear expectational models 

Tom Holden 

3.2.6. Conditions for almost sure convergence 

Recall that providing (3.13), (3.15) and (3.16) hold (which are all necessary for convergence),  
𝜗𝑡 ,𝑡

𝜉𝑡
 =

𝑍 ∙1𝛼𝑡 . Therefore as 𝑍 ∙1
𝐻𝑍 ∙1 = 𝐼, by (3.8) when (3.13), (3.15) and (3.16) hold, the following condition is both 

necessary and sufficient for convergence: 

 lim
𝑡→∞

𝛼𝑡 = 0 (3.30) 

Consequently (3.13), (3.15), (3.16) and (3.30) are jointly necessary and sufficient for convergence. 

Now suppose that convergence happened with probability 1, then by absolute continuity of beliefs with 

respect to the truth, convergence would also be believed to happen with probability 1. So consequently 

whether or not (3.25) holds, by the sub-multiplicative property of the induced matrix norm: 

0 ≤ 𝔼𝑡  lim sup
𝑟→∞

 𝔄𝑍 ∙1𝛼𝑟  = 𝔼𝑡  lim
𝑟→∞

 𝔄𝑍 ∙1𝛼𝑟  ≤ 𝔼𝑡   𝔄𝑍 ∙1 lim
𝑟→∞

 𝛼𝑟  = 0 

Since this holds for all 𝑡 ≥ 𝒷, by the Dominated Convergence Theorem for conditional expectations 

(Doob 1984: 397) it must also be true that 𝔼∞ lim sup𝑡→∞ 𝔄𝑍 ∙1𝛼𝑡  = 0. Now by Jensen’s inequality 

and Fatou’s Lemma for conditional expectations (Doob 1984: 396-97), the following is believed to hold 

with probability 1 (and hence does): 

0 ≤ lim sup
𝑡→∞

 𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡  ≤ lim sup
𝑡→∞

𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡 ≤ 𝔼∞  lim sup
𝑡→∞

 𝔄𝑍 ∙1𝛼𝑡  = 0 

so since 0 ≤ lim inf𝑡→∞ 𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡  , almost surely, lim𝑡→∞ 𝔼𝑡 𝔄𝑍 ∙1𝛼𝑡 = 0. 

Therefore whenever convergence happens with probability 1, by (3.24), almost surely: 

 lim
𝑡→∞

𝔢𝑡 = 0 (3.31) 

By Lemma 1 if 𝑥𝑡  is bounded this will hold automatically, which concords with our initial intuition that in-

cluding a linear trend does make learning more difficult. However, since virtually all macro-variables do 

exhibit long run growth, we will not pursue this avenue further. More generally though, this condition can 

be thought of as requiring convergence of beliefs to be sufficiently fast. So for example if 𝑥𝑡  exhibits linear 

growth, then faster than linear convergence would be sufficient for (3.31) to hold. 
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Also note that, trivially from (3.30), if convergence happens with probability 1 then almost surely: 

 sup
𝑡≥𝒷

 𝛼𝑡−1 < ∞ (3.32) 

Finally note that again from (3.30), by the Dominated Convergence Theorem for conditional expectations 

(Doob 1984: 397), almost sure convergence and the absolute continuity of beliefs with respect to the 

truth implies that as 𝑡 → ∞, 𝔼𝑡𝛼𝑡
a.s.
  0, thus with probability 1: 

 lim
𝑡→∞

 𝔼𝑡𝛼𝑡 − 𝛼𝑡 = 0 (3.33) 

We have shown these three fairly weak conditions holding with probability 1 are necessary for (3.30) to 

hold almost surely. We will now show that jointly with (3.23), (3.25) and (3.27) they are sufficient. We 

proceed by showing that if (3.23), (3.25), (3.27), (3.31), (3.32) and (3.33) hold almost surely, then with 

probability 1, so does (3.30). Now by an identical argument to the one above by which we showed the 

necessity of (3.31) (using Fatou’s lemma etc.), that (3.31) holds with probability 1 implies that as 𝑡 → ∞, 

𝔼𝑡−1 𝒯𝔢𝑡 
a.s.
  0. Therefore as (3.25) and (3.27) are sufficient for (3.28) to hold asymptotically (despite the 

fact we need (3.26) for small 𝑡) by (3.28), with probability 1: 

lim
𝑡→∞

 𝛼𝑡 + 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻 𝔼𝑡𝒯 

−1𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1  = 0 

so from pre-multiplying both sides by  𝔼𝑡𝒯 𝑈 𝐷 ∙1𝑉 ∙1
𝐻 , almost surely: 

lim
𝑡→∞

  𝔼𝑡𝒯 𝔄𝑍 ∙1𝛼𝑡 + 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1  = 0 

Now from the sub-multiplicative property of the induced matrix norm and Lemma 1, almost surely: 

0 ≤ lim
𝑡→∞

   𝔼𝑡𝒯 − 𝒯 𝔄𝑍 ∙1𝛼𝑡 ≤  𝔄𝑍 ∙1  sup
𝑡≥𝒷

 𝛼𝑡   lim
𝑡→∞

  𝔼𝑡𝒯 − 𝒯  = 0 

since sup𝑡≥𝒷 𝛼𝑡  is finite almost surely by (3.32). Consequently: 

lim
𝑡→∞

 𝒯𝔄𝑍 ∙1𝛼𝑡 + 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1  = 0 

To remove the final expectation from this expression we begin by noting that by Jensen’s inequality, Fa-

tou’s Lemma and the sub-multiplicative property of the induced matrix norm we have: 
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0 ≤ lim sup
𝑡→∞

 𝔼𝑡−1   𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1  𝛼𝑡−1   

≤ lim sup
𝑡→∞

𝔼𝑡−1   𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1  𝛼𝑡−1  

≤ 𝔼∞  lim sup
𝑡→∞

  𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1  𝛼𝑡−1   

≤ 𝔼∞   sup
𝑡≥𝒷

 𝛼𝑡−1  lim sup
𝑡→∞

 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1    

However by (3.32) and Lemma 1, almost surely: 

 sup
𝑡≥𝒷

 𝛼𝑡−1  lim sup
𝑡→∞

 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1  

=  sup
𝑡≥𝒷

 𝛼𝑡−1  lim
𝑡→∞

 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1  = 0 

Therefore by the absolute continuity of beliefs with respect to the truth: 

𝔼∞  lim sup
𝑡→∞

 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1   = 0 

so as 0 ≤ lim inf𝑡→∞  𝔼𝑡−1   𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1  𝛼𝑡−1  , with 

probability 1: 

lim
𝑡→∞

 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 − 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 𝔼𝑡−1𝛼𝑡−1 = 0 

Now from the sub-multiplicative property of the induced matrix norm, almost surely: 

0 ≤ lim
𝑡→∞

  𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 𝔼𝑡−1𝛼𝑡−1  

≤ lim
𝑡→∞

  𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1  𝔼𝑡−1𝛼𝑡−1   

≤  sup
𝑡≥𝒷

 𝔼𝑡−1𝛼𝑡−1   lim
𝑡→∞

 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 − 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1  = 0 

where the final equality comes from Lemma 1 and the fact that by (3.32), (3.33): 

sup
𝑡≥𝒷

 𝔼𝑡−1𝛼𝑡−1 ≤ sup
𝑡≥𝒷

  𝔼𝑡−1𝛼𝑡−1 − 𝛼𝑡−1 +  𝛼𝑡−1  ≤ sup
𝑡≥𝒷

 𝔼𝑡−1𝛼𝑡−1 − 𝛼𝑡−1 + sup
𝑡≥𝒷

 𝛼𝑡−1 < ∞ 

Consequently then, by (3.33), almost surely: 
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lim
𝑡→∞

 𝒯𝔄𝑍 ∙1𝛼𝑡 + 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 = 0 

Thus from pre-multiplying this by 𝑈∙1𝐷11𝑉∙1
𝐻 , by the definition of 𝒯, the fact that 𝑈∙1𝑈∙1

𝐻 = 𝐼 and the fact 

that by (3.28), asymptotically 𝑉 ∙2
𝐻𝛼𝑡 , with probability 1:  

lim
𝑡→∞

 −Λ22𝑍 ∙1𝛼𝑡 + Ω22𝑍 ∙1𝛼𝑡−1 = 0 

Therefore since the relationship Λ22𝑍 ∙1𝛼𝑡 = Ω22𝑍 ∙1𝛼𝑡−1 is explosive, with probability 1 we must have 

that lim𝑡→∞ 𝑍 ∙1𝛼𝑡 = 0, or else we would be violating (3.32). So finally, as 𝑍 ∙1
𝐻𝑍 ∙1 = 𝐼, as 𝑡 → ∞, 𝛼𝑡

a.s.
  0. 

We have therefore established that (3.23), (3.25), (3.27), (3.31), (3.32) and (3.33) holding with probability 

1 are jointly sufficient for (3.30) to hold almost surely. 

3.2.7. Performance under full indeterminacy 

When the true values of the model’s parameters mean the model is fully indeterminate (fully stable), we 

can derive stronger results on convergence. Note that by Lemma 1, if we write  ∙  for an indicator func-

tion that takes the value 1 when its argument is true and 0 otherwise, then in this case as 𝑡 → ∞: 

Pr𝑡−1 full indeterminacy = 𝔼𝑡−1  full indeterminacy  
a.s.
  1 

Now note that when condition (3.32) holds: 

lim sup
𝑡→∞

 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 not full indeterminacy  

≤ lim sup
𝑡→∞

𝔼𝑡−1  𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1  not full indeterminacy 

≤ 𝔼∞   𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 lim sup
𝑡→∞

 𝛼𝑡−1  not full indeterminacy 

=  𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1 lim sup
𝑡→∞

 𝛼𝑡−1 < ∞ 

so as 𝑡 → ∞:  

𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 

= Pr𝑡−1 full indeterminacy 𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 full indeterminacy 

+  1 − Pr𝑡−1 full indeterminacy  𝔼𝑡−1 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 not full indeterminacy 
a.s.
  0 
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since under full indeterminacy 𝑉∙1 has 0 columns. 

Thus assuming (3.23), (3.25) and (3.27) hold, by (3.28) as 𝑡 → ∞: 

𝛼𝑡 −  𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻 𝔼𝑡𝒯 

−1𝔼𝑡−1 𝒯𝔢𝑡 − 𝑉 ∙1𝐷 ∙1
−1𝑈 𝐻𝔢𝑡 

a.s.
  0 

Thus, by identical arguments to those in § 3.2.6, that 𝔢𝑡
a.s.
  0 as 𝑡 → ∞ is sufficient for 𝛼𝑡 → 0. 

Also note that under full indeterminacy ℬ = 0 so we can take 𝑍 = 𝐼 which means (3.13), (3.15) and (3.16) 

hold trivially. Thus, under full indeterminacy, conditions (3.23), (3.25), (3.27), (3.31) and (3.32), jointly 

with the condition for the existence of a full information FREE, are sufficient for convergence. 

We summarise the results of § 3.2 up to here in the following key proposition: 

3.2.8. Proposition 3 

Given the invertibility of  Ψ Π , the condition that 𝑈∙1𝑈∙1
𝐻 = 𝐼 is necessary for the existence of a full or 

partial information REE, given belief in non-explosiveness. Providing this holds along with the assump-

tions on beliefs in § 3.2.1 and § 3.2.2, and providing there are no unit roots: 

 Conditions (3.13), (3.15), (3.16) and (3.30) are jointly necessary and sufficient for the partial in-

formation solution to converge asymptotically to the full information one. 

 For probability 1 convergence, conditions (3.13), (3.15), (3.16), (3.31), (3.32) and (3.33) holding 

almost surely are necessary. 

 In the full or partial information case, the condition that 𝑈 ∙1𝑈 ∙1
𝐻 = 𝐼 and the condition that 𝑀휀  is 

of full rank with rows which are linearly independent of those of 𝐷11
−1𝑈∙1

𝐻𝑄2∙Ψ are necessary for 

the existence of a FREE. In the partial information case, that this condition, (3.25), (3.26) and 

(3.27) all hold almost surely is sufficient for the existence of a FREE. 

 For probability 1 convergence, that the aforementioned necessary condition for the existence of 

a FREE, (3.13), (3.15), (3.16), (3.23), (3.25), (3.27), (3.31), (3.32) and (3.33) all hold almost surely is 

sufficient. When the realised true model is fully indeterminate, we can drop (3.13), (3.15), (3.16) 

and (3.33) from this list and still have sufficiency. 
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3.2.9. Beliefs and learning 

We finish this section by describing the core of an algorithm to update beliefs in each period, in order 

both to show the difficulties (which justify us not including simulation results) and to investigate any addi-

tional assumptions that may be required for this to be computationally feasible. For reasons of tractabil-

ity, in doing this we restrict our attention to cases in which (3.25), (3.26) and (3.27) hold, so our FREE solu-

tion (3.29) is valid, and in which convergence happens with probability 1. 

Suppose just before the arrival of the time 𝑡 information set, all agents in the economy have the same 

joint atom-less prior over 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿, which satisfies the restrictions in § 3.2.1 and has continuously 

differentiable probability density 𝑓𝑡−1 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 . In ℐ𝑡  the agent receives 𝑥𝑡  and 휁𝑡 , thus: 

𝑓𝑡 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 = 𝑓𝑡−1 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 𝑥𝑡 , 휁𝑡  

so by Bayes’ Theorem and the independence properties of 휁𝑡 : 

 𝑓𝑡 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 ∝ 𝑓𝑡−1 𝑥𝑡  𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿, 휁𝑡 𝑓𝑡−1 휁𝑡 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 𝑓𝑡−1 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿  

= 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡 𝑓𝑡−1 휁𝑡 𝑓𝑡−1 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿  

∝ 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡 𝑓𝑡−1 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿  

 
 
 
 

(3.34) 

(where ∝ denotes proportionality32 and where 𝑓𝑡−1
∗  is the density function of beliefs under the ℐ𝑡−1

∗ ). 

If it was not for the 𝔼𝑡𝑥𝑡+1 term in our law of motion, (1.1), we would have an entirely standard Bayesian 

linear regression problem, and by using a Normal-Inverse-Wishart prior (i.e. 𝑓𝑡−1 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 ), we 

could ensure the posterior (i.e. 𝑓𝑡 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 ), would have the same functional form (I. G. Evans 

1965). However, as it is we do not have this option – both because of the correlation between 𝔼𝑡𝑥𝑡+1 and 

the errors in (1.1)33 and because of the simultaneous determination of 𝑥𝑡  and 𝑓𝑡 . We will certainly not be 

able to find conjugate priors, so 𝑓𝑡  will be a numerical density in practice. We will however assume that 

                                                            
32 We do not need the normalizing constant for many Monte-Carlo methods, such as the Metropolis-Hastings algo-

rithm (Hastings 1970). 

33 This may suggest Bayesian instrumental variables regressions (see e.g. Dreze 1976) to the reader. However even 

these are not directly applicable here due to non-linearities. 
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𝑓𝑡−1
∗  𝑥𝑡  휁𝑡  is continuously differentiable which from (3.34) is necessary and sufficient for 

𝑓𝑡 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿  to be continuously differentiable. 

Now let: 

𝑡 ≔  ∙ 𝔼𝑡 Θ휀 ,2∙Φ휂  ,𝔼𝑡  Θ𝑣,21 − Θ휀 ,2∙Φ𝜚Ω22𝑍∙2
𝐻  

𝐼
0
  ,𝔼𝑡  Θ𝑣,22 − Θ휀 ,2∙Φ휂 − Θ휀 ,2∙Φ𝜚Ω22𝑍∙2

𝐻  
0
𝐼
    

∙,𝔼𝑡 휃𝜇 ,2∙ + Θ휀 ,2∙Φ𝜚Ω22𝜙𝜇 − Θ휀 ,2∙Φ𝜚Ω22 Λ22 − Ω22 
−1𝑄2∙𝛿   

∙,  𝔼𝑡 휃𝛿 ,2∙ + Θ휀 ,2∙Φ𝜚Ω22 Λ22 − Ω22 
−1𝑄2∙𝛿  ,𝔼𝑡 Θ휁 ,2∙ + Θ휀 ,2∙Φ휁  ,  𝔼𝑡𝒯 ∙  

where angled brackets denote ordered tuples. We shall write 𝑡 ,1 ,… ,𝑡 ,7 for the 7 ordered members of 

𝑡 . So for 𝑖 ∈  1,… ,7 , there exists a matrix or vector valued function 𝐺𝑖  such that: 

𝑡 ,𝑖 =  𝐺𝑖 Γ0 , Γ1 , 𝜇 , 𝛿 ,Ψ,Π, Σ 𝑓𝑡 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 𝑑 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 
  𝐴,𝐵,𝐶,Σ ,𝜇 ,𝛿 

 

∝  𝐺𝑖 Γ0 , Γ1 , 𝜇 , 𝛿 ,Ψ,Π, Σ 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡 𝑓𝑡−1 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 𝑑 𝐴,𝐵,𝐶, Σ, 𝜇, 𝛿 

  𝐴,𝐵,𝐶,Σ ,𝜇 ,𝛿 

 

Thus we can think of 𝑡  as a function of 𝑥𝑡 . To make this clear below we shall always write 𝑡 ,𝑖 𝑥𝑡  in 

place of 𝑡 ,𝑖 . Using this notation we define another function of 𝑥𝑡 , ℎ𝑡  by: 

ℎ𝑡 𝑥𝑡  =  𝐶 − 𝐴𝑡 ,1 𝑥𝑡  𝑥𝑡 −  𝐵 + 𝐴𝑡 ,2 𝑥𝑡  𝑥𝑡−1 − 𝐴𝑡 ,3 𝑥𝑡 𝔼𝑡−1𝑥𝑡 −  𝜇 + 𝐴𝑡 ,4 𝑥𝑡  

−  𝛿 + 𝐴𝑡 ,5 𝑥𝑡  𝑡 − 𝐴𝑡 ,6 𝑥𝑡 휁𝑡 − 𝐴 𝑡 ,7 𝑥𝑡  
−1
𝔼𝑡−1 𝒯𝔢𝑡 

+ 𝐴 𝑡 ,7 𝑥𝑡  
−1
𝔼𝑡−1 𝑉∙1𝐷11

−1𝑈∙1
𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1  

Thus by (1.1) and (3.29),  ℎ𝑡 𝑥𝑡  ℐ𝑡−1
∗ , 휁𝑡 ~NIID 0, Σ . Since Σ is of full rank, this means ℎ𝑡  can take any 

value in ℝdim 𝑥𝑡 , i.e. it is surjective. If we could show ℎ𝑡  was also injective then we could use the change 

of variables formula to recover the probability distribution of 𝑥𝑡 . Unfortunately we will not in fact be able 

to show this, but with some reasonable additional assumptions we will be able to show that ℎ𝑡  is ap-

proximately invertible. 

Now, by the results of the previous section, as convergence happens almost surely, with probability 1 

(3.30) and (3.31) hold, i.e. as 𝑡 → ∞, 𝛼𝑡 , 𝔢𝑡
a.s.
  0. Since by Lemma 1, 𝑡 ,7 𝑥𝑡  converges as 𝑡 → ∞, by iden-

tical arguments to those in the previous subsection (using Fatou’s lemma etc.) as 𝑡 → ∞: 
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−𝐴 𝑡 ,7 𝑥𝑡  
−1
𝔼𝑡−1 𝒯𝔢𝑡 + 𝐴 𝑡 ,7 𝑥𝑡  

−1
𝔼𝑡−1 𝑉∙1𝐷11

−1𝑈∙1
𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 

a.s.
  0 

Also from the definition of 𝔢𝑡 , that 𝔢𝑡
a.s.
  0 as 𝑡 → ∞ implies that there is a variable 𝒸𝑡 , known in 

ℐ𝑡−1
∗ ∪  휁𝑡  (and in particular not a function of 𝑥𝑡 ), such that as 𝑡 → ∞: 

  𝐶 − 𝐴𝑡 ,1 𝑥𝑡  𝑥𝑡 −  𝐵 + 𝐴𝑡 ,2 𝑥𝑡  𝑥𝑡−1 − 𝐴𝑡 ,3 𝑥𝑡 𝔼𝑡−1𝑥𝑡 −  𝜇 + 𝐴𝑡 ,4 𝑥𝑡  −  𝛿 + 𝐴𝑡 ,5 𝑥𝑡  𝑡

− 𝐴𝑡 ,6 𝑥𝑡 휁𝑡 −   𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝑥𝑡 + 𝒸𝑡 
a.s.
  0 

Thus with probability 1 as 𝑡 → ∞: 

ℎ𝑡 𝑥𝑡 −   𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝑥𝑡 + 𝒸𝑡 
a.s.
  0 

Now on its own this does not mean that for almost all 𝓍, ℎ𝑡 𝓍 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍 − 𝒸𝑡
a.s.
  0 as 𝑡 → ∞, 

since the probability under the truth that 𝑥𝑡 = 𝓍 for all time must be 0. However by the assumed conti-

nuity of 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡 , ℎ𝑡  must be continuous, thus as it is a surjection for all 𝓍 ∈ ℝdim 𝑥𝑡  and ℯ > 0, 

ℎ𝑡
−1 𝔹ℯ 𝓍   (where 𝔹ℯ 𝓍  is the ℯ-ball around 𝓍) is a non-empty open set. Therefore for all 𝓉 ≥ 𝒷, the 

probability that 𝑥𝑡 ∈ 𝔹ℯ 𝓍  for all 𝑡 ∈  𝒷, 𝓉 ∩ ℤ is strictly positive and hence for all 𝑡 ≥ 𝒷: 

Pr  lim
𝑡→∞

 ℎ𝑡 𝑥𝑡 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝑥𝑡 − 𝒸𝑡 = 0 𝑥𝑡 ∈ 𝔹ℯ 𝓍  for all 𝑡 ∈  𝒷, 𝓉 ∩ ℤ = 1 

 and so if we choose ℯ ≔ 𝓉−1 then: 

𝔼  lim
𝑡→∞

 ℎ𝑡 𝑥𝑡 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝑥𝑡 − 𝒸𝑡  𝑥𝑡 ∈ 𝔹𝓉−1 𝓍  for all 𝑡 ∈  𝒷, 𝓉 ∩ ℤ = 0 

We can think of this as a conditional expectation on a filtration indexed by 𝓉 ≥ 𝒷, so Doob’s Martingale 

convergence theorem (Doob 1953) applies and hence: 

𝔼  lim
𝑡→∞

 ℎ𝑡 𝑥𝑡 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝑥𝑡 − 𝒸𝑡  𝑥𝑡 = 𝓍 for all 𝑡 ≥ 𝒷 

= lim
𝓉→0

𝔼  lim
𝑡→∞

 ℎ𝑡 𝑥𝑡 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝑥𝑡 − 𝒸𝑡  𝑥𝑡 ∈ 𝔹𝓉−1 𝓍  for all 𝑡 ∈  𝒷, 𝓉 ∩ ℤ = 0 

Thus for all 𝓍 ∈ ℝdim 𝑥𝑡 , almost surely: 

lim
𝑡→∞

 ℎ𝑡 𝓍 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍 − 𝒸𝑡 = 0 
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Now for all 𝓍1 ,𝓍2 ∈ ℝdim 𝑥𝑡 , by the triangle inequality: 

 ℎ𝑡 𝓍1 − ℎ𝑡 𝓍2   

=   ℎ𝑡 𝓍1 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍1 − 𝒸𝑡 −  ℎ𝑡 𝓍2 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍2 − 𝒸𝑡 

+  𝐶 − 𝐴Θ휀 ,2∙Φ휂   𝓍1 − 𝓍2   

≤  ℎ𝑡 𝓍1 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍1 − 𝒸𝑡 +  ℎ𝑡 𝓍2 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍2 − 𝒸𝑡 

+   𝐶 − 𝐴Θ휀 ,2∙Φ휂   𝓍1 − 𝓍2   

and similarly: 

  𝐶 − 𝐴Θ휀 ,2∙Φ휂   𝓍1 − 𝓍2   

=  − ℎ𝑡 𝓍1 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍1 − 𝒸𝑡 +  ℎ𝑡 𝓍2 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍2 − 𝒸𝑡 +  ℎ𝑡 𝓍1 − ℎ𝑡 𝓍2    

≤  ℎ𝑡 𝓍1 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍1 − 𝒸𝑡 +  ℎ𝑡 𝓍2 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍2 − 𝒸𝑡 +  ℎ𝑡 𝓍1 − ℎ𝑡 𝓍2   

Consequently for all 𝓍1 ,𝓍2 ∈ ℝdim 𝑥𝑡  with 𝓍1 ≠ 𝓍2, as 𝑡 → ∞: 

 ℎ𝑡 𝓍1 − ℎ𝑡 𝓍2  

 𝓍1 − 𝓍2 

a.s.
  
  𝐶 − 𝐴Θ휀 ,2∙Φ휂   𝓍1 − 𝓍2  

 𝓍1 − 𝓍2 
 

Now let 𝑈 𝐷 𝑉 𝐻  be the SVD of  𝐶 − 𝐴Θ휀 ,2∙Φ휂  , and let 𝓋 ≔ 𝑉 𝐻 𝓍1 − 𝓍2 , so 𝓍1 − 𝓍2 = 𝑉 𝓋. Additionally 

let 𝑑 min be the smallest singular value, i.e. the minimum element on the diagonal of 𝐷 , and hence, given 

the usual ordering, the element in the very bottom right. Then since unitary matrices preserve scale and 

𝐷  is diagonal: 

  𝐶 − 𝐴Θ휀 ,2∙Φ휂   𝓍1 − 𝓍2  =  𝑈 𝐷 𝑉 𝐻 𝓍1 − 𝓍2  =  𝐷 𝓋  

≥ 𝑑 min 𝓋 = 𝑑 min 𝑉 
𝐻 𝓍1 − 𝓍2  = 𝑑 min  𝓍1 − 𝓍2   

Furthermore if 𝓋 ∝  0 ⋯ 0 1 ′  (and 𝐷  has the usual ordering) then this bound is actually attained. 

Thus suppose that 𝑑 min = 0, then if 𝓍1 = 𝓍2 + 𝑉  0 ⋯ 0 𝔨 ′  where 𝔨 ≠ 0, we have that as 𝑡 → ∞: 

 ℎ𝑡 𝓍1 − ℎ𝑡 𝓍2  

 𝓍1 − 𝓍2 

a.s.
  0 
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which would mean ℎ𝑡  was not even injective in the limit, which means that feasibly we can say nothing 

analytically about whether or not ℎ𝑡  is injective for finite 𝑡. Therefore we will require that: 

 𝑑 min > 0 (3.35) 

i.e.  𝐶 − 𝐴Θ휀 ,2∙Φ휂   is invertible. We shall see in § 3.3 that, in the univariate case at least, this always holds 

when the FREE conditions are satisfied, and we conjecture that this generalizes to higher dimensions. 

Given (3.35) then we have that almost surely: 

lim
𝑡→∞

 ℎ𝑡 𝓍1 − ℎ𝑡 𝓍2  

 𝓍1 − 𝓍2 
> 0 

This is not however sufficient to show asymptotic invertibility, since for that we clearly need uniform con-

vergence. However, by Egoroff’s Theorem (Dudley 2005: 243), we will find that, at least approximately, 

we can in fact get this. 

Before we begin this proof, we note that unfortunately our assumptions up to this point are not, to the 

best of our knowledge, sufficient to ensure that almost surely for almost all 𝓍 the Jacobian of ℎ𝑡 𝓍 , 

𝜕ℎ𝑡 𝓍 

𝜕𝓍
 converges to the Jacobian of its limit, i.e.  𝐶 − 𝐴Θ휀 ,2∙Φ휂  , though they do imply that ℎ𝑡 𝓍  is con-

tinuously differentiable since 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡  is. Indeed, even uniform convergence of a sequence of functions 

is not sufficient for convergence of their derivatives unless the derivatives can actually be shown to con-

verge. Consequently for reasons of tractability we assume that almost surely for almost all 𝓍: 

 
lim
𝑡→∞

 
𝜕ℎ𝑡 𝓍 

𝜕𝓍
−
𝜕 lim
𝑟→∞

ℎ𝑟 𝓍 

𝜕𝓍
 = 0 

 
(3.36) 

We conjecture this could be proved by placing at most relatively minor additional assumptions on beliefs. 

We now begin our proof of asymptotic “approximate” invertibility, which we approach by first proving 

injectivity when  𝓍1 − 𝓍2  is sufficiently small, and then by proving the same when it is sufficiently large. 

Note that since ℎ𝑡 𝑥𝑡 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝑥𝑡 − 𝒸𝑡
a.s.
  0 as 𝑡 → ∞ and almost sure convergence implies con-

vergence in distribution,  𝑥𝑡 − 𝔼𝑡−1
∗  𝑥𝑡  휁𝑡  ℐ𝑡−1

∗ ∪  휁𝑡   converges in distribution as 𝑡 → ∞ to a normally 

distributed variable with mean 0 and variance  𝐶 − 𝐴Θ휀 ,2∙Φ휂  
−1
Σ  𝐶 − 𝐴Θ휀 ,2∙Φ휂  

′−1
. Let 𝓂 be the prob-
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ability measure induced by this particular normal distribution and let ℯ > 0 be fixed, then we can find a 

compact set 𝒲1 ⊆ ℝdim 𝑥𝑡  such that 𝓂 𝒲1 > 1 −
ℯ 

7
 (we could take 𝒲1 to be a sufficiently large closed 

ball centred on the origin).  

From assumption (3.36) then, and Egoroff’s Theorem, there is a set 𝒲2 ⊆ 𝒲1 such that 𝓂 𝒲2 > 1 −
2ℯ 

7
 

and such that as 𝑡 → ∞: 

sup
𝓌2∈𝒲2

 
𝜕ℎ𝑡 𝓌2 + 𝔼𝑡−1

∗  𝑥𝑡  휁𝑡  

𝜕𝓌2
−  𝐶 − 𝐴Θ휀 ,2∙Φ휂   

a.s.
  0 

By the sub-multiplicative property of the induced matrix norm this means that almost surely there exists 

𝓉1 ≥ 𝒷 such that for all 𝑡 ≥ 𝓉1 and all 𝓌1 ,𝓌2 ∈ 𝒲2: 

 
𝜕ℎ𝑡 𝓌2+𝔼𝑡−1

∗  𝑥𝑡  휁𝑡   

𝜕𝓌2
 𝓌1 −𝓌2 −  𝐶 − 𝐴Θ휀 ,2∙Φ휂   𝓌1 −𝓌2  

 𝓌1 −𝓌2 

≤  
𝜕ℎ𝑡 𝓌2 + 𝔼𝑡−1

∗  𝑥𝑡  휁𝑡  

𝜕𝓌2
−  𝐶 − 𝐴Θ휀 ,2∙Φ휂   <

𝑑 min

3
 

Hence by the triangle inequality and the definition of 𝑑 min: 

 
𝜕ℎ𝑡 𝓌2+𝔼𝑡−1

∗  𝑥𝑡  휁𝑡   

𝜕𝓌2
 𝓌1 −𝓌2  

 𝓌1 −𝓌2 
>
  𝐶 − 𝐴Θ휀 ,2∙Φ휂   𝓌1 −𝓌2  

 𝓌1 −𝓌2 
−
𝑑 min

3
≥

2𝑑 min

3
 

Now note that by the definition of the Jacobian: 

lim
𝓌1→𝓌2

 ℎ𝑡 𝓌1 + 𝔼𝑡−1
∗  𝑥𝑡  휁𝑡  − ℎ𝑡 𝓌2 + 𝔼𝑡−1

∗  𝑥𝑡  휁𝑡  −
𝜕ℎ𝑡 𝓌2+𝔼𝑡−1

∗  𝑥𝑡  휁𝑡   

𝜕𝓌2
 𝓌1 −𝓌2  

 𝓌1 −𝓌2 
= 0 

so again by the triangle inequality, almost surely for all 𝑡 ≥ 𝓉1 there exists 𝒹𝑡 ,𝓌2
> 0 such that 𝓌1 ∈ 𝒲2 

with  𝓌1 −𝓌2 < 𝒹𝑡 ,𝓌2
 implies that almost surely: 

 ℎ𝑡 𝓌1 + 𝔼𝑡−1
∗  𝑥𝑡  휁𝑡  − ℎ𝑡 𝓌2 + 𝔼𝑡−1

∗  𝑥𝑡  휁𝑡   

 𝓌1 −𝓌2 
>

2𝑑 min

3
−
𝑑 min

3
=
𝑑 min

3
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Without loss of generality we assume 𝒹𝑡 ,𝓌2
 is the greatest possible such value (where we allow ∞), and 

then, since asymptotically at least this last inequality must hold everywhere, it seems reasonable to con-

jecture (though we have not found a proof) that: 

 lim inf
𝑡→∞

𝒹𝑡 ,𝓌2
> 𝒹𝓉1 ,𝓌2

 (3.37) 

Thus by Egoroff’s Theorem there is a set 𝒲3 ⊆ 𝒲2 such that 𝓂 𝒲3 > 1 −
3ℯ 

7
 and such that there exists 

𝓉2 ≥ 𝓉1 such that for all 𝑡 ≥ 𝓉2, and all 𝓌2 ∈ 𝒲3, 𝒹𝑡 ,𝓌2
> 𝒹𝓉1 ,𝓌2

. 

Now note that since 𝓂 is a regular measure (Davidson 1994: 413) there exists a closed set 𝒲4 ⊆ 𝒲3 such 

that 𝓂 𝒲3 ∖𝒲4 <
ℯ 

7
 and so 𝓂 𝒲4 > 1 −

4ℯ 

7
. Since closed subspaces of compact spaces are compact 

(Sutherland 1975: 84) and 𝒲4 ⊆ 𝒲1, 𝒲4 is also compact. Let us write 𝔹𝒹𝑡 ,𝓌2
 𝓌2  for the open ball of 

radius 𝒹𝑡 ,𝓌2
 centred on 𝓌2, then for all 𝑡 ≥ 𝓉1,  𝔹𝒹𝑡 ,𝓌2

 𝓌2  𝓌2 ∈ 𝒲3  is an open cover of 𝒲3, and 

thus, by compactness, has a finite subcover, say  𝔹𝒹𝑡 ,𝓌 𝑡 ,1
 𝓌 𝑡 ,1 ,𝔹𝒹𝑡 ,𝓌 𝑡 ,2

 𝓌 𝑡 ,2 ,… ,𝔹𝒹𝑡 ,𝓌 𝑡 ,𝑛 𝑡
 𝓌 𝑡 ,𝑛 𝑡  , 

where we may assume that  𝓌 𝑡 ,1 ,𝓌 𝑡 ,2 ,… ,𝓌 𝑡 ,𝑛 𝑡  ⊆  𝓌 𝑡+1,1 ,𝓌 𝑡+1,2 ,… ,𝓌 𝑡+1,𝑛 𝑡+1
  without loss of gen-

erality. Using this we let: 

𝓌 𝑡 ≔ inf
𝓌∈𝒲3

sup  𝒹 > 0 ∃𝑛 ∈  1,… ,𝑛 𝑡  s.t. 𝔹𝒹 𝓌 ∩𝒲3 ⊆ 𝔹𝒹𝑡 ,𝓌 𝑡 ,𝑛
 𝓌 𝑡 ,𝑛  > 0 

(That 𝓌 𝑡 > 0 is easily seen diagrammatically.) Then for 𝑡 ≥ 𝓉2, 𝓌 𝑡 > 𝓌 𝓉1
, so if we define 𝓌 ≔𝓌 𝓉1

, 

almost surely for all 𝑡 ≥ 𝓉2 and all 𝓌1 ,𝓌2 ∈ 𝒲3 with  𝓌1 −𝓌2 < 𝓌 : 

 ℎ𝑡 𝓌1 + 𝔼𝑡−1
∗  𝑥𝑡  휁𝑡  − ℎ𝑡 𝓌2 + 𝔼𝑡−1

∗  𝑥𝑡  휁𝑡   

 𝓌1 −𝓌2 
>
𝑑 min

3
 

We now turn to the large  𝓌1 −𝓌2  case. Since for all 𝓍 ∈ ℝdim 𝑥𝑡  almost surely lim𝑡→∞ ℎ𝑡 𝓍 −

 𝐶 − 𝐴Θ휀 ,2∙Φ휂  𝓍 − 𝒸𝑡 = 0, by Egoroff’s Theorem there is a set 𝒲5 ⊆ 𝒲4 such that 𝓂 𝒲5 > 1 −
5ℯ 

7
 

and such that as 𝑡 → ∞: 

sup
𝓌∈𝒲1

 ℎ𝑡 𝓌 + 𝔼𝑡−1
∗  𝑥𝑡  휁𝑡  −  𝐶 − 𝐴Θ휀 ,2∙Φ휂   𝓌 + 𝔼𝑡−1

∗  𝑥𝑡  휁𝑡  − 𝒸𝑡 
a.s.
  0 
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Then by the inequalities we originally used to derive pointwise convergence, almost surely there exists 

some 𝓉3 ≥ 𝓉2 such that for all 𝑡 ≥ 𝓉3 and all 𝓌1 ,𝓌2 ∈ 𝒲5 with  𝓌1 −𝓌2 ≥ 𝓌 : 

 ℎ𝑡 𝓌1 + 𝔼𝑡−1
∗  𝑥𝑡  휁𝑡  − ℎ𝑡 𝓌2 + 𝔼𝑡−1

∗  𝑥𝑡  휁𝑡   

 𝓌1 −𝓌2 
>
  𝐶 − 𝐴Θ휀 ,2∙Φ휂   𝓌1 −𝓌2  

 𝓌1 −𝓌2 
−

𝑑 min𝓌 

2 𝓌1 −𝓌2 
 

≥ 𝑑 min −
𝑑 min

2
>
𝑑 min

2
 

Combining this with our previous result we have that, for 𝑡 ≥ 𝓉3 and all 𝓌1 ,𝓌2 ∈ 𝒲5: 

 ℎ𝑡 𝓌1 + 𝔼𝑡−1
∗  𝑥𝑡  휁𝑡  − ℎ𝑡 𝓌2 + 𝔼𝑡−1

∗  𝑥𝑡  휁𝑡   

 𝓌1 −𝓌2 
> 0 

Finally by the regularity of 𝓂 we can find a closed, compact set 𝒲6 ⊆ 𝒲5 such that 𝓂 𝒲6 > 1 −
6ℯ 

7
. 

Now let 𝒳 ≔  𝓌 + 𝔼𝑡−1
∗  𝑥𝑡  휁t  𝓌 ∈ 𝒲6 , then 𝒳 is compact and ℎ𝑡  restricted to 𝒳 (written  ℎ𝑡  𝒳) is 

almost surely an injection for 𝑡 ≥ 𝓉3. Note that without loss of generality we may assume that 𝓉3 is the 

least value satisfying this. Note also that since as 𝑡 → ∞,  𝑥𝑡 − 𝔼𝑡−1
∗  𝑥𝑡  휁𝑡  ℐ𝑡−1

∗ ∪  휁𝑡   converges in dis-

tribution to a random variable with probability measure 𝓂, there exists 𝓉4 ≥ 𝓉3 such that for all 𝑡 ≥ 𝓉4, 

 Pr𝑡−1
∗   𝑥𝑡 − 𝔼𝑡−1

∗  𝑥𝑡  휁𝑡  ∈ 𝒲6 휁𝑟 −𝓂 𝒲6  <
ℯ 

7
, so from the above for all 𝑡 ≥ 𝓉4, 

Pr𝑡−1
∗   𝑥𝑡 − 𝔼𝑡−1

∗  𝑥𝑡  휁𝑡  ∈ 𝒲6 휁𝑟 > 1 − ℯ . In conclusion then this means that for 𝑡 ≥ 𝓉4,   ℎ𝑡  𝒳 is an 

injection where Pr𝑡−1
∗  𝑥𝑡 ∉ 𝒳 휁𝑟 < 𝑒 . 

Similarly to our assumption of the invertibility of 𝔼𝑡𝒯 for 𝑡 ≥ 𝒷, we make the reasonable assumption that 

priors are sufficiently close to the truth that 𝓉4 = 𝒷 for some fixed ℯ > 0 which determines the accuracy 

of our approximation. I.e. we assume that almost surely there is a compact set 𝒳 such that for all 𝑡 ≥ 𝒷: 

  ℎ𝑡  𝒳  is injective and Pr𝑡−1
∗  𝑥𝑡 ∉ 𝒳 휁𝑡 < ℯ  (3.38) 

By the above, if ℯ  is sufficiently large this is automatic. For smaller ℯ  we have a trade-off between accu-

racy and restrictiveness on priors. For the approximation of ℎ𝑡  by  ℎ𝑡  𝒳 to be fully rational we would need 

to take the limit as ℯ → 0, but we cannot rule out the possibility that this would necessitate priors starting 

out already fully converged, though we conjecture this is not the case. We stress though that this does 

not mean that the updating of beliefs requires them to have already converged; in theory we could re-
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cover the distribution 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡  without assuming ℎ𝑡  is “approximately” invertible, it would just be far 

less analytically and numerically tractable. Since hardware precision and the desire for finite running 

times inevitably place accuracy bounds on real world numerical algorithms, the current approach seems 

sensible in practice. 

Now in order to perform the change of variables necessary to recover 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡 , the Jacobian of ℎ𝑡 , 

𝜕ℎ𝑡 𝑥𝑡 

𝜕𝑥𝑡
 must exist and have a non-zero determinant almost everywhere. But from the above we have that 

almost surely for all 𝓍1 ,𝓍2 ∈ 𝒳: 

 
𝜕ℎ𝑡 𝓍2 

𝜕𝓍2
 𝓍1 − 𝓍2  

 𝓍1 − 𝓍2 
>

2𝑑 min

3
 

so for 𝓍2 ∈ 𝒳°, (where 𝒳° is the interior of 𝒳°, i.e. the union of all its open subsets), the largest singular 

value of 
𝜕ℎ𝑡 𝓍2 

𝜕𝓍2
 is bounded away from 0, and hence by continuity, in fact for all 𝓍2 ∈ 𝒳, 

𝜕ℎ𝑡 𝓍2 

𝜕𝓍2
 is invert-

ible and hence has a non-zero determinant. 

We can now at last perform the change of variables. Recall that  ℎ𝑡 𝑥𝑡  ℐ𝑡−1
∗ , 휁𝑡 ~NIID 0, Σ , so 

  ℎ𝑡  𝒳 𝑥𝑡  ℐ𝑡−1
∗ , 휁𝑡 , 𝑥𝑡 ∈ 𝒳  is equal in distribution to  휀𝑡  휀𝑡 ∈ ℎ𝑡 𝒳  , which has probability density func-

tion proportional to that of an NIID 0, Σ  variable on ℎ𝑡 𝒳 . Thus from the change of variables formula 

(Port 1994: 462), for 휀𝑡 ∈ ℎ𝑡 𝒳 : 

𝑓𝑡−1
∗   ℎ𝑡  𝒳

−1 휀𝑡  휁𝑡 , 𝑥𝑡 ∈ 𝒳  det
𝜕 ℎ𝑡  𝒳

−1 휀𝑡 

𝜕휀
 ∝ exp  −

1

2
휀𝑡
′Σ−1휀𝑡  

so by the inverse function theorem, for all 𝑥𝑡 ∈ 𝒳: 

𝑓𝑡−1
∗  𝑥𝑡  휁𝑡 ∝ exp  −

1

2
ℎ𝑡 𝑥𝑡 

′Σ−1ℎ𝑡 𝑥𝑡   det
𝜕ℎ𝑡 𝑥𝑡 

𝜕𝑥𝑡
  

and for 𝑥𝑡 ∉ 𝒳, we approximate 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡  by 0 which is reasonable since as shown above, 

Pr𝑡−1
∗  𝑥𝑡 ∉ 𝒳 휁𝑡 < ℯ . 

We now almost have an algorithm for updating beliefs. Unfortunately though, careful inspection reveals 

that ℎ𝑡  is defined in terms of 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡 , so the just derived relationship should be thought of as describ-
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ing the functional fixed point condition that characterises 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡 . However, the above results imply 

that as 𝑡 → ∞, on 𝒳, 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡  almost surely tends uniformly to the probability density function of a 

normal random variable whose parameters are not defined in terms of 𝑓𝑡−1
∗  𝑥𝑡  휁𝑡 . More formally there 

exists some (non-linear) operator 𝔗𝑡  on the space of continuous probability density functions over 𝒳, 

such that 𝑓𝑡−1
∗  ∙  휁𝑡 = 𝔗𝑡 𝑓𝑡−1

∗  ∙  휁𝑡   and such that almost surely, as 𝑡 → ∞,  𝔗𝑡 𝑓𝑡−1
∗  ∙  휁𝑡  −

𝑓 𝑡 ∙  ∞ → 0 for some probability density function 𝑓 𝑡 , where  ∙ ∞  is the function space sup-norm. Since 

constant operators are trivially contractions, this suggests (but does not imply) that for some 𝓉  and 𝑡 ≥ 𝓉 , 

𝔗𝑡  is a contraction on the space of continuous probability density functions over 𝒳. We conjecture this 

holds; then, since as 𝒳 is compact, the space of all continuous functions on 𝒳 with the sup-norm is com-

plete (Sutherland 1975: 83,123,76), since the subspace of all functions with integral 1 is closed by Fatou’s 

lemma (Dudley 2005: 131) and since closed subspaces of a complete metric space are complete (Suther-

land 1975: 124), then the space of all continuous probability density functions over 𝒳 is complete. Hence 

by the Banach Fixed Point Theorem (Sutherland 1975: 130-31), if our conjecture holds then for 𝑡 ≥ 𝓉 , 𝔗𝑡  

has a unique fixed point which can be arrived at by iteration. 

As usual, by sufficiently restricting priors we may assume that 𝓉 = 𝒷, so providing the assumptions and 

conjectures we have made in this sub-section actually hold, for sufficiently tight priors we have an effec-

tive way of computing posterior beliefs to an arbitrary degree of accuracy. Since this is an iteration 

around numerical integrals, it is however likely to be very slow to compute in practice. 

3.3. Application to the univariate case 

We will now apply the results of this chapter to the univariate case, both in order to verify them by com-

parison with § 2.2 and in order to provide additional intuition. 

We assume 𝑎 ≠ 0, so we may take Γ0 = 𝐼, Γ1 =  
0 1

−
𝑏

𝑎

𝑐

𝑎

 , 𝜇 =  
0

−
𝜇

𝑎

 , 𝛿 =  
0

−
𝛿

𝑎

 , Ψ =  
0

−
1

𝑎

  and Π =  
1
𝑐

𝑎

 . 

From the properties of the QZ decomposition: 𝑄𝐻Λ𝑍𝐻 = 𝐼 and 𝑄𝐻Ω𝑍𝐻 = Γ1, thus we may take Λ = 𝐼. So 

by unitarity, 𝑄𝐻 = 𝑍, which leaves us with the Schur decomposition formula 𝑍Ω𝑍𝐻 =  
0 1

−
𝑏

𝑎

𝑐

𝑎

  as we had 

in § 2.2.3, which means the diagonal elements of Ω are the eigenvalues of Γ1. 
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Note that  Ψ Π  is invertible providing 
1

𝑎
≠ 0, which is always true, thus the condition for the existence 

of a full information REE is that 𝑈∙1𝑈∙1
𝐻 = 𝐼 and the condition for the existence of a full information FREE is 

that 𝑈 ∙1𝑈 ∙1
𝐻 = 𝐼 and 𝑀휀  is of full rank with rows which are linearly independent of those of 𝐷11

−1𝑈∙1
𝐻𝑄2∙Ψ. 

3.3.1. Fully stable cases 

When either 𝑐2 − 4𝑎𝑏 < 0 and 
𝑏

𝑎
≤ 1, or 0 ≤ 𝑐2 − 4𝑎𝑏 and − 𝑎 + 𝑏 ≤ 𝑐 ≤  𝑎 + 𝑏 , all the diagonal 

elements of Ω are in the unit circle. Thus dim𝑤2,𝑡 = 0, so Ω = Ω11 , 𝑍𝐻 = 𝑄 = 𝑄1∙ = 𝑍∙1
𝐻  and 𝑄2∙Π and 

𝑄2∙Ψ both have zero rows, which implies 𝑈,𝑈 ,𝐷,𝐷  have zero rows too and we may take 𝑉∙2 = 𝑉 ∙2 = 1. 

This implies that the conditions for the existence of a REE and the first condition for the existence of a 

FREE are automatically satisfied. The second condition for the existence of a FREE just requires that 

𝑀휀 ≠ 0, which is the condition we derived in § 2.2.2. Putting these values into the formulas derived in § 

2.3.2, § 2.3.3 and § 2.3.5 then gives: 

 dim𝜙𝜇 = 0, 𝐻 = 𝑍  
1 0
0 1

 = 𝑍, Θ𝑣 = 𝑍Ω𝑍𝐻 = Γ1  

 Θ휀 = 𝑍𝑍𝐻Ψ + 𝑍𝑍𝐻Π𝑀휀 = Ψ + Π𝑀휀 , Θ휁 = 𝑍𝑍𝐻Π𝑀휁 = Π𝑀휁   

 휃𝜇 = 𝐻𝑍𝐻𝜇 = 𝜇 , 휃𝛿 = 𝐻𝑍𝐻𝛿 = 𝛿 , Φ휂 = 𝑀휀
−1 , Φ휁 = −𝑀휀

−1𝑀휁   

(These are entirely as expected from § 2.2.2.) So from (2.21), in the full information case we have: 

𝔼𝑡
∗𝑥𝑡+1

∗ =  
𝑐

𝑎
−

1

𝑎
𝑀휀

−1 𝑥𝑡
∗ −

𝑏

𝑎
𝑥𝑡−1
∗ +

1

𝑎
𝑀휀

−1𝔼𝑡−1
∗ 𝑥𝑡

∗ −
𝜇

𝑎
−
𝛿

𝑎
𝑡 +

1

𝑎
𝑀휀

−1𝑀휁휁𝑡  

which agrees with the FREE solution derived in § 2.2.2. 

Also from the formulas derived in § 3.1.3, § 3.1.4 and § 3.1.5 and § 3.2.5: 

 Θ𝜗  has 0 columns, Θ𝜉 = 𝑍𝑍𝐻Π𝑉∙2 = Π, 𝒟1 =  1 0 Γ1 −  0 1 =  0 0   

 𝒦,ℒ,ℛ,𝒜,ℬ,𝑈 ,𝐷  all have 0 rows, 𝑉 ∙2 = 1,𝑍 = 𝑍 ∙1 = 1,Ω = 0, 𝜚𝑡  has 0 rows  

 
Φ𝜉 = −𝑀휀

−1 , Φ𝜚  has 0 columns, 𝔄 =
1

𝑎
𝑀휀

−1 , 𝒯 = 𝑎𝑀휀  
 

It is easy to see that this implies that condition (3.13), (3.15), (3.16) and (3.25) hold. 

From (3.21) we have: 
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𝑣𝑡 = Θ𝑣𝑣𝑡−1 + 휃𝜇 + 휃𝛿𝑡 + Θ휀휀𝑡 + Θ휁휁𝑡 +  Θ𝜗 Θ𝜉  𝑍 ∙1𝛼𝑡  

= Γ1𝑣𝑡−1 + 𝜇 + 𝛿 𝑡 +  Ψ + Π𝑀휀 휀𝑡 + Π𝑀휁휁𝑡 + Π𝛼𝑡  

Furthermore, we have that: 

𝑈 𝐷 𝑉 𝐻 =  Θ𝜗 ,2∙ − Θ휀 ,2∙Φ𝜚Λ22 Θ𝜉 ,2∙ + Θ휀 ,2∙Φ𝜉  𝑍 ∙1 =
1

𝑎
𝑀휀

−1 

so we can take 𝑈 = 𝑉 = 1 and 𝐷 =
1

𝑎
𝑀휀

−1. Additionally from (3.22) this implies: 

𝔼𝑡𝑥𝑡+1 =  
𝑐

𝑎
−

1

𝑎
𝑀휀

−1 𝑥𝑡
∗ −

𝑏

𝑎
𝑥𝑡−1
∗ +

1

𝑎
𝑀휀

−1𝔼𝑡−1
∗ 𝑥𝑡

∗ −
𝜇

𝑎
−
𝛿

𝑎
𝑡 +

1

𝑎
𝑀휀

−1𝑀휁휁𝑡 +
1

𝑎
𝑀휀

−1𝛼𝑡  

which is identical to the full information FREE form apart from the additional 𝛼𝑡  term. 

3.3.2. Saddle-path stable cases 

When 0 ≤ 𝑐2 − 4𝑎𝑏 and either 𝑐 < − 𝑎 + 𝑏  or 𝑐 >  𝑎 + 𝑏  then there is precisely one eigenvalue in the 

unit circle: let us call this eigenvalue 𝜔1 and the other 𝜔2, so  𝜔1 ≤ 1 and  𝜔2 > 1. Thus dim𝑤2,𝑡 = 1, 

so Ω11 = 𝜔1, Ω22 = 𝜔2. As in § 2.2.3 we write Ω12 = 𝜔12  and 𝑍 =  
𝑧11 𝑧12

𝑧21 𝑧22
 , so 𝑄 =  

𝑧11
𝐻 𝑧21

𝐻

𝑧12
𝐻 𝑧22

𝐻  , mean-

ing 𝑄1∙Π = 𝑧11
𝐻 +

𝑐

𝑎
𝑧21
𝐻 =

1

 𝑍 
 𝜔12𝑧11 − 𝜔1𝑧12  (by (2.4) and (2.6)) and 𝑄2∙Π = 𝑧12

𝐻 +
𝑐

𝑎
𝑧22
𝐻 =

1

 𝑍 
𝜔2𝑧11  

(similarly) and 𝑄2∙Ψ = −
1

𝑎 𝑍 
𝑧11  (by (2.6)). These are scalars so we may take 𝑈 = 𝑈 = 𝑉 = 𝑉 = 1, 

𝐷 =
1

 𝑍 
𝜔2𝑧11 and 𝐷 = −

1

𝑎 𝑍 
𝑧11. This implies that the condition for the existence of a REE and the first 

condition for the existence of a FREE are satisfied if and only if 𝑧11 ≠ 0. The second condition for the exis-

tence of a FREE then holds trivially. Thus assuming 𝑧11 ≠ 0, from the formulas derived in § 2.3.2, § 2.3.3 

and § 2.3.5 and the identities (2.4), (2.5) and (2.6): 

 
𝜙𝜇 =  𝜔2 − 1 −1

𝑧22
𝐻

𝑎
 𝜇 + 𝛿 +  𝜔2 − 1 −2

𝑧22
𝐻

𝑎
𝛿 =

𝑧22
𝐻

𝑎
 
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
  

 

 
𝐻 = 𝑍  

1
𝜔12𝑧11 −𝜔1𝑧12

𝜔2𝑧11

0 1

 =  𝑍∙1 𝑍∙2 + 𝑍∙1
𝜔12𝑧11 −𝜔1𝑧12

𝜔2𝑧11
  

 

 
Θ𝑣 = 𝜔1𝑍∙1  𝑍∙1

𝐻 +
z12

z11
𝑍∙2
𝐻 = 𝜔1𝑍∙1  𝑧11

𝐻 +
z12

z11
𝑧12
𝐻 0  
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Θ휀 = 𝑍∙1  𝑍∙1

𝐻 −
𝜔12𝑧11 −𝜔1𝑧12

𝜔2𝑧11
𝑍∙2
𝐻  

0

−
1

𝑎

 =
𝑍∙1

𝑎𝜔2𝑧11
, Θ휁 = 0 

 

 

휃𝜇 = 𝐻  
 𝑍∙1

𝐻 −
𝜔12𝑧11 − 𝜔1𝑧12

𝜔2𝑧11
𝑍∙2
𝐻  

0

−
𝜇

𝑎
 

𝜙𝜇

 = 𝐻

 
 
 
 
 

𝜇

𝑎𝜔2𝑧11

𝑧22
𝐻

𝑎
 
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
 
 
 
 
 
 

 

=
1

𝑎
 𝑍∙1

1

𝜔2
 
𝜇

𝑧11
+
𝜔12𝑧11 − 𝜔1z12

 𝑍 
 
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
  + 𝑍∙2𝑧22

𝐻  
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
   

 

 

휃𝛿 = 𝐻  
 𝑍∙1

𝐻 −
𝜔12𝑧11 − 𝜔1𝑧12

𝜔2𝑧11
𝑍∙2
𝐻 

 1 −𝜔2 
−1𝑍∙2

𝐻
  

0

−
𝛿

𝑎

 = 𝐻

 
 
 
 

𝛿

𝑎𝜔2𝑧11
𝑧11

𝑎 𝜔2 − 1  𝑍  
 
 
 
𝛿 

=
1

𝑎 𝜔2 − 1  𝑍 
 𝑍∙1  

 𝑍 

𝑧11
− 𝑧12 + 𝑍∙2𝑧11 𝛿 

 

 Φ휂 = 𝑎𝜔2 , Φ휁 = 0  

It is clear these agree with the solution derived in § 2.2.3. 

By these results, from (2.21), (2.5) and (2.6) in the full information case we have the following FREE form: 

𝔼𝑡
∗𝑥𝑡+1

∗ = 𝜔1𝑥𝑡
∗ + 𝜔1

2𝑥𝑡−1
∗ −𝜔1𝔼𝑡−1

∗ 𝑥𝑡
∗ +

1

𝑎
 𝜔1  

𝜇

 𝜔2 − 1 
+

𝛿

 𝜔2 − 1 2
 +  

𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
   

+
 𝜔1 + 1 𝛿𝑡

𝑎 𝜔2 − 1 
 

This agrees with the FREE form derived in § 2.2.3 (though it is not quite as simple) since  

𝜔1𝔼𝑡−1
∗ 𝑥𝑡

∗ = 𝜔1
2𝑥𝑡−1

∗ + 𝜔1  
𝜇

𝑎 𝜔2−1 
+

𝛿

𝑎 𝜔2−1 2 +
𝜔1𝛿

𝑎 𝜔2−1 
𝑡. 

Now from the identities derived in § 2.2.3 and the formulae derived in § 3.1.3, § 3.1.4 and § 3.2.5: 

 Θ𝜗 = 𝑍∙1
𝜔1𝑧12 − 𝜔12𝑧11

𝜔2𝑧11
− 𝑍∙2 , Θ𝜉  has 0 columns  

𝒟1 =  1 0 𝜔1𝑍∙1  𝑧11
𝐻 +

z12

z11
𝑧12
𝐻 0 −  0 1 =  𝜔1  

𝑧11𝑧22

 𝑍 
−

z12𝑧21

 𝑍 
 −1 =  𝜔1 −1  

 
𝒦 =

1

 𝑍 
𝑧11 𝜔1z12 − 𝑧22 + 1 =

1

 𝑍 
 𝑧21z12 − 𝑧11𝑧22 + 1 = 0 
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ℒ =

1

𝜔2 𝑍 
 𝑧11 𝜔1𝑧12 − 𝑧22 − 𝑧11 𝜔1𝑧12 − 𝜔12𝑧11 − 𝜔2𝑧12   

=
1

𝜔2 𝑍 
 𝑧11 𝜔1𝑧12 − 𝑧22 − 𝑧11 𝜔1𝑧12 − 𝑧22  = 0 

 

 
ℛ has 0 columns, 𝒜 =  

1

𝜔2
0 − 0 = 0, ℬ =  0 0 

0 columns
 = 0 

 

 𝑈 = 𝑈 ∙2 = 1, 𝑉 = 𝑉 ∙2 = 1, 𝐷 = 0, 𝑍 = 𝑍 ∙1 = 1, Ω = 0  

 𝜚𝑡 = 𝜔2  
1 0 

0 columns
 𝛼𝑡−1 −  1 0 

0 columns
 𝛼𝑡 = 𝜔2𝛼𝑡−1 − 𝛼𝑡  

 

 
Φ𝜉  has 0 columns, Φ𝜚 = −

𝑎 𝑍 

𝑧11
, 𝔄 =

 𝑍 

𝑧11
, 𝒯 =

−1

𝜔2
 

 

Again it is easy to see that conditions (3.13), (3.15), (3.16) and (3.25) hold. 

From (3.21) we have: 

𝑣𝑡 = Θ𝑣𝑣𝑡−1 + 휃𝜇 + 휃𝛿𝑡 + Θ휀휀𝑡 + Θ휁휁𝑡 +  Θ𝜗 Θ𝜉  𝑍 ∙1𝛼𝑡  

= 𝜔1𝑍∙1  𝑧11
𝐻 +

z12

z11
𝑧12
𝐻 0 𝑣𝑡−1

+
1

𝑎
 𝑍∙1

1

𝜔2
 
𝜇

𝑧11
+
𝜔12𝑧11 −𝜔1z12

 𝑍 
 
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
  + 𝑍∙2𝑧22

𝐻  
𝜔2 𝜇 + 𝛿 − 𝜇

 𝜔2 − 1 2
  

+
1

𝑎 𝜔2 − 1  𝑍 
 𝑍∙1  

 𝑍 

𝑧11
− 𝑧12 + 𝑍∙2𝑧11 𝛿𝑡 +

𝑍∙1
𝑎𝜔2𝑧11

휀𝑡 +  𝑍∙1
𝜔1𝑧12 − 𝜔12𝑧11

𝜔2𝑧11
− 𝑍∙2 𝛼𝑡  

Furthermore, we have that by (2.5) and (2.6): 

𝑈 𝐷 𝑉 𝐻 =  Θ𝜗 ,2∙ − Θ휀 ,2∙Φ𝜚Λ22 Θ𝜉 ,2∙ + Θ휀 ,2∙Φ𝜉  𝑍 ∙1 = −
 𝑍 

𝑧11
 

so we can take 𝑈 = 𝑉 = 1 and 𝐷 = −
 𝑍 

𝑧11
. This also implies that by (3.22) and (2.5) and (2.6) again: 

𝔼𝑡𝑥𝑡+1 = 𝜔1𝑥𝑡 +  
𝜇 + 𝛿

𝑎 𝜔2 − 1 
+

𝛿

𝑎 𝜔2 − 1 2
 +

𝛿𝑡

𝑎 𝜔2 − 1 
−
 𝑍 

𝑧11
𝛼𝑡  

which were it not for the 𝛼𝑡  term would be identical to the simple FREE solution derived in § 2.2.2. (In-

deed, we conjecture in light of this that using the derived partial information FREE solution with 𝛼𝑡 = 0 

and our solution for 휂𝑡  we can always derive the MSV solution if it exists, even in the multivariate case.) 
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3.3.3. Convergence  conditions 

We showed in § 3.3.1 and § 3.3.2 that providing the condition for the existence of a REE holds, (3.13), 

(3.15), (3.16) and (3.25) always hold. This leaves conditions (3.23), (3.26), (3.27), (3.31), (3.32) and (3.33) 

to investigate. 

We turn first to (3.23). Assuming partial information expectations are formed according to (3.29), we 

have that Cov 휁𝑡 ,𝔼𝑡𝑥𝑡+1 ≈ 𝔼𝑡 Θ휁 ,2∙ + Θ휀 ,2∙Φ휁   (not exact since the other 𝑡 dated expectations will be 

slightly correlated with 휁𝑡 ). Now 𝔼𝑡 Θ휁 ,2∙ + Θ휀 ,2∙Φ휁  full stability = 𝔼𝑡  
1

𝑎
𝑀휀

−1𝑀휁  full stability , which, if 

𝑀휀  and 𝑀휁  are known non-zero constants, will be generically non-zero providing there is a reasonable 

degree of asymmetry around 0 to beliefs, which is certainly guaranteed to be true for large 𝑡. Since 

𝔼𝑡 Θ휁 ,2∙ + Θ휀 ,2∙Φ휁  saddle path stability = 0, this in turn means that providing beliefs put positive prob-

ability on full indeterminacy it is reasonable to expect Cov 휁𝑡 ,𝔼𝑡𝑥𝑡+1  is of full rank for large 𝑡. Similarly, 

from the solutions for 𝒯 in § 3.3.1 and § 3.3.2, with sufficiently tight/asymmetric priors it seems reason-

able to expect (3.26) holds. 

Condition (3.27) is not strictly a condition at all, since we just choose to make it hold, so we are left with 

conditions (3.31), (3.32) and (3.33) about which we cannot really say anything since they relate to the ac-

tual evolution of variables over time. In future work we hope to investigate them through simulations. 

3.3.4. Proposition 4 

If the true model is univariate with no unit roots and the assumptions on beliefs in § 3.2.1 and § 3.2.2 

hold, then: 

 Under full stability a full information REE always exists and 𝑀휀 ≠ 0 is necessary for the existence 

of a full or partial information FREE. Under saddle-path stability 𝑧11 ≠ 0 is necessary for the exis-

tence of a full or partial information, REE or FREE. In either case that the respective necessary 

condition for the existence of a FREE, (3.26) and (3.27) hold almost surely is sufficient for the exis-

tence of a partial information FREE. 

 For probability 1 convergence, conditions (3.31), (3.32) and (3.33) must hold almost surely. 
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 Under full stability, that 𝑀휀 ≠ 0, (3.23), (3.27), (3.31) and (3.32) all hold with probability 1 is suffi-

cient for almost sure convergence. Under saddle-path stability, that 𝑧11 ≠ 0, (3.23), (3.27), (3.31), 

(3.32) and (3.33) all hold with probability 1 is sufficient for almost sure convergence. 

3.4. Bounded rationality approximations 

We finish by describing how bounded rationality schemes arise naturally from the partial information so-

lution we have described. Many of our assumptions can be dropped or weakened under bounded ration-

ality, and our algorithms simplified. By virtue of their origin, the schemes that result are less vulnerable to 

the charge of being arbitrary than those in the existing literature. 

The most obvious first step away from rationality would be to drop all assumptions that we have shown 

hold asymptotically anyway. This includes our assumption that 𝔼𝑡𝒯 is always invertible, which we could 

do without under bounded rationality by taking its pseudo-inverse, and our assumption that ℎ𝑡  is always 

injective, which could be avoided by increasing the parameter ℯ  sufficiently. 

A greater restriction on rationality would be to approximate our belief updating algorithm by Bayesian 

instrumental variables (Kleibergen and Zivot 1998), along similar lines to the classical SIV regression de-

scribed in § 3.2.3. This would enable a conjugate prior form for beliefs to be found, thereby greatly in-

creasing numerical tractability, while still enabling us to form non-point expectations of the required ma-

trices. Finally, we could arrive at a “Bayesian econometrician” version of E&H’s approach by assuming 

that agents irrationally expect 𝒯𝔢𝑡 = 𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22 𝐼 0 𝑍 ∙1𝛼𝑡−1 = 0 under the 𝑡 − 1 information set, 

which would mean the final two terms dropped out of (3.29), our partial information FREE solution. 

These approximations could potentially help answer how a model’s dynamics change on the continuum 

from full rationality to E&H style bounded rationality, which in turn could enable us to provide an empiri-

cal answer to what degree of bounded rationality real world agents possess. 
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4. Conclusion 

In this thesis, we have answered a major unsolved question in modern macroeconomics, namely how, 

rationally, should expectations be formed under partial information to ensure the economy is not asymp-

totically explosive. We have found necessary and sufficient conditions for the path a model follows when 

agents form expectations in this way to converge to that followed under the standard full information 

rational expectations solution, and we have gone a significant way towards describing a numerical algo-

rithm for the inter-period updating of beliefs. Additionally we have described a new class of full informa-

tion REEs, which, in a significant sense, are the only feasible ones. 

This is the first paper to address this topic though, so there is still much work to be done. Tighter neces-

sary and sufficient conditions for convergence need to be found if this work is to be easily applicable, and 

in particular conditions not requiring to be tested by simulations. We conjecture that given sufficiently 

diffuse priors, the conditions for the existence of a FREE and the conditions for partial information con-

vergence broadly coincide. We further conjecture that beliefs must put positive probability on full inde-

terminacy for convergence to take place. Future work must also provide a software implementation of 

our algorithms for the updating of beliefs, and the conjectures we made in § 3.2.9 must be proven to en-

sure these are valid. In order to answer our criticism of E&H we must also investigate rational learning in 

an overlapping generations framework, with a realistic population age distribution. 

The implications of this work are numerous. Firstly, the conditions for convergence and feasibility it out-

lines can be used both to rule out particular equilibria and to rule out entire models – potentially any 

theoretical model that did not produce indeterminacy for parameters with theoretically plausible values. 

Secondly, the solution can be applied to examine economic dynamics under partial information rational 

expectations, which could shed light on many major empirical puzzles and assist with the design of opti-

mal fiscal and monetary rules. Thirdly, the described algorithms for belief updating and expectations for-

mation could be used econometrically to produce estimates of our actual economy’s parameters that are 

not plagued by the omitted variable bias that comes from the lack of a decent proxy for expectations. Fi-

nally, this work could be useful for forecasting with truly rational, partial information expectations. 
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5. Appendix A: Matrix quasi-geometric series 

For any matrix 𝑀 and 𝑛 ∈ ℕ: 

 𝐼 − 𝑀  𝑀𝑘

𝑛

𝑘=0

=  𝑀𝑘

𝑛

𝑘=0

− 𝑀𝑘+1

𝑛

𝑘=0

= 𝐼 − 𝑀𝑛+1 

For  𝑀𝑘∞
𝑘=0  to converge34 we at least require lim𝑘→∞ 𝑀𝑘 = 0, which is true if any only if all the eigen-

values of 𝑀 are in the unit circle. This is also sufficient for convergence as it means  𝐼 − 𝑀  is invertible 

and the right hand side converges to 𝐼. Also for any matrix 𝑀 and 𝑛 ∈ ℕ: 

 𝐼 − 𝑀  𝐼 − 𝑀  𝑘𝑀𝑘−1

𝑛

𝑘=0

=  𝐼 − 𝑀   𝑘𝑀𝑘−1

𝑛

𝑘=0

−  𝑘 + 1 𝑀𝑘

𝑛

𝑘=0

+  𝑀𝑘

𝑛

𝑘=0

  

=  𝐼 − 𝑀   𝑀𝑘

𝑛

𝑘=0

−  𝑛 + 1 𝑀𝑛 = 𝐼 − 𝑛 𝑀𝑛 −𝑀𝑛+1 − 𝑀𝑛  

As before, we require lim𝑘→∞ 𝑘𝑀𝑘−1 = 0. Taking the Jordan normal form of 𝑀, we can write 𝑘𝑀𝑘−1 =

𝑃𝑀 𝑘𝐽𝑀
𝑘−1 𝑃𝑀

−1 with 𝑃𝑀  invertible and 𝐽𝑀  block diagonal with diagonal blocks of the form 𝜆𝑀,𝑗 𝐼 + 𝑁𝑀,𝑗  

with 𝑁𝑀,𝑗  nilpotent and 𝜆𝑀,𝑗  the 𝑗th eigenvalue; so lim𝑘→∞ 𝑘𝑀𝑘−1 = 0 if any only if for each block 𝑗, 

lim𝑘→∞ 𝑘 𝜆𝑀,𝑗 𝐼 + 𝑁𝑀,𝑗  
𝑘−1

= 0. Then by the binomial theorem and the nilpotency of 𝑁𝑀,𝑗 : 

𝑘 𝜆𝑀,𝑗 𝐼 + 𝑁𝑀,𝑗  
𝑘−1

=   
𝑘 − 1
𝑙

 𝑘𝜆𝑀,𝑗
𝑘−1−𝑙𝑁𝑀,𝑗

𝑙

min  𝑘−1,dim 𝑁𝑀 ,𝑗  

𝑙=0

= 𝒪   
𝑘

dim𝑁𝑀,𝑗
 𝜆𝑀,𝑗

𝑘−1 

= 𝒪 𝑘dim 𝑁𝑀 ,𝑗𝜆𝑀,𝑗
𝑘−1  

(using order notation as 𝑘 → ∞, again assuming the matrix norm induced by the Euclidean vector norm). 

Thus, since 𝑘dim 𝑁𝑀 ,𝑗𝜆𝑀,𝑗
𝑘−1 → 0 as 𝑘 → ∞ if  𝜆𝑀,𝑗  < 1, we must have that when  𝜆𝑀,𝑗  < 1, 𝑘 𝜆𝑀,𝑗 𝐼 +

𝑁𝑀,𝑗  
𝑘−1 → 0 as 𝑡 → ∞ too. Thus again we have that  𝑀𝑘∞

𝑘=0  converges if and only if all the eigenvalues 

of 𝑀 are in the unit circle, in which case we have  

 𝑘𝑀𝑘−1∞
𝑘=0 =  𝐼 − 𝑀 −2. 

                                                            
34 These and subsequent limits are taken under the matrix norm induced by the Euclidean vector norm. 
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