
MPRA
Munich Personal RePEc Archive

The Effects of Interim Performance
Evaluations under Risk Aversion

Yurday, Zeynep

University of Rochester

September 2003

Online at http://mpra.ub.uni-muenchen.de/1611/

MPRA Paper No. 1611, posted 07. November 2007 / 01:52

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7301357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/1611/


The Effects of Interim Performance Evaluations
under Risk Aversion

by Zeynep Yurday∗

September 2003

Abstract

This paper reconsiders the applicability of a recently posed theoreti-
cal result concerning the optimality of not providing interim performance
evaluations to the agent when implementing a given amount of total effort.
The model used by Lizzeri, Meyers and Persico (2002) under the assump-
tion of a risk neutral agent restricted by limited liability is analyzed when
the agent is risk averse to show that interim performance evaluations do
matter in reducing contract costs. In particular, they enable the princi-
pal to transfer the burden of insuring the agent against risk to the agent
herself. Hence, the same incentives can be provided without as much
consumption smoothing once performance information is revealed. On
the other hand, when the incentive scheme is fixed, the risk averse agent
may find it optimal to exert a greater amount of effort when performance
evaluations are not revealed so as to insure herself against the possible
losses that come with unexpected bad outcomes.

1 Introduction

In a dynamic principal-agent relationship where the principal is more informed
compared to the agent about her performance, it is a natural question to ask,
what the effect of disclosing such information to the agent is. In particular, how
does revelation of such information affect the effort level chosen by the agent
and how does it affect the contract cost the principal must incur in order to
implement a given level of effort?

Real life examples necessitating such a question to be theoretically resolved
abound. Consider, the relationship between a teacher and a student in the
classroom: a teacher who is experienced in assessing the performance of a
child based on her in-class participation, test scores and interaction with other
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students is in a better position to objectively evaluate how well a student is doing
in the class; whereas a student who has just been introduced to the process of
grappling with foreign concepts may not be aware of how well she is at learning
them. Hence, the disparity in the position of the teacher and his student places
the teacher at an informational advantage regarding the performance of the
student. Given this informational asymmetry, how would the student react
over time to learning about the assessment of her teacher? Will she start
working more or less depending on whether she did well last week? And will
she need to be given more points to study just as hard had she not known what
her performance level was?

Perhaps the cost of rewarding the student for the amount of work she puts
in is not so important for the teacher when the rewards are defined as course
grades. However, once we consider the same informational asymmetry applied
to the relationship between an employer and an employee in an organization, we
realize that the principal’s valuation is not just based on getting the maximum
amount of effort possible from the agent, but also on how costly it will be for him
to have the agent exert that effort. That is, an employer’s concerns regarding
the wages he has to pay his employee in order to make him work just as hard
might prevent him from revealing performance information to his employee.

Lizzeri, Meyer, and Persico, (2002, henceforth LMP) analyze this question
closely in a two-period, two-output, principal-agent model where both the prin-
cipal and the agent are risk-neutral, and inefficiencies in effort provision exist
due to limited liability on the part of the agent. Together with these assump-
tions, they are able to show that even though the agent is willing to exert more
effort under revelation of performance information, it is costlier to have her
exert the same level of effort. In fact, for any amount of aggregate effort the
principal wishes to implement, the contract cost under information revelation
will always exceed that under no revelation.

Risk neutrality together with limited liability is key to establishing their
conclusions. It is well known in the contract theory literature that with these
assumptions, the optimal output-contingent wage contract will only award the
most successful outcome while punishing—to the extent permitted by the degree
of limited liability—the rest of the possible outcomes. When no performance
information is revealed across time, the dynamic relationship between the prin-
cipal and the agent is equivalent to that of a static one, where the agent commits
to a sequence of efforts from the beginning and is compensated for the outcome
to each at the end. The principal can therefore implement a given sequence of
efforts at the least cost by simply rewarding the outcome that is most informa-
tive about this sequence of efforts (usually the highest outcome if the maximum
likelihood ratio property holds).

LMP use this property to show that under no revelation of performance
information, the principal can implement a given level of aggregate effort by
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paying the agent positive wages for two sequential successes while paying her
zero wages otherwise. By so doing, the principal is actually maximizing the
incentive provision effect at the minimal cost possible. If information is revealed
to the agent however, such a strong incentive provision mechanism may no longer
implement the same effort level. Once a failure is revealed after the first period,
if zero wages are awarded to the agent for any combination of outcomes involving
a failure, then the agent will exert zero effort in the second period knowing that
he will receive nothing. Hence, information revelation makes incentive provision
more costly, by necessitating an increase in wages in order to provide the same
aggregate effort level.

This paper shows that introducing another form of inefficiency which is due
to risk aversion rather than limited liability has potential to alter the above
conclusions completely. Namely, if the agent is risk averse, the optimal contract
will involve a trade-off between incentive provision and insurance provision, and
so even when no performance information is revealed, it will no longer be optimal
to provide such strong incentives since it increases the amount of risk the agent
will have to bear. In fact, the agent’s risk aversion will force the principal
to insure the agent against risk by smoothing her consumption across different
states. This insurance effect will have a stronger impact on the optimal contract
under no revelation compared to revelation, since the agent is able to insure
herself against risk by adjusting her second period effort level once performance
information is revealed.

Such an outcome is intuitive when we think of the teacher-student relation-
ship discussed above. The LMP (2002) result suggests that the teacher may
implement the same amount of effort with lower grades by only offering a final
exam for the course. However, it is a well known fact that midterm exams
which reveal the students’ performance are frequently used. A midterm exam
may help adjust a student’s effort upon observing her intermediate performance
level. Considering the student is risk averse, such an adjustment will remove the
responsibility off the teacher of actually insuring the student against a failure
on the final exam. Such an insurance would be provided through a reduction
in the dispersion of final grades across different performance levels. Had the
student some idea regarding how well she was doing in the course prior to re-
ceiving her final grade, she would have been able to insure herself by working
harder and be better prepared to face the possibility of a low grade.

In what follows, we will recount the LMP (2002) model and show explicitly
how the results will change once the agent is risk averse. Section 2 provides an
outline of the model used; section 3 illustrates the effect interim performance
evaluations have on the agent’s effort level for a fixed incentive scheme; section 4
gives the necessary and sufficient conditions for the optimal incentive mechanism
the principal wishes to offer, and presents comparative statics results comparing
the optimal scheme when information is revealed and not revealed to the agent;
section 5 gives computational results illustrating the theoretical results obtained;
finally section 6 concludes.
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2 The Model

The model is as presented in LMP (2002) with the exception of assuming a risk
averse agent. Namely, there are two periods, with two possible outcomes each
period given by xt ∈ {f, s}, where f denotes failure and s denotes success each
period. The agent exerts a one-dimensional effort et ∈ [0, 1] each period. The
probability of a success in each period t is equal to the level of effort et. Hence,
Pr(xt = s) = et and Pr(xt = f) = (1− et), where probabilities are independent
across periods. In each period, the cost of effort is denoted by c(et), where c(.)
is C3, c0(.) > 0,and c00(.) > 0. To ensure an interior solution c(0) = c0(0) = 0
and c0(1) =∞.

Finally, the principal is assumed risk neutral, while the agent is risk averse
with his utility function over wages u(w(x1, x2)) being C3 such that u0(.) > 0
and u00(.) < 0. The inverse utility function corresponding to u(.) will then be
w(x1, x2) = h(u(x1, x2)) with h0(.) > 0 and h00(.) > 0. The concavity of the
principal’s problem against a convex constraint set will be guaranteed once we
convert the problem to one of solving for the optimal incentive scheme in terms
of utilities ala Grossman and Hart (1983). Therefore, we define the optimal
contract by a set of utility rewards conditional on all possible combinations of
outcomes, namely u = (u(s, s), u(s, f), u(f, s), u(f, f)) ∈ R4.

3 Effect of IPEs for a Fixed Incentive Scheme

3.1 Agent’s Problem

Assume for the remainder of this section that the principal has already decided
on an incentive scheme u ∈ R4 to offer the agent. We will now define the
agent’s problem of choosing an optimal effort sequence and compare the different
effects a given incentive mechanism can have depending on the informational
environment involved.

As in LMP (2002), we will compare two situations that may arise when
the principal is more informed regarding the agent’s performance after the first
period. In the first case called “No Revelation” denoted by the superscript N ,
the agent chooses his second period effort eN2 without observing her first period
outcome, and so is solving for the optimal {eN1 , e

N
2 } given the reward scheme

of the principal at the beginning of time. The agent’s payoff for an arbitrary
level of effort can be written as follows:

UN (e1, e2)
= e1[e2u(s, s) + (1− e2)u(s, f)− c(e2)] + (1− e1)[e2u(f, s) + (1− e2)u(f, f)
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−c(e2)]− c(e1)

Choosing the optimal effort pair {eN1 , e
N
2 } that maximizes the No Revelation

payoff implies solving the following first order conditions for UN with respect
to e1, e2 :

∂UN

∂e1
: [eN2 u(s, s) + (1− eN2 )u(s, f)]− [eN2 u(f, s) + (1− eN2 )u(f, f)] = c0(eN1 )

∂UN

∂e2
: [eN1 u(s, s) + (1− eN1 )u(f, s)]− [eN1 u(s, f) + (1− eN1 )u(f, f)] = c0(eN2 )

In the second case called “Revelation” denoted by the superscript R, the
principal provides information to the agent regarding her performance after the
first period. Hence, the agent chooses her second period effort conditional on
her first period outcome, namely the set

©
eR2 (f), e

R
2 (s)

ª
. Once she solves for her

second period effort, working backwards she chooses her first period effort eR1 .
Given the reward scheme of the principal, the agent’s payoff under Revelation
for an arbitrary effort level can be written as follows:

UR(e1, e2(s), e2(f))
= e1[e2(s)u(s, s) + (1− e2(s))u(s, f)− c(e2(s))] + (1− e1)[e2(f)u(f, s)
+(1− e2(f))u(f, f)− c(e2(f))]− c(e1)

Once again the agent solves for the optimal effort level that maximizes
her Revelation payoff using the first order conditions for UR with respect to
e1, e2(s),and e2(f):

∂UR

∂e1
: [eR2 (s)u(s, s) + (1− eR2 (s))u(s, f)− c(eR2 (s))]

−[eR2 (f)u(f, s) + (1− eR2 (f))u(f, f)− c(eR2 (f))] = c0(eR1 )

∂UR

∂e2(s)
: [u(s, s)− u(s, f)] = c0(eR2 (s))

∂UR

∂e2(f)
: [u(f, s)− u(f, f)] = c0(eR2 (f))

3.2 Characterizing Optimal Effort Levels

Assume as in LMP (2002) that the fixed incentive scheme u ∈ R4 is chosen such
that u(s, f) = u(f, s) = u(s). Such a scheme will actually be optimal for the
principal under No Revelation given that the agent’s effort choice is symmetric
across the two periods. Likewise, provided that the principal chooses to provide
linear incentives as defined, the agent’s problem under No Revelation will also
be symmetric in e1 and e2 as can be observed from the first order conditions
(∂U

N

∂e1
, ∂U

N

∂e2
) above. The agent’s optimal choice of eN1 and eN2 will therefore be

equal in this case.
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As in LMP (2002) we first characterize what happens to second period effort
for a given first period probability of success. Note that the assumptions on
c0(.) are key in determining the results.

Proposition 1 Given a fixed incentive scheme u = {u(s, s), u(s), u(f, f)} if
the first period probability of success is fixed at p under both Revelation and No
Revelation, then if c0(.) is convex eN2 ≥ E(eR2 ) holds; and if c

0(.) is concave
eN2 ≤ E(eR2 ) holds, with strict equality occuring if c

0(.) is linear.

Proof. The agent’s first order condition with respect to e2 under No Reve-
lation suggests that when the first period probability of success is fixed:

p(u(s, s)− u(s)) + (1− p)(u(s)− u(f, f)) = c0(eN2 )

while her first order conditions with respect to e2(s) and e2(f) under reve-
lation suggests that:

u(s, s)− u(s) = c0(eR2 (s))

u(s)− u(f, f) = c0(eR2 (f))

Provided eR1 = p, we can combine the above as follows using Jensen’s in-
equality:

c0(eN2 ) = p(u(s, s)− u(s)) + (1− p)(u(s)− u(f, f))

= pc0(eR2 (s)) + (1− p)c0(eR2 (f))

= E(c0(eR2 )|p)
≥ c0(E(eR2 |p)) if c0(.) is convex⇒ eN2 ≥ E(eR2 |p)
≤ c0(E(eR2 |p)) if c0(.) is concave⇒ eN2 ≤ E(eR2 |p)
= c0(E(eR2 |p)) if c0(.) is linear⇒ eN2 = E(eR2 |p)

To avoid the possible effects that convexity assumptions on c0(.) can have
on second period effort, we now assume linear marginal costs of effort. For
simplicity let c(e) = k

2 e
2 with c0(e) = ke. The optimal second period effort

under Revelation based on the solution to the system of first order conditions
for UR is:

eR2 (s) =
u(s, s)− u(s)

k
(1)

eR2 (f) =
u(s)− u(f, f)

k
(2)

Plugging these into the first order condition for e1 we can obtain,

eR1 =
1

2k2
([u(s, s)− u(s)]2 − [u(s)− u(f, f)]2) +

u(s)− u(f, f)

k
(3)
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On the other hand, the optimal first and second period effort under No
Revelation is the solution to the symmetric system of first order conditions for
UN obtained as follows:

eN2 =
eN1 (u(s, s)− u(s)) + (1− eN1 )(u(s)− u(f, f))

k
(4)

eN1 =
eN2 (u(s, s)− u(s)) + (1− eN2 )(u(s)− u(f, f))

k
(5)

eN1 = eN2 =
u(s)− u(f, f)

k − [(u(s, s)− u(s))− (u(s)− u(f, f))]
(6)

Lemma 1 Given quadratic costs of effort c(e) = k
2 e
2, and a fixed incen-

tive scheme defined by u = {u(s, s), u(s), u(f, f)}, if the agent chooses effort
optimally in the first and second period, then
(i) an interior solution of effort under Revelation and No Revelation is guar-

anteed if k > u(s, s)− u(s) and k > u(s)− u(f, f)
(ii) eN1 = eN2 < (>)12 iff [u(s, s)− u(s)] + [u(s)− u(f, f)] < (>) k

Proof. Define x = u(s, s)− u(s) and y = u(s)− u(f, f)
Part (i): obvious for eR2 (s), e

N
2 (f) by (1) and (2), and for e

N
1 = eN2 which is

a convex combination of x and y as defined by (4) and (5). That eR1 < 1 is less
straightforward.
(a) If x > y, then since y < k and x < k

(x+ y)(x− y) < 2k(x− y) < 2k(k − y)

⇒ x2 − y2 < 2k2 − 2ky

⇒ 0 <
x2 − y2

2k2
+

y

k
< 1

⇒ 0 < eR1 < 1

(b) If x < y, then since y < k and x < k

(x+ y)(y − x) < 2k(y − x) < 2ky

⇒ 0 < x2 − y2 + 2ky

⇒ 0 <
x2 − y2

2k2
+

y

k
<

y

k
< 1

⇒ 0 < eR1 < 1

The last line follows from the solution to eR1 given by (3).
Part (ii):

if eN =
y

k − [x− y]
< (>)

1

2

⇔ 2y < (>) k − [x− y]

⇔ y < (>) k − x

⇔ x+ y < (>) k
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Note that in order to obtain an interior solution for the optimal first and
second period effort levels when the cost of effort is quadratic, the only re-
quirement is that k > u(s, s) − u(s) and k > u(s) − u(f, f). LMP (2002)
makes an implicit inference that k > u(s, s) − u(s) implies k > [u(s, s) −
u(s)]+[u(s)−u(f, f)] simply because the optimal No Revelation contract under
risk neutrality with limited liability only rewards the most successful outcome,
thereby making u(s) = u(f, f) = 0. However, once this assumption is removed
k > [u(s, s)−u(s)]+[u(s)−u(f, f)] is not guaranteed. As a result, risk aversion
makes it possible for the agent to exert first and second period effort eN > 1

2 ,
when k < [u(s, s)−u(s)]+[u(s)−u(f, f)], while under risk neutrality the optimal
No Revelation effort was such that eN < 1

2 always held.

In particular, Lemma 1 illustrates that eN > 1
2 is likely to be observed,

when the principal finds it optimal to equate the expected returns following
a success and a failure, or in other words smoothes consumption across the
different possible states. As we shall see in the section to follow this occurs
when the agent becomes increasingly risk averse. Hence, in order to be able to
implement a high amount of effort, exceeding 1

2 in each period, the agent must
be substantially risk averse relative to her cost of effort parameter such that the
principal compensates the agent highly following both an initial success and an
initial failure.

We now compare the first period effort levels under Revelation and No Reve-
lation. Define the second period continuation payoffs conditional on first period
output by vN (f), vN (s) and vR(f), vR(s) for the No Revelation and Revelation
cases respectively. The first order conditions for the agent’s problem under No
Revelation and Revelation suggest that:

vN (s)− vN (f) = c0(eN1 ) (7)

vR(s)− vR(f) = c0(eR1 ) (8)

where the LHS of each equation denotes the marginal benefit of exerting an
additional increment of first period effort. LMP (2002) compare e1 under
the two scenarios by comparing the marginal benefits of each given a fixed
probability of success p in the first period. The following Lemma replicates the
argument for the risk averse agent.

Lemma 2 (LMP, 2002) For a fixed probability of success p in the first
period and a quadratic cost of effort function, given that the agent chooses his
effort optimally in the second period, vN (s) − vN (f) ≤ (≥) vR(s) − vR(f) iff
p ≤ (≥) 12 . Equality will hold only if u(s, s)− u(s) = u(s)− u(f, f) or p = 1

2

Proof. Define x = u(s, s) − u(s) and y = u(s) − u(f, f) and insert the
optimal second period efforts under Revelation, eR2 (s), e

R
2 (f) given by (1) and
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(2) respectively into vR(s)− vR(f) to get:

vR(s)− vR(f) =
1

2k
(x2 − y2) + y (9)

and the optimal second period effort under No Revelation, eN2 given by (6)
but for a fixed first period probability of success p into vN (s)− vN (f) :

vN (s)− vN (f) =

µ
px+ (1− p)y

k

¶
(x− y) + y (10)

Subtracting (10) from (9) yields:

1

k

µ
1

2
− p

¶
(x− y)2 = k(eR1 − eN1 ) (11)

which implies that if

p ≤ (≥)1
2
⇒ eN1 ≤ (≥) eR1

where equality holds when either p = 1
2 or x = y

Using the Lemmas above, we have the following proposition comparing first
and second period efforts under Revelation and No Revelation.

Proposition 2 Suppose the agent is given a fixed incentive scheme, and a
quadratic effort cost given by:

u = {u(s, s), u(s), u(f, f)} with x = u(s, s)− u(s) and y = u(s)− u(f, f)
c(e) = k

2e
2, where k > x, k > y so as to ensure interior solutions for effort

Then,
(i) if x > y and k < x+ y, then eN1 > eR1 > 1

2 . Also, e
N
2 > E(eR2 |eR1 )

(ii) if x > y and k > x+ y, then eN1 < eR1 < 1
2 . Also, e

N
2 < E(eR2 |eR1 )

(iii) if x < y and k < x + y, then either eN1 > eR1 > 1
2 or e

N
1 > 1

2 > eR1 .
Also, eN2 < E(eR2 |eR1 )
(iv) if x < y and k > x + y, then either eN1 < eR1 < 1

2 or e
N
1 < 1

2 < eR1 .
Also, eN2 > E(eR2 |eR1 )

Proof. From (3), we already know that, for quadratic effort costs first period
effort can be written as follows:

eR1 =
1

2k2
(x− y)(x+ y) +

y

k

While by (1), (2) and (4), the second period efforts are:

eN2 =
eN1 x+ (1− eN1 )y

k

E(eR2 |eR1 ) =
eR1 x+ (1− eR1 )y

k

9



Part (i): if x > y and k < x+ y, then

eR1 >
1

2k
(x− y) +

y

k
=

x+ y

2k
>
1

2

Combining Lemma 1 and 2, we know that k < x+ y ⇒ eN1 > 1
2 ⇒ eN1 > eR1 .

Hence, eN1 > eR1 > 1
2 . By the definition of eN2 and E(eR2 |eR1 ), x > y and

eN1 > eR1 ⇒ eN2 > E(eR2 |eR1 )
Part (ii): if x > y and k > x+ y, then

eR1 <
1

2k
(x− y) +

y

k
=

x+ y

2k
<
1

2

Once again by Lemma 1 and 2, k > x + y ⇒ eN1 < 1
2 ⇒ eN1 < eR1 . Hence,

eN1 < eR1 < 1
2 . Also, x > y and eN1 < eR1 ⇒ eN2 < E(eR2 |eR1 )

Part (iii): if x < y and k < x+ y, then

eR1 <
1

2k
(x− y) +

y

k
=

x+ y

2k
>
1

2

Therefore, while k < x + y ⇒ eN1 > 1
2 ⇒ eN1 > eR1 is known, either e

N
1 >

eR1 > 1
2 or e

N
1 > 1

2 > eR1 can hold. Also, x < y and eN1 > eR1 ⇒ eN2 < E(eR2 |eR1 )
Part (iv): if x < y and k > x+ y, then

eR1 >
1

2k
(x− y) +

y

k
=

x+ y

2k
<
1

2

Hence, while k > x+y ⇒ eN1 < 1
2 ⇒ eN1 < eR1 is known, either e

N
1 < eR1 < 1

2
or eN1 < 1

2 < eR1 can hold. Also, x < y and eN1 < eR1 ⇒ eN2 > E(eR2 |eR1 )

The above analysis shows that counter to the results obtained by LMP
(2002), when the agent is risk averse, it is possible for her to optimally ex-
ert a high amount of effort under no information revelation exceeding 1

2 . When
this is true, the agent in fact exerts a higher amount of first period effort under
No Revelation compared to Revelation, while she also exerts a higher amount of
second period effort provided u(s, s)−u(s) > u(s)−u(f, f) as the definitions of
eR2 (.) and e

N
2 reveal. This implies that when the fixed incentive scheme awards

a higher reward after a success compared to a failure, total effort under Reve-
lation will be higher if total effort under No Revelation is less than 1, while the
total effort under Revelation will be lower if total effort under No Revelation is
greater than 1.

However, if the optimal contract has u(s) − u(f, f) > u(s, s) − u(s) then
eN1 < eR1 ⇒ eN2 > E(eR2 |eR1 ) instead since the second period incentive to exert
effort is greater the higher the likelihood of failure in the first period. This
makes it impossible to reach a definite conclusion about total effort under the
two different situations. LMP (2002) never discuss this possibility since the
optimal contract the principal solves when the agent is risk neutral necessarily
has the reward scheme under both Revelation and No Revelation be such that
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u(s, s)− u(s) > u(s)− u(f, f). Since there is no trade-off between insuring the
agent and providing her with incentives, it becomes optimal for him to spread
incentives by increasing the expected rewards following a success. As we shall
see in the next section, this doesn’t necessarily apply when the agent is risk
averse. The necessity to insure the agent against risk may have the principal
reward her more for a second period success following a first period failure.

Having characterized the optimal effort provision for a fixed incentive scheme
under different circumstances, we now look at the optimal contract choice of the
principal to determine when it is optimal to reward the agent more following
a success or a failure. We will show in particular that the answer depends on
the convexity assumptions used for the derivative of the inverse utility function,
h0(.). Finally, we will also show that the LMP (2002) result can be reversed,
and that the optimal contract implementing a fixed amount of total effort under
Revelation can be less costly for the principal compared to the optimal contract
under No Revelation.

4 Solving for the Optimal Incentive Scheme

4.1 Principal’s Problem

The principal’s problem can be written to maximize the difference in expected
output and wage cost subject to the agent’s incentive compatibility and par-
ticipation constraints, which guarantee that the agent does not deviate from
the effort level chosen by the principal, and that she also finds it optimal to
participate.

The first order conditions of the agent’s problem as provided in the previous
section are both necessary and sufficient to guarantee incentive compatibility
with respect to the effort level chosen by the principal1 . The participation
constraint is satisfied as long as the chosen contract gives the agent a payoff
greater than or equal to her fixed outside option given by Ū .

We can combine these constraints together with the principal’s objective
function to obtain a Lagrangian function under the No Revelation and Revela-
tion scenarios as follows:

1The “first-order approach” is valid as long as the agent’s problem is globally concave
in effort. For a two-period principal-agent model with binary output levels, this condition is
satified when c000(.) > 0 for all effort levels, which is assumed for the remainder of the analysis.
Hence, the first order conditions of the agent’s problem are both necessary and sufficient for
global incentive compatibility.
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4.1.1 No Revelation Problem

£N = max
{u(.),e1,e2}

⎧⎨⎩ [e1 + e2]
−e1[e2h(u(s, s)) + (1− e2)h(u(s, f))]

−(1− e1)[e2h(u(f, s)) + (1− e2)h(u(f, f))]

⎫⎬⎭
+µ1

n
∂UN

∂e1

o
+ µ2

n
∂UN

∂e2

o
+ λN{e1[e2u(s, s) + (1− e2)u(s, f)]

+(1− e1)[e2u(f, s) + (1− e2)u(f, f)]− c(e1)− c(e2)− Ū}

where µ1 and µ2 denote the multipliers for the agent’s incentive compati-
bility constraints in the first and second period respectively, and λN denotes
the multiplier for the agent’s participation constraint. Maximizing £N with
respect to u(.) for a given effort level e = (e1, e2) and simplifying to eliminate µ1
and µ2, we obtain the following conditions which uniquely solve for the optimal
contract uN (.) and multiplier λN under No Revelation:

(i) e1[e2h
0(uN (s, s)) + (1− e2)h

0(uN (s, f))
+(1− e1){e2h0(uN (f, s)) + (1− e2)h

0(uN (f, f))] = λN

(ii) h0(uN (s, s))− h0(uN (s, f)) = h0(uN (f, s))− h0(uN (f, f))

(iii) e2[u
N (s, s)− uN (f, s)] + (1− e2)[u

N (s, f)− uN (f, f)] = c0(e1)

(iv) e1[u
N (s, s)− uN (s, f)] + (1− e1)[u

N (f, s)− uN (f, f)] = c0(e2)

(v) e1[e2u
N (s, s) + (1− e2)u

N (s, f)]
+(1− e1)[e2u

N (f, s) + (1− e2)u
N (f, f)]− c(e1)− c(e2) = Ū

We now present some preliminary implications that can be drawn from the
first order conditions above and the properties of h(.) and h0(.). These results
will be used in comparing the optimal contract cost under Revelation vs. No
Revelation in the Proposition to follow.

Lemma 3 If the principal finds it optimal to implement eN1 = eN2 , then the
optimal contract will have uN (s, f) = uN (f, s) under No Revelation.

Lemma 4 Given that inverse utility function h(.) is three times differen-
tiable, and u(s, f) = u(f, s) then

h0(u(s, s))− h0(u(s, f)) = h0(u(f, s))− h0(u(f, f))

implies
(i) u(s, s)− u(s, f) ≤ u(f, s)− u(f, f) if h0(.) is convex

12



(ii) u(s, s)− u(s, f) ≥ u(f, s)− u(f, f) if h0(.) is concave
(iii) u(s, s)− u(s, f) = u(f, s)− u(f, f) if h0(.) is linear2

(iv) under No Revelation the optimal effort choice will be such that eN1 = eN2

Proof. Part (i): The convexity of h0(.) implies that

h0(u(s, s))− h0(u(s, f)) ≥ h00(u(s, f))[u(s, s)− u(s, f)]

h0(u(f, s))− h0(u(f, f)) ≤ h00(u(f, s))[u(f, s)− u(f, f)]

since h00(u(s, f)) = h00(u(f, s)) > 0, we have:

u(f, s)− u(f, f) ≥ h0(u(f, s))− h0(u(f, f))

h00(u(f, s))
=

h0(u(s, s))− h0(u(s, f))

h00(u(s, f))
≥ u(s, s)− u(s, f)

⇒ u(s)− u(f, f) ≥ u(s, s)− u(s)

Part (ii): the inequalities can be reversed when h0(.) is concave. Hence, it
can be shown that u(s, s)− u(s) ≥ u(s)− u(f, f)
Part (iii): the linearity of h0(.) would make the inequalities hold as equalities.
Part (iv): conditions (iii) and (iv) under the No Revelation scenario can be

rewritten as:

e2∆u(s) + (1− e2)∆u(f) = c0(e1)⇒ eN1 (e2)

e1∆u(s) + (1− e1)∆u(f) = c0(e2)⇒ eN2 (e1)

Since the two incentive compatibility conditions for e1 and e2 are symmetric,
we have:

eN1 (e2) = eN2 (e1)⇒ eN1 = eN2

4.1.2 Revelation Problem

£R = max
{u(.),e1,e2(s),e2(f)}

⎧⎨⎩ [e1 + e1e2(s) + (1− e1)e2(f)]
−e1[e2(s)h(u(s, s)) + (1− e2(s))h(u(s, f))]

−(1− e1)[e2(f)h(u(f, s)) + (1− e2(f))h(u(f, f))]

⎫⎬⎭
+µ1

n
∂UR

∂e1

o
+ µ2(s)

n
∂UR

∂e2(s)

o
+ µ2(f)

n
∂UR

∂e2(f)

o
+λR{e1[e2(s)u(s, s) + (1− e2(s))u(s, f)− c(e2(s))]
+(1− e1)[e2(f)u(f, s) + (1− e2(f))u(f, f)− c(e2(f))]− c(e1)− Ū}

where µ1, µ2(s), µ2(f) denote the multipliers for the agent’s incentive com-
patibility constraints with respect to first and second period efforts respectively,
and λR denotes the multiplier for the agent’s participation constraint. Similarly,
maximizing £R with respect to u(.) for a given effort level e = (e1, e2(s), e2(f))

2when u(s, s) − u(s, f) ≤ u(f, s) − u(f, f), c00(.) > 0 is sufficient to make the first-order
approach valid.
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and simplifying to eliminate µ1 and µ2(s) and µ2(f), we obtain the following
conditions which uniquely solve for the optimal contract uR(.) and multiplier
λR under Revelation:

(a) e1[e2(s)h
0(uR(s, s)) + (1− e2(s))h

0(uR(s, f))
+(1− e1)[e2(f)h

0(uR(f, s)) + (1− e2(f))h
0(uR(f, f))] = λR

(b) [e2(s)u
R(s, s) + (1− e2(s))u

R(s, f)− c(e2(s))]
−[e2(f)uR(f, s) + (1− e2(f))u

R(f, f)− c(e2(f))] = c0(e1)

(c) uR(s, s)− uR(s, f) = c0(e2(s))

(d) uR(f, s)− uR(f, f) = c0(e2(f))

(e) e1[e2(s)u
R(s, s) + (1− e2(s))u

R(s, f)− c(e2(s))]
+(1− e1)[e2(f)u

R(f, s) + (1− e2(f))u
R(f, f)− c(e2(f))]− c(e1) = Ū

That the participation constraints for both problems hold with equality in
the optimal contract is guaranteed by the fact that the multipliers λN and
λR must be strictly positive by conditions (i) and (a). The positivity of the
multipliers for the incentive compatibility constraints is shown in the Appendix.

Proposition 3 In choosing the optimal reward scheme to implement a fixed
level of total effort E, if h0(.) is linear or h000(.) = 0 then an additional constraint,
e2(s) = e2(f) = e2 imposed on the Revelation problem will make it equivalent
to the No Revelation problem. Hence, the cost minimizing wage contract under
the two scenarios will be the same.

Proof. We will show the equivalence of the conditions (i)-(v) and (a)-(e)
under e2(s) = e2(f) = e2.
If e2(s) = e2(f) = e2 then (i) and (a) become equivalent for a fixed e1 and

e2.
From (c) and (d)

uR(s, s)− uR(s, f) = c0(e2) = uR(f, s)− uR(f, f)

Since h0(.) is linear, by Lemma 4, condition (ii) implies

uN(s, s)− uN (s, f) = uN (f, s)− uN (f, f)
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Similarly, (iii) is also equivalent to (b) for a fixed e1 and e2, while (c) and
(d) can be combined to be rewritten as:

e1[u(s, s)
R − u(s, f)R] + (1− e1)[u(f, s)

R − u(f, f)R] = c0(e2)

which is equivalent to condition (iv).
Finally, (v) is also equivalent to (e).

The above proposition illustrates that the optimal contract under Revelation
is equivalent to the optimal contract under No revelation after an additional
constraint is imposed on the principal’s Revelation problem. One would expect
that the original relaxed problem for the principal will necessarily give a weakly
lower total cost of implementing any given total effort E. We state this result
as follows:

Corollary 1 Given the equivalence of the Revelation and No Revelation
problem when e2(s) = e2(f), the solution to the optimal effort levels under the
two problems will also be equivalent. Hence, e2(s) = e2(f) = eR2 = eN2 and
eR1 = eN1 . Since eN1 = eN2 , we also have eR1 = eR2 .

Corollary 2 Let £RC be the principal’s Revelation problem, after an addi-
tional constraint is imposed on £R such that e2(s) = e2(f) = eR2 . By Proposi-
tion 5, we know that the optimal reward scheme u that implements a fixed level
of total effort E = 2eN is the same under £RC and £N , with eN = eR. There-
fore, it is necessary that the relaxed problem £R give a weakly better solution
compared to the constrained £RC .

To illustrate what happens to the optimal effort level once the constraint on
the principal’s problem £RC is removed, we look at the first order conditions
guaranteeing optimality of the effort sequence under Revelation. The principal’s
first order conditions with respect to effort under the Revelation scenario are:

∂$R

∂e2(s)
= e1[1− (h(u(s, s)− h(u(s, f)))]− µ2(s)c

00(e2(s)) = 0

∂$R

∂e2(f)
= (1− e1)[1− (h(u(f, s))− h(u(f, f)))]− µ2(f)c

00(e2(f)) = 0

∂$R

∂e1
= [1 + e2(s)− e2(f)]− [e2(s)h(u(s, s)) + (1− e2(s))h(u(s, f))]
+[e2(f)h(u(f, s)) + (1− e2(f))h(u(f, f))]− µ1c

00(e1) = 0

We first give a preliminary result regarding the multipliers for the con-
strained Revelation problem.

Lemma 5 Under the principal’s Revelation problem, if an additional con-
straint e2(s) = e2(f) = e2 is imposed on the second period effort when u(s, f) =
u(f, s), then the multipliers are such that:

µ2(s) = µ2(f) = µ1
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Proof. Conditions (c) and (d) for £R become equivalent:

u(s, s)− u(s, f) = c0(e2) = u(f, s)− u(f, f)

⇒ µ2(s) = µ2(f)

⇒ u(s, s)− u(f, s) = u(s, f)− u(f, f)

and condition (b) becomes:

e2[u(s, s)− u(f, s)] + (1− e2)[u(s, f)− u(f, f)] = c0(e1)

which implies that:

u(s, s)− u(f, s) = u(s, f)− u(f, f) = c0(e1)

note that condition (b) is equivalent to (c) and (d). Hence, the multipliers
for these constraints must be equal: µ1 = µ2(s) = µ2(f)

Proposition 4 Given that the principal is implementing a fixed level of expected
second period effort E2 = e1e2(s) + (1 − e1)e2(f), such that under Revelation,
e2(s) = e2(f) = E2, then for a fixed level of e1 that the principal is trying to
implement under both Revelation and No Revelation:
(i) if e1 < 1

2 , then it is optimal for e2(f) to increase and e2(s) to decrease
(ii) there exists some ẽ > 1

2 such that for any e1 < ẽ, it is optimal for e2(f)
to increase and for e2(s) to decrease, while for any e1 < ẽ, it is optimal for
e2(f) to decrease and e2(s) to increase.

Proof. Part (i): Rewriting e2(s) in terms of E2 and e2(f), we have:

e2(s) =
E2 − (1− e1)e2(f)

e1
de2(s)

de2(f)
=
−(1− e1)

e1

Given e1, the principal’s optimal second period effort choice under the Rev-
elation scenario will satisfy the following condition when implementing a fixed
level of effort E2:

∂

∂e2(f)
=

∂£R

∂e2(f)
+

∂£R

∂e2(s)

de2(s)

de2(f)
= 0

∂
∂e2(f)

∂
∂e2(s)

=
(1− e1)

e1

Using the first order conditions for second period effort, we can write the
above condition as follows:

e1(1− e1) {[h(u(s, s))− h(u(s, f))]− [h(u(f, s))− h(u(f, f))]}
= −(1− e1)µ2(s)c

00(e2(s)) + e1µ2(f)c
00(e2(f))
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Given e1, if e2(s) = e2(f) = e2 ⇒ u(s, s) − u(s) = u(s) − u(f, f); also by
Lemma 4 we have µ2(s) = µ2(f) = µ2 and

e1(1−e1) {[h(u(s, s))− h(u(s, f))]− [h(u(f, s))− h(u(f, f))]}+(1−2e1)µ2c00(e2) 6= 0

By the convexity of h(.), and c(.)

> e1(1− e1){h0(u(s))(u(s, s)− u(s))− h0(u(s))(u(s)− u(f, f))| {z }
=0

}+ (1− 2e1)µ2c00(e2)

= (1− 2e1)µ2c00(e2)

≥ 0 if e1 ≤
1

2
since µ2 > 0

since ∂2

∂e2(f)2
= ∂2$R

∂e2(f)2
< 0 by the concavity of £R,

e1 <
1

2
⇒ e2(f) ↑, e2(s) ↓ ⇒ e2(f) > e2(s)

Part (ii): when e2(s) = e2(f) = e2, the convexity of h(.) guarantees:

e1(1− e1)

½
[h(u(s, s))− h(u(s, f))]
−[h(u(f, s))− h(u(f, f))]

¾
> 0 for ∀ e1 > 0

Hence, the condition that satisfies the optimality of e2(f) = e2(s) :

e1(1− e1)

½
[h(u(s, s))− h(u(s, f))]
−[h(u(f, s))− h(u(f, f))]

¾
+ (1− 2e1)µ2c00(e2) = 0

is a quadratic function in e1 and will only hold for some ẽ > 1
2 such that

(1− 2ẽ)µ2c00(e2) < 0.

Hence, when the principal is trying to implement a first period effort e1 < 1
2 ,

the optimal revelation effort in the second period calls for e2(f) to increase and
e2(s) to decrease. On the other hand, if the principal tries to implement a high
enough first period effort, than it is optimal for him to decrease e2(f) and to
increase e2(s). Note that this result intuitively depends on the agent’s first order
condition with respect to e1, which can be rewritten as follows after inserting
his first order conditions with respect to e2(s) and e2(f) :

[c0(e2(s))e2(s) + u(s, f)]− [c0(e2(f))e2(f) + u(f, f)] = c0(e1)

If the principal is trying to implement a high e1, than it will be cheaper to do
so by providing higher expected returns after a success through implementation
of a larger e2(s) compared to e2(f). However, if the principal is trying to
implement a lower e1, than it is still possible to provide higher expected returns
following a success, with e2(f) > e2(s), provided u(s, f) is sufficiently greater
than u(f, f).
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Only when the principal is trying to implement a first period effort ẽ > 1
2 , is

it optimal for him to implement a second period effort such that e2(s) = e2(f).
This implies that if the cost of effort is high enough so as to only allow the
implementation of e1 < 1

2 as shown in the previous section under Lemma 2,
then the optimal contract cost under Revelation will be strictly preferred to
that under No Revelation. This we can infer since the two scenarios may only
give the same solution if it is optimal to have e2(s) = e2(f) under Revelation,
which occurs only when e1 = ẽ > 1

2 .

We now proceed to examine what happens to the optimal eR1 compared to
eN , when the principal is implementing a given level of total effort E and the
constraint e2(s) = e2(f) is relaxed.

Proposition 5 Given that the principal is implementing a fixed total effort level
E such that e2(s) = e2(f) = eR, where eR = eN , it is optimal for the principal to
increase first period effort such that eR1 > eN for any eN > 0 being implemented
under No Revelation.

Proof. Rewriting e2(s) in terms of E and e2(f), we have:

e2(s) =
E − e1 − (1− e1)e2(f)

e1
de2(s)

de1
=
−(1 + e2(s)− e2(f))

e1

The principal’s optimal first period effort choice under the Revelation sce-
nario will satisfy the following condition when implementing a fixed level of
effort E:

∂

∂e1
=

∂£R

∂e1
+

∂£R

∂e2(s)

de2(s)

de1
= 0

Using the first order conditions for effort under Revelation, we can write the
above condition as follows:

0 = [1− (h(u(s, f))− h(u(f, f)))] + e2(s)[1− (h(u(s, s))− h(u(s, f)))]

−e2(f)[1− (h(u(f, s))− h(u(f, f)))]− µ1c
00(e1)

−(1 + e2(s)− e2(f)){[1− (h(u(s, s))− h(u(s, f)))]− µ2(s)

e1
c00(e2(s))}

If u(s, f) = u(f, s) = u(s), then we can simplify the above as:

0 = (1− e2(f)){[h(u(s, s))− h(u(s))]− [h(u(s))− h(u(f, f))]}

−µ1c00(e1) +
µ
1 + e2(s)− e2(f)

e1

¶
µ2(s)c

00(e2(s))

Given the convexity of h(.)
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0 > (1− e2(f))[h
0(u(s))(u(s, s)− u(s, f))− h0(u(s))(u(f, s)− u(f, f))| {z }

=0

]

−µ1c00(e1) +
µ
1 + e2(s)− e2(f)

e1

¶
µ2(s)c

00(e2(s))

If e2(s) = e2(f) = e2 ⇒ e2 = e1 ⇒ µ2(s) = µ2(f) = µ1 then,

=

µ
1− e1
e1

¶
µ1c

00(e1) > 0

Provided ∂2

∂e12
< 0 by the concavity of £R ⇒ eR1 should increase so that

eR1 > eN1 .

The above proposition indicates that when the constraint on the Revelation
problem is removed, it is optimal for the first period effort under Revelation
to increase beyond that under No Revelation and in fact strictly increase the
expected payoff the principal will receive. Hence, at the margin a greater total
effort can be implemented under Revelation at a lower cost.

Note that this is a local result, which describes the marginal impact the
removal of the constraint e2(s) = e2(f) has on the optimal contract and first
period effort level when second period effort remains unchanged. We cannot
make a more general statement as to what the globally optimal contract un-
der Revelation would be. However, that the Revelation problem is concave in
u indicates that there is a unique solution to £R. And by showing that the
constrained contract can be improved upon at the margin by changing the Rev-
elation effort levels, we illustrate that the optimal No Revelation reward scheme
is necessarily suboptimal to the optimal Revelation scheme.

5 Computational Results

The theoretical results provided above showing the superiority of the Revelation
contract over the No Revelation contract when the agent is risk averse were based
on a particular assumption regarding the derivative of the inverse utility function
h0(.). We claimed that it is strictly less costly for the principal to implement
the Revelation contract compared to the No Revelation contract when h0(.) is
linear. However, in general there can be a wide variety of utility functions
that are three times differentiable with h0(.) being either convex or concave and
maybe even sometimes both.

The CRRA utility function,
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u(w) =
w1−σ − 1
1− σ

is such a utility function, with h0(.) being convex or concave depending on the
size of the relative risk aversion parameter σ.

h(u) = [(1− σ)u+ 1]
1

1−σ

h0(u) = [(1− σ)u+ 1]
σ

1−σ

h00(u) = σ[(1− σ)u+ 1]
2σ−1
1−σ

h000(u) = (2σ − 1)σ[(1− σ)u+ 1]
3σ−2
1−σ

From h000(.), we can conclude that h0(.) will be convex if h000(.) > 0 which is
guaranteed when σ > 1

2 , and similarly h0(.) will be concave when h000(.) < 0 or
when σ < 1

2 . At σ =
1
2 , h

000(.) = 0, and so h0(.) will be linear. Hence, using
Lemma 3 and condition (ii), we can make the inference that for this CRRA
utility function, the optimal reward scheme under the No Revelation scenario
will be such that:

if σ <
1

2
⇒ [u(s, s)− u(s)]− [u(s)− u(f, f)] > 0 and decreasing with σ

if σ =
1

2
⇒ [u(s, s)− u(s)]− [u(s)− u(f, f)] = 0

if σ >
1

2
⇒ [u(s, s)− u(s)]− [u(s)− u(f, f)] < 0 and decreasing with σ

In other words, as the degree of relative risk aversion increases, the principal
will find it optimal to increase the agent’s compensation following a failure. Re-
call that the LMP (2002) optimal contract for the risk neutral agent under No
Revelation called for the principal giving maximum possible rewards following
two successes and zero otherwise. Hence, the incentive provision effect was
maximized. As the agent becomes more risk averse however, her disutility from
risk bearing increases thereby forcing the principal to insure her by compensat-
ing her following a failure. Naturally, we would expect that having to increase
rewards given after a failure will decrease the incentive effects, and so increase
the costs of implementing the same effort level. The costs of implementing a
given total effort level under No Revelation should then increase with σ.

Using this utility function we compute the optimal contract computationally
under two variations. We first compute the optimal contract using the model
specified above where the agent gets paid only after the second period and
gets paid nothing after the first period. We follow this with an extension to
a repeated moral hazard model, where the agent gets rewarded after the first
period as well. Under the No Revelation scenario, the agent will be rewarded
a fixed amount uN1 after the first period independent of what she produces
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so as not to reveal the outcome. However, under Revelation, the agent will
be rewarded after the first period conditional on her first period outcome, with
uR1 (s) if she succeeds and u

R
1 (f) if she fails. The effect this has on the principal’s

solution for an optimal incentive scheme will be apparent from the change in
the first order conditions to the principal’s problem. In particular, under No
Revelation, while conditions (ii)-(iv) remain the same, conditions (i) and (v)
will become:

(i)0 e1[e2h
0(uN2 (s, s)) + (1− e2)h

0(uN2 (s, f))
+(1− e1){e2h0(uN2 (f, s)) + (1− e2)h

0(uN2 (f, f))] = h0(uN1 )

(v)0 uN1 + e1[e2u
N
2 (s, s) + (1− e2)u

N
2 (s, f)]

+(1− e1)[e2u
N
2 (f, s) + (1− e2)u

N
2 (f, f)]− c(e1)− c(e2) = Ū

On the other hand, under Revelation, the conditions (a), (b), (e) will change
as follows:

(a1)0 e2(s)h
0(uR2 (s, s)) + (1− e2(s))h

0(uR2 (s, f)) = h0(uR1 (s))

(a2)0 e2(f)h
0(uR2 (f, s)) + (1− e2(f))h

0(uR2 (f, f)) = h0(uR1 (f))

(b)0 [uR1 (s) + e2(s)u
R(s, s) + (1− e2(s))u

R(s, f)− c(e2(s))]
−[uR1 (f) + e2(f)u

R(f, s) + (1− e2(f))u
R(f, f)− c(e2(f))] = c0(e1)

(e)0 e1[u
R
1 (s) + e2(s)u

R(s, s) + (1− e2(s))u
R(s, f)− c(e2(s))]

+(1−e1)[uR1 (f)+e2(f)uR(f, s)+(1−e2(f))uR(f, f)−c(e2(f))]−c(e1) = Ū

We assume quadratic costs of effort as in the previous sections, where c(e) =
k
2 e
2 with two values of k, k1 = 15 and k2 = 0.75 used. These values are

chosen to illustrate the results both for sufficiently large and small values of k.
We also use a value U = 5 for the reservation utility of the agent, increasing
this to U = 10 when considering higher values of k or E, since having a low
reservation utility may allow the principal to offer negative wages, going against
the limited liability assumption under risk neutrality. Note that, raising U does
not alter the incentives provided by a given reward scheme, thereby maintaining
the comparability of the Revelation and No Revelation contracts. Finally, we
look at the costs of implementing two different levels of total effort: E1 = 0.9
and E2 = 1.3 to see the difference in the effects of implementing e > 1

2 versus
e < 1

2 .

The cost of the reward schemes under Revelation and No Revelation are
computed for different combinations of the aforementioned parameters, for a
range of σ ∈ (0, 1). The computed costs are graphically displayed both for the
“Original Model” without first period wages, and the “Extension” described
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involving rewards awarded both after the first and second period. We display
two graphs for each figure, one giving the contract cost under risk aversion
as modeled in our paper, and the other giving the contract cost under risk
neutrality as analyzed by LMP (2002).

Notice how for both the Original and the Extended repeated moral hazard
models, the total wage costs for the optimal contracts under Revelation and No
Revelation are not altered significantly by an increase in the parameter k. As
shown in LMP (2002), the No Revelation contract remains consistently below
that of the Revelation contract when the agent is risk neutral. However, once
risk aversion is introduced in terms of the parameter σ, then we notice that in
the Original Model when E = 0.9 (Figures 1-2), the cost of the No Revelation
contract is consistently higher. More important is the fact that this difference
is increasing rapidly as the degree of relative risk aversion increases especially
after σ = 0.5.

Figure 1: Original Model-k=0.75; E=0.9; U=5

Once the principal tries to implement a higher amount of total effort exceed-
ing 1

2 in each period (as in Figures 3-4), then the difference is not so consistent.
In particular, for both values of k, notice that after the relative risk aversion
parameter reaches σ ∼= 0.8, the Revelation contract becomes more costly com-
pared to the No Revelation contract. Recall from the theoretical results in
the previous section that when implementing a high level of first period effort
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Figure 2: Original Model-k=15; E=0.9; U=5

(exceeding ẽ), the optimal Revelation contract calls for giving higher expected
returns conditional on first period success compared to failure. With sufficient
risk aversion, this might impose more risk on the agent when compared to the
optimal No Revelation contract, which compensates the agent more following a
failure due to the convexity of h0(.) when σ > 1

2 . Hence, implementing a high
level of effort under significant risk aversion may reverse the results.

The Repeated Moral Hazard version of the model—shown in Figures 5-8—
somewhat alters the results, depicting a convex path for the contract cost as a
function of the relative risk aversion parameter. The No Revelation contract
remains cheaper under risk neutrality as under the Original Model. However, as
the agent becomes more and more risk averse, the cost of implementing the given
amount of total effort rises at an increasing rate, with the cost difference between
the No Revelation and Revelation contract also increasing substantially. When
k is increased however, the optimal contract cost is not significantly altered in
either case.

When the amount of total effort implemented increases to 1.3, as in Figures
7-8, notice that the optimal Revelation contract still remains below the No
Revelation contract in cost for all levels of risk aversion. However, this effect
is amplified once σ > 0.5, which implies that as h0(.) becomes convex, the
Revelation contract becomes increasingly more optimal.
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Figure 3: Original Model-k=0.75; E=1.3; U=10

Figure 4: Original Model-k=15; E=1.3; U=10
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Figure 5: Extension of Model-k=0.75; E=0.9; U=5

Figure 6: Extension of Model-k=15; E=0.9; U=5
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A reason why the Extended Model has higher contract costs under No Rev-
elation for implementing a higher level of total effort when the agent is sub-
stantially risk averse is that the principal now has an additional instrument he
can use to insure the agent against risk: the rewards given conditional on first
period outcomes, u1(s) and u1(f). Under the Original Model, implementing
a high level of first period effort necessitates that the agent bear substantial
risk since it is optimal to provide greater expected second period returns fol-
lowing a success compared to a failure. The Extended Model has potential
to reduce this risk burden by providing intertemporal consumption smoothing
using higher first period rewards following success. This in turn enables the op-
timal Revelation contract to be less costly even when implementing high levels
of effort.

Figure 7: Extension of Model-k=0.75; E=1.3; U=10
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Figure 8: Extension of Model-k=15; E=1.3; U=10

6 Conclusion

The question of providing uninformed agents with interim performance evalu-
ations has recently been addressed by Lizzeri, Meyer and Persico (2002) under
the assumption that the agent is risk neutral, and inefficiencies in the opti-
mal contract arise due to limited liability on the part of the agent. Using
a two-period, two-output dynamic principal-agent setting where the agent is
compensated only after the second period, they are able to show that reveal-
ing performance evaluations is able to generate a greater amount of effort from
the agent given a fixed incentive scheme. On the other hand, they also show
that not revealing performance information to the agent enables the principal
to implement a given amount of total effort at a strictly lower cost.

This is quite a striking result, considering real life circumstances involving
individuals who are not aware of how well they perform demonstrate that ac-
quiring such information usually helps the individual adjust his effort level to
improve his performance in the future. Employer-employee relationships as well
as teacher-student relationships show that individuals do get feedback from one
period to the next, and use it to improve themselves. If the principal is not
solely concerned with the short-term contract costs involved, but is also directly
concerned with improving his subordinates’ long-term performance, then this
observation can be shown to hold theoretically as well.
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However, even when the principal is not forward looking enough, only to
be concerned with the disutility he receives from the contract costs involved in
implementing a given amount of effort the possibility of risk aversion on the part
of the agent can be an important reason behind why information revelation can
be optimal for the principal. The risk neutral agent is one who is in a better
position to hedge himself against potential risk through other means, such as
a student who takes multiple courses, therefore having his overall GPA depend
on not a single one. For such a student the disutility from receiving a low
grade on one course will not be so great, since she can make up for it through
her other courses. However, once the agent is locked into a relationship with a
single principal and is not informed, she is more likely to have a higher aversion
towards the risk of getting a low grade. The principal may then find it optimal
to share performance information in an attempt to reduce the disutility a risk
averse agent may derive from uncertainty.

When this consideration is taken into account, we show that the results
obtained by LMP (2002) can be significantly altered. First, for a given fixed
reward mechanism, the optimal effort provided by the agent can be greater
when no information is revealed compared to when it is. This may occur
when the principal finds it optimal to insure the agent by equating the expected
rewards following a success to that following a failure, which usually occurs
as the agent’s degree of risk aversion increases. Hence, when no information
is revealed, if the agent is sufficiently risk averse, it will be optimal for the
agent to insure himself by exerting more effort in the first period compared
to when information is revealed. However, no comparison in total effort levels
between the two scenarios can be made if the principal finds it optimal to provide
higher expected returns following an initial failure. That is when the agent
is substantially risk averse, and the principal insures him by rewarding him
by more following a failure, then the optimal second period effort under no
information revelation will exceed that under information revelation while the
reverse holds for the optimal first period effort.

Aside from the implications on the agent’s effort level, the optimal incentive
scheme chosen by the principal can also exhibit alternative properties under
the two scenarios. While the principal finds it optimal to only reward the
most preferred outcome under no information revelation when the agent is risk
neutral, he can no longer implement the same amount of effort using such a
strong incentive mechanism once the agent is risk averse. The reason behind
this is that the optimal contract when the agent is risk averse calls for a trade-
off between incentive provision and insurance provision. Since the agent values
consumption smoothing when risk averse, by providing incentives that are too
strong, the principal will be forcing the agent to bear more risk than she is willing
to. Hence, he chooses to optimally spread the rewards across the different
possible outcomes thereby reducing incentives and risk at the same time.

Under revelation of performance information, since the agent can choose his
effort level in the second period conditional on his first period outcome, part
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of the responsibility for bearing the uncertainty regarding the second period
outcome can be born by the agent. The principal is therefore using this op-
portunity to spread incentives into the second period by implementing different
effort levels depending on first period output. By so doing, he is actually differ-
entiating between the expected rewards following an initial success and a failure.
Recall that, once we impose the additional constraint equating e2(s) and e2(f),
we restrict the principal’s ability to do this, forcing him to bear all the risk for
first and second period performance, since he is not letting the agent adjust her
effort against failure in the second period. This consumption smoothing effect
reduces the incentive effect, implementing the same effort at greater cost.

We showed that this added restriction made the principal’s problem under
information revelation equivalent to that under no information revelation when
the derivative of the inverse utility function, h0(.) is linear. In fact, once it
is relaxed, the principal may achieve a strictly better solution for the optimal
contract at the margin by either increasing the expected reward following a
failure if the first period effort implemented is low enough or increasing the
expected reward following a success if the first period effort implemented is
high enough. Alternatively, it is also optimal to raise the first period effort
level implemented upon relaxing the constraint, while keeping the second period
effort levels e2(s) and e2(f) fixed as before.

The computational results provided in section 5 support these theoretical
findings and extend them to show what happens to the optimal contract cost
under the two scenarios once the derivative of the inverse utility function moves
from being concave to being convex as the risk aversion parameter increases.
The results show that for the original model considered, where the agent is only
compensated after the second period, a given amount of total effort is always
less costly to implement under information revelation when the total effort to
be implemented is less than one. Otherwise, when implementing high levels of
total effort, once the agent becomes highly risk averse, no information revelation
becomes optimal. This can be explained by the fact that information revelation
calls for implementing a high amount of first period effort by increasing expected
rewards conditional on success compared to failure. However, increasing the
incentive provision effect in this way makes the agent bear more risk, which
becomes more costly if the agent is substantially risk averse. The optimal
no revelation contract on the other hand, calls for greater expected rewards
conditional on failure when the agent is highly risk averse. If these rewards are
high enough, they can still implement a total effort greater than one without
imposing as much risk on the agent.

Finally, we replicate the computations for a repeated moral hazard version of
the LMP (2002) model, which incorporates compensation after the first period
as well. In this setup, the graphs display the optimal contract cost to be
convex as a function of the risk aversion parameter, with the cost under no
information revelation always exceeding that under information revelation. In
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fact, this difference consistently increases with the degree of risk aversion. That
even high effort levels can be implemented at lower cost under revelation with
repeated moral hazard, can be attributable to the fact that the principal is now
capable of using first period rewards conditional on success and failure as an
additional instrument to smooth the agent’s consumption and hence her burden
from risk.
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7 Appendix

In this Appendix we show the positivity of all the multipliers in the Revelation
problem. First, we write the first order conditions of the principal’s problem
with respect to u :

∂£R

∂u(s, s)
: h0(u(s, s)) = λ+

µ1
e1
+

µ2(s)

e1e2(s)
(12)

∂£R

∂u(s, f)
: h0(u(s, f)) = λ+

µ1
e1
− µ2(s)

e1(1− e2(s))
(13)

∂£R

∂u(f, s)
: h0(u(f, s)) = λ− µ1

1− e1
+

µ2(f)

(1− e1)e2(f)
(14)

∂£R

∂u(f, f)
: h0(u(f, f)) = λ− µ1

1− e1
− µ2(f)

(1− e1)(1− e2(f))
(15)

Subtracting (13) from (12), and (15) from (14) we get:

h0(u(s, s))− h0(u(s, f)) =
µ2(s)

e1e2(s)(1− e2(s))
> 0

⇒ µ2(s) > 0

h0(u(f, s))− h0(u(f, f)) =
µ2(f)

(1− e1)e2(f)(1− e2(f))
> 0

⇒ µ2(f) > 0

which shows that µ2(s) and µ2(f) are strictly positive since h
0(.) is strictly

increasing and u(s, s) 6= u(s, f) and u(f, s) 6= u(f, f). Using the positivity of
µ2(s) and µ2(f) along with the principal’s first order conditions with respect to
effort we have:

∂$R

∂e2(s)
: e1[1− (h(u(s, s)− h(u(s, f)))]− µ2(s)c

00(e2(s)) = 0

∂$R

∂e2(f)
: (1− e1)[1− (h(u(f, s))− h(u(f, f)))]− µ2(f)c

00(e2(f)) = 0

e1[1− (h(u(s, s)− h(u(s, f)))] = µ2(s)c
00(e2(s)) > 0 (16)

(1− e1)[1− (h(u(f, s))− h(u(f, f)))] = µ2(f)c
00(e2(f)) > 0 (17)

∂$R

∂e1
: e2(s)[1− (h(u(s, s))−h(u(s, f)))]− e2(f)[1− (h(u(f, s))−h(u(f, f)))]
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+[1− (h(u(s, f))− h(u(f, f)))]− µ1c
00(e1) = 0

⇒ e2(s)[1− (h(u(s, s))− h(u(s, f)))]| {z }
>0 by (16)

+(1−e2(f))[1− (h(u(f, s))− h(u(f, f)))]| {z }
>0 by (17)

+

[h(u(f, s))− h(u(s, f))] = µ1c
00(e1)

Subtracting (13) from (14) we also have:

h0(u(f, s))− h0(u(s, f)) =
−µ1

e1(1− e1)
+

µ2(f)

(1− e1)e2(f)
+

µ2(s)

e1(1− e2(s))
(18)

If µ1 ≤ 0 ⇒ h0(u(f, s)) − h0(u(s, f)) > 0 must necessarily hold by (18),
and this implies u(f, s) > u(s, f)⇒ h(u(f, s))− h(u(s, f)) > 0⇒ µ1c

00(e1) > 0,
which can be inferred from ∂$R

∂e1
given above, which means µ1 > 0⇒contradiction.
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