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Abstract

In this paper we review some Solow-type growth models, framed is
discrete time, which are able to generate complex dynamic behaviour.
For these models - put forward by Day (1982, 1983); Böhm and Kaas
(2000); and Commendatore (2005) - we show that crucial features which
could determine the emergence of regular or irregular growth cycles are
(i) if the average saving ratio is constant or not; and (ii) the curvature of
production function, representing the degree of substitutability between
labour and capital. The lower the degree of substitutability, the higher
the likelihood of complex behaviour.

Keywords Logistic Map, Li-York Chaos, Growth Models, Local Sta-
bility, Triangle Stability.

1 Introduction

The analysis of the fundamental issues in dynamical macroeconomics usually
begins with the study of two (one-sector and one-dimensional) growth models:
the Ramsey model (Ramsey, 1928) and the Solow model (Solow, 1956). In the
Ramsey model a representative consumer has an infinite horizon of life and
optimizes his/her utility. A basic Ramsey model in discrete time requires to
find

max W =
∑t=∞

t=0 ( 1
1+% )tu(ct),
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subject to the constraints yt = f(kt), yt = yt + it, kt+1 = kt + it, where f(kt)

is the production function, kt is the capital-labor ratio at time t, yt the income
over labor at time t, u(ct) an utility function on the consumption per capita
ct at time t, it the investment over labor at time t, % the discount rate, with
the following properties u(ct) ≥ 0, u′(ct) > 0, u′′(ct) < 0, f(0) = 0, f ′(0) = 0,
f ′(∞) = 0, f ′(k) > 0, f ′′(k) < 0.

In the Solow model consumption is not optimal the representative agent saves
a constant fraction of his income. In the next sections we will describe only
the Solow model and the most relevant models for our paper. We note here
that researches in several direction have spanned from the Solow model. For
example, the Solow model inspired the works of Shinkay (1960), Meade (1961),
Uzawa (1961,1963), Kurz (1963), Srinivasan (1962-1964), on two-sector growth
models. Following this line of research, works about two-sector models appeared
on the Review of Economic Studies in the 1960s (Drandakis (1963), Takajama
(1963,1965), Oniki-Uzawa (1965), Hahn (1965), Stiglitz (1967), among others).
This line of research has been further developed in the 80s with the introduc-
tion of chaos and Overlapping Generations (OLG) into the two-sector model
(Galor and Ryder (1989), Galor (1992), Azariadis (1993), Galor and Lin (1994).
Recently Karl Farmer and Ronald Wendner (2003) developed two-sector mod-
els including overlapping generation (OLG), instead Schmitz (2006) presented
a two-sector model in discrete time that exhibits complex dynamics (topolog-
ical chaos and strange attractors). Another line of research was opened by P.
Diamond (1965) which was the first to extend the Solow model including OLG
developing a one-sector and one-dimensional model with public debt. R.Farmer
(1968) extended the Diamond model to the two-dimension case. Many authors
developed model Farmer-type with chaos (Grandmont (1985), B. Jullien (1988),
B. Reichlin (1986), A. Medio (1992), C. Azariadis (1993), V. Bohm (1993), A.
Medio and G. Negroni (1996), de Vilder (1996), M. Yokoo (2000) ). More-
over, the seminal ideas of Kaldor (1956, 1957), Pasinetti (1962), Samuelson
and Modigliani (1966), Chiang (1973) about the influence on the growth path
by different savings behaviour of two income group (labor and capital) origi-
nated two-class one-dimensional (Böhm and Kaas (2000)) and two-dimensional
(Commendatore (2005)) discrete time models. We note that in the two-class
extensions of the Solow model, the neoclassical features of the production func-
tion, the Inada conditions, are weakened or disappear, and both models present
complex dynamics.

2 The Solow Growth Model in Discrete Time

Following Hans-Walter Lorenz (1989) and Costas Aziariadis (1993), we will
develop a discrete time variant of the growth model due to Solow (1956). We
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consider a single good economy, i.e. an economy in which only one good is
produced and consumed. We assume that the time t is discrete, that is t =
0, 1, 2, . . .. The symbols Yt, Kt, Ct, It, Lt, St indicate economywide aggregates
respectively equal to income, capital stock, consume, investment, labor force,
saving at time t. The capital stock K0 and labor L0 at time 0 are given. The
constant s denotes the marginal savings rate and the constant n indicates the
growth rate of population. We consider s and n as given exogenously. The map
F : (Kt, Lt) → F (Kt, Lt) is the production function. We assume that:

1. Yt = Ct + It: for all time t = 0, 1, . . ., the economy is in equilibrium, i.e.
the supply of income Yt is equal to the demand composed of the quantity
Ct of good to consume plus the stock It of capital to invest (closed economy
like a Robinson Crusoe economy);

2. It = Kt+1: investment at time t corresponds to all capital available to
produce at time t + 1 (working capital hypothesis);

3. St = Yt − Ct = sYt (0 < s < 1): saving is a share of income;

4. Yt = F (Kt, Lt), i.e. at time t all income is equal to the output obtained by
the inputs capital and labor;

5. Lt = (1 + n)tL0 (n > 0): the labor force grows as a geometric progression
at the rate (1 + n).

From the first (3.) we deduce that in a short run equilibrium Yt = Ct +St,
which, after a comparison with (1.), gives It = St. Thus, applying (2.) and
(3.), we have Kt+1 = sYt. Finally, from (4.) we obtain Kt+1 = sF (Kt, Lt).

From the later expression, Kt+1
Lt+1

= sF (Kt,Lt)
Lt+1

.

If F is linear-homogeneous (or it tells that F exhibits constant returns to
scale), i.e.

6. F (λK, λL) = λF (K, L) (for all λ > 0),

then we have

Kt+1
Lt+1

=
sLtF (

Kt
Lt

,1)

Lt(1+n) .

We set kt = Kt

Lt
(capital-labor ratio or capital per worker) and f(kt) = f(Kt

Lt
, 1).

We call output per worker the ratio yt = Yt

Lt
.
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Therefore we get the equation of accumulation for the Solow model in discrete
time with the working capital hypothesis:

kt+1(1 + n) = sf(kt) (2.1)

If we assume that capital depreciates at the rate 0 ≤ δ ≤ 1(fixed capital hypoth-
esis), the capital available at time t + 1 corresponds to Kt+1 = Kt − δKt + It,
from which Kt+1 = sF (Kt, Lt) + (1− δ)Kt.

As before we get the following time-map for capital accumulation

kt+1(1 + n) = sf(kt) + (1− δ)kt (2.2)

or

kt+1 = h(kt),

where h(kt) = 1
1+n [sf(kt) + (1− δ)kt].

We notice that It is the gross investment while Kt+1−Kt = It− δKt is the net
investment.

Costas Azariadis (1993, p.4) tells us that this model captures explicitly a simple
idea that is missing in static formulations: there is a tradeoff between consump-
tion and investment or between current and future consumption. The implica-
tions of this ever-present competition for resources between today and tomorrow
are central to macroeconomics and can be explored only in a dynamic framework.
Time is clearly of the essence.

If f(kt) is a concave production function, for example, a Cobb-Douglas function
f(kt) = Bkβ

t (B > 0, 0 < β < 1, k ≤ 0), then the equation (2.1) becomes

kt+1 = sBkβ
t

1+n . Setting h(kt) = sBkβ
t

1+n , we notice that h(kt) is monotonically
increasing and concave for all k < 0:

df(k)
dk = s

1+nβBkβ−1 > 0 and d2f(k)
dk2 = s

1+nBβ(β − 1)kβ−2 < 0.
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Remark 2.1 About the Cobb-Douglas, we observe that the assumption 0 < β <
1 implies the concavity of f(k). Moreover in the plane (kt, kt+1) the graph of the
Cobb-Douglas is below the 45◦-line if f(kt) < kt, from which kt < (1/B)

1
B−1 .

Remark 2.2 About the Cobb-Douglas, we have also

f
′
(k) < 1 if k > (Bβ)

1
1−β . As a matter of fact

f
′
(k) < 1 ⇔ Bβkβ−1 < 1 ⇔ kβ−1 < 1

Bβ ⇔ (k−1)1−β < (Bβ)−1

⇔ k−1 < (Bβ)−
1

1−β .Q.E.D.

For example, let B = 0.2 be and let β = 0.7 be, it needs that k > 0.001425.

Moreover the dynamical system kt+1 = h(kt) has two steady-states: the first,
at k = 0, is a trivial and repelling (or instable) fixed point, while the second, at
k∗ = [ Bs

1+n ]
1

β−1 , is interior and asymptotically stable.

3 Complex dynamics in the Solow Discrete Time
Growth Model

R.H. Day (1982,1983) first has noticed that complex dynamics can emerge from
simple economic strutures as, for example, the neoclassical theory of capital
accumulation. In particulary Day argues that the nonlinearity of the h(kt) map
and the lag present in (1.1) are not sufficient to lead to chaos. Instead making
changes in (1.1) in the production function or thinking the saving propensity s
as a function of kt, i.e. s = s(kt), he obtains a robust result (Michele Boldrin
and Michael Woodford, 1990).

In the former case he defines

f(kt) =
{

Bkβ
t (m− kt)γ , if kt < m;

0, otherwise,
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where m is a positive constant, 0 < β < 1, 0 < γ < 1 and B > 0.

In the latter case he sets f(kt) = Bkβ
t (B ≥ 2, 0 < β < 1) and he replaces the

constant s with the saving function

s(kt) = a(1− b
r )kt

yt
,

where r = f
′
(kt) = β yt

kt
, a > 0, b > 0.

Thus from the equation (2.1) we deduce respectively the equations

kt+1 = 1
1+nsBkβ

t (m− kt)γ (3.1)

and

kt+1 = a
1+nkt[1− ( b

βB )k1−β
t ] (3.2).

It is very simple to solve the equation (4.1) when m = γ = β = 1. As a matter
of fact we can rewrite it like this

kt+1 = 1
1+nsBkt(1− kt) (3.3).

If we set µ = sB
1+n then the (3.3) becomes the well-known logistic equation (see

Appendix 1)

kt+1 = µkt(1− kt).

We can use the Li-Yorke Theorem (see Appendix 2). Following Day (1982,
1983), first we observe that the right-hand side h(kt) = 1

1+nsBkβ
t (m − kt)γ

of equation (3.1) is a map concave, one-humped shaped, has a range equal to
the interval [0, h(kc)], where kc is the unique value of kt which maximizes the
map h(kt). Moreover fixing the parameters β, γ and m, the graph of h(kt)
stretches upwards as B is increased and at same time the position of kc doesn’t
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changes because in the expression of kc the parameter B don’t appear while the
maximum h(kc) depends linearly on B (See Figure 1 and Figure 2).

As a matter of fact, from the equation

dkt+1
dkt

= sB
1+n (βkβ−1

t (m− kt)γ − kβ
t γ(m− kt)γ−1) = 0,

we get kc = βm
γ+β and h(kc

t ) = Bs
1+nββγγ( m

β+γ )β+γ .

Moreover we assume that kb is the backward iteration of kc, i.e. kb = h−1(kc),
km is the forward of kc, i.e. h(kc) = km and km is the maximum k such that
h(k) = 0. Thus h(km) = 0, kc = h(kb), km = h(kc) = h(h(kb)), h(km) =
h(h(h(kb))) = 0. If B is large enough, kc lies to left of the fixed point k∗, from
which it follows that kb < kc.

The previous conditions

0 < kb < kc < km,

imply that

h(km) < kb < h(kb) < h(kc),

which are equivalent to the inequalities

h3(kb) < kb < h(kb) < h2(kb).

Therefore the hypotheses of Li-Yorke theorem are satisfied.

From (3.2) we get

dkt+1
dkt

= a
1+n{[1− b

βB k1−β
t ] + kt[(− b

βB )(1− β)k−β
t ]}
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= a
1+n [1− (2− β) b

βB k1−β
t ] = 0

if and only if k∗ = [ βB
b(2−β) ]

1
1−β .

If we call ψ(kt) the right-hand side of (3.2) we have

ψ(k∗) = a
1+n [ βB

b(2−β) ]
1

1−β 1−β
2−β .

Let kc the smaller root of the equation

ψ(kt) = x∗ (3.4),

that is a
1+nkt[1− ( b

βB )k1−β
t ] = [ βB

b(2−β) ]
1

1−β (4.5).

As above conditions of the of Li-Yorke Theorem are satisfied.

Figure 1: In the expression of kc the parameter B don’t appear.
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Figure 2: The maximum h(kc) depends linearly on B.

4 A Two Class Growth Model: A Model of Böhm
and Kaas

4.1 Introduction

In the model of Böhm and Kaas (1999) there are two types of agents (two class
model), called workers and shareholders, and only one good (or commodity)
is produced which is consumed or invested (one sector model). Like Kaldor
(1956,1957) and Pasinetti (1962), the workers and shareholders have constant
savings propensities, denoted respectively with sw and sr (0 ≤ s ≤ 1 and
0 ≤ s ≤ 1). The output is produced with two factors: labor and capital. We
consider that the capital depreciates at a rate 0 < δ ≤ 1 and the labor grows at
rate n ≥ 0. We write the production function f : < → < in intensive form (i.e.
it is maps capital per worker k into output per worker y), and suppose that f
satisfies the following conditions :

• f is C2;

• f(λk) = λf(k) (constant returns to capital);

• f is monotonically increasing and strictly concave (i.e. f
′
(k) > 0 and

f
′′
(k) < 0 for all k > 0);

• limk→∞ f(k) = ∞;
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• (a) limk→0
f(k)

k = ∞ and (b) limk→∞
f(k)

k = 0 (weak Inada conditions
(WIC))

Remark 4.1.1 Following Böhm et al. (2007), we now introduce two families
of production functions that violate the WIC: the linear production functions
and the Leontief production functions given by f(k) = a + bk, (a, b > 0) and
g(k) = min{a, bk} (a > 0, b > 0) respectively.

Since

limk→0
f(k)

k = ∞ and limk→∞
f(k)

k = b,

f violates property (b) of WIC. Instead since

limk→0
g(k)

k = b and limk→∞
f(k)

k = 0,

g does not satisfy property (a) of WIC. We conclude this remark offering an
example of production functions that satisfy WIC: the isoelastic production
functions of the form

h(k) = Akα, A > 0, 0 < α < 1.

It easy verify that h(k) satisfies WIC.

Remark 4.1.2 We observe that, for any differentiable function f : <+ → <+,
the Inada conditions

(α) limk→0 f ′(k) = ∞ and (β) limk→∞ f ′(k) = 0,

imply WIC . As a matter of fact, since

limk→0 f(k) = 0 and limk→∞ f(k) = ∞,

by l’Hôpital’s rule,

limk→0 f ′(k) = limk→0
f(k)

k and limk→∞ f ′(k) = limk→∞
f(k)

k .
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If we assume that the market is competitive then the wage rate w(k) is coincident
with the marginal product of labor, i.e. w(k) = f(k)− kf ′(k), and the interest
rate (or investment rate) r is equal to the marginal product of capital, i.e.
r = f ′(k). We suppose that f(0) generally is not equal to 0. We observe that
the total capital income per worker is kf ′(k). Moreover from WIC we deduce
that:

• w(k) ≥ 0;

• w
′
(k) = −kf

′′
(k) > 0 (w(k) is strictly monotonically increasing);

• 0 ≤ kf
′
(k) ≤ f(k)− f(0);

• limk→0 kf
′
(k) = 0.

Remark 4.1.3 There are several ways to obtain the inequality 0 ≤ kf
′
(k) ≤

f(k) − f(0). The first way is the following. We recall that f is concave in
[0,+∞[ if and only if f(k1) ≤ f(k0) + f

′
(k0)(k1 − k0), for all k0, k1 ≥ 0. In

particulary, if k0 = k and k1 = 0, we have f(0) ≤ f(k) + f
′
(k)(0 − k), from

which 0 ≤ kf
′
(k) ≤ f(k)− f(0).

Alternately, if f
′
(0) < ∞, by the inequality w(0) ≤ w(k) for all k ≥ 0, we have

f(0)− 0 · f ′(0) ≤ f(k)− kf
′
(k), from which 0 ≤ kf

′
(k) ≤ f(k)− f(0).

Finally, consider the graph of a monotonically strictly increasing and concave
function f with f(0) > 0. Geometrically we may intuit the inequality drawing
in the plane (k, f(k)) the line which goes across the points (0, f(0)) and (k, f(k))
and the tangent line in the point (k, f(k)): the slope of the first line, f(k)−f(0)

k ,
will appear greater or equal to the slope f

′
(k) of the second line. By continuity

of f(k) on k = 0, we obtain the limk→0 f(k) = f(0). Thus, from the previous
inequality, limk→0 kf

′
(k) ≤ limk→0(f(k)− f(0)) = f(0)− f(0) = 0.

Similarly to the Solow model we obtain that the time-one map of capital accu-
mulation is

kt+1 = G(kt) = 1
1+n ((1− δ)kt + sww(kt) + srktf

′
(kt)) (4.1).

Proposition 4.1.4 Given n ≥ 0 and 0 ≤ δ ≤ 1, let f(k) be a production func-
tion which satisfies the WIC. If the workers do not save less than shareholders
(i.e. sw ≥ sr) or ef ′(k) ≥ −1 then G is monotonically increasing in k.
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Proof We observe that dG(kt)
dkt

= 1
1+n ((1−δ)−swkf ′′(k)+sr(f ′(kt)+ktf

′′(kt))).

Thus dG(kt)
dkt

≥ 0 is equivalent to inequality (sw − sr)kf ′′(k) ≤ 1 − δ + srf
′(k).

From the assumptions f ′(k) > 0, 1 − δ ≥ 0 and sr > 0, we deduce that (1 −
δ + srf

′(k) > 0). Being f ′′(k) < 0, if sw ≥ sr, the left-hand side of inequality
is negative and the inequality is satisfied trivially. Otherwise, rewriting the
inequality in the following manner swkf ′′(k) ≤ (1− δ) + sr(kf

′′
(k) + f ′(k)), we

notice that it is true if (kf ′′(k) + f ′(k) ≥ 0), i.e. ef ′(k) ≥ −1.

The following proposition investigates the existence and the uniqueness of steady
states.

Proposition 4.1.5 Consider n and δ fixed and let f(k) be a production function
which satisfies the WIC. The following conditions hold:

• k = 0 if and only if sw = 0 or f(0) = 0.

• There exists al least one positive steady state if (sr > 0 and limk→0 f ′(k) =
0) or if (sw > 0 and f ′(0) < ∞).

• There exists at most one positive steady state if (sr ≥ sw).

Proof We observe that k is a steady state if and only if k = G(k), that is

sww(k) + srkf ′(k) = (n + δ)k.

Thus 0 = G(0) if and only if (sw(f(0)− limk→0 kf ′(k))+ sr limk→0 kf ′(k) = 0).

By a previous observation we have that limk→0 kf ′(k) = 0, therefore k = 0 is a
steady state if and only if swf(0) = 0.

Moreover the existence of a positive steady state k is equivalent to

sw( f(k)
k − f ′(k)) + srf

′(k) = n + δ.

We set H(k) = sw( f(k)
k − f ′(k)) + srf

′(k). By Bolzano’s Theorem, being H(k)
continuous in interval ]0, +∞[, the range J of H(k) is an interval. We no-
tice that J =]0,+∞[. As a matter of fact, if suppose that limk→∞ f ′(k) =
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+∞, we may apply the Hôpital’s Rule to the first of the conditions denoted
above with (I), and we have 0 = limk→∞

f(k)
k = limk→∞ f ′(k), from which

limk→+∞H(k) = 0. From the second relation of (I) and setting f ′(0) < +∞, we
obtain that limk→0 H(k) = +∞. Therefore, the equation H(k) = n + δ accepts
at least one positive solution. Being dH(k)

dk = sw(kf ′(k)−f(k)
k2 − f ′′(k)) + srf

′′(k)

= sw(kf
′
(k)−f(k)

k2 ) + (sr − sw)f
′′
(k) and since kf

′
(k)− f(k) = −w(k) < 0, if we

suppose sr ≥ sw, we deduce that dH(k)
dk ≤ 0. Thus H(k) is strictly monotonically

decreasing and the equation H(k) = n + δ admits only one root.

Proposition 4.1.6 k? is a steady state of Pasinetti-Kaldor iff, for given n and
δ, the pairs (sr, sw) of savings rate describe the line sr + 1−ef (k?)

ef (k?) sw = 1 in the

(sr, sw)-diagram, where ef (k) = kf
′
(k)

f(k) .

Proof We observe that the total consumption per worker is c(k) = f(k) −
sw(k)−skf

′
(k). If k? is a steady state then c(k?) = f(k?)−(n+δ)k?. We want

the steady state k?, with different savings rate, which maximize c(k?). Thus,
setting dc(k?)

dk? = 0, we find f
′
(k?) = (n + δ), that is k? = f−1((n + δ)). We

call Kaldor-Pasinetti equilibrium the optimal steady state consumption (or the
golden rule for capital stock). Replacing (n + δ) with f

′
(k?) in the right-hand

side of the steady state condition sww(k?) + srk
?f

′
(k?) = (n + δ)k?, we obtain

sww(k?) + srk
?f

′
(k?) = k?f

′
(k?), that is sw(f(k?)− k?f

′
(k?)) + srk

?f
′
(k?) =

k?f
′
(k?). Dividing both sides of the previous equation by f(k?) and recalling

the definition of ef (k), we have sr + 1−ef (k?)
ef (k?) sw = 1. We notice that in the

(sr, sw)-plane the last equation can be viewed as a line that

• has negative slope;

• goes across the point (sr, sw) = (1, 0);

• is below or above the 45◦-line sw = sr depending on ef (k?) is less or
greater than 1

2 .

The (sr, sw)-plane is coincident with the square [0, 1]2.

4.2 The dynamics with fixed proportions

We consider the Leontief technology
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fL(k) = min{ak, b}+ c, a, b, c > 0.

Let k? = b/a be. We have

fL(k) =
{

ak + c, if k ≤ k?,
b + c, if k > k?; and f

′
L(k) =

{
a, if k ≤ k?,
0, if k > k?.

The map G becomes

GL(k) =
{

G1(k) = 1
1+n ((1− δ + sra)k + swc), if k ≤ k?,

G2(k) = 1
1+n ((1− δ)k + (b + c)sw), if k > k?.

We may say that:

• G1 and G2 are affine-linear maps strictly monotonically increasing;

• G
′
1 = 1

1+n (1− δ + sra) > G
′
2 = 1

1+n (1− δ);

• G
′
2 < 1: the map G

′
2 has always a fixed point k2;

• G1 has the fixed point k1 if and only if G
′
1 < 1, that is n + δ − sra > 0;

• G1(0) = 1
1+nswc < G2(0) = 1

1+n (b + c)sw.

Let k1 be the fixed point for G1. Then k1 is a fixed point also for G if and only
if k1 < k?. Analogously, found the fixed point k2 for G2, we have that k2 is a
fixed point also for G if and only if k? < k2 (See Figure 3).
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Figure 3: The Maps G1 and G2

Proposition 4.2.1 Let G
′
1 < 1 be. We obtain that:

(i) the fixed point k1 for G1 is equal to csw

n+δ−asr
;

(ii) k1 is a fixed point also for G if and only if bsr + csw < (n + δ) b
a ;

(iii) G1(k?) < k? if and only if bsr + csw < (n + δ) b
a .

Proof We solve the equation G1(k) = k. We get

1
1+n ((1− δ + sra)k + swc) = k, from which

(sra− n− δ)k = −swc. Thus k1 = csw

n+δ−asr
.

Moreover k1 < k? if and only if csw

n+δ−asr
< b

a . From the assumption G
′
1 < 1

we deduce n + δ − sra > 0. Therefore csr < −bsw + (n + δ) b
a , from which

bsr + csw < (n + δ) b
a .

The inequality G1(k?) < k? is equivalent to the following 1
1+n ((1− δ + sra)k? +

swc) < k?. We get before (asr−n−δ)k? < −swc, and after srak?− (n+δ)k? <
−swc. We deduce the relation (iii). (i) and (ii) are equivalent.
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Proposition 4.2.2 We get

(i) the fixed point of G2 is k2 = (b+c)sw

n+δ ;

(ii) k2 is the fixed point also for G if and only if sw > (n+δ)b
(b+c)a ;

(iii) G2(k?) > k? if and only if sw > (n+δ)b
(b+c)a .

Proof Solving the equation G2(k) = k, we obtain the following equivalent
relations:

1
1+n ((1− δ)k + (b + c)sw) = k,

(1− δ)k − (1 + n)k = −(b + c)sw,

−(n + δ)k = −(b + c)sw, from which k2 = (b+c)sw

n+δ .

Moreover k2 > k? if and only if (b+c)sw

n+δ > b
a , from which sw > (n+δ)b

(b+c)a . (iii)
trivial. Obviously (ii) and (iii) are equivalent (See Figure 4).

Figure 4: Stability regions for the Leontief technology
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Remark 4.2.3 GL has two fixed point if and only if G1(k?) < k? < G2(k?),
from which G1(k?) < G2(k?). Then 1

1+n ((1 − δ + sra)k? + swc) < 1
1+n ((1 −

δ)k? + (b + c)sw. Thus sr < sw.

(A) GL has only one fixed point: the fixed point of G1, that is it holds the
system

{
bsr + csw < (n + δ) b

a ,

sw < (n+δ)b
(b+c)a .

(B) GL has two fixed points: the fixed point of G1 and the fixed point of G2,
that is it holds the system

{
bsr + csw < (n + δ) b

a ,

sw > (n+δ)b
(b+c)a .

(C) GL has only one fixed point: the fixed point of G2, that is it holds the
system

{
bsr + csw > (n + δ) b

a ,

sw > (n+δ)b
(b+c)a .

(D) GL don’t has fixed point, that is it holds the system

{
bsr + csw > (n + δ) b

a ,

sw < (n+δ)b
(b+c)a .

Remark 4.2.4 Now consider the case (B). Since G1(k?) < k? < G2(k?), we get

G1(k1) < G1(k?) < k? < G2(k?) < G2(k2),

from which
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G1(k1) < G2(k2) for all pairs (k1, k2) such that 0 ≤ k1 ≤ k? and k2 > k?.

Thus GL is strictly monotonically increasing (and therefore injective) in the case
(B).

Remark 4.2.5 Look at case (D), that is G2(k?) < k? < G1(k?). Then
GL(G2(k?)) = G1(G2(k?)) and GL(G1(k?)) = G2(G1(k?)). Moreover, by rela-
tions

G1(G2(k?)) = (1−δ+sra)(1−δ)
(1+n)2 k? + (1−δ+sra)(b+c)sw

(1+n)2 + csw

(1+n) ,

G2(G1(k?)) = (1−δ+sra)(1−δ)
(1+n)2 k? + (1−δ)csw

(1+n)2 + (b+c)sw

(1+n) ,

we will show that G1(G2(k?)) > G2(G1(k?)), and thinking as before,

we may deduce that GL is injective on the interval [G2(G1(k?)), G1(G2(k?))].

As a matter of fact, we can write G1 and G2 such that:

G1(k?) = m1k
? + n1 and G2(k?) = m2k

? + n2, where m1 ≥ 1 > m2 > 0 and
n2 > n1 > 0.

We have

G1(G2(k?)) = m1(m2k
? + n2) + n1 = m1m2k

? + m1n2 + n1,

G2(G1(k?)) = m2(m1k
? + n1) + n2 = m1m2k

? + m2n1 + n2.

Let n2 = n1 + ε be, where ε > 0. Then we may conclude observing that
m1n2 +n1 = m1(n1 + ε)+n1 = m1n1 +m1ε+n1 > m2n1 +n2 = m2n1 +n1 + ε.

Proposition 4.2.6 We consider the case (D), i.e. G2(k?) < k? < G1(k?).
Let Kτ = (ks)s=1,...,τ be a cycle of order τ for GL such that ks 6= k? for all
s = 1, . . . , τ . Then Kτ is globally stable.
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Proof By recurrence it proves that on the interval [G2(G1(k?)), G1(G2(k?))]

• each sth iterate Gs
L is injective;

• the τth iterate Gτ
L, presents a discontinuity either at k? or at G−s

L (k?),
s = 1, . . . , τ − 1.

Thus Gτ
L shows at most τ discontinuities and we may find a partition {I1, . . . , Im}

of [G2(G1(k?)), G1(G2(k?))] into m intervals Is (s = 1, . . . , m and m ≤ τ + 1)
such that Gτ

L(k) = As + Bsk, s ∈ Is, where As and Bs are positive constants.

Let (ks)s=1,...,τ be a cycle of order τ . If we assume that ks ∈ Is (s = 1, . . . , τ),
we obtain that Bs < 1. As a matter of fact, imposing ks = As + ksBs, we have
(1−Bs)ks = As. Being ks and As positive, we deduce that 1−Bs > 0.Therefore
we may say that each trajectory starting in [G2(G1(k?)), G1(G2(k?))] converges
to Kτ .

5 Complex Dynamics in a Pasinetti-Solow Model
of Growth and Distribution: a Model of P.Commendatore

5.1 Introduction

Similarly to the paper of Böhm and Kaas (1999), the model of Commendatore
(2005)

• is a two-class model, that is two distinct group of economic agents (workers
and capitalists) exist, with constant propensities to save (Kaldor, 1956);

• labor and capital markets are perfectly competitive;

• the income sources of workers are wages and profits and the income of
capitalists is only profits (Pasinetti, 1962);

• the time is discrete;

• there is a single good in the economy (one sector model).

Commendatore’s model differs from the model of Böhm and Kaas in some as-
sumptions:
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• following Chiang (1973), workers not save in same proportions out of labor
and income of capital;

• the production function is not with fixed proportions (Leontief technology)
but it is a CES production function;

• likewise Samuelson-Modigliani (1966) that, following Pasinetti (1962), ex-
tend the Solow growth model (1956) to two-dimensions, the map that
describes the accumulation of capital in discrete time is two-dimensional
because it considers not only the different saving behaviour of two-classes
but also their respective wealth (capital) accumulation.

5.2 The model: the economy, short-run equilibrium, steady
growth equilibrium

Let f(k) = [α + (1− α)kρ]
1
ρ be the CES production function in intensive form,

where k is the capital/labor ratio, 0 < α < 1 is the distribution coefficient,
−∞ < ρ < 1 (ρ 6= 0), η = 1

1−ρ is the constant elasticity of substitution. We

consider f(k) > 0. Therefore f(k) = [α + (1 − α)kρ]
1
ρ = [αk−ρ + (1 − α)]

1
ρ k.

The terms kw and kc denote, respectively, workers’ and capitalists’ capital per
worker, where 0 ≤ kw ≤ k, 0 ≤ kc ≤ k, k = kw + kc. The workers’ saving
out of wages are represented by sww(f(k)−kf

′
(k)) and the workers’ saving out

of capital revenues consist in swP f
′
(k)kw, where 0 ≤ sww ≤ 1, 0 ≤ swP ≤ 1.

Instead the capitalists’ savings are scf
′
(k)kc, where 0 ≤ sc ≤ 1. We assume

sc > max{sww, swP }. Thus the aggregate savings correspond to

s(kc, kw) = sww(f(k)− f
′
(k)k) + swP f

′
(k)kw + scf

′
(kc).

Let n be the constant rate of growth of labor force, the following map

G(kw, kc) = 1
1+n [(1− δ)k + i]

describes the rule of capital accumulation per worker, where i indicates gross
investment per worker and 0 < δ < 1 is the constant rate of capital depreciation.
In a short-run equilibrium G becomes

G(kw, kc) = 1
1+n [(1− δ)k + sww(f(k)− f

′
(k)k) + swP f

′
(k)kw + scf

′
(kc)] (5.1),

from which we deduce the capitalist’ process of capital accumulation
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Gw(kw, kc) = 1
1+n [(1− δ)kw + sww(f(k)− f

′
(k)k) + swP f

′
(k)kw]

and the capitalist’s rule of capital accumulation

Gc(kw, kc) = 1
1+n [(1− δ)kc + scf

′
(k)kc].

In order to obtain the steady states of Gw and Gc, we imposing

Gw(kw, kc) = kw and Gc(kw, kc) = kc.

We get

(n + δ)kw = sww(f(k)− f
′
(k)k) + swP f

′
(k)kw, (?)

(n + δ)kc = scf
′
(kc) (??)

We find three types of equilibria: Pasinetti equilibrium (capitalists own posi-
tive share of capital), dual equilibrium (only workers own capital) and trivial
equilibrium (the overall capital is zero).

5.2.1 Pasinetti equilibrium

Now we indicate a Pasinetti equilibrium with (kP
w , kP

c ),

where, by definition, kP = kP
w + kP

c . We prove the following

Proposition 5.2.1.1 For the Pasinetti Equilibrium the following conditions
hold:

• f
′
(kP ) = n+δ

sc
,

• kP
w = sww

sc−swP

1−ef (kP )
ef (kP )

kP ,
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• kP
c = (1− sww

sc−swP

1−ef (kP )
ef (kP )

)kP .

Proof We start by the relation (??). Since kc 6= 0 then (n + δ) = scf
′
(k),

from which f
′
(kP ) = n+δ

sc
. In the left-hand side of (?), we replace (n + δ) with

scf
′
(k). We get

scf
′
(k)kw − swpf

′
(k)kw = sww(f(k)− f

′
(k)k),

kwf
′
(k)(sc − swp) = sww(f(k)− f

′
(k)k),

kwf
′
(k)(sc − swp) = swwf(k)[1− f

′
(k)k

f(k) ],

kwf
′
(k)k(sc − swp) = swwf(k)[1− f

′
(k)k

f(k) ]k,

kw
f
′
(k)k

f(k) (sc − swp) = sww[1− f
′
(k)k

f(k) ]k,

kwef (k)(sc − swp) = sww(1− ef (k))k,

kP
w = sww

sc−swp

1−ef (k)
ef (k) kP .

Since kP = kw + kc, we have kc = kP − kw, from which

kP
c = kP − sww

sc−swp

1−ef (k)
ef (k) kP = [1− sww

sc−swp

1−ef (k)
ef (k) ]kP .

5.2.2 Dual equilibrium

We indicate the dual equilibrium with (kD
w , kD

c ), where kD = kD
w + kD

c .

We prove the following

Proposition 5.2.2.1 The dual equilibria are given by the relations
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f(kD)
kD = n+δ

sww(1−ef (kD))+swP ef (kD)
, kD

w = kD and kD
c = 0

Proof We rewrite the relation (?) replacing kD
w with kD and k with kD.

We get

(n + δ)kD = sww(f(kD)− f
′
(kD)kD) + swpf

′
(kD)kD,

from which

(n + δ)kD = swwf(kD)(1− f
′
(kD)kD

f(kD)
) + swp

f
′
(kD)kD

f(kD)
,

(n + δ) kD

f(kD)
= sww(1− ef (kD)) + swpef (kD),

f(kD)
kD = n+δ

sww(1−ef (kD)+swpef (kD .

5.2.3 Trivial equilibrium

(k0
w, k0

c ) and k0 = k0
w + k0

c where k0 = k0
w = k0

c = 0.

Output elasticity

We see immediately that

ef (k) = kf
′
(k)

f(k) = (1− α)(αk−ρ + 1− α)−1,

0 < ef (k) ≤ 1.
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5.3 Meade’s Relation For Pasinetti Equilibria

We introduce the Meade’s relation for Pasinetti equilibria

f(k)
k = ϕ(ef (k)),

where ϕ(x) = ( 1−α
x )

1
ρ .

We notice that for ϕ(x) occurs:

• ϕ
′
(x) = (1−α)

ρ (1−α
x )

1
ρ−1(− 1

x2 ) = − (1−α)
ρ

1
x2 ( 1−α

x )
1−ρ

ρ

• ϕ
′′
(x) = − (1−α)

ρ {−2x−3( 1−α
ρ )

1−ρ
ρ +x−2( 1−ρ

ρ )( 1−α
x )

1−ρ
ρ −1(1− α)(−x−2)}

= (1−α)
ρ x−3( 1−α

x )
1−ρ

ρ (2 + 1−ρ
ρ )

= (1 + ρ) (1−α)
ρ2 x−3( 1−α

x )
1−ρ

ρ

The former features of ϕ(x) lead us to state that (See Figure 5)

Proposition 5.3.1 For the function ϕ(x) is true that:

• it is strictly monotonic for all ρ < 1 and ρ 6= 0;

• it is strictly convex for all 0 < ρ < 1 and strictly concave for all ρ < −1;

• it becomes the line ϕ(x) = x
1−α if ρ = −1.

• limx→0 ϕ(x) = +∞ if 0 < ρ < 1.
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Figure 5: The diagram of ϕ for different ρ.

Proposition 5.3.2 Both workers and capitalists own a positive share of capital
if and only if

0 < eT
f < ef (kP ) < 1,

where eT
f = sww

sc−(swP−sww) .

Proof We observe that kP
w > 0 is equivalent to say that (ef < 1 and sc > swp)

or (ef > 1 and sc < swp).

We don’t accept the second condition because the CES don’t satisfies the in-
equality ef > 1.

Moreover the inequality kP
c > 0 holds iff 1−ef

ef

sww

sc−swP
< 1.

Thus is true that

1−ef

ef
< sc−swP

sww
,

from which

1
ef

< 1 + sc−swP

sww
, 1

ef
< sc−(swP−sww)

sww
. Q.E.D.

Observed that

• Case (a): sww = sc. Then eT
f = sww

sc
;
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• Case (b: sww < sc. Then sc − (swP − sww) < sc;

• Case (c): sww > sc. Then sc − (swP − sww) > sc;

we deduce that

eT
f (Case(c)) < eT

f (Case(a)) < eT
f (Case(b)).

Proposition 5.3.3 We have ef (kP ) = (1− α)
1

1−ρ (n+δ
sc

)
ρ

ρ−1

Proof From definition of ef we obtain that f(k)
k = f

′
(k)

ef (k) and by Meade’s relation
f(k)

k = ϕ(ef (k)) we get ϕ(ef (kP )) = f
′
(kP )

ef (kP )
= n+δ

sc

1
ef (kP )

: the intersection

between the arc of hyperbola Γ : n+δ
sc

1
ef (kP )

and the curve ϕ(ef (kP )) identifies
the unique Pasinetti equilibrium.

From ef (kP ) = f
′
(kP )

ϕ(ef (kP ))
and by definition of ϕ(k) we have (n+δ

sc
) ( ef (kP )

1−α )
1
ρ =

ef (kP ). We obtain

(n+δ
sc

)ρ( ef (kP )
1−α ) = (ef (kP ))ρ,

(ef (kP ))ρ−1 = 1
1−α (n+δ

sc
)ρ. Q.E.D.

Commendatore (2005), generalizing a relation of Samuelson-Modigliani (1966)
and Miyazaki (1991), shows that

Proposition 5.3.4 We assume that:

• f
′
(k) is monotonically increasing,

• ef (k) < 1,

• sww ≤ swP ,

• kD > kP .
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Then is true that
eT
f > ef (kP ),

where eT
f = sww

sc−(swP−sww) and ef (k) = kf
′
(k)

f(k) .

Proof We observe that a CES production function satisfies the former two
assumptions of proposition first, then we prove that f(k)

k is monotonically de-
creasing if and only if f

′
(k) < f(k)

k . As a matter of fact, let g(k) = f(k)
k

be. We have that g
′
(k) = f

′
(k)k−f(k)

k2 < 0 if and only if f ′(k)k < f(k). Since

ef (k) = f
′
(k)k

f(k) < 1 then the previous inequality is satisfied. Thus from the

assumption kP < kD we deduce f(kP )
kP > f(kD)

kD .

Moreover the dual equilibrium can be rewritten as follows

(n + δ)kD = sww(f(kD)− f
′
(kD)kD) + swP f

′
(kD)kD,

(n + δ)kD = swwf(kD)− swwf
′
(kD)kD + swP f

′
(kD)kD,

(n + δ)kD = swwf(kD) + (swP − sww)f
′
(kD)kD,

(n + δ) = sww
f(kD)

kD + (swP − sww)f
′
(kD),

(n+δ)
sww

= f(kD)
kD + swP−sww

sww
f
′
(kD),

f(kD)
kD = (n+δ)

sww
− swP−sww

sww
f
′
(kD).

Therefore f(kP )
kP > (n+δ)

sww
− swP−sww

sww
f
′
(kD).

Then, recalling that sww ≤ swP and f
′
(kP ) = n+δ

sc
, we have

sww
f(kP )

kP > (n + δ)− (swP − sww)f
′
(kD) = scf

′(kP )− (swP − sww)f
′
(kD),
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and, observing that from the strict monotonicity of f
′
(k), the inequality kD >

kP implies f
′
(kD) > f

′
(kD), we get

sww
f(kP )

kP > [sc − (swP − sww)]f
′
(kP ). Q.E.D.

5.4 Meade’s Relation For Dual Equilibria

In order to detect geometrically the dual equilibria we will use the following
Meade’s relation for dual equilibria

f(k)
k = θ(ef (k)),

where θ(x) = n+δ
sww(1−x)+swP x .

We observe that

• θ : [0, 1] → [0, 1] and θ(x) > 0 for all x ∈ [0, 1];

• θ(0) = n+δ
sww

> 0 and θ(1) = n+δ
swP

> 0;

• θ(x) is a continuous function in [0,1 ];

• θ
′
(x) = (sww − swP ) θ(x)2

n+δ ;

• θ
′′
(x) = 2(sww−swP )2

(n+δ)2 θ(x)3 ≥ 0;

Thus θ(x) is (See Figure 6)

• constant if sww = swP ;

• strictly monotonically increasing if sww > swP ;

• strictly monotonically decreasing if sww < swP ;

• strictly convex if sww 6= swP .
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Figure 6: The diagram of θ for different comparisons of sww with swP .

Proposition 5.4.1 The dual equilibria are given by the set

{x ∈ [0, 1] : ϕ(x) = θ(x)}.

Proof We distinguish the following two cases:

• Case I: ρ = −1. Then ϕ(x) becomes ( 1−α
x )−1. Thus we must solve the

equation (See Figure 7)

x
1−α = n+δ

sww(1−x)+swpx .

If sww = swP then the equation ϕ(x) = θ(x) is equivalent to relation

x
1−α = n+δ

sww
,

from which, trivially, it follows the solution x = n+δ
sww

(1 − α). We notice
that x is acceptable iff x ∈ [0, 1].

If sww 6= swp, from the relation

x[sww(1− x) + swP x] = (n + δ)(1− α),

we obtain that
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−swwx2 + (sww + swP )x = (n + δ)(1− α).

Thus

swwx2 − (sww + swP )x + (n + δ)(1− α) = 0.

We set

A = sww, B = −(sww + swP ), C = (n + δ)(1− α), ∆ = B2 − 4AC.

We may conclude that if ∆ ≥ 0 then dual equilibria exist (two real repeated
equilibria or two real distinct equilibria).

Figure 7: The diagram of ϕ for ρ = −1 and the different diagrams of θ.

• Case II: (ρ < −1) ∨ (0 < ρ < 1).

We find the solutions of the equation (See Figure 8 and Figure 9)

( 1−α
x )

1
ρ = n+δ

sww(1−x)+swwx .

We may rewrite the previous equation such that (for details, see Remark
5.4.2)

1−α
(n+δ)ρ = x

[sww+(swP−sww)x]ρ .
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Now we set g(x) = x
[sww+(swP−sww)x]ρ .

After some transformations (see Remark 5.4.3) we get

g
′
(x) = sww+(1−ρ)(swP−sww)x

[sww+(swP−sww)x]ρ+1 .

If swP ≥ sww then g(x) is strictly monotonically increasing in [0, 1] and
the range of g(x) is

[0, 1
[sww+(swP−sww)]ρ ].

By Bolzano’s Theorem and by the strictly monotonicity of g(x) exists an
unique solution of equation

g(x) = 1−α
(n+δ)ρ .

If sww < swp then g(x) can be monotonically decreasing and exists an
unique dual equilibrium.

Notice that g
′
(x) = 0 iff sww+(1−ρ)(swP−sww)x, i.e., x = − sww

(1−ρ)(swp−sww) .

Therefore the point x? = sww

(1−ρ)(swP−sww) may be the maximum or mini-
mum for g(x).

Observed that g(x) is strictly concave (or strictly convex), also by Bolzano’s
Theorem, we obtain one or two dual equilibrium if and only if 1−α

(n+δ)ρ ≤
g(x?).

We can say that an unique dual equilibrium exists if the line y = 1−α
(n+δ)ρ

intersects the graph of function g(x) at (x?, g(x?)), being g(x?) the maxi-
mum of g(x).

Instead, if 1−α
(n+δ)ρ < g(x?), then, by concavity of g(x), the line y =

1−α
(n+δ)ρ intersects the graph of g(x) in two distinct points (x

′
, g(x

′
)) and

(x
′′
, g(x

′′
)), i.e. there are two points x

′
and x

′′
in [0, 1] such that g(x

′
) =

g(x
′′
) = 1−α

(n+δ)ρ .
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Figure 8: The diagram of ϕ for ρ < −1 and the different diagrams of θ.

Figure 9: The diagram of ϕ for 0 < ρ < 1 and the different diagrams of θ.

In the figures 10, 11, 12 we identify the steady-growth equilibria (Pasinetti,
Dual and Trivial) for the cases (a)sww = swP , (b) sww < swP and (c)sww > swP :
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Figure 10: Steady-growth equilibria identified for the case sww = swP .

Figure 11: Steady-growth equilibria identified for the case sww < swP .
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Figure 12: Steady-growth equilibria identified for the case sww > swP .

Remark 5.4.2

( 1−α
x )

1
ρ = n+δ

sww+(swP−sww)x ,

( 1−α
x )

1
ρ = n+δ

sww−swwx+swP x ,

(1−α)
1
ρ

x
1
ρ

= n+δ
sww−swwx+swP x ,

1−α
(n+δ)ρ = x

[sww+(swP−sww)x]ρ

Remark 5.4.3

g
′
(x) = [sww+(swP−sww)x]ρ−ρx(swP−sww)[sww+(swP−sww)x]ρ−1

[sww+(swP−sww)x]2ρ

= [sww+(swP−sww)x]ρ{1−ρx(swP−sww)[sww+(swP−sww)x]−1}
[sww+(swP−sww)x]2ρ

=
[sww+(swP−sww)x]ρ{1− ρ(sww−swP )x

sww+(swP−sww)x
}

[sww+(swP−sww)x]2ρ
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= sww+(swP−sww)x−ρx(swP−sww)
[sww+(swP−sww)x]2ρ−ρ+1 = sww+(1−ρ)x(swP−sww))

[sww+(swP−sww)x]ρ+1 .

We note that ef (k = 0) = (1− α)(1− α)−1 = 1, from which ϕ(ef (0)) = ϕ(1) =
(1−α)

1
ρ . Thus the intersection between the curve ϕ(ef (k)) and the vertical line

at 1 identifies the trivial equilibrium.

5.5 Local stability analysis

5.5.1 The Jacobian evaluated at a Pasinetti equilibrium

In order to determine the local stability of the fixed points of our dynamical
system we will linear approximate it with the Hartman-Grobman Theorem.
We begin with the Jacobian matrix of the dynamical system evaluated at a
Pasinetti-equilibrium:

J(kP
w , kP

c ) =
(

J11 J12

J21 J22

)
,

where

J11 = 1
1+n [1− δ + (swP − sww)f

′′
(kP )kP + swP (f

′
(kP )− f

′′
(kP )kP

c )],

J12 = 1
1+n [(swP − sww)f

′′
(kP )kP − swP f

′′
(kP )kP

c ],

J21 = 1
1+n [scf

′′
(kP )kP

c ],

J22 = 1
1+n [1− δ + sc(f

′
(kP ) + f

′′
(kP )kP

c )].

After some transformations we obtain the trace of the Jacobian matrix at the
Pasinetti-equilibrium

T (kP
w , kP

c ) = n+δ
1+n [ 2(1−δ)

n+δ + 1 + ef ′ (k
P ) + (

swP ef (kP )−swwe
f
′ (kP )

scef (kP )
)],
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and the determinant of the Jacobian matrix at the Pasinetti-equilibrium

D(kP
w , kP

c ) = T (kP
w , kP

c )( 1−δ
1+n )− ( 1−δ

1+n )2 +
e

f
′ (kP )(swP−sww)+swP

sc
(n+δ
1+n )2.

For two-dimensional discrete time maps, to search the region of stability of
Pasinetti-equilibrium and to study how here frontier is crossed, we will apply
the following three conditions:

(1) 1 + T (kP
w , kP

c ) + D(kP
w , kP

c ) > 0;

(2) 1− T (kP
w , kP

c ) + D(kP
w , kP

c ) > 0;

(3) 1−D(kP
w , kP

c ) > 0.

The previous relations in the plane trace-determinant lead to the triangle of sta-
bility and they guarantee that the modulus of each eigenvalue of the Jacobian
matrix, calculated at the Pasinetti-equilibrium, is less than one. From the char-
acteristic equation we derive the eigenvalues of the Jacobian matrix evaluated
at an equilibrium point. For the Pasinetti-equilibrium we have:

λP
i = 1

2 (T (kP
w , kP

c )±
√

(T (kP
w , kP

c ))2 − 4D(kP
w , kP

c )), where i = 1, 2.

Commendatore (2005), rewriting the stability conditions in terms of ef (k) and
ef ′ (k), deduces very interesting relations.

Setting

eF
f ′ = −2( 1+n

n+δ ) (n+2−δ)sc+(n+δ)swP

(n+2−δ)(sc−sww
1

ef (k) )+(n+δ)(swP−sww)
,

and

ef = sww(n+2−δ)−(swp−sww)(n+δ)
sc(n+2−δ) ,

from (1), after some transformations, we obtains the first relations:
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• ef ′ (k) > eF
f ′ if ef (k) > ef ;

• ef ′ (k) < eF
f ′ if ef (k) < ef .

In the (ef (k)), ef ′ (k))-plane the former inequality is satisfied by points which are
above the diagram of eF

f ′ and at left of the right-line ef (k) = ef . Analogously
we will think for the last inequality. Moreover the condition (2) always holds if
ef (k) < ef and it reduces to relation ef > eT

f .

We pose

eN
f ′ = (sc−swP )(1+n)

(swP−sww)(n+δ)+(1−δ)(sc−sww
1

ef (k) )
,

and

ef = sww

sc+(swP−sww) n+δ
1−δ

.

We have that the condition (3) is equivalent to the inequalities

• ef ′ (k) < eN
f ′ for ef (k) > ef ;

• ef ′ (k) > eN
f ′ for ef (k) < ef .

We note that:

• eF
f ′ depends on ef 6= e0, where e0 = (n+2−δ)sww

(n+δ)(swP−sww)+(n+2−δ)sc
;

• eF
f ′ is continuous and monotonically strictly increasing in X =]0, e0[∪]e0, 1];

• eF
f ′ is never vanish in X;

• limef→e0 eF
f ′ = ∞: in the (ef , eF

f ′ )-plane the straight-line ef = e0 is an
asymptote for eF

f ′ ;

• limef→0 eF
f ′ = 0;
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• limef→1 eF
f ′ = −2( 1+n

n+δ ) (n+2−δ)sc+(n+δ)swP

(n+2−δ)(sc−sww)+(n+δ)(swP−sww) ;

• limef→eT
f

eF
f ′ = − (n+2−δ)sc+(n+δ)swP

(n+δ)(swP−sww)

{
< 0 if swP > sww,
> 0 if swP < sww;

• by the Theorem about Sign Permanence the function eF
f ′ has constant

sign on both convexes ]0, e0[ and ]e0, 1], particularly eF
f ′ is positive on the

left of e0 and negative on the right of e0. Moreover the test-point eT
f lies

on the left of e0 if swP < sww and on the right of e0 if swP > sww.

Analogously for eN
f ′ we may say that:

• eN
f ′ depends on ef 6= e00, where e00 = (1−δ)sww

(n+δ)(swP−sww)+(1−δ)sc
;

• eN
f ′ is continuous and monotonically strictly decreasing in X =]0, e00[∪]e00, 1];

• eN
f ′ is never vanish in X;

• limef→e0 eN
f ′ = ∞: in the (ef , eN

f ′ )-plane the straight-line ef = e00 is an
asymptote for eN

f ′ ;

• limef→0 eN
f ′ = 0;

• limef→1 eN
f ′ = (sc−swP )(1+n)

(swP−sww)(n+δ)+(1−δ)(sc−sww) ;

• limef→eT
f

eN
f ′ = sc−sww

swP−sww

{
< 0 if swP < sww,
> 0 if swP > sww;

• by the Theorem about Sign Permanence the function eN
f ′ has constant

sign on both convexes ]0, e00[ and ]e00, 1], particularly eN
f ′ is negative on

the left of e00 and positive on the right of e00. Moreover the test-point eT
f

lies on the left of e00 if swP < sww and on the right of e00 if swP > sww.

5.5.2 The Jacobian matrix evaluated at a dual equilibrium

Setting kD
c = 0 we calculate the Jacobian matrix at a dual equilibrium we obtain

J(kD
w , kD

c ) =
( 1

1+n [1− δ + (swP − sww)f
′′
(kD)kD + swP f

′
(kD)] 1

1+n (swP − sww)f
′′
(kD)kD

0 1
1+n (1− δ + scf

′
(kD))

)
.
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Since the Jacobian matrix J(kD
w , kD

c ) is a diagonal matrix on <, then the eigen-
values λD

1 and λD
2 are real and they correspond to diagonal elements of the

matrix J(kD
w , kD

c ). Therefore the dual equilibrium can’t lose stability through
a Neimark-Saker bifurcation. We recall that the dual equilibrium is stable if
−1 < λD

1 < 1 and −1 < λD
2 < 1. The expression of eigenvalues depends on

saving propensities sww and swp and that lead us to distinguish three cases:

• Case I: sww = swp. The eigenvalues become λD
1 = 1

1+n [1−δ+swpf
′
(kD)]

and λD
2 = 1

1+n [1 − δ + scf
′
(kD)]. Since f

′
(kD) > 0 we deduce that both

eigenvalues are positive. By the assumption swp < sc we obtain that
λD

1 < λD
2 . Thus the stability conditions for dual equilibrium reduces to

relation λD
2 < 1, which holds for kD > kP . As a matter of fact, the

inequality λD
2 < 1 is equivalent to relation 1

1+n [1 − δ + swpf
′
(kD)] < 1,

from which we have firstly f ′(kD) < n+δ
sc

and secondly, by f
′
(kP ) = n+δ

sc
,

f
′
(kD) < f

′
(kP ). Finally, by the property f

′′
(k) < 0 of CES production

function, we deduce kD > kP . Commendatore (2005) explains the last
inequality saying that a stability loss involves a transcritical bifurcation
which goes in the opposite direction to the one that concerns the Pasinetti
equilibrium. Now, it is the dual equilibrium which loses stability and the
Pasinetti equilibrium, already existing, that gains stability.

• Case II: sww < swp. Since f
′′
(kD) < 0 we notice that the term (swP −

sww)f
′′
(kD)kD of eigenvalue λD

1 is negative and λD
1 could be itself neg-

ative. Everyone λD
2 > 0 and λD

2 > max{λD
1 , 0}. Thinking as above, we

deduce that λD
2 < 1 for kP > kD. Moreover from inequality λD

1 > −1 we
obtain the following equivalent relations

1
1+n [1− δ + (swP − sww)f

′′
(kD)kD + swP f

′
(kD)] > −1,

1− δ + (swP − sww)f
′′
(kD)kD + swP f

′
(kD) > −1− n,

(2 + n− δ) + (swP − sww)f
′′
(kD)kD + swP f

′
(kD) > 0,

2+n−δ
f ′ (kD)

+ (swP − sww) f
′′

(kD)kD

f ′ (kD)
+ swP > 0,

swP + 2+n−δ

f
′ (kD)

swP−sww
+ ef ′ (k

D) > 0,

ef ′ (k
D) > εF < −1,

where εF = −
swP + 2+n−δ

f
′ (kD)

swP−sww
.
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We observe that the stability of dual equilibrium may be lost through a
transcritical bifurcation when λD

2 crosses 1 or through a flip bifurcation
when λD

1 crosses− 1.

• Case III: sww > swp. We notice immediately that both eigenvalues
are positive. As a matter of fact is sufficient to observe that the term
(swP − sww)f

′′
(kD)kD of λD

1 is positive. Moreover λD
2 < 1 for kD > kP

and λD
2 < 1 for ef ′ (k

D) > εS < 0, where

εS = −
n+δ

f
′ (kD)

−swP

sww−swP
.

We conclude that the dual equilibrium may lose stability through a saddle-
node (fold or tangent) bifurcation and two equilibria of dual type are cre-
ated, one stable and the other unstable.

5.5.3 The Jacobian matrix evaluated at a trivial equilibrium

We recall that if f(k) is the CES production function then f
′
(0) = (1 − α)

1
ρ ,

where 0 < α < 1 and ρ < 1 (ρ 6= 0), i.e. 0 < f
′
(0) < ∞. By definition of trivial

equilibrium we have

J(k0
w, k0

c ) =
( 1

1+n (1− δ + swP f
′
(0)) 0

0 1
1+n (1− δ + scf

′
(0))

)
.

Since the Jacobian matrix J(k0
w, k0

c ) is an upper triangular matrix on <, then the
eigenvalues λ0

1 and λ0
2 are real and lie along the principal diagonal of the matrix

J(k0
w, k0

c ). If we assume swp < sc, we get 0 < λ0
1 < λ0

2. Therefore the stability of
trivial equilibrium depends on the inequality λ0

2 < 1, i.e. f
′
(0) < n+δ

sc
. We recall

that f
′
(kP ) = n+δ

sc
and f

′′
(k) < 0. Then we derive the relation kP < 0 = k0,

that can’t occur. Thus the trivial equilibrium is never stable.

6 Conclusions

We conclude observing that Commendatore’s model generalizes Böhm and Kaas
(2000) model and Solow (1956) model. As a matter of fact
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• setting sww = swP and k = kw = kc in (5.1)

G(kw, kc) = 1
1+n [(1− δ)k + sww(f(k)− f

′
(k)k) + swP f

′
(k)kw + scf

′
(kc)],

we have the (4.1), i.e. from Commendatore’s model we deduce Böhm and
Kaas (2000) model;

• setting sw = sr in (4.1)

kt+1 = G(kt) = 1
1+n ((1− δ)kt + sww(kt) + srktf

′
(kt)),

we obtain the (2.2), i.e. from Böhm and Kaas (2000) model we deduce
the Solow (1956) model.

Appendix 1: Basic Concepts on the Family of Logistic Maps

The notion of logistic map plays a central role in many economic dynamic models
with chaos, particularly in the Day’s model (1982, 1983). We define the logistic
map setting f(x) = ax(1 − x), where a ≥ 0 and x ∈ <, and we find the fixed
points of f(x) solving the equation ax(1 − x) = x. We obtain the product
x[(a− 1)− ax] = 0 that leads to solutions x = 0 and x = (a− 1)/a (a 6= 1). We
observe that f ′(x) = a−2ax and if we evaluate f ′(x) at x = 0 and x = (a−1)/a
we have f ′(0) = a and f ′(a − 1)/a) = 2 − a. Thus we deduce that x = 0 is
stable if −1 < a < 1 and x = (a − 1)/a is stable if 1 < a < 3. If we see the
logistic map as a dynamical system, i.e. xt+1 = axt(1−xt), where t is a discrete
time (t = 0, 1, . . .), we can say that if −1 < a < 1 the attractor x = 0 have as
basin of attraction the set of point between 0 and 1. Following Alligood et al.
(1996), about the dynamic of growth of populations, the previous result means
that with small reproduction rates, small populations tend to die out. Instead
for 1 < a < 3 the point x = 0 is unstable and x = (a−1)/a is stable and we can
say that small populations grow to steady-state of x = (a − 1)/a (See Figure
13).
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Figure 13: Logistic Map

We suppose that xt ∈ [0, 1], a ∈ [0, 4] and we note that :

• xt+1 = axt(1− xt) is a concave quadratic function which maps [0, 1] onto
itself for all a ∈ [0, 4];

• in the (xt, xt+1)-plane xt+1 = axt(1 − xt) represents an example of uni-
modal map, i.e. it has an unique point x∗ which maximize f(xt, a), it is
smooth and there are two points α and β such that f(α, a) = 0 = f(β, a),
where f(xt, a) = axt(1− xt);

• the one-dimensional map f(xt, µ) is not invertible because, fixed xt+1,
exist two points xt and xt′ such that xt+1 = f(xt, a) = f(xt′ , a).

From the assumptions on a and xt we deduce that

• f
′
(xt, a) = a(1− xt)− axt = 0 if and only if x∗ = 1

2 ;

• f( 1
2 , a) = a

4 ≤ (4)(1
4 ) ≤ 1.

The trajectories of dynamical system xt+1 depend on the value of a. As a matter
of fact xt+1 presents (R.H. Day, 1982)

• monotonic contraction to 0 if 0 < a ≤ 1;

• monotonic growth converging to x = a−1
a if 1 < a ≤ 2;
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• oscillations converging to x = a−1
a if 2 < a ≤ 3;

• continued oscillations if 3 < a ≤ 4.

Appendix 2: The Li-Yorke Theorem

In 1975 Li and Jorke published a work entitled ”Period three implies chaos ”
which has collected favor among economists ”because its simplicity as it requires
only checking the existence of a period-3 orbit in order to deduce the existence of
”chaos”” one-dimensional (Boldrin-Woodford (1990, 1992)). We simply stating
the Li-Yorke theorem and refer to the original work for a demonstration (See
Figure 14).

Theorem of Li-Yorke Let J be an interval in < and let f : J → J be a
continuous map. We consider the difference equation

xt+1 = f(xt) (?)

and we admit there exists a point x ∈ J such that

f3(x) ≤ x < f(x) < f2(x).

Then

• For every k = 1, 2, 3, . . ., there exists a k-periodic solution such that xt ∈ J
for all t.

• There is a countable set (containing no periodic points) S ⊂ J for every
x0 ∈ J the solution path of difference equation (?) remains in S and

– for all x, y ∈ S, x 6= y,

lim supt→∞ |f t(x)− f t(y)| > 0, lim inft→∞ |f t(x)− f t(y)| = 0;

– for all periodic points x and all points y ∈ S,

lim supt→∞ |f t(x)− f t(y)| > 0.
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Figure 14: A map with a period three orbit

Appendix 3: A CES Production Function

We define CES Production Function , where the term CES stands for Constant
Elasticity of Substitution, the following function

f(k) = [α + (1− α)kρ]
1
ρ ,

being k the capital/labor ratio, 0 < α < 1 a constant, −∞ < ρ < 1 and ρ 6= 0
a parameter.

The main features of CES production function f(k) are:

1. f ′(k) > 0 for all k ≥ 0 (i.e. f(k) is increasing);

2. f ′′(k) < 0 for all k ≥ 0 (i.e. f(k) is concave);

3. limρ→0 f(k) = k1−α (i.e. when ρ tends towards 0 the CES behaves as a
Cobb-Douglas);

4. limρ→−∞ f(k) = min{1, k} =
{

k, if 0 < k < 1
1, if k ≥ 1 ;

5. limρ→1 f(k) = α + (α− 1)k;
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6. 0 < f ′(0) < ∞.

As a matter of fact:

• f ′(k) = 1
ρ [α + (1− α)kρ]

1
ρ−1ρ(1− α)kρ−1

= (1− α)kρ−1[α + (1− α)kρ]
1
ρ−1

= (1− α)kρ−1k1−ρ[αk−ρ + (1− α)]
1−ρ

ρ

= (1− α)[αk−ρ + (1− α)]
1−ρ

ρ > 0;

• f ′′(k) = (1− α) 1−ρ
ρ [αk−ρ + (1− α)]

1−ρ
ρ −1(−ραk−ρ−1)

= α(1− α)(ρ− 1)k−ρ−1[αk−ρ + (1− α)]
1−2ρ

ρ < 0;

• limρ→0 f(k) = limρ→0 e
ln[α+(1−α)kρ]

ρ = limρ→0 e
(1−α)kρ ln k
α+(1−α)kρ

= limρ→0 eln k1−α

= k1−α;

• Because limρ→−∞ kρ is equal to 0 if k > 1 and it is equal to∞ if 0 < k < 1,
then

limρ→−∞ f(k) = limρ→−∞ e
ln[α+(1−α)kρ]

ρ

is equal to e0 = 1 if k > 1 while it is equal to eln k = k if 0 < k < 1.

Let f(k) be a production function in intensive form. We set ef (k) = kf
′
(k)

f(k)

and ef ′ (k) = kf
′′

(k)

f ′ (k)
. If f(k) is a CES production function we obtain that

ef (k) = (1− α)(αk−ρ + 1− α)−1 and ef ′ (k) = α(ρ− 1)[α + (1− α)kρ]−1. As a
matter of fact

• ef (k) = f
′
(k)k

f(k) = (1−α)[αk−ρ+(1−α)]
1−ρ

ρ k

[αk−ρ+(1−α)]
1
ρ k

= (1− α)[αk−ρ + (1− α)]−1;
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• ef ′ (k) = kf
′′

(k)

f ′ (k)
= α(1−α)(ρ−1)k−ρ−1[αk−ρ+(1−α)]

1−2ρ
ρ k

(1−α)[αk−ρ+(1−α)]
1−ρ

ρ

= α(ρ− 1)k−ρ[αk−ρ + (1− α)]−1

= α(ρ− 1)k−ρkρ[α + (1− α)kρ]−1

= α(ρ− 1)[α + (1− α)kρ]−1.

Obviously, ef ′ (k) < 0 for all ρ < 1 (ρ 6= 0) and for all k ≥ 0.

Developing an observation of Commendatore (2005, p.16) we establish that (See
Figure 15 and Figure 16)

Proposition A3.1 If f(k) is the CES production function then the inequality

ef ′(k) > −1

is true always for all 0 < ρ < 1 and for all k ≥ 0; while if ρ < 0 the inequality
is verified only for those k ∈]0, k?[, where k? = ( αρ

α−1 )
1
ρ and ef ′ (k

?) = −1.

Proof Let 0 < α < 1 be. We observe that:

• def′ (k)

dk = αρ(ρ−1)(α−1)kρ−1

[α+(1−α)kρ]2 ;

• ef ′(k) is strictly increasing if 0 < ρ < 1 and is strictly decreasing if ρ < 0;

• limk→0 ef ′ (k) =
{

(ρ− 1) if 0 < ρ < 1,
0 if ρ < 0;

• limk→+∞ ef ′ (k) =
{

0 if 0 < ρ < 1,
(ρ− 1) if ρ < 0.

Being ef ′(k) continuous on the interval ]0,+∞[, by Bolzano’s Theorem 1, the
range J of ef ′ (k) is an interval, and, by Theorem about limits of monotonically
functions2, J is equal to ](ρ− 1), 0[ for all ρ < 1 (% 6= 0).

1Let g : X ⊆ < → < be. If g is continuous on X and X is an interval, then g(X) is an
interval.(For a proof of the Bolzano’s Theorem see Vincenzo Aversa (2006))

2Let g : X ⊆ < → < be. We suppose that infX and supX are points of accumulation for
X. Then,
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Now we consider 0 < ρ < 1. Since −1 < ρ − 1 = inf{ef ′(k) : k ≥ 0} ≤ ef ′(k),
we obtain that ef ′(k) > −1.

After we fix ρ < 0 and we solve the equation ef ′(k) = −1. We have as an unique
solution k? = ( αρ

α−1 )
1
ρ . Being ef ′(k) strictly decreasing, for all 0 < k < k?,

ef ′(k) > ef ′(k?) = −1. Q.E.D.

Figure 15: The case ρ < 0

Figure 16: The case ρ < 1

• for x → infX, g(x) → inf(g(X)) if g is monotonically increasing, otherwise g(x) →
sup(g(X)) if g is monotonically decreasing;

• for x → supX, g(x) → sup(g(X)) if g is monotonically increasing, otherwise g(x) →
inf(g(X)) if g is monotonically decreasing.

(See Vincenzo Aversa (2006))
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