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 Abstract: 

            We study the test for location parameter of a 

random number from Cauchy density, focusing on point 

optimal tests. We develop analytical technique to 

compute critical values and power curve of a point 

optimal test. We study the power properties of various 

point optimal tests. The problem turned out to be 

different in its nature, in that, the critical value of 

a test determines the power properties of test. We 

found that if for given size α and any point θm in 

alternative space, if the critical value of a point 

optimal test is 1, the test optimal for that point is 

the most stringent test.       
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1.  Introduction  

 

 Cauchy Distribution (or Lorentz Distribution in terminology of Physicists) has its 

applications in Physics, Spectroscopy and in Statistics. It is used to measure the 

sensitivity of an estimator\test statistics to normality assumptions due to its heavier tails 

which are extremely unlikely under normality assumptions. 

 

 Since the moments are not defined for Cauchy distribution, the tests/estimators 

based on asymptotic properties are not appropriate while studying the properties of 

Cauchy distributions. Statistician had discussed some statistical properties of the 

distribution. The principal focus of studies is on goodness of fit to the Cauchy 

distribution. The studies of Rublyk (1997), Rublyk (1999) Gurtler & Henze (2000), 

Rublyk (2001), Rublyk (2003) and Matsui & Takemura (2005) are the examples. Other 

studies explore parameter estimation, & behavior of Likelihood function etc. See Copas 

(1975), Besbeas & Morgan (2001) and Lawless (1972) for example. 

 

 For an observation X from Cauchy distribution, we explore the tests for location 

parameter of the distribution with focus on point optimal (Neyman-Pearson) tests & 

develop method to find out the most stringent test. Lehman (1986) discussed that for 

location parameter of an observation X from Cauchy density, UMP test does not exist. 

Obviously the Stringent test is the feasible choice in absence of UMP test if we can find 

it. We study the power properties of a large number of NP
1
 tests and develop technique to 

find out power envelop and power curve of a point optimal test of given size, and hence 

to find shortcoming of test. By luck of draw, the problem turned to be different in its 

nature, in that, we are able to construct the power envelope analytically. Similarly we can 

trace power curves of a point optimal test as well. This made possible the computation of 

shortcoming of a large number of point optimal tests. The techniques are discussed 

below. 

___________________________________ 

1
 The terms ‘point optimal test’, ‘Neyman-Pearson test’ and abbreviation ‘NP test’ are used interchangeably 

in the paper. Furthermore T
θ
 is mathematical shorthand for NP test optimal for point θ.  

 



 

2.  The problem 

 

 Let Ca(θ) denotes the Cauchy distribution, with location parameter θ and unit 

scale parameter & X ~ Ca(θ) i.e. 

 
f(X|θ)      = 

1

π 1 X θ−( )2+   

 

 

We are interested in testing the Hypothesis H0: θ  = 0 versus H1: θ > 0. The Null space Θ0 

= (0) and the alternative space Θ1 = R
+
. 

 

3.  Point Optimal Test & Power Envelope 

 

3.1 Test Statistics for Point Optimal Test & Critical Values 

 

 Given the problem, Neyman Pearson Lemma allows us to construct test optimal 

for a point θ ∈ Θ1. Let L(X,θ ) denote density at X given the location parameter θ  than 

the test statistics is: 

 
L X 0, θ,( ) L X θ,( )

L X 0,( )  

 

 

 For test of size α  the critical values can be computed by assuming H0 is true & 

finding Cα(θ) such that 

 
P

L X θ,( )
L X 0,( )

Cα θ( )≥




α

 

[1] 

 

 Where P(.) denotes probability & the subscript α  refers to size of the test. Now 

For Cauchy density, 

 
L X θ,( )
L X 0,( )

π 1 X θ−( )2+  
1−

π 1 X
2+( ) 

1−

1 X
2+

1 X θ−( )2+
 

 



 

 Given an observation X, we reject the null if L(X,0,θ) > Cα(θ) and accept 

otherwise. This procedure maximizes power at θ ∈ Θ1.  By changing θ, we get different 

test statistics optimizing power for that new point. 

 

 Now, for θ ∈ Θ1, we plot L(X,0,θ) for different values of X. A Typical graph is 

shown in fig 1. 

Remark: For the figures labeled ‘typical graph’, there is no significance of scale 

especially if it is not visible. Just general shape of objective function is described by the 

graph. 

 

 

Fig 1: A Typical Plot of L(X,0,θ) 
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The solid line denotes the values of L(X, 0,θ). The graph cuts the line y =1 (the dotted line) at one point and converges 

to 1 as X converges to ± ∞ 
 

 

 The graph of L(X,0,θ) is increasing in a finite interval and decreasing otherwise. 

L(X,0,θ) = 1 only at X= θ/2. Little mathematical formulation verifies that for X>θ/2, 

L(X,0,θ) is greater than 1 & smaller than 1 otherwise. For finite θ,  the graph of L(X,0,θ) 

converges to 1 if X →  ± ∞. 

Below we discuss how to find out the critical value Cα(θ) analytically. 

 

Theorem 1: 

Given an NP test of size α , optimal for alternative  θ , 



Cα θ( )
8 8k+ 4θ

2
+ 4θ

2
k+ 8 8k+ 4θ

2
+ 4θ

2
k+( )2 4 4 4k+ kθ

4
+ 4kθ

2
+( ) 4 4k+( )−+

2 4 4 k⋅+ kθ
4

+ 4 kθ
2

⋅+( )  

 

Where Cα(θ) be defined in [1] above and 

 k tan
2 πθ( )  

 

Proof: 

Using definition of Cα(θ),given size of test = α  & assuming H0 is true, Cα(θ) is the value 

such that 

 
P

L X θ,( )
L X 0,( )

Cα θ( )≥




α

 

[2] 

 

To find Cα(θ), solving the equation, 

 

 1 X
2+

1 X θ−( )2+
C α θ( )

 

[3a] 

 

For simplicity, denote Cα(θ) by C, we can rewrite [3a] as: 

 
X

2
1 C−( ) 2CXθ+ 1+ C− Cθ

2
− 0.  

[3c] 

 

Supposing l, m being the roots of equation [3b], since l, m specify the range where we 

reject the Null. So assuming the Null is true, integration of the density function over 

range (l, m) must be equal to size of test α  i.e. 

 

l

m

x
1

π 1 X
2+( )

⌠


⌡

d α

 

 

⇒ 1

π
tan

1−
m( ) tan

1−
l( )−  α

 

 

⇒ m l−

1 lm+
tan πα( )

 

[3c] 

 

Now l, m being roots of equation [3b] quadratic in X, therefore: 

 
l m+ 2−

Cθ
1 C−  

[3d] 



 
lm

1 C− Cθ2
−

1 C−  

[3e] 

 

Solving [3c], [3d], and [3e] for C yield: 

 
8 C⋅ 4 C

2⋅ θ2
⋅ 4−+ 4 C⋅−

2 2 C⋅− Cθ2
−( )2

tan
2 πα( )

 

[4a] 

 

Assuming k tan
2 πθ( )  

[4b] 

 

And solving [4] for C gives: 

 

( )
( )24

2422222

4442

)44)(444(444884488

θθ
θθθθθθ

kkK

kkkKkkkk
C

+++

++++++++±+++
=  

 

This equation gives two values of C corresponding to 

P[L(X,0,θ) >C] = α       and P[L(X,0, θ )<C] = α        

Obviously we are interested in first expression, for that we have to choose the larger root 

of C. i.e. 

 

( )
( )24

2422222

4442

)44)(444(444884488

θθ
θθθθθθ

kkK

kkkKkkkk
C

+++

++++++++++++
=  

[5] 

 

Replacing C by Cα(θ), yield proof of theorem. 

We completely specify our test statistics and the critical values to be used throughout in 

the discussion of Neyman-Pearson tests as:  

Test Statistics:   L(X,0,θ)  = ( 1+X
2 

)/( 1+(X-θ)2
 ) 

Critical Value:   Cα(θ)   (defined & derived in theorem 1) 

The test statistics and the critical values vary with the variation of θ. 

 

3.2  Critical value & the power properties: 

 It was observed that power of an NP test depends crucially on Cα(θ). The 

relationship of power of a test and the critical value Cα(θ) is discussed in the following 

theorem. 

Theorem 2: 



For convenience, let θ denote the point at which we are maximizing power & β be the 

point in R
+
 for which we want to compute the power of a test. Further T

θ
   denote NP test 

optimal for θ ∈ R
+
. Than for an NP test; 

1. If  Cα(θ) >1, power of T
θ
 converges to zero for the large β. 

2. If  Cα(θ) ≤1, power of T
θ
 converges to 1 for the large β. 

 

Proof: 

Remember we reject the null if L(X,0,θ)  > Cα(θ) 

a) If Cα(θ) >1, than roots of equation [3b] lies on RHS of point X=θ/2. Let l, m be 

the roots of quadratic equation [3b], than the roots determine boundaries of 

rejection region. It can be shown unique maxima of L(X,0,θ)  lies inside interval 

(l, m). Therefore the rejection region is bounded by roots l, m.  Than for some θ ∈ 

R
+
, power of test is just integration of density function f(X|β) on interval (l, m). 

 

Fig 2: Rejection region when Cα(θ)  >1 
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Value of L(X,0,θ)  is large than Cα(θ)   for points between root of L(X,0,θ) = Cα(θ) which is the rejection region 

 

Now Let R(T, β) denote power of test T at β & test T
θ
 is such that Cα(θ) >1, than 

 



 

∞β
R T

θ β,( )lim
→  

= 
∞β

l

m

x
1

π 1 x β−( )+ 

⌠


⌡

dlim
→

 

 

  
= 

∞β

1

π
tan

1−( ) m β−( ) tan
1−
l β−( )− .lim

→  

= 0 

 

 b) We divide proof of [b] in to two parts 

  i) If Cα(θ) <1, than roots of equation [3b] lies on left of point X=θ/2. 

 Again if l, m be the roots of quadratic equation [3b], they determine boundaries of 

 rejection region. It can be shown unique minima of L(X,0,θ)  lies inside interval 

 (l, m).  Therefore the rejection region is R- (l, m). Therefore for some β ∈ R
+
, 

 power of test is integration of density function f(X|β) on  real line minus 

 integration of  density function on interval (l, m). 

 

 Fig 3: Rejection region when Cα(θ)  <1 
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 Value of L(X,0,θ)  is smaller than Cα(θ) for points between root of L(X,0,θ) = Cα(θ) which is the acceptance 

region 

 

 

 Now to get power, we have to integrate on overall range except the interval (l, m), 

 and probability of overall range is 1, so in this case, power of an NP test,  is 1- 

 integration of density function on interval (l, m) therefore 



 

 

∞β
R T

θ β,( )lim
→  

= 
∞β

1

l

m

X
1

π 1 X β−( )2+ 

⌠


⌡

d−








lim
→

 

 

  
= 1

∞β

1

π
tan

1−( ) m β−( ) tan
1−
l β−( )− .lim

→
−

 
= 1 

 

 

  ii) If Cα(θ)  =1, than we are just  at X=θ/2and as we had discussed, for all 

 points on right side of θ/2, L(X,0,θ) >1. The two roots of quadratic equation [3b] 

 are θ/2 and ∞. So power of such test for a β ∈ R
+
 is integration of density function 

 f(X|β) on range (θ/2, ∞). Finding probability of accepting Null for large β; 

 

 

∞β
1 R T β,( )−lim

→  
= 

∞r β,
γ−

θ
2

x
1

π 1 x β−( )+ 

⌠


⌡

dlim
→

 

 

  
= 

∞r β,

1

π
tan

1− θ
2
β−





tan
1− γ− β−( )−





lim
→  

= 0 

 

 Since probability of accepting Null for large β is 0, the power of test will be 1. 

 

 Theorem 2 realizes the important role of the critical value in determining the 

power properties of a test. If the critical value is larger than 1, the test is sure to have zero 

power for the large alternatives. Whereas the test with critical value smaller than 1 has 

100% power for the same alternatives. Therefore the former tests with critical value 

larger than 1 are sure to have 100% shortcoming & should never be used in absence of 

precise prior information of the alternative. 

 

3.3  Power Envelope 

 

 For a test optimal at point  θ ∈ Θ1 we discussed how we can find power of the test 

at any arbitrary point. Let T
θ
 denote test optimal for θ, the locus of R(T

θ
, θ ), θ ∈ Θ1 



forms the power envelope. The algorithm to trace power envelope is discussed in greater 

detail in appendix. 

 

4.  Performance of Conventional NP tests 

 

 Up to best of our knowledge, none of existing studies had addressed the problem 

we are discussing. However in general hypothesis testing problems, when there is no 

UMP test, different strategies had been recommended in the Literature to design a 

feasible NP test. Below we discuss the some of the strategies & their performance in the 

present problem. We discuss three types of conventional hypothesis testing strategies: 

 A)  Maximizing power in neighborhood of Null (the Locally Most Powerful or 

  LMP tests) 

 B)  Maximizing power for extremely large alternatives (Berenblutt & Webb  

  Type tests) 

 C) Maximizing power for some intermediate choice of alternatives 

 

4.1  The Locally Most Powerful test 

 

 The rational of a Locally Most Powerful test (LMP) is to maximize power for an 

alternative in the neighborhood of Null. Choice of an LMP test for testing location 

parameter in the problem discussed turned out to be most unsuitable as the LMP test 

possess 100% shortcoming. It turns out that for an LMP, Cα(θ) >1, therefore according to 

theorem 2, the test has zero power for the large alternatives. Whereas, as we will show 

later, there is a certain class of test for which Cα(θ) <1 & hence possess 100% power for 

large alternatives.  Therefore the LMP test has 100% shortcoming. The following Lemma 

proves the claim. 

 

Lemma 1: 

 

If  θ is so small that θ2 ≅ 0 than Cα(θ) > 1. 

 



Proof: 

We can rewrite expression for Cα(θ) derived in theorem 1 as: 

 
Cα θ( )

8 8k+ 4θ
2

+ 4θ
2

k+ 4θ 1 k+( ) 2 θ
2

+( )+

2 4 4 k⋅+ kθ
4

+ 4 kθ
2

⋅+( )
 

[6] 

 

Let θ  be so small that it higher powers are negligible than the expression reduces to: 

 

 
Cα θ( )

8 8k+ 4θ 2 1 k+( )+

2 4 4 k⋅+( )  

[6b] 

 

Obviously, for θ > 0 the numerator of expression on right hand side of [6b] is greater than 

denominator. Hence Cα(θ)>1. 

 

 The Lemma gives crucial information about the power curve of LMP test, in that, 

the critical value of LMP is larger than 1 & thus according to theorem 2, have zero power 

for large alternatives. Therefore, LMP has 100% shortcoming. So LMP should never be 

used if we don’t have precise information of θ. Empirical results shows that LMP is not 

good even outside a small neighborhood of the point for which it is optimal. A test of size 

5% optimal for θ = 0.5 has only 1% power for θ = 4 and for θ = 15, its power is zero up 

to 3 decimal places. 

 

Fig 4: Performance of LMP test 
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The solid lines in the two graphs represent the power envelope whereas the dotted lines represent power curves of test optimal 

for θ = 0.1. Size of test is 5% for the left panel and 1% for the right panel. Immediate decline in power of LMP is obvious in the 

two panels.   



So having no prior information of the true parameter, the choice of LMP test is 

hazardous. 

 

4.2  Berenblutt & Webb type test 

 

 In their discussions of tests for autocorrelation, Berenblutt & Webb (1973) 

recommend to use another extreme strategy, to maximize power for largest possible 

alternative. The alternative space we have is R
+
 ranging from 0 to ∞, therefore we have 

maximize power for ∞ . One of the result of following Lemma is the proof that; β → ∞  

⇒  Cα(θ) → 0 < 1, and thus (by theorem 2) the test has 100% power for large 

alternatives. 

 

Lemma 2: 

For Cα(θ) defined in [2], following results hold. 

R1 
∞β

Cα θ( ) 0lim
→  

  

R2 
∞β

Cα θ( ) θ 0lim
→  

  

R3 
∞β

Cα θ( ) θ
2
⋅

2 2 k⋅+ 2 1 k+( ) 2 θ2
+( )⋅⋅+

k
lim
→  

  

 

Where ‘k’ is defined in [4b] above. 

 

Proof: 

Again for simplicity, denote Cα(θ) by C than for R1 

 

 
∞β

Cα θ( )lim
→  = 

∞θ

8 8k+ 4θ2
+ 4θ2

k+ 4θ 1 k+( ) 2 θ2
+( )+

2 4 4 k⋅+ kθ4
+ 4 kθ2

⋅+( )
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= 
∞θ

8 8 k⋅+ 4 θ2
⋅+ 4 θ2

⋅ k⋅+

θ4

4 θ⋅ 1 k+( ) 2 θ2
+( )⋅⋅

θ4
+

2
4 4 k⋅+ kθ4

+ 4 kθ2
⋅+( )

θ4
⋅

lim
→

 

 

  = 0  
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Similarly for R2 

 

 

∞β
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= 
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8θ 8 kθ⋅+ 4 θ
3
⋅+ 4 θ

3
⋅ k⋅+

θ
4

4 θ
2
⋅ 1 k+( ) 2 θ
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θ
4

+

2
4 4 k⋅+ kθ

4
+ 4 kθ

2
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θ
4

⋅
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  = 0  

 

And for R3: 

 

 

∞β
Cα θ( ) θ

2
lim
→
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∞θ

8θ2
8 kθ2
⋅+ 4 θ4

⋅+ 4 θ4
⋅ k⋅+

θ4

4 θ3
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θ4
+

2
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Hence the results 

 

 

 Solving equation [3] for X & using results of Lemma 2, one can find out the range 

for which B&W type test rejects Null. It is observed that power curve of B&W type test 

is increasing in β. So, obviously the tests of this type are preferable to LMP in that they 

have smaller shortcoming than LMP. 

 

 Practically, if we design test maximizing power for a very large alternative, it has 

negligible discrimination between Null and an alternative in neighborhood of Null. 

Therefore this type of test is expected to have smaller power for alternatives close to null. 

Therefore such test possess heavy shortcoming (But not larger than that of LMP). For 

different sizes, we computed the shortcoming of B&W type. Figure below shows the plot 

shortcoming of B&W type test versus its size. 

 

 

 

 

 



Fig 5: Shortcoming of B&W type tests 
 

0

0.25

0.5

0.75

1

0 0.1 0.2

 
Size of test represented on X-axis & shortcoming of B&W on Y-axis. Shortcoming of B&W type test is less than 1, but 

still massive 

 

 

For size 1%, the test has 96% shortcoming, which is obviously disappointing, and for size 

20%, the shortcoming is 40%. That is, we still have a lot of loss in using this type of test. 

As we will soon show, there is an intermediate class of tests other than B&W type tests, 

all of which has 100% power for infinitely large alternatives. Is it possible to choose a 

test in that class which has smaller shortcoming? Next we investigate the same question. 

 

4.3  Intermediate choice of Alternative 

 

 Cases where both LMP and B&W type tests perform poorly, it is natural to 

choose an intermediate alternative to optimize power for. Several strategies are 

recommended by different writers to choose a suitable intermediate. See Efron (1975), 

Davies (1969) Fraser et al (1976) & King (1985) for example. 

 

 As we discussed, critical value of a test is ‘critical’ in determining the power 

properties, choosing an intermediate value, we must have to consider the behavior of 

critical value. The typical plot of Cα(θ) follow the pattern given in fig below. 

 

 

 

 

 



 

Fig 6:  A typical plot of  Cα(θ) 
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Cα(θ)  is large than 1 for a finite range and than decreases continuously 

 

 

We see that for test of fixed size, there exist a θm ∈ R
+
 with Cα(θ) = 1 and 

 

   Cα(θ) >1  θ ∈ ( 0, θm) 

 

   Cα(θ) <1  θ ∈ ( θm , ∞) 

 

Now if we choose an alternative in ( 0, θm), Cα(θ) >1, an NP test optimal in this interval 

is the test with maximum shortcoming. Whereas for choice of θ ∈ ( θm , ∞) the test is 

certain to have 100% and power for very large alternative. Now first step in an analysis is 

to search θm so that we can avoid choosing a test with 100% shortcoming. 

 

 Luckily, we are able to compute critical value of an NP test analytically as well as 

we can analytically compute power of an of NP test at any point. This makes computation 

of exact power envelope, power curve & shortcoming of a test possible. We compute the 

shortcoming of a large number of NP tests. E.g. for size of test > 5% we compute 

shortcoming of test optimizing power at each point of the vector (0, 0.5…10000) to 

choose a feasible alternative which minimizes the shortcoming (The algorithm given 

appendix). We found that for the test optimal for θm (θm defined above), shortcoming is 

minimum. Let T
θ
  denote test optimal for θ  and S(T

θ
) denote the shortcoming of T

θ
 . For 

fixed size the typical plot of T
θ
  versus S(T

θ
) is given in fig below:  



 

 

Fig 7: Shortcoming of NP Tests of fixed size 
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Dotted line indicates shortcoming of the test, whereas the solid line is for value of Cα(θ). Shortcoming suddenly drops 

down for Cα(θ) = 1 and then increases monotonically with θ  
 

 

 

Tests optimal for any point in ( 0, θm) have 100% shortcoming, which is according to our 

expectation. Than shortcoming suddenly drops down for T
θm

 and than increases 

monotonically with θ and converges to shortcoming of B& W type tests. The pattern of 

plot remains same for different size of test. 

 

 There are some other strategies to choose a feasible alternative, e.g. using the 

information matrix etc. But in our case, any strategy for choosing a feasible intermediate 

point optimal test falls into one of the two categories discussed & therefore there is no 

need to study them separately. 

 

5.  Recommended test 

 

Studying power properties of a large number of point optimal tests, we reach the 

conclusion that T
θm

 possesses smallest shortcoming, & hence is the most stringent test. 

Therefore, given the size of test α, the problem of searching for a stringent test reduces to 



search for a point θm in R
+
 such that  Cα(θm) = 1. Having an analytical formula to 

compute Cα(θ), this is worth spending few moments on computer.  In table 1, we tabulate 

θm for different sizes. It was observed that T
θm

 has significantly smaller shortcoming than 

that of B&W. Below we plot the shortcoming of the two types (T
θm

  and  B&W) of test 

for size 1-10%. 

 

Fig 8: Comparison of T
θm

 and B&W test 
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Dotted line represent shortcoming of Tθm which is much smaller than shortcoming of B&W type test represented by 

solid line. 
 

 

5.1  Other Characteristic of Recommended Test 

 

5.1.1  Effect of size of test on shortcoming of T
θθθθm 

 

 It can be seen from fig 8 that shortcoming of T
θm

 increases by a large factor if we 

reduce size of test by 1%. Reducing size of test from 5% to 4% increases the shortcoming 

from 51% to 59%. Hence the arbitrary choice of size of test is risky. It’s better to choose 

the larger size since it cuts down shortcoming by multiple factor. 

 

5.1.2 Abuse of T
θθθθm, consequences 

 In absence of any prior belief about alternative, T
θm

 is the only feasible option, 

since it possess minimum shortcoming. But suppose we have solid reasons to believe that 



the alternative is some β ≠ θm.  So, one may think to use an NP test optimal for β to get a 

larger power. There are two possibilities 

If β < θm than using T
β
 may be beneficial by a large amount in the neighborhood of β but 

as we had discussed, the test may have zero power if the true parameter is larger than our 

belief. We are at risk of 100% shortcoming. 

If β > θm than surprisingly, T
β
 is not much beneficial even in the neighborhood   of β. We 

computed the maximum shortcoming of T
θm

 of different sizes on the range (θm, ∞) which 

is tabulated below. It turns out that the maximum difference between power envelope & 

power curve of T
θm

 is negligible in interval (θm, ∞). 

 

  

Table 1:    

    

 Size of test θm SC of T
θm

 on (θm, ∞) 

    

 1% 63.642 0.0009 

 2% 31.790 0.0018 

 3% 21.158 0.0027 

 4% 15.832 0.0036 

 5% 12.628 0.0045 

 6% 10.485 0.0054 

 7% 8.948 0.0063 

 8% 7.790 0.0072 

 9% 6.885 0.0081 

 10% 6.156 0.0091 

 

For test of any size, the maximum advantage we can have to maximize power beyond θm 

is less than 1%.Hence maximizing for a larger alternative does not have any practical 

benefit even at the point for which we maximize power. 

 



Figure 9: Abuse of T
θm
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Solid lines in the two graphs represent power envelope and lines with dashed lines represent power curves of Tθm. The Dotted 

line in left panel represent power curve of an NP test optimal in (0, θm). The test has significant gain over Tθm for a small range, 

but zero power for large alternatives. In right panel, dotted line denote point wise shortcoming of Tθm which is negligible for 

range (θm, ∞) Whereas, optimizing beyond θm will always increase shortcoming. Optimal choice in this case is again Tθm. 
 

 

Solid lines in the two graphs represent power envelope and lines with cross marks 

represent power curves of T
θm

. The Dotted line in left panel represent power curve of an 

NP test optimal in (0, θm). The test has significant gain over T
θm

 for a small rang, but zero 

power for large alternatives. In right panel, dotted line denote point wise shortcoming of 

T
θm

 which is negligible for range (θm, ∞). 

 

Whereas, optimizing beyond θm will always increase shortcoming. Optimal choice in this 

case is again T
θm

. 
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6. Appendix 

6.1 Computation of power curve of a point optimal test & power envelope & shortcoming 

of a test. 



Suppose we want to trace power curve of a test of size α which optimizes power at θ ∈ 

R
+
. A lot of computational burden is released by the analytic formula in our hands. Even 

without computing the actual test statistics, we can compute the critical value by the 

formula derived in theorem1. Putting the critical value in [3b] and solving for X, yield the 

roots l, m. Theorem 2 allows us to specify the range for which value of actual test 

statistics will be larger than critical value. That is if critical value ‘Cα(θ) ’ is larger than 1, 

the rejection region is bounded by the roots i.e. 

L(X,0,θ)  > Cα(θ)  if l < X < m 

Now to compute power of test for some θ ∈ R
+
, the power of test is probability that 

random variable X lies in specified range. 

 

∞β
R T

θ β,( )lim
→  

= 
P [l ≤ X ≤ m ] 

  

= 

l

m

x
1

π 1 x β−( )+ 

⌠


⌡

d

 

 

Now once we have specified range for which null should be rejected for T
θ
, The locus of 

R(T, β), gives the power curve. The power curves discussed in paper were traced by 

computing power at β = 0, 0.5 …10000 for size of test > 5% and at β = 0, 1…50000 for 

size of test < 5%. Computing R(T
β
 , β)  yield power envelop for β = 0, 0.5…10000. For 

any test T, R(T
β
 , β) - R(T

θ
, β), β = 0, 0.5 …10000 yield vector of point wise 

shortcoming, and maximum of this vector is the shortcoming of the test. 
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