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On Construction of Robust Composite Indices by Linear Aggregation 
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I. Introduction: A composite index ( nkI k ,1: = ) is often a (weighted) linear aggregation of 

numerous indices ( nkmjxkj ,1;,1: == ) such that kj

m

j jk xwI ∑ =
=

1
. As to the assignment of 

weights to different indices, there are two approaches: the first in which the weights are 

determined  on the basis of some information or considerations exogenous to the data on index 

variables ( ),Xxkj ∈  and the second in which the weights  are endogenously determined such 

that ).(Xfw = The most robust composite index is the one that is exogenously determined 

since in that case w  is used as a parameter and, therefore, ).|( wXI ϕ=   However, when 

weights are endogenously determined, we have )).(,( XfXI ϕ= In this latter case, the 

composite index, ,I  depends not only on the index variables, ,X  but also on the specification 

of the function, (.),f  that obtains weights, ,w  from .X  

To make this point clearer, let kjx be perturbed such that kjkjkj xx ∂+⇐ where 

.0≠∂ kj  If weights are not derived from ,X then kjjkk wII ∂+⇐   and .i k i kI I≠ ≠⇐ That is, the 

perturbation affects kI only. However, if weights are derived from ,X a perturbation of one of 

the values of kjx would in most cases alter the values of w  as well as the values of .,1 nkI k =∀  

A perturbation of kjx will pervade throughout even though all of :ipx i k p j≠ ∧ ≠ have 

remained unchanged. The extent of pervasiveness, which is not a desirable property of the 

composite index, would depend on the specification of ).(Xfw =   

There is an additional point to be noted. When ,)|( XwwXI == ϕ the weight, jw , 

which may be viewed as jxI ∂∂ is constant and hence I is indeed a linear combination of .X  

However, when )),(,( XfXI ϕ= the weight, ,jw  in general , is not constant and, therefore, I  

is not a linear combination of .X  In that case, these weights, which may also be viewed as the 

rate of substitution among different constituent indices, lose interpretability in any simple 

manner and hence go far off the desirable property of easy comprehensibility. 

 

II. Two Desirable Propertied of a Composite Index: Now we enunciate two desirable properties 

of a composite index: (i) change in kjx  best be reflected into a change in kI , which we call 

sensitiveness, and (ii) change in kjx  be least reflected into changes in ,: kiI
i

≠ which we will 

call robustness. Sensitiveness implies stronger correlation between the composite index, ,I  and 

the constituent index variables, .Xx j ∈  On the other hand, robustness implies insensitiveness 

of w  to changes in .X  
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III. The Simplest Method of Construction of a Composite Index: Perhaps the simplest method 

of constructing a composite index is to obtain .,1:)/1(
1∑ =

==
m

j kjk nkxmI  It implies 

.,1:/1 mjmw j ==  Viewed as such, this method yields a robust composite index. It also 

follows the law of insufficient reason; that in absence of any indubitable basis of determining 

the weights assigned to different index variables, they all carry equal weights. In the last few 

years, after it was used for construction of the ‘human development index’, this method has 

won many adherents. In applying this method, on many occasions, the index variables, ,sx j  are 

standardized or normalized in some manner such that )),((/)( jjj xgnormxgx ⇐ where 

)( jxg is a monotonic function of .jx  The ))(( jxgnorm may be ),((ˆ)),((max jkj
k

xgxg σ

|,)(| jkj
k

xmedxmed − etc. The choice of a suitable norm is important. Certain types of norm 

may run against the desirable property of robustness. On the other hand, sensitiveness of the 

composite index constructed by this method is rather suboptimal.   

 

IV. The Method of the Principal Components Analysis: The well known Principal Components 

Analysis (PCA) is another method to obtain the composite index. It attributes two properties to 

XwI = : first, that it maximizes the sum of squared (Karl Pearson’s or product moment) 

coefficients of correlation between I and ,,1; mjx j =  and the second, that it is orthogonal to 

any other index, ,: wvXvJ ≠= that may be derived from X by maximization of the sum of 

squared correlation coefficients between J and .jx  Stated differently, the PCA-based 

composite index satisfies two criteria: i) ),(:
1

2

j

m

j
xIrXwI ∑ =

= is maximum, and ii) if 

),(max:
1

2∑ =
=

m

j jxIrXwI and ,);,(max:
1

2
vwxJrXvJ j

m

j
≠= ∑ =

then the coefficient of 

correlation between the two such composite indices, .0),( =JIr  Except in an extremely 

special case when the constituent index variables  themselves are pair-wise orthogonal, I and 

J both cannot attain the global maximum. The global maximizer composite index is unique.  

The technique to obtain such a (unique) global maximizer composite index by PCA   

consists of, first, obtaining the matrix, ,R  of correlation coefficients, ,Rrij ∈  between each pair 

of index variables, ix   and ,jx  and, then, obtaining the eigenvalues ( mλλλ ,...,, 21 ) and the 

eigenvectors ( muuu ,...,, 21 ) of .R The eigenvectors are then normalized to satisfy the condition

ju j ∀= 1|||| (or, sometimes, ju jj ∀= λ|||| ), where || ||i denotes the Euclidean norm. These 

normalized eigenvectors are used as weights to construct the composite indices. The index 

constructed by using the eigenvector associated with the largest eigenvalue is often used as the 

first best composite index. This index attains the global maximum mentioned earlier. 

The composite index thus obtained has many optimal properties. However, this PCA 

based index is often elitist (Mishra, 2007-b), with a strong tendency to weight highly correlated 

subset of X favourably and relegating poorly correlated index variables to the subsequent 

principal components. In practice, when one has to use only one composite index to represent 

,X the poorly correlated index variables remain largely unrepresented. Since correlation is no 

measure of importance, many highly important but poorly correlated index variables may thus 

be undermined by the PCA-based composite index.  



3 

 

The said elitist property of the PCA based index may possibly be ameliorated by 

application of multi-criteria analysis. It has been suggested (Mishra, 1984) that multiple PCA-

based composite indices ( mjI j ,1: = ) obtained by using different eigenvectors of R (of X ) 

can be subjected to multi-criteria decision-making/concordance analysis (Hill and Tzamir, 1972; 

van Delft and Nijkamp, 1976) for establishing outranking relationship among the objects ( kA ) 

represented by .,1:,...,,( )21 nkxxxx kmkkk ==  Each  composite index, ,jI  will take on a 

weight according to its explanatory power measured by the eigenvalue, jλ  (of R ), associated 

with it. Since PCA-based composite indices are much fewer than the number of index variables 

in ,X  it is expected that this approach will be sharper than the approach that applies multi-

criteria decision-making tools on X itself (Munda and Nardo, 2005-a and 2005-b).  It may be 

noted, however, that the earlier approach derives endogenous weights from X  itself, while the 

latter approach needs exogenous weights. 

Another possible approach to abate the elitist tendency of the composite indices is to 

derive them not by maximization of the sum of squared correlation coefficients between the 

composite index and the constituent index variables as the PCA does, but by maximization of 

the sum of absolute (product moment) correlation coefficients between them (Mishra, 2007-a). 

That is: the composite index, XwI =  maximizes ∑ =

m

j jxIr
1

),( . This sort of index is said to be  

inclusive in nature since it does assign suitable weights to poorly correlated indicator variables. 

Yet another possible method to obtain a composite index, XwI = , consists of maximization of 

the minimal absolute or squared (product moment) correlation coefficient: 

].),(minmax[(: j
j

xIrXwI =  This approach assigns the most egalitarian weights to all index 

variables and hence favours the poorly correlated indicator variables most (Mishra, 2007b). 

 

V. Replacement of Pearson’s Correlation Coefficient by Robust Correlation Coefficient: 

Arithmetic mean, standard deviation and product moment correlation coefficient are the 

members of the same family, based on minimization of the Euclidean norm. All of them are very 

much sensitive to perturbation, errors of observation or presence of outliers in the dataset. If 

the weights, ,w in XwI =  are obtained by maximization of the product moment correlation 

(whether  ),,(max
1

2

j

m

j
xIr∑ =

 ∑ =

m

j jxIr
1

|),(|max or |]),((|minmax[ j
j

xIr ), errors of 

observation,  effects of perturbation  or presence of outliers on weights would surely be 

substantial and pervasive. Therefore, there is a need to replace product moment correlation 

coefficient by some more robust measure of correlation. 

Since the formula of computing the product moment correlation is fundamental to 

development of many other measures of correlation, we present it here. The product moment 

coefficient of correlation is defined as:  

)var()var(/),cov(),( 212121 xxxxxxr ⋅=
     …  (1) 

where, ∑ =
=

n

i iaa x
n

x
1

;
1

 
2

2

2

121 121

1
),cov( xxxx

n
xx i

n

i i −= ∑ =
 and ).,cov()var( aaa xxx = The 

quarter square identity (Gnanadesikan and Ketttenring, 1972) gives us: 

[ ]∑∑∑ ===
−−+=

n

i ii

n

i iii

n

i i xxxxxx
1

2

211

2

2121 1 )()(
4

1
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[ ] [ ]∑∑ ∑ ∑ ∑ ∑ ∑ == = = = = =
=+−−++=

n

i ii

n

i

n

i

n

i

n

i

n

i i

n

i iiiiiii xxxxxxxxxx
1 211 1 1 1 1 21 1

2

2

2

121

2

2

2

1 4
4

1
22

4

1

. 

Exploiting this identity we may write  

[ ] )var()var()var()var()4/1(),( 21212121 xxxxxxxxr ⋅−−+=
  …  (2). 

This formula (2) is of a great relevance for development of some other formulas of correlation.  

There is one more identity that may be interesting. This identity is given as:  

)())(( 21212121 1 121 1 211 jjijjii

n

i

n

j ij

n

i

n

j iji xxxxxxxxxxxx +−−=−− ∑ ∑∑ ∑ = == =  

1 2 1 2 2 1 1 21 1 1 1

n n n n

i i i j i j j ji j j j
nx x x x x x x x

= = = =
 = − − +
 ∑ ∑ ∑ ∑  

∑∑ ∑∑ ∑∑ == == ==
+−−=

n

j jj

n

i

n

j ji

n

i

n

j ji

n

i ii xxnxxxxxxn
1 211 1 121 1 211 21

    … (3) 

Now, since ∑∑ ==
≡

n

j jj

n

i ii xxxx
1 211 21

and   ∑∑ ==
≡

n

j ja

n

i ia xx
11

for ,2,1=a we rewrite (3) as 

[ ] ),cov(2
1

22 21

2

1 2121

2

1 1 1 2121 xxnxxxx
n

nxxxxn
n

i ii

n

i

n

i

n

i iiii =





−=− ∑∑ ∑ ∑ == = =

     …  (4) 

Further simplified, ).,cov())(( 21

2

221 11 xxnxxxx ji

n

i

n

ij ji =−−∑ ∑= =
  However, for ji = the 

terms take on zero value and, thus, ).,cov())(( 21

2

22

1

1 1 11 xxnxxxx ji

n

i

n

ij ji =−−∑ ∑
−

= +=
This 

invariance of sum over ji ≤ and ji <  has important bearings when n  is not vary large. 

 

VI. Robust Measures of Correlation: Statisticians have proposed a number of formulas, other 

than the one that obtains Pearson’s coefficient of correlation, that are considered to be less 

affected by errors of observation, perturbation or presence of outliers in the data. Some of 

them transform the variables, say 1x  and ,2x  into )( 111 xz φ= and ),( 222 xz φ= where )( aa xφ

is a linear (or nonlinear) monotonic (order-preserving) rule of transformation or mapping of ax  

to .az Then, ),( 21 zzr is obtained by the appropriate formula and it is considered as a robust 

measure of ).,( 21 xxr  Some others use different measures of central tendency, dispersion and 

co-variation, such as median for mean, mean deviation for standard deviation and so on. In 

what follows, we present a few formulas of obtaining different types of correlation efficient. 

 

VI.1. Spearman’s Rank Correlation Coefficient: If 1x  and 2x  are two variables, both in n  

observations, and )( 11 xz ℜ=  and )( 22 xz ℜ=  are their rank numerals, then the Pearson’s 

formula applied on ),( 21 zz  obtains the Spearman’s correlation coefficient (Spearman, 1904). 

There is a simpler (but less general) formula that obtains rank correlation coefficient, given as: 

)]1(/[)(61),(),( 22

21 12121 −−−== ∑ =
nnzzzzrxx i

n

i iρ
  … (5) 

 

VI.2. Signum Correlation Coefficient: Let 1c and 2c be the measures of central tendency or 

location (such as arithmetic mean or median) of 1x  and 2x respectively. We transform them to 

||/)( aiaaiaia cxcxz −−=
 

if | | 0, 1.ia a iax c else z− > =  Then, ),( 21 zzr is the signum 
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correlation coefficient (Blomqvist, 1950; Shevlyakov, 1997). Due to the special nature of 

transformation, we have 

21 12121 )1(),cov(),( i

n

i i zznzzzzr ∑ =
=≅     …  (6) 

In this study we will use median as a measure of central tendency to obtain signum correlation 

coefficients. 

 

VI.3. Bradley’s Absolute Correlation Coefficient: Bradley (1985) showed that if 

( , ); 1,i iu v i n=
 
are n pairs of values such that the variables u  and v  have the same median = 0 

and the same mean deviation (from median) or 
1 1

(1/ ) (1/ ) 0
n n

i ii i
n u n v d

= =
= = ≠∑ ∑ , both of 

which conditions may be met by any pair of variables when suitably transformed, then the 

absolute correlation may be defined as  

( , )u vρ = ( ) ( )
1 1

.
n n

i i i i i i
i i

u v u v u v
= =

+ − − +∑ ∑
   … (7) 

 

 

VI.4. Shevlyakov Correlation Coefficient: Hampel et al. (1986) defined the median of absolute 

deviations (from median) as a measure of scale, |)(|)( ia
i

ia
i

aH xmedianxmedianxs −=  which 

is a very robust measure of deviation, and using this measure, Shevlyakov (1997) defined 

median correlation,  

[ ] [ ]|||||||| 2222 vmedumedvmedumedrmed +−=
   … (8) 

 where u and v  are given as )(/))(()(/))(( 222111 xsxmedxxsxmedxu HiiHiii −+−= and 

).(/))(()(/))(( 222111 xsxmedxxsxmedxv HiiHiii −−−=  

 

VI.5. Campbell’s Correlation Matrix: Unlike the coefficient of correlation defined by the 

formulations above that consider correlation between any pair of variables at a time (and thus 

presuming that other variables do not exist, while indeed they do exist), Campbell (1980) 

obtained the entire matrix of robust correlation coefficients simultaneously, discounting for the 

effects of outliers.  The main idea behind Campbell’s correlation is to obtain ZZV 1−Ω′=  

instead of IZZ ′ where 
1 ,I−Ω ≠ but an inverted Mahalanobis-Aitken distance matrix defined in 

a specific manner.   

 Campbell’s method is an iterative method that obtains the −m element vector of 

weighted (arithmetic) mean, ,x  and weighted variance-covariance matrix, ),,( mmV  
in the 

following manner. Initially, all weights, niwi ,1; =  are considered to be equal, ,/1 n and the sum 

of weights, .1
1

=∑ =

n

i iw  Further, we define 
0 1 1 2/ 2; 2, 1.25.d m b b b= + = =  

Then we obtain 

 

∑∑ ==
=

n

i ii

n

i i wxwx
11

/
                 

 

   

2 2

1 1
( ) ( ) / 1

n n

i i i ii i
V w x x x x w

= =
 ′= − − −
 ∑ ∑

   … (9) 

{ } nixxVxxd iii ,1;)()(
2/11 =′−−= −

      
:,1;/)( niddw iii == ω ]/))(2/1(exp[)()( 2

2

2

000 bddddelseddifdd iiiii −−=≤= ωω
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It may be noted that execution of the last operation redefines niwi ,1; =  which may be 

significantly different from the niwi ,1; =
 
in the first operation. If this process is repeated, 

niwi ,1; =  stabilizes and so stabilize ,, Vx  and .,1; nid i =   We will call it Campbell (type-I) 

procedure. A few points are worth noting. If V is ill-conditioned for ordinary inversion, a 

generalized (Moore-Penrose) inverse of V  or 
+

V may be used for 
1−

V  and if 0=id  or 0≈id  

then  .1=iw   From V one may obtain ,R the correlation matrix, since ./ jjiiijij vvvr =
 

It may also be noted that there can be other approaches to specify ).( idω  Any scheme 

that assigns lower weight to larger magnitude of id  will make V a robust measure of 

covariance. Assigning weights such as 1iw =  for ( ) ( ),i H i i Hd s d d d s d− ≤ < +  
2(1/ 2)iw = for 

2 ( ) ( )i H i i Hd s d d d s d− ≤ < −  and 2 ( ) ( )i H i i Hd s d d d s d+ ≥ > +  and so on may also be very 

effective in robustization of correlation matrix. Although Campbell (1980) has not suggested this 

procedure to assign weights, we will call it Campbell (type-II) procedure since in all other 

respects it is similar to his method of obtaining the robust correlation matrix.  

 

VII. Robustness of Correlation Matrices in Simulated Data: Now we propose to compute 

different measures of correlation coefficient listed above and to compare their performance as 

to robustness in presence of outliers and mutilating perturbations in the data  (indicator 

variables, X ). This exercise is based on simulated data. We generate a single variable, 

1 1: ; 1,ix x i n=  ( 30)n = randomly and scale the values such that each 1ix  lies between 10 and 

50 with equal probability. With 1x  we generate ; 1, ; 1,ijx i n j m= =  ( 6m = ) such that 

1 ,ij i ijx x e= + where 
ije are random and uniformly distributed between (-10, 10). As a result of 

this mutilation the correlation between any two variables, ,j kx x X∈ would be appreciably 

large. These six variables are then used  to construct composite index,  .I Xw=  The generated 

variables ( X ) and the correlation matrix ( R ) obtained from them by using different formulas 

(Pearson, Spearman, Signum, Bradley, Shevlyakov and Campbell) are presented in Table-1 and 

Table-2.1 through Table-2.3. 

It may be noted that unless we add 
ije to 

ijx , the coefficient of correlation ( , )i jr x x

between any two variables ,i jx x X∈ is unity. Once errors are introduced, correlation 

decreases. The range and magnitude of 
ije determines the reduction in the magnitude of 

correlation.  We have chosen (-10, 10) as the range of 
ije so as to keep high correlation among 

the variables, and all 
ijx to lie between zero and sixty. With this X we compute thirteen 

composite indices as detailed out in section VIII. Then we mutilate or introduce an outlier into 

X and compute thirteen composite indices as spelt out in section VIII and compare them. For 

mutilation, we add 1000 to 11x  (the first observation on 1x ) which shifts the median of  1x  from 

30.46484 to 31.02664 and mean of 1x  from 29.89639 to 63.229724. Now, 11x  is clearly an 

outlier observation.  Effect of this outlier permeates through all correlation coefficients, 

presented in Table 3.1 through 3.3. 

A perusal of Tables 3.1 through 3.3 reveals that Karl Pearson’s, Signum, Bradley’s and 

Campbell’s (type-I) correlation matrices have been evidently poor at containing the effects of 

mutilation. A number of correlation coefficients have changed significantly in magnitude, sign or 
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both. However, Shevlyakov’s correlation matrix has been affected only slightly.  Campbell (type-

II) correlation matrix has been most robust (table-3.4). 

 

VIII. Construction of Composite Indices: As mentioned above, from X we construct thirteen 

indices by using the following procedures: 

(i) By averaging over variables: 0 1
(1 )

m

i ijj
I m x

=
= ∑  

(ii) By maximizing 1 1 11
| ( , ) |:

m

jj
r I x I Xw

=
=∑ , where 1( , )jr I x is Pearson’s correlation 

between 1I and 
jx  

(iii) By maximizing 
2

2 2 21
( , ) |:

m

jj
r I x I Xw

=
=∑ , where 2( , )jr I x is Pearson’s correlation 

between 2I and 
jx  

(iv) By maximizing 3 3 31
| ( , ) |:

m

jj
r I x I Xw

=
=∑ � , where 3( , )jr I x� is Bradley’s correlation 

between 3I  and 
jx  

(v) By maximizing 4 4 41
| ( , ) |:

m

jj
I x I Xwρ

=
=∑ , where 4( , )jI xρ is Spearman’s 

correlation between 4I  and 
jx  

(vi) By maximizing 
2

5 5 51
( , ) :

m

jj
I x I Xwρ

=
=∑ , where 5( , )jI xρ is Spearman’s 

correlation between 5I  and 
jx  

(vii) By maximizing 6 6 61
| ( , ) |:

m

jj
r I x I Xw

=
=∑

�
, where 6( , )jr I x

�
is the signum 

correlation between 6I  and 
jx  

(viii) By maximizing 
2

7 7 71
( , ) :

m

jj
r I x I Xw

=
=∑

�
, where 7( , )jr I x

�
is the signum 

correlation between 7I  and 
jx  

(ix) By maximizing 8 8 81
| ( , ) |:

m

jj
r I x I Xw

=
=∑

�
, where 8( , )jr I x

�
is the Shevlyakov 

correlation between 8I  and 
jx  

(x) By maximizing 
2

9 9 91
( , ) :

m

jj
r I x I Xw

=
=∑

�
, where 9( , )jr I x

�
is the Shevlyakov 

correlation between 9I  and 
jx  

(xi) 10I
 
obtained from the first principal component of ,R  where R is the Campbell’s 

correlation matrix with the ( )dω as defined in Campbell (1980) mentioned above. 

(xii) 11I
 
obtained from the first principal component of ,R where R is the Campbell’s 

correlation matrix with the ( )dω  defined in Campbell (type-II) above. 

(xiii) MI  obtained by ( )ˆmax min(| ( , ) |M j
j

r I x  where ˆ( , )M jr I x is any specific (Pearson’s, 

Spearman’s, Signum or Shevlyakov or any other type of) correlation between MI   

and .jx  Thus MI is a class of indices whose members are different according to the 

type of correlation coefficient they use, but generically they all  use the maxi-min 

criterion. In this paper we will use Spearman’s correlation only to obtain .MI  
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The thirteen types of composite indices enumerated above have been constructed with 

and without mutilation of 11x  of .X  The composite indices, the weights used to construct them 

and the relevant correlation of the composite indices ( I ) with the constituent indicator 

variables ( X ) are presented in Tables 4.1 through 5.2. Except 0I , which is constructed by a 

simple arithmetic averaging of variables (
6

0 1
(1/ 6)i ijj

I x
=

= ∑ ) all other composite indices ( 1I  

through 11I and MI ) are based on maximization of different types of correlation. Since 0I is not 

based on correlation, it is not relevant to compare its correlation with the constituent variables 

across the Tables 4.2 and 5.2. They are presented only for the completeness of those tables. 

 

IX. A Comparison of the Two Properties of Composite Indices: Earlier in section II of this paper 

we have noted two desirable properties of indicators, viz. sensitiveness to autochthonous 

changes ( ,alpha α ),  and robustness or immunity to allochthonous changes ( ,beta β ).  We 

define them as follows: 

( )
0.5

2
( ) (1/ ) ( ) ; (1,2,..., )p pu pvp

Alpha n I I p N nα = − ∈ =∑ ; where 
p

n =no. of elements of N 

that refer to the  mutilated row(s) p  of X (that contain(s) outliers); in our present case, 
p

n =1. 

Higher value of α indicates higher sensitivity and is a desirable property. 

( )
0.5

2
( ) (1/ ) ( ) ; (1, 2,..., )q qu qvq

Beta n I I q N nβ = − ∈ =∑ ; where 
q

n =no. of elements of N 

that refer to un-mutilated rows q  of X (that do not contain outliers); presently, 
p

n =29 =(30 -

p
n )=(30-1). A lower value of β  is preferable to a higher value. Ideally β  should be zero. 

Further, ,
p q

n n n+ =  and . ( 4.1)uI Table − and . ( 5.1)vI Table − are the composite indices 

constructed from un-mutilated (outlier-free) variables and mutilated (outlier-infested) variables. 

A perusal of Table-6 reveals that the beta values of mean-based, squared (S-) Spearman, 

Campbell-II, absolute (A-) Spearman and maxi-min  correlation based composite indices are 

lower. That means that in these composite indices the effects of outliers/mutilation are largely 

contained only by those observations that are directly affected and their effects do not 

percolate or pervade through all other observations. On the other hand, the alpha values (direct 

sensitivity) of S-signum, Campbell-II, Campbell-I and Mean-based   indices are relatively much 

higher than those of the other indices. Taking both criteria together, Mean-based, Campbell-II 

and maxi-min composite indices are better than others. Among the correlation-based indices,  

Campbell-II is the best one, seconded by the maxi-min composite index. If S-Spearman weights 

are used on X to compute composite index, 5I has an excellent performance.  

 

Concluding Remarks: When dealing with the real data obtained from the field, one does not 

know the location, magnitude or sign of outliers/errors of observation. When these (defective) 

data are used for sophisticated multivariate analysis, the results may be far from the reality. 

Correlation matrices (or covariance matrices) make a basis for a number of statistical methods. 

When correlation matrices are affected by outliers/errors/mutilations, the subsequent results 

become misleading. The composite indices are only a case in the large spectrum. 

 Our findings suggest that when we suspect the data to contain outliers or errors of a 

large magnitude, we should use a robust measure of correlation such as Campbell-II. For 

constructing indices, either the simple mean-based method (with suitable scaling of indicator 
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variables) or the Campbell-II correlation, S-Spearman or maxi-min correlation based method 

should be used. In particular, S-Spearman weights should be used on X rather than ( ).Xℜ For 

multivariate analysis such as the principal component analysis (Devlin, et al. 1981), the factor 

analysis, the discriminant analysis and the canonical correlation analysis including the regression 

analysis, one should prefer to use robust measures of correlation (covariance) than the Karl 

Pearson’s correlation.       
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Table-1. Generated X(30, 6) Variables to be used as Indictors to construct Composite Indices 
[Seed for generating random number = 1111] 

Sl  No. X1 X2 X3 X4 X5 X6 

1 3.24515 17.11875 18.93120 4.94349 4.70523 9.16500 

2 24.84912 18.12915 17.68236 15.48139 26.29670 10.99727 

3 50.34351 53.23216 52.77337 44.02273 55.64800 44.15540 

4 40.42578 42.36102 36.21973 41.95478 31.63675 38.11307 

5 32.62840 44.66287 31.38759 43.42580 35.13244 37.02850 

6 31.13495 30.16973 30.22937 19.27427 33.00687 33.99838 

7 19.73745 4.94763 15.00810 8.47932 18.76237 19.21965 

8 16.90762 13.96999 24.57726 14.65958 19.68803 19.11785 

9 4.93962 18.00873 14.51709 15.94525 15.93895 3.04773 

10 25.32545 37.60286 26.88260 32.06437 39.63724 38.43864 

11 30.01135 48.71366 39.05519 32.78365 42.08059 34.30613 

12 29.39361 17.44837 18.65002 33.36702 30.85420 23.32429 

13 30.91832 43.30296 40.68762 33.53372 34.14844 42.22184 

14 17.41810 22.20521 24.75624 36.97844 27.35229 19.59569 

15 41.99813 52.38159 53.82127 49.00823 47.17287 39.47807 

16 13.07349 4.42329 19.37725 6.95275 17.82013 14.84487 

17 37.90192 30.73150 28.63064 40.55927 31.03877 26.55806 

18 28.43454 41.56275 31.12926 30.37443 39.74691 42.77524 

19 46.61491 42.26589 51.81282 48.23561 40.84989 48.73060 

20 34.93265 46.54018 32.38450 42.98263 33.97258 44.52911 

21 13.43902 25.00785 14.55443 27.71442 20.75521 20.55992 

22 36.88546 27.41065 37.41027 42.68135 44.31126 26.65092 

23 34.88258 30.03870 26.65572 29.95285 20.18235 31.88528 

24 29.43575 33.02137 31.16716 27.77126 24.08382 32.52221 

25 32.96518 39.92390 47.31983 49.06694 32.98625 40.77812 

26 17.42287 36.16056 25.28987 31.42659 26.08310 18.79163 

27 24.50782 36.18683 27.17725 28.00860 34.08299 23.04710 

28 43.89777 57.91221 49.96161 56.12815 44.68269 40.51109 

29 56.54121 41.96319 52.67857 48.17311 44.70189 44.42373 

30 46.68000 46.61551 40.08049 41.45077 48.48765 38.37636 

Mean 29.89639 33.46730 32.02696 32.58003 32.19488 30.23973 

S. Dev. 12.74549 13.91941 12.08567 13.47113 11.2664 12.00505 

 

.. 

Table-2.1. Correlation Matrix of  Indictor Variables, X of Table-1. 

Karl Pearson’s Coefficients of Correlation  Spearman’s Coefficients of Correlation 

 X1 X2 X3 X4 X5 X6  X1 X2 X3 X4 X5 X6 

X1 1.00000 0.72248 0.84368 0.80455 0.83642 0.83081  1.00000 0.74772 0.85984 0.82736 0.79088 0.79399 

X2 0.72248 1.00000 0.81841 0.82252 0.79408 0.82192  0.74772 1.00000 0.85806 0.77842 0.83715 0.81491 

X3 0.84368 0.81841 1.00000 0.80499 0.80900 0.82533  0.85984 0.85806 1.00000 0.83582 0.85228 0.85495 

X4 0.80455 0.82252 0.80499 1.00000 0.78561 0.76657  0.82736 0.77842 0.83582 1.00000 0.77486 0.77397 

X5 0.83642 0.79408 0.80900 0.78561 1.00000 0.77099  0.79088 0.83715 0.85228 0.77486 1.00000 0.78776 

X6 0.83081 0.82192 0.82533 0.76657 0.77099 1.00000  0.79399 0.81491 0.85495 0.77397 0.78776 1.00000 
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.. 

Table-2.2. Correlation Matrix of  Indictor Variables, X of Table-1. 

Signaum Coefficients of Correlation  Bradley’s Coefficients of Correlation 

 X1 X2 X3 X4 X5 X6  X1 X2 X3 X4 X5 X6 

X1 1.00000 0.46667 0.60000 0.73333 0.46667 0.60000  1.00000 0.75579 0.61097 0.97635 0.92616 0.92616 

X2 0.46667 1.00000 0.73333 0.46667 0.73333 0.86667  0.75579 1.00000 0.83998 0.77816 0.68758 0.82650 

X3 0.60000 0.73333 1.00000 0.60000 0.60000 0.73333  0.61097 0.83998 1.00000 0.63123 0.55006 0.67549 

X4 0.73333 0.46667 0.60000 1.00000 0.33333 0.46667  0.97635 0.77816 0.63123 1.00000 0.90268 0.94972 

X5 0.46667 0.73333 0.60000 0.33333 1.00000 0.73333  0.92616 0.68758 0.55006 0.90268 1.00000 0.85312 

X6 0.60000 0.86667 0.73333 0.46667 0.73333 1.00000  0.92616 0.82650 0.67549 0.94972 0.85312 1.00000 

.. 

 

Table-2.3. Correlation Matrix of  Indictor Variables, X of Table-1. 

Shevlyakov’s Coefficients of Correlation  Campbell’s Coefficients of Correlation 

 X1 X2 X3 X4 X5 X6  X1 X2 X3 X4 X5 X6 

X1 1.00000 0.72014 0.81308 0.81066 0.86198 0.78165  1.00000 0.72085 0.85382 0.79809 0.84158 0.84745 

X2 0.72014 1.00000 0.85969 0.81083 0.77017 0.82992  0.72085 1.00000 0.81570 0.81810 0.79973 0.81476 

X3 0.81308 0.85969 1.00000 0.59618 0.77754 0.75549  0.85382 0.81570 1.00000 0.80838 0.80869 0.84957 

X4 0.81066 0.81083 0.59618 1.00000 0.59280 0.67165  0.79809 0.81810 0.80838 1.00000 0.77949 0.77152 

X5 0.86198 0.77017 0.77754 0.59280 1.00000 0.73849  0.84158 0.79973 0.80869 0.77949 1.00000 0.80776 

X6 0.78165 0.82992 0.75549 0.67165 0.73849 1.00000  0.84745 0.81476 0.84957 0.77152 0.80776 1.00000 

 

.. 

Table-3.1. Correlation Matrix of  Indictor Variables, X of Table-1 with 11x  mutilated. 

Karl Pearson’s Coefficients of Correlation  Spearman’s Coefficients of Correlation 

 X1 X2 X3 X4 X5 X6  X1 X2 X3 X4 X5 X6 

X1 1.00000 -0.17115 -0.14499 -0.33227 -0.40395 -0.27395  1.00000 0.59422 0.73304 0.63382 0.59733 0.61379 

X2 -0.17115 1.00000 0.81841 0.82252 0.79408 0.82192  0.59422 1.00000 0.85806 0.77842 0.83715 0.81491 

X3 -0.14499 0.81841 1.00000 0.80499 0.80900 0.82533  0.73304 0.85806 1.00000 0.83582 0.85228 0.85495 

X4 -0.33227 0.82252 0.80499 1.00000 0.78561 0.76657  0.63382 0.77842 0.83582 1.00000 0.77486 0.77397 

X5 -0.40395 0.79408 0.80900 0.78561 1.00000 0.77099  0.59733 0.83715 0.85228 0.77486 1.00000 0.78776 

X6 -0.27395 0.82192 0.82533 0.76657 0.77099 1.00000  0.61379 0.81491 0.85495 0.77397 0.78776 1.00000 

.. 

 

Table-3.2. Correlation Matrix of  Indictor Variables, X of Table-1 with 11x  mutilated. 

Signaum Coefficients of Correlation  Bradley’s Coefficients of Correlation 

 X1 X2 X3 X4 X5 X6  X1 X2 X3 X4 X5 X6 

X1 1.00000 0.33333 0.46667 0.60000 0.33333 0.46667  1.00000 -0.13163 -0.09708 -0.19920 -0.23706 -0.18186 

X2 0.33333 1.00000 0.73333 0.46667 0.73333 0.86667  -0.13163 1.00000 0.83998 0.77816 0.68758 0.82650 

X3 0.46667 0.73333 1.00000 0.60000 0.60000 0.73333  -0.09708 0.83998 1.00000 0.63123 0.55006 0.67549 

X4 0.60000 0.46667 0.60000 1.00000 0.33333 0.46667  -0.19920 0.77816 0.63123 1.00000 0.90268 0.94972 

X5 0.33333 0.73333 0.60000 0.33333 1.00000 0.73333  -0.23706 0.68758 0.55006 0.90268 1.00000 0.85312 

X6 0.46667 0.86667 0.73333 0.46667 0.73333 1.00000  -0.18186 0.82650 0.67549 0.94972 0.85312 1.00000 
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Table-3.3. Correlation Matrix of  Indictor Variables, X of Table-1 with 11x  mutilated. 

Shevlyakov’s Coefficients of Correlation  Campbell’s Coefficients of Correlation (type-I) 

 X1 X2 X3 X4 X5 X6  X1 X2 X3 X4 X5 X6 

X1 1.00000 0.67889 0.81969 0.75845 0.76281 0.78429  1.00000 0.63000 0.94796 0.78706 0.02749 0.86937 

X2 0.67889 1.00000 0.85969 0.81083 0.77017 0.82992  0.63000 1.00000 0.49469 0.96218 0.72318 0.64287 

X3 0.81969 0.85969 1.00000 0.59618 0.77754 0.75549  0.94796 0.49469 1.00000 0.65066 -0.13222 0.87665 

X4 0.75845 0.81083 0.59618 1.00000 0.59280 0.67165  0.78706 0.96218 0.65066 1.00000 0.52361 0.79858 

X5 0.76281 0.77017 0.77754 0.59280 1.00000 0.73849  0.02749 0.72318 -0.13222 0.52361 1.00000 -0.06013 

X6 0.78429 0.82992 0.75549 0.67165 0.73849 1.00000  0.86937 0.64287 0.87665 0.79858 -0.06013 1.00000 

.. 

Table-3.4. Correlation Matrix of  Indictor Variables, X of Table-1 without/with 11x  mutilated. 

Campbell’s Coefficients of Correlation (type-II) 

without mutilation 

 Campbell’s Coefficients of Correlation (type-II) 

with mutilation 

 X1 X2 X3 X4 X5 X6  X1 X2 X3 X4 X5 X6 

X1 1.00000 0.72818 0.86226 0.79714 0.84737 0.79943  1.00000 0.70917 0.84808 0.77065 0.80399 0.80835 

X2 0.72818 1.00000 0.80392 0.88735 0.85895 0.81131  0.70917 1.00000 0.81020 0.81946 0.79914 0.81379 

X3 0.86226 0.80392 1.00000 0.83086 0.84837 0.84234  0.84808 0.81020 1.00000 0.80418 0.82204 0.82041 

X4 0.79714 0.88735 0.83086 1.00000 0.75042 0.79180  0.77065 0.81946 0.80418 1.00000 0.74371 0.73492 

X5 0.84737 0.85895 0.84837 0.75042 1.00000 0.76647  0.80399 0.79914 0.82204 0.74371 1.00000 0.73957 

X6 0.79943 0.81131 0.84234 0.79180 0.76647 1.00000  0.80835 0.81379 0.82041 0.73492 0.73957 1.00000 

. 
Table-4.1. Composite Indices of Variables (X of Table-1) using Different Types of Correlation 

Sl I0 I1 I2 I3 I4 I5 I6 I7 I8
 

I9
 

I10 I11 IM 

1 9.6848 9.5944 9.6177 10.9405 9.7515 9.2650 11.0274 7.7700 10.7196 10.7352 12.2981 10.5814 8.1250 

2 18.9060 19.0150 19.0145 19.2927 18.5125 18.5602 21.0632 17.6713 18.9590 18.9586 21.3352 20.5564 18.3993 

3 50.0292 50.1239 50.1306 50.9532 50.0823 49.9333 52.6774 48.1218 50.9465 50.9583 58.5183 54.4074 49.2010 

4 38.4519 38.1972 38.1892 38.0034 37.3447 37.2083 36.0914 37.6016 38.2988 38.2865 46.3614 41.7817 37.9471 

5 37.3776 37.1184 37.0838 35.3517 37.1659 37.3831 31.0281 35.3749 37.6808 37.6777 44.6421 40.6083 38.3116 

6 29.6356 29.8414 29.8517 32.2441 29.9120 29.5057 37.0153 30.4503 31.8634 31.8780 34.5942 32.2086 29.0833 

7 14.3591 14.6903 14.7098 16.2656 14.8860 14.8106 21.1928 17.6982 14.5391 14.5414 16.2304 15.5900 14.4692 

8 18.1534 18.3421 18.3678 19.1870 18.8608 18.7724 21.2760 19.3216 17.8835 17.8920 21.2756 19.7571 17.7685 

9 12.0662 11.9641 11.9523 9.9978 12.5428 12.8656 6.0215 8.5765 11.4477 11.4561 13.9924 13.1566 12.3228 

10 33.3252 33.4070 33.3727 32.5735 34.6265 34.8825 31.8010 32.9012 35.2145 35.2319 38.7600 36.1974 35.2301 

11 37.8251 37.7862 37.7733 37.9607 38.3274 38.1886 37.2526 34.2784 39.9322 39.9548 44.4524 41.1456 37.6009 

12 25.5063 25.5798 25.5590 23.2833 25.7446 26.4176 21.5121 26.9315 23.5040 23.4884 29.3413 27.6852 27.2470 

13 37.4688 37.4284 37.4330 38.4283 37.8820 37.5571 38.7233 36.8865 39.0517 39.0665 44.9102 40.7418 37.1165 

14 24.7177 24.6495 24.6323 20.8915 25.7334 26.5405 14.9098 23.9056 22.0132 22.0085 29.0254 26.8787 26.5106 

15 47.3100 47.2012 47.2095 46.3807 47.4235 47.4571 43.7685 44.4248 46.6412 46.6481 56.1684 51.4754 46.5784 

16 12.7486 13.1040 13.1359 14.3481 13.8723 13.8327 18.3287 15.1338 12.4818 12.4931 14.3603 13.8782 12.6015 

17 32.5700 32.3962 32.3835 30.7034 31.5801 31.8941 27.8259 31.9606 30.6535 30.6321 38.6315 35.3845 32.7343 

18 35.6705 35.7546 35.7307 36.2305 36.7217 36.6596 37.1371 35.3606 38.4259 38.4470 41.8204 38.7521 36.8096 

19 46.4183 46.4115 46.4352 46.7313 46.3881 46.2874 46.8038 47.9540 45.2288 45.2232 55.5932 50.4651 45.8981 

20 39.2236 38.9691 38.9368 38.1882 38.9258 38.9237 35.2371 38.3915 40.3613 40.3590 47.1820 42.5988 40.0689 

21 20.3385 20.1685 20.1324 17.7486 20.7918 21.2274 13.0635 18.9334 20.1940 20.1939 24.1544 22.0888 21.9779 

22 35.8917 36.0501 36.0517 33.5710 36.6335 37.3499 31.5743 35.9461 32.9637 32.9570 41.3248 39.0287 36.8800 

23 28.9329 28.7301 28.7322 29.6706 27.5020 27.1628 29.9269 29.5770 29.0179 29.0017 35.2427 31.4222 28.0194 
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24 29.6669 29.5596 29.5664 30.5977 29.1744 28.8313 31.0271 29.5358 30.4181 30.4183 35.8413 32.2477 28.8777 

25 40.5067 40.3413 40.3539 38.6864 40.9517 41.1454 34.3036 40.5077 38.3958 38.3919 49.0254 44.0585 40.6689 

26 25.8624 25.5995 25.5736 23.4200 25.9414 26.1949 17.9936 21.7052 25.8173 25.8230 30.8301 28.1375 26.2382 

27 28.8351 28.7804 28.7605 27.9657 29.0638 29.1856 26.2795 25.7385 29.7640 29.7751 33.5984 31.3583 29.0625 

28 48.8489 48.4959 48.4809 46.5420 48.2013 48.3398 40.9129 44.9250 47.9786 47.9740 58.5239 53.1247 48.4806 

29 48.0803 48.0955 48.1255 48.9792 47.1065 46.9306 50.6795 49.1912 46.4680 46.4530 57.1377 52.2709 46.6554 

30 43.6151 43.6130 43.5997 43.6208 43.1856 43.2062 44.0802 41.9229 44.2925 44.2933 50.9592 47.4021 43.4444 

. 
Table-4.2. Weights of Indicator Variables and their Correlation with respective Composite Indices Composites 

 Weights assigned to Different Constituent Variables Correlation of Composite Indices  with Constituent Variables 

Index X1 X2 X3 X4
 X5 X6 X1 X2 X3 X4 X5 X6 

I0 0.16667 0.16667 0.16667 0.16667 0.16667 0.16667 0.91593 0.91128 0.92844 0.91192 0.90669 0.91286 

I1 0.16368 0.14988 0.17262 0.15487 0.18517 0.17378 0.91804 0.90738 0.92961 0.90826 0.91042 0.91398 

I2 0.16431 0.14859 0.17551 0.15370 0.18425 0.17363 0.91834 0.90698 0.93015 0.90792 0.91027 0.91402 

I3 0.26368 0.17880 0.23533 -0.04771 0.13128 0.23862 0.78253 0.76542 0.79659 0.69284 0.75378 0.80772 

I4 0.05004 0.10016 0.15874 0.19633 0.28584 0.20889 0.89143 0.92392 0.95729 0.88877 0.90211 0.91413 

I5 0.05995 0.10706 0.14515 0.18814 0.29327 0.20642 0.88921 0.91012 0.95640 0.89989 0.91724 0.90567 

I6 0.27155 0.27253 0.37839 -0.18246 0.18351 0.07648 0.60000 0.73333 0.73333 0.46667 0.73333 0.86667 

I7 0.18934 0.04025 0.21347 0.08052 0.23790 0.23852 0.60000 0.86667 0.86667 0.60000 0.73333 0.86667 

I8 0.15853 0.29999 0.09882 -0.00223 0.19450 0.25040 0.90713 0.95281 0.94576 0.87222 0.89303 0.96780 

I9 0.15733 0.30041 0.09933 -0.00329 0.19545 0.25078 0.90621 0.95338 0.94584 0.87108 0.89398 0.96820 

I10 0.82153 0.92786 0.90093 0.89112 0.37226 0.87711 0.82153 0.92786 0.90093 0.89112 0.37226 0.87711 

I11 0.91260 0.92231 0.94057 0.91631 0.91993 0.90784 0.9126 0.92231 0.94057 0.91631 0.91993 0.90784 

IM 0.12581 0.12963 0.03704 0.24655 0.24443 0.21653 0.90745 0.90879 0.94438 0.90968 0.90656 0.90656 

. 

Table-5.1. Composite Indices of Variables (Mutilated X of Table-1) using Different Types of Correlation 

Sl I0 I1 I2 I3 I4 I5 I6 I7 I8
 I9

 I10 I11 IM 

1 176.3515 -3.5179 5.1449 16.7937 25.1186 23.4711 24.8536 -267.4545 4.3735 4.3735 195.2953 193.8887 33.9684 

2 18.9060 17.7722 17.8435 17.0849 17.7823 17.7896 18.4352 15.1795 17.5863 17.5863 15.6224 20.8106 17.6480 

3 50.0292 50.0771 50.0897 49.8444 49.1205 49.1119 51.9449 48.6928 50.9178 50.9178 40.1665 55.1043 48.7327 

4 38.4519 37.7225 37.7448 38.9516 37.2824 37.2737 38.6617 39.7761 37.9240 37.9240 30.5602 42.3144 37.4613 

5 37.3776 38.0748 38.0303 38.9486 37.4917 37.5651 38.8839 43.7402 38.3251 38.3251 28.4310 41.0973 37.5581 

6 29.6356 29.5658 29.5772 29.0272 29.3682 29.4130 30.4713 26.1988 31.5948 31.5948 24.3478 32.6458 28.8554 

7 14.3591 13.6152 13.6605 12.1163 15.1076 15.1144 11.5218 7.8720 13.4789 13.4789 14.9837 15.8127 15.0546 

8 18.1534 18.6476 18.6310 18.0630 18.7640 18.7017 18.0923 15.9435 18.4308 18.4308 16.4802 20.0283 18.6740 

9 12.0662 13.4604 13.4006 13.7471 12.1933 12.1719 14.9008 17.5244 12.8316 12.8316 7.8594 13.2930 12.1235 

10 33.3252 35.1284 35.0433 34.4238 35.1314 35.2847 34.9757 38.4675 36.3480 36.3480 26.0191 36.6364 34.7696 

11 37.8251 39.4423 39.3722 39.8868 37.4547 37.5030 42.6276 42.5713 41.4398 41.4398 27.5859 41.6606 36.8415 

12 25.5063 24.7674 24.8065 23.4994 26.7495 26.7961 21.5171 24.6584 22.2600 22.2600 23.5026 28.0058 27.2591 

13 37.4688 38.8151 38.7446 39.5177 37.6443 37.6502 40.4319 40.4777 40.5836 40.5836 29.2341 41.2780 37.2872 

14 24.7177 26.1899 26.1188 25.7780 26.7225 26.6992 24.1029 30.7178 23.3098 23.3098 21.1391 27.1774 27.2174 

15 47.3100 48.3096 48.2660 49.0136 46.8059 46.7233 50.1643 50.6563 47.9662 47.9662 37.4256 52.1239 46.7360 

16 12.7486 13.1106 13.1070 11.6918 13.8835 13.8297 11.5651 8.1262 12.6771 12.6771 13.3416 14.0792 13.7553 

17 32.5700 31.2234 31.2844 31.5183 31.8228 31.8030 30.4215 32.3192 29.3976 29.3976 27.3886 35.8136 32.3210 

18 35.6705 37.3139 37.2350 36.9674 36.8582 36.9985 38.1208 39.5555 39.5741 39.5741 27.5238 39.2423 36.3148 

19 46.4183 46.3682 46.3640 46.6598 46.6426 46.5509 45.4611 45.1535 45.5666 45.5666 39.9468 51.1292 46.8941 

20 39.2236 39.8289 39.7823 40.8865 39.3851 39.4804 40.5768 44.8892 40.9627 40.9627 30.0682 43.1288 39.3745 

21 20.3385 21.6020 21.5332 21.8777 21.4835 21.5644 21.3244 27.3529 21.2091 21.2091 15.1791 22.3338 21.6055 

22 35.8917 35.8721 35.8890 34.4238 37.0670 37.0134 33.3582 34.9252 32.6171 32.6171 32.2069 39.4956 37.4968 
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23 28.9329 27.4195 27.4774 28.5684 27.4482 27.4328 27.9209 27.0891 27.9279 27.9279 23.6940 31.8407 27.6446 

24 29.6669 29.5860 29.5815 30.4822 28.9193 28.9016 30.7796 29.9417 30.6663 30.6663 23.5752 32.6771 28.8217 

25 40.5067 41.9125 41.8322 42.7796 41.5704 41.4593 41.1491 45.3224 40.3103 40.3103 33.9094 44.6184 41.9789 

26 25.8624 27.3412 27.2678 28.3796 25.6779 25.6926 29.5215 33.8502 27.3787 27.3787 17.8679 28.4608 25.6050 

27 28.8351 29.6906 29.6574 29.8135 28.5322 28.5827 31.6173 32.5931 30.4049 30.4049 21.2182 31.7347 28.2211 

28 48.8489 49.4753 49.4382 51.0476 47.8355 47.7915 51.6960 55.2125 49.0206 49.0206 37.3489 53.7762 47.9746 

29 48.0803 46.2964 46.3841 46.4158 46.7751 46.6580 45.7727 42.1663 45.1050 45.1050 41.8231 52.9601 47.0867 

30 43.6151 42.9597 43.0001 42.7932 42.6287 42.6749 44.1168 42.7824 43.4186 43.4186 34.8480 47.9945 42.4497 

… 
Table-5.2. Weights of Mutilated Indicator Variables and their Correlation with respective Composite Indices Composites 

 Weights assigned to Different Constituent Variables Correlation of Composite Indices  with Constituent Variables  

Index X1 X2 X3 X4
 X5 X6 X1 X2 X3 X4 X5 X6 

I0   0.16667 0.16667 0.16667 0.16667 0.16667 0.16667 0.94438 0.14158 0.1667 -0.03234 -0.11163 0.02685 

I1  x -0.01446 0.18181 0.20939 0.18786 0.22462 0.21080 -0.46816 0.89113 0.88603 0.90801 0.91841 0.89730 

I2   x -0.00574 0.18075 0.20769 0.18620 0.22310 0.20800 -0.36590 0.91686 0.91472 0.91409 0.91600 0.91000 

I3   x 0.00459 0.27805 0.22294 0.20009 0.10807 0.18626 0.13231 0.83884 0.79072 0.75836 0.72525 0.75225 

I4    x 0.01494 0.05166 0.15370 0.24529 0.26840 0.26601 0.77219 0.90834 0.95996 0.89321 0.89321 0.90790 

I5    x 0.01537 0.05203 0.15862 0.24085 0.26590 0.26723 0.77219 0.90834 0.95996 0.89321 0.89321 0.90790 

I6      x -0.13456 0.11201 0.06289 0.33548 0.24834 0.37583 0.46667 0.86667 0.86667 0.60000 0.73333 0.86667 

I7     x -0.22132 0.21406 0.07678 0.11939 0.33948 0.47161 0.46667 0.86667 0.86667 0.60000 0.73333 0.86667 

I8    x -0.00817 0.32778 0.17590 0.02095 0.20228 0.28126 0.79594 0.96276 0.95954 0.88606 0.93295 0.95633 

I9     x  -0.00817 0.32778 0.17590 0.02095 0.20228 0.28126 0.79594 0.96276 0.95954 0.88606 0.93295 0.95633 

I10    0.91728 -0.67351 0.99885 0.91866 0.84429 0.99536 0.91728 -0.67351 0.99885 0.91866 0.84429 0.99536 

I11     0.90665 0.90851 0.93768 0.89362 0.90059 0.90227 0.90665 0.90851 0.93768 0.89362 0.90059 0.90227 

IM 0.02349 0.00860 0.16803 0.27876 0.23875 0.28237 0.85050 0.85317 0.93059 0.86296 0.85451 0.86607 

.. 
Table-6. Sensitivity and Robustness of Different Composite Indices to Mutilation and Presence of Outliers 

 

Sl 

No. 

Alpha and Beta Values of difference Composite 

Indices arranged according to value of Beta 

  

Sl 

No. 

Alpha and Beta Values of difference Composite 

Indices arranged according to value of Alpha 

Type of Composite 

Index 

Beta Alpha Type of Composite 

Index 

Beta Alpha 

1 I0 Mean 0.0000 166.6667 1 I7 S-Signum 6.0434 275.2245 

2 I5 S-Spearman 0.4323 
14.2061** 

2 I11 Campbell-II 0.4697 183.3073 
158.5300* 

3 I11 Campbell-II 0.4697 183.3073 3 I10 Campbell-I 13.1287 182.9972 

4 I4 A-Spearman 0.5207 15.3671 4 I0 Mean 0.0000 166.6667 

5 IM Maxi-min 0.6519 25.8434 5 I5 S-Spearman 0.4323 
158.5300* 

14.2061** 

6 I9 S-Shevlyakov 1.0564 6.3617 6 IM Maxi-min 0.6519 25.8434 

7 I8 A-Shevlyakov 1.0630 6.3461 7 I4 A-Spearman 0.5207 15.3671 

8 I2 S-Pearson 1.0938 4.4728 8 I6 A-Signum 5.8021 13.8262 

9 I1 A-Pearson 1.1364 13.1123 9 I1 A-Pearson 1.1364 13.1123 

10 I3 Bradley 2.6838 5.8532 10 I9 S-Shevlyakov 1.0564 6.3617 

11 I6 A-Signum 5.8021 13.8262 11 I8 A-Shevlyakov 1.0630 6.3461 

12 I7 S-Signum 6.0434 275.2245 12 I3 Bradley 2.6838 5.8532 

13 I10 Campbell-I 13.1287 182.9972 13 I2 S-Pearson 1.0938 4.4728 

* Obtained by using S-Spearman weights to mutilated X; ** Obtained by using S-Spearman weights to rank of mutilated X 

 
Note: Computer programs (FORTRAN) for computing correlations and Composite Indices used in this paper are obtainable from the 

author (contact: mishrasknehu@yahoo.com ). 


