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Abstract

A number of studies have explored the semi- anga@metric estimation of stochastic
frontier models by using kernel regression or oti@mparametric smoothing techniques.
In contrast to popular deterministic nonparamegstimators, these approaches do not
allow one to impose any shape constraints (or eyl conditions) on the frontier
function. On the other hand, as many of the previbechniques are based on the
nonparametric estimation of the frontier functiadhe convergence rate of frontier
estimators can be sensitive to the number of inputsch is generally known as “the
curse of dimensionality” problem. This paper pra@g®a new semiparametric approach
for stochastic frontier estimation that avoids these of dimensionality and allows one to
impose shape constraints on the frontier funct@uar approach is based on the single-
index model and applies both single-index estinmatechniques and shape-constrained
nonparametric least squares. In addition to praoludrontier and technical efficiency
estimation, we show how the technique can be usedstimate pollution generating
technologies. The new approach is illustrated by esmpirical application to the
environmental adjusted performance evaluation & [doal-fired electric power plants.
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1. Introduction

Estimation of production frontiers is usually basetlher on the nonparametric data
envelopment analysis (DEA: Farrell, 1957; Charnesale 1978) or on the parametric
stochastic frontier analysis (SFA: Aigner et a@7T1; Meeusen and van den Broeck, 1977).
While traditional SFA builds on parametric regressiechniques, DEA is based on a linear
programming formulation that does not assume anpatracal functional form for the
frontier, but relies on general regularity propestisuch as monotonicity and convexity.
Although both DEA and SFA have their own weaknesias generally accepted that the
main appeal of SFA is its stochastic, probabiligtieatment of inefficiency and noise,
whereas the main advantage of DEA lies in its gdneonparametric treatment of the
frontier. A large number of different DEA and SFétienators have been presented during
the past three decades; see Fried et al. (200@nfap-to-date review.

In recent years, many new semi- and nonparametohastic frontier techniques have been
developed both to relax some of the restrictiveianggions used in fully parametric frontier
models and to narrow the gap between SFA and Di#hd presence of panel data, Park et
al. (1998, 2003, 2006) presented several semiparan®&-A models based on different
assumptions concerning the dynamic specificatiomhef model and joint distribution of
inefficiencies and the regressors. Although thgpsed semiparametric panel data models
relax the assumption about inefficiency distribatidhe functional form representing the
production technology is still assumed to be kn@apart from a finite number of unknown
parameters. Adams et al. (1999) further extendex$ethapproaches by developing a
semiparametric panel data estimator that relaxes distributional assumption for
inefficiency and does not specify functional foror & subset of regressors. On the other
hand, in a cross-sectional setting different kihdemiparametric approach was considered
by Fan et al. (1996), who estimated a SFA modelraviibe functional form of the
production frontier is not specified a priori, kiistributional assumptions are imposed on
error components as in Aigner et al. (1977). Initamid to various semiparametric SFA
approaches, Kneip and Simar (1996), Henderson andr§2005) and Kumbhakar et al.
(2007) have proposed fully nonparametric stochdstintier techniques based on kernel
regression, local linear least squares regressidriceal maximum likelihood, respectively.
From these nonparametric approaches, the firstrégaire panel data, while the third was

developed for a cross-sectional setting.



Although the assumptions required by the aforeroeeti semi- and nonparametric
stochastic frontier approaches are weak compareghtametric approaches, there is no
guarantee that the frontiers estimated with thestniques would satisfy any regularity
conditions of microeconomic theory. This is not xpected, as these approaches were not
developed to account for shape constraints suatastonicity, concavity or homogeneity.
Instead of shape constraints, the techniques use@stimating semi- or nonparametric
frontier functions assume the frontier to be smoath differentiable) and require one to
specify bandwidth or other smoothing parameterrgdaestimation. Nevertheless, since the
smoothness assumptions are often arbitrary ancethdts can be very sensitive to the value
of the smoothing parameter, in many applicatiosit be more justified to impose certain
shape constraints than to specify a value for thmashing parameter. In fact, as
demonstrated by popular nonparametric DEA estinsatdris even possible to avoid
smoothness assumptions completely by employingeskapstraints. However, although
DEA estimators can satisfy different regularity staints by construction, they count all
deviations from the frontier as inefficiency, coetgly ignoring all stochastic noise in the
data. Due to the exclusion of noise, DEA as welthesrecently developed, more robust,
order-m and ordee frontier estimators, are fundamentally determioistHence, it is
generally important to develop semi- and nonparamapproaches that are both stochastic,
and similarly with DEA and some other determinisfiontier techniques, use shape
constraints instead of smoothness assumptionsd@&esechnical efficiency measurement,
these kinds of approaches are needed in enviromiantl economic efficiency analysis,
where it is very often justified to assume thatftioatier satisfies certain shape constraints.

To our knowledge, so far there have been only a sewdies that have examined the
estimation of semi- and nonparametric stochastiotier models under shape constraints.
Banker and Maindiratta (1992) proposed a maximukalihood model that combines a
DEA-style shape-constrained nonparametric fromigihh a SFA-style stochastic composite
error. However, because their model is extremelypataling computationally, it has not
been estimated in any empirical applications. Kuensam and Kortelainen (2007) suggested

! For the developments in frontier estimation usieterministic approaches that are more robust tiers
and/or extreme values than DEA, see Cazals €2@02) and Aragon et al. (2005). In addition, Mastfilho
and Yao (2007, 2008) have recently presented tvap#mmonparametric frontier estimators that are als
more robust for outliers than DEA. In any evenitiffaése estimators are deterministic in the semesethey do
not separate efficiency from the statistical naisetrary to stochastic frontier estimators.



a similar kind of stochastic frontier approach, vehthe shape of the frontier is estimated
nonparametrically using shape-constrained nonpdramieast squares. They call this
model as Stochastic Nonparametric Envelopment ¢& D8toNED). In contrast to Banker
and Maindiratta (1992), their nonparametric leagtiases approach is computationally
feasible and can be applied quite straightforwardhg it is based on quadratic

programming.

Although the approach developed by Kuosmanen amtekamen (2007) can be applied for
the estimation of shape-constrained stochastictifnen in various kinds of settings,
similarly to many other nonparametric methods,gtecision of the shape-constrained least
squares estimator decreases rapidly as the nunibexptanatory variables (i.e. inputs)
increases. This phenomenon, known #te ‘turse of dimensionalityin nonparametric
regression, implies that when data include sevepait variables (i.e. 3 or more), one needs
very large sample size to obtain a reasonable astim precision. This weakness of
nonparametric least squares estimator is essent@duse in many applications, the number
of inputs is greater than 2, while the sample szmoderate. As relatively small samples
with many input variables are commonly used in Iséstic frontier applications, it is also
important to explore flexible approaches that ase sensitive to dimensionality, but still

allow one to impose shape constraints.

In this paper, our main objective is to extend Wk of Kuosmanen and Kortelainen

(2007) to semiparametric frontiers by developingea approach which avoids the curse of
dimensionality but allows us to impose regularipnditions on the frontier function. The

shape-constrained semiparametric specification w@gse is based on the single-index
model, which is one of the most popular semiparametodels in econometrics literature.

For the estimation of the model, we develop a tlstage approach. While the first stage
applies either sliced inverse regression or a nwt@tank correlation estimator (both of
which are common single-index estimation technifjud® second and third stages are
based on similar estimation techniques used foStb&lIED model. However, in contrast to
StoNED estimation, our approach is not sensitivéhto curse of dimensionality, because
the second stage in the proposed framework is a@lwayariate regression regardless of
the number of inputs.



In addition to developing a new method for semipatic frontier estimation, we show

how the proposed approach can be modified for enmental production technology

estimation in pollution generating industries. Baling standard environmental economics
and frontier approaches, we estimate an envirorahgmbduction function by modeling

emissions as inputs. In the empirical applicatidrihe paper, we illustrate the proposed
semiparametric approach in environmental technolegfymation with data on U.S. coal-
fired electric power plants. We estimate environtaksensitive technical efficiency scores
using the methods proposed in the paper and s@uitidnal frontier methods.

The remainder of the paper is organized as folldvextion 2 presents the StoNED model
and shows how it can be estimated by using shegteeted nonparametric least squares.
Section 3 proposes a shape-constrained single-ificeier model and a three stage
approach for estimating the model. In Section 4he@v how the proposed approach can be
modified for environmental production frontier es#ition. Section 5 illustrates the
developed methods using an empirical applicatiorelextric power plantsSection 6

presents the conclusions.

2. Estimation of shape-constrained nonparametric frontier

Since the semiparametric approach proposed irptper is closely related to the StoNED
approach and applies the same estimation technigueestart by presenting the StoNED
model and show how it can be estimated. For furteehnical details concerning this

section, we refer to Kuosmanen and Kortelainen 12Q0ereafter KK).

Let us consider a multi-input single-output settimghere m-dimensional input vector is
denoted byx, the scalar output by and deterministic production technology by the
production functiorf(x). In contrast to parametric SFA literature, we rdd assume any
functional form for the production function, but the line with DEA, we require that
function f belongs to the class of continuous, monotonicaéligreasing and globally

concave functions, denoted by

VX, X'eR":x>x'= f(x)> f (x";
F,=4 f :R" 5> R|VX', X"eR™:x=Ax+ (1-A)x ", (1)
16[0,1]: fFX)>2AT X))+ @A) k"



Further, we follow SFA literature (and deviate frddEA) by introducing a two-part

composed error terrg = V; - u;, in which the second term, is a one-sided technical

inefficiency term and the first ternv, is a two-sided statistical disturbance capturing

specification and measurement errors. Using thisatiom, we consider the following

stochastic production frontier model (or composedrenodel):

Y= f(x)+g=f(x)+y—y, i=1..n )

where it is assumed thm,]‘N(O,aj) .V, = N(0,07) and thaty and v, (i=1,...n) are

statistically independent of each other as welbfgputs x,. Of course, following SFA

literature, other distributions such as gamma opoeential could be used for the

inefficiency termu, (see e.g. Kumbhakar and Lovell, 2000). Howevere lge follow the

standard practice and assume the half-normal spestaai.

Following KK, the model (2) is referred &iochastic nonparametric envelopment of data
(StoNED) model. It is worth noticing that StoNED dab has links to parametric SFA as

well as nonparametric DEA models. Firstlyf i restricted to some parametric functional
form (instead of the clads;), SFA model by Aigner et al. (1977) is obtainednfr (2).

Secondly, if we impose the restrictiasf =0 and relax the assumptions concerning the

inefficiency term, the resulting deterministic mode similar to the single-output DEA

model with an additive output-inefficiency, firsbresidered by Afriat (1972). Thus, in

contrast to other SFA models presented in liteegtlre StoNED model clearly connects to
DEA, as monotonicity and convexity assumptions aeuired but na priori functional

form for frontier is assumed.

Standard nonparametric regression techniques céenaded directly to estimate model (2),

because f(x;) is not the conditional expected value ofy, given x;:

E(y|x )= f(x)-E(5]x )= f(x)- In fact, under the half-normal specification foreth

inefficiency term, we know thaE(gi|xi)=—E(q|>g )=—au N2/7 <0 (see e.g. Aigner et

al., 1977). Thus, as the expected value of the ogite error term is not zero,



nonparametric least squares and other nonparametpiession techniques would produce
biased and inconsistent estimates. However, thislgmoltan be solved by writing the
model as

v, =[f(x)—u]+[g +u]=a(x)+n, i=1..n, 3

where = E(u]x, ) is the expected inefficiency arg(x) = f(x) - can be interpreted as
an “average” production function (in contrast te tfirontier” production functiorf), and

n,=¢ +u is a modified composite error term that satisBesumptionE (7;|x )=0. As

the modified errorg;, satisfy standard assumptions, the average praxfufttnction can be

estimated consistently by nonparametric regrestchniques. Further, note that because

u is a fixed constant, average functigrbelongs to same functional clags asf (i.e. it

satisfies monotonicity and concavity constrainidjus, the frontier functiof is estimated
simply by adding up the nonparametric estimatehajpge-restricted average functigrand

the expected inefficiengy.

For estimating the shape-constrained average ptioduftinction KK proposed to use a
convex nonparametric least squares (CNLS) techpigwlech minimizes least squares
subject to monotonicity and concavity restrictioitss worth emphasizing that the CNLS
technique is particularly suitable for estimatingdel (2), because in contrast to most other
nonparametric techniques it only requires monotipniend concavity conditions (i.e. the
maintained assumptions of both StoNED and DEA n®)delnd no further smoothness
assumptions (such as the degree of differentighditd the bounds of the derivatives).
Based on the insight that monotonicity and congae@nstraints can be written as linear
inequalities by applying Afriat’s theorem (Afriat967, 1972), Kuosmanen (2008) proved
that the following quadratic programming problemndze used for CNLS in a multiple
regression setting:

mli'r[;lizz;nf subject to

Yo=¥W+n=q+fX% +7 (4)

a +BX <, +B.x Vhi=1..n

B,=0Vvi=1,..n,



where 7. is the modified composite error term of equati@h &nd y° =, +B/x is the

value of average production functigrfor observation. Problem (4) includes the quadratic
objective function witm(m+1) unknowns and?+n linear inequalities. The first constraint
of CNLS problem (4) is interpreted as a regressiquation, while the second constraint
enforces concavity similarly to the Afriat inequis and the third constraint imposes

monotonicity. It is important to notice that thenstant terme; and the slope coefficients
B, (k =1,.., m) of the regression equation are observatiosipé More specifically,

CNLS regression (4) estimates tangent hyper-planes to one unspecified production
function instead of estimating one regression eqoat

Although (4) provides estimateg’ and tangent hyperplanes for the observed poindgeis

not yet give an estimator for the average funcgorror this purpose, one can take the
following piecewise linear function (or representamction)

§(x)= min (@ +Bx), (5)

where ¢, ,ﬁi are estimated coefficients from model (4). Thischion is a legitimate

estimator for the shape-constrained productiontfancas it minimizes the CNLS problem
and satisfies monotonicity and concavity constgagiobally (not just in observed poinfs).
Basically, (5) interpolates linearly between thdusons of problem (4) giving piecewise
linear function, where the number of different hygdane segments is chosen
endogeneously and is typically much lower thanBecause of the piecewise linear
structure, estimator (5) appears to be very simitarDEA (see KK, for a graphical
illustration). However, it is worth emphasizing thg(x) does not yet estimate the frontier,
but the average production functig(x). Nonetheless, in this framework the shape of the
frontier f(x) must be exactly the same as that of the averageige and the difference

between functions results only from the expectedfitiency (compare formula (3)).

% The slope coefficient, are so-called Afriat numbers and represent thgimalrproducts of inputs (i.e., the
sub-gradient$/g, (x) ).

3 Since estimatog(x) gives estimates also for unobserved points, itbeansed, for example, to estimate
substitution and scale elasticities.



To obtain estimates for production frontier andffioency of firms, one first needs to
estimate the expected inefficiengy and the unknown parametess, o, from the CNLS
residualsn, given by model (4). Estimation can be done sttéigtvardly using the method

of moments (MM) which is a standard technique mckastic frontier literature (see e.g.

Kumbhakar and Lovell, 2000)Having obtained estimate$,,&, with MM, the frontier

production functiorf can then be consistently estimated by
f(x)=8(x)+a=0(%)+62/x . (6)

Hence, similarly to the frequently used MOLS appiggroduction frontier is obtained by
shifting the average production function upwardshey expected value of the inefficiency

term.

The estimation of the technical inefficiency scdwe a particular observation is based on

the Jondrow et al. (1982) formula:

#(-p.l0.) } @)

E(ule)=
(Ulg)=pw +o, L—q’(—ﬂ* Io)

whereu, =—¢ o (i +07), ol =ocioll(ci+o)and ¢(.) and ®(.) are the standard
normal density and distribution functions, respesti. The conditional expected value of
inefficiency for firmi is calculated by substituting estimatés,&, and ¢, =1, —6,N2/x

in formula (7). However, as usual, this formula caty be used as a descriptive measure in
a cross-sectional setting, because it is not ageoyg predictor for;.°

It is important to notice that the StoNED model qmeted above assumes an additive
structure for the composite error term. This is agife to most SFA applications that are
based on the multiplicative error model

yi = f(x;8)exply -y), (8)

* Alternatively, instead of MM one could use pseikdgihood (PSL) approach developed by Fan et al.
(1996). Both MM and PSL are consistent under simibnditions, but the latter is computationallyngevhat
more demanding. Because of this, in this paperpptyanore standard MM technique.

5 In the cross-sectional setting Jondrow et al. tdanis an unbiased but inconsistent estimatoufas the
variance of the estimator does not converge to. zero
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which is prior to estimation transformed into tluelgive form by taking logarithms of both
sides of equatiof.Although both additive and multiplicative modelgitally assume
homoskedasticity of error terms, the latter is raltynless sensitive to heteroskedasticity
problem than the former. This is especially trubateroskedasticity is related to firm size,
which is quite typical in applications where firrage of notably different sizes. Since the
multiplicative error structure can remove or alei potential heteroskedasticity, in some
applications it can be useful to apply StoNED wahmultiplicative error structure.
However, as no parametric functional form foris specified, it is more natural to use an

alternative multiplicative error model

y =exp f(x)]exp¢ -y ) 9)

where f(.)eF, and error terms are assumed to have the samébudlisin as before.

Importantly, (9) can also be transformed into additform by taking logarithms. This

implies that estimation techniques elaborated alsavebe applied for the model, where the
dependent variable is logarithmic output and indejat variables (or inputs) are expressed
in levels. However, it is important to notice thatthis framework shape constrains are

imposed for the transformed model, not for theinagmultiplicative model (9). Thus, even

though the estimated frontier functioﬁ(x) is always both monotonic and concave with
respect to inputs, the estimated deterministic pctdn technology)?:exp[f (x)} IS

assured to be monotonic, but not globally concaws is because the exponential function
preserves monotonicity, but not concavity. Thispamdy can be seen both as a weakness
and strength of model (9). If one wants to imposedpction technology as concave with
respect to inputs, this model is not sufficient float purpose in contrast to a model with an
additive error structure. On the other hand, asntidtiplicative model does not require
production technology to be concave, this can b@ee natural framework in applications,

where concavity is not a well-grounded assumption.

® For example, the frequently applied Cobb-Douglasteanslog functional forms are based on the log-
transformation of the multiplicative error model.
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3. Estimation of shape-constrained single-index frontier

3.1. Background

Although StoNED models with an additive and muitptive error structure can be
estimated in various kinds of applications, there gaome aspects that restrict the
applicability of these approaches. One importamst@int is related to the nonparametric
functional form of the production function. Besidasing an important strength, it can be
also seen as a weakness of the StoNED approachk. iJHiecause the nonparametric
function simultaneously allows great functionalxitglity, but also sets considerable
demands on the data set used in the applicatiqeraketice, the problem is that the precision
of the nonparametric least squares estimator deesaapidly as the number of explanatory
variables (i.e. inputs) increases. This phenomenamch is general in nonparametric
regression and known as theutse of dimensionality implies that when data includes
several input variables (usually 3 or more) vergdéasample is needed to obtain acceptable
estimation precision (see e.g. Yatchew, 2003, &aited discussion).

As relatively small samples with many input varegblare commonly used in frontier
applications, there is a need for shape-constraseedparametric approaches that are not
sensitive to dimensionality. Although some methémsthe estimation of semiparametric
stochastic frontier functions have been presergded €.g. Fan et al., 1996; Adams et al.,
1999), these techniques were not developed fomastn under regularity conditions. In
addition, they assume a smooth frontier functioth guire one to specify bandwidth prior
to estimation. Since no shape constraints areedilithese techniques can be very sensitive
to the chosen bandwidth value. Due to these defims, it is important to examine the

estimation of semiparametric stochastic frontigrcfions under shape constraints in detail.

In the next subsections we develop a shape-comstrasemiparametric approach for
frontier estimation based on the single-index mottel worth noting that the presented
model can be seen as the extension of the moregajeé®®NED framework. By making
stronger assumptions on the functional form thaistoNED but less restrictive than in
parametric models, this model offers a compromete/een StoNED and parametric shape-
restricted approaches. Importantly, the proposenhipsgametric approach has both
advantages and weaknesses in comparison to StoNBB. main advantage is the
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estimation precision that can be increased by asguensemiparametric functional form.
This means that this approach can usually be appli@pplications where the number of
observations is small and/or there are many exfdaynaariables. In addition, in a multiple-
input setting, the proposed estimation techniguesagso computationally less demanding
than the estimation approach presented in Secti@nzhe other hand, it should be noted
that there is always a trade-off between the eskimgrecision and the flexibility of the
functional form specification, as additional asstioms on functional form also increase the

risk of specification errors.

3.2. Single-index model

In econometric and statistics literature, varioeimgparametric regression models have been
developed. This section presents a semiparametritehthat does not suffer from the curse
of dimensionality problem, and thus, allows onandude as many inputs or explanatory
variables as needed in the analysis. The propogprbach is based on the single-index
model (e.g. Hardle and Stoker, 1989; Ichimura, }199&ich is one of the most referred
semiparametric regression models and has been ywidséd in various kinds of

econometric applicatiorlsThe single-index model is based on the followipgcification:
y=9(h(x:3))+e, (10)

where & is a nx1 unknown parameter vector to be estimated, thetifum h(.) (called
index function) is known up to a parameter ve@org (.) is an unknown function and is

an unobserved random disturbance wife|x)=0. The statistical problem is to estimate
the parameter vectord and conditional mean functiong from a sample
{(¥;»x),i=1,...,n}. Note that the whole model as well géh(x;3)) are semiparametric,

since h(x;6) is aparametricfunction andd lies in a finite-dimensional parameter space,

while g is a nonparametric function belonging to the ibnérdimensional parameter space.

" See Geenens and Delecroix (2006) for the survélyeo$ingle-index model and its estimation techesgu
and Yatchew (2003) for application examples.
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Although it is possible to assume different kindsfunctional forms for index function

h(.), most typically the linear indexh(x;8)=&'x is assumed. Model (10) with

h(x;6) =§'x is called dinear single-index mod€k.g. Ichimura, 1993). In the context of

production function and frontier estimation, uselinéar single-index models implies that
we assume an unknown production function to demend linear index of inputs, but no
parametric functional form is assumed for thistiefeship. For simplicity, in this paper we
will assume a linear index function and thus, thmgle-index model” will always refer to
the linear single-index model. Nevertheless, weenbiat in some frontier applications
alternative or more general parametric functionatmis (than linear) can be more
appropriate for index function. It is, for exampleyssible to include cross products (or
interactions) of explanatory variables in the inderction (e.g. Cavanagh and Sherman,
1998).

It is important to notice that in single-index mtslsome normalization restrictions are
generally required to guarantee the identificatidrthe parameter vectdrFirst of all, the
matrix of explanatory variables is not allowed to include a constant term. Thigrieton
is calledlocation normalizationThe second restriction, calledale normalizationrequires

that one of thej, (k=1,...,m) coefficients is imposed to equal oh€his means that we can
only identify the direction of the slope vectdr, that is, the collection of ratios
{5j/5 ,j,k=1,...m}, not the length or orientation of coefficients. thdut lost of

generality, we will thus set the first component &fto unity and denote the parameter

vector to be estimated g8=(1 &, ... 5m)'. Location and scale normalization have to

be imposed, because otherwise it would not be plesso uniquely identify the index
function. Besides these two normalizations, itl aequired thaX includes at least one
continuously distributed variable, whose coeffitisnnot zero and that there does not exist
perfect multicollinearity between components f In addition, depending on the used
estimation technique some assumptions about nomeairia functiong are needed to avoid

perfect fit.

8 |dentification of single-index models is discus@edetail by Ichimura (1993).
° There are also some other possibilities for secatenalization, see Ichimura (1993).
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3.3. Estimation techniques

The main challenge in estimating single-index medé not the estimation of

nonparametric functiog, but the parameter vect@r. In fact, given an estimatcﬁ for B,

g(f}’x) can be estimated using any standard nonparanregi@ssion techniques (e.g.

Geenens and Delecroix, 2006). However, as our gito develop an approach for shape-
constrained production frontier estimation simyfaals in Section 2, we need a technique

that allows us to estimate the nonparametric fonctg under regularity conditions.
Although it would be possible to use some othepeb@onstrained estimation techniques in
the case of one explanatory variable (i.e. estimamgle-indexﬁ’x), analogously with the

StoNED approach presented in Section 2 we willOskS for the estimation of average

function g. By using CNLS, we do not need to assume diffeability of the frontier

function or any other smoothness properties. Thigricontrast to other shape-restricted
nonparametric estimation techniques such as smap8puline or Sobolev least squares (see
e.g. Yatchew, 2003), which require one to specifyatue for smoothing parameter in
addition to shape constraints.

With regard to the estimation of single-index caedint vectorp, there does not exist one

method above the others, as various techniques theweown benefits and weaknesses.
This same fact also explains why there is a graaety of methods available for single-
index models. Most estimators can be classified twb main categories: the M-estimators
and direct estimators. Typical examples of M-estar&include semiparametric nonlinear
least squares estimator (Ichimura, 1993) and seampetric maximum likelihood estimator
(Delecroix et al., 2003), while most popular direstimators are average derivative method
(Hardle and Stoker, 1989), density-weighted averdgrvative estimator (Powell et al.,
1989) and sliced inverse regression (Li, 1991; Dauach Li, 1991). The advantage of direct
estimators is that they provide an analytic forrd are therefore computationally relatively
easy to implement. Instead, M-estimators have sdratWwetter theoretical properties, but
they are also computationally much more demandasy,they require the solving of
nonlinear optimization problem with nonconvex (anooncave) objective function. In
addition to direct and M-estimators, some otheiregbrs for index coefficients have been
developed such as monotone rank correlation esimi@avanagh and Sherman, 1998).
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In this paper, we will show how the sliced inversgression (SIR) and the monotone rank
correlation (MRC) estimator can be used for estingathe single-index coefficient vector

B in stochastic frontier estimatidf.As these two estimators are based on different

assumptions and computational procedures, the fusetlo methods in a typical empirical
application can make the analysis more robust. éibez, we will also apply both
techniques in the empirical application. Theretar@ important reasons for the selection of
SIR and MRC among many possibilities in this cott&urst of all, both techniques are
based on assumptions that are consistent withgfiengtions used in the second stage of
our approach. In fact, to our knowledge SIR and MRE the only single-index estimators
that do not require the conditional mean functipto be differentiable. Since we use the
non-smooth CNLS for estimating the nonparametrizcfion in the second stage, here it
would thus be questionable to use techniques dwtine the differentiability o§ for the
estimation of index parameters. The second releneason to prefer MRC and SIR to other
possible estimators is related to the choice ofsitmeothing parameter. In contrast to all
other single-index estimators mentioned above, MR@s not require bandwidth or a
tuning parameter of any other kind. Instead, in &BRmation one has to choose the number
of slices, which is partially similar to bandwidthoice used in kernel regression. However,
the number of slices for SIR is generally less eduthan the selection of bandwidth for
typical nonparametric regression or density esionatproblems (see Li, 1991, for
discussion). Due to these important propertiescoresider SIR and MRC the most suitable
estimation techniques for the parametric part @ shape-restricted average production

function.

3.4. Frontier estimation

Single-index models and techniques have been edilin various kinds of econometric
applications, including binary response, censoeggtassion and sample selection models.
Nevertheless, applications in the field of prodmeteconomics have been rare, and we are
aware of only two studies that have used the simglex model in production function
estimation. Das and Sengupta (2004) used the simgéex model to estimate both
production and utilization functions for Indian stigurnaces, while Du (2004) proposed

single-index specification for the deterministioritier model that does not account for

19| am thankful to Leopold Simar for the suggestiomise the rank correlation estimator.
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shape constraints. To avoid the dimensionality lemb the single-index model is not so
advantageous in deterministic frontier estimatisimce one can estimate (deterministic)
nonparametric quantile frontiers in a parametriovesgence rate (see Aragon et al., 2005;
Martins-Filho and Yao, 2008). However, this is rbe case with stochastic frontier
estimation, and thus single-index model can be ahnmore useful tool in stochastic
frontier application than in deterministic ones. Mdover, as it does not require the
specification of functional form for production fcton a priori, it is important to consider
how single-index specification can be used in sasth frontier estimation in general and

in shape-restricted estimation, in particular.

Let us now consider a stochastic frontier modeétam the single-index specification. We
assume that the frontier functibnbelongs to the shape-restricted cl&sand that it has a
single-index structure (10). This implies that greduction frontieis monotone increasing
and concave with respect to the index function. iBarametric SFA model with an additive
error structure and the same error term assumpéisiefore (see Section 2) can be written

as

(11)

where & =v -y is the composed error termy is the expected inefficiency,
g(.)= f(.)—u €F, is the average production function and=s +u=v —y +x is the
modified composite error term witlf'1(77i|xi ) = 0. Note that the frontier functiori and the

average production functiog have the same index functions, as consgarnly affects

location, not index (which cannot have a constddg¢ause of this property, it is possible to

estimate the single-index coefficient vector ugimg average production functiam.

It is also important to note that the above singtex specification can easily be modified
for a frontier model with a multiplicative erromstture (9). This multiplicative model uses
logarithmic output as dependent variable, but isentise similar to (11). Hence, the
estimation techniques elaborated below can be ad®al for estimating a single-index

frontier with multiplicative error structure.
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For the estimation of the single-index frontier rabhdhe following three stage procedure

can be used:

[1] Estimate the coefficient vectdkr by using either sliced inverse regression (SIR) or
the monotone rank correlation estimator (MRC) aattudate the values of index

functions z :ﬁ’xi , 1=1,...n with the given estimates.

[2] Use the shape-restricted univariate CNLS (4)estimate fitted values of the

average production functiowg(q). (To estimate average function for unobserved

values ofz, use (5).)

[3] Use the method of moments to estimate erron fg@rameters and frontier function

and Jondrow et al. measure (7) to calculate inefiwy scores.

Estimation techniques used in stages [2] and [8EHaeen explained in Section 2, so we
skip these stages here and concentrate on stag&/'¢lfext describe the main principles of
SIR and MRC that are used in the first stage aead tomment on the statistical properties

of the proposed three stage approach.

Sliced inverse regresson was proposed for the purpose of dimension redachg Li
(1991). The basic principle behind the methodnspde; parameter vectdq is estimated by

using inverse regressioE(x|y), where the vector of explanatory variables explained

by y. The inverse regression &fon y is based on a nonparametric step function as
elaborated below. Computationally, SIR is probatilg easiest single-index technique,
because it does not require iterative computatiwhkasically can be implemented with any
econometric or statistical program. Related to,tliiee method is feasible and not
computationally demanding to use even if the numifeexplanatory variables is very
large!* On the other hand, in contrast to other singleintechniques, SIR requires an

assumption that for anlg € R, the conditional expectatioB(b'x|p'x = z) is linear in z. Li
p

(1991) has shown that this condition can be satsifi the matrix of explanatory variables

1 For example, Naik and Tsai (2004) estimated desimglex model with 2424 observations and 166
explanatory variables using SIR, although only fithe variables proved to be significant.
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X is sampled randomly from any nondegenerate eléfiti symmetric distribution (such as
multivariate normal distribution). This can be retive assumption in some applications,
even though it has been shown that the lineargymaption generally holds as a reasonable

approximation, when the dimensionyois large (see Hall and Li, 1993).

As far as the estimation procedure is concerneR, iSlquite different in comparison to

most other regression techniques. In SIR, the patemvector is estimated by using the

principal eigenvectoy, of the spectral decomposition formula:

=42 T (12)

x\y

where /4, is the largest eigenvalue (i>1,>...24,), 2, is the covariance matrix of
and X, =Cov( E(x| y)) is the covariance matrix of the conditional mednxagiven vy.

Formula (12) can be used for calculatifigafter >, and >, have been substituted by

Xy
their estimates. > can be estimated by the usual sample covariancerixmat

N

o=y (% -%)(x, —X)' , Wwhere x; denotes the values of inputs for observatiamd

X contains means of input variables. Estimatiori% requires that the range of output
is first partitioned intoQ slices{q,...,%}, and then then-dimensional conditional mean

function (or inverse regressiorf)= E(x|y) for each slices, is estimated by the sample

average of the correspondirgs, that is

Zn’,X.l(y €5)
= ifyes, (13)

anl(yi €s)

i=1

SN

where1(.) is the indicator function taking value 1 and O @®ing on whethew, falls into
the gth slice or not.Zx‘y can then be estimated by using a weighted sammlance-

covariance matrix

5, =§ B, (&0~ %)(84-%) . (14)



19

where p, is the proportion of observations in sligeBy substituting the estimat%X and

~

2., into (12), we can obtain a SIR estimaﬁe v, (i.e. the principal eigenvector of the

Xy
spectral decomposition). Furthermore, it is theaightforward to calculate, :ﬁ’xi for all

observations and use these values in CNLS regressitie second stage.

It is worth emphasizing that the number of sli€esised in (13) and (14) has to be chosen
before the estimation. However, the choic&ofloes not usually affect the SIR estimates,
as long as the sample size is large enough togeawseful approximations. To this end, Li

(1991) showed that the number of slices for SIBeiserally less crucial than the selection
of bandwidth or a smoothing parameter for typicahparametric regression or density

estimation problems. In contrast to the choicearfdwidth parameter in kernel regression,
the number of slices does not either affect coasest or convergence rate of the estimator
(Duan and Li, 1991).

Monotone rank correlation estimator (MRC). Han (1987) first proposed an estimator
based on the rank correlation between the obsetepdndent variable and the values fitted
by the model. This maximum correlation estimatosJader generalized by Cavanagh and
Sherman (1998) and called a monotone rank comelastimator (MRC). In contrast to

other single-index estimators, the main benefivil#C is that it does not require one to
specify bandwidth or any other tuning parameteoitgethe estimation. Instead, the method
requires the conditional mean functignto be monotonic with respect to the index.
Although this might be a restrictive assumptiorcarntain applications, in this context it is

actually very natural and justified, since we uda stage [2].

In the single-model where the dependent variablg, the MRC estimator proposed by

Cavanagh and Sherman (1998) uses the followingtgefunction:
p=argmad yR (Bx,)

where R, (.) is the function that ranks the index valdédlthough this may first like a

relatively simple objective function, it is not ga® maximize due to the non-smooth rank

12 For logarithmic output, one simply usesylh{n the place of;.
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function. More importantly, since the objective dtion is discontinuous and thus not
differentiable, it cannot be optimized with stardigradient-based algorithms (such as
Newton-Raphson or BFGS). The difficulty to comptlte estimator can create problems in
empirical applications, since one has to rely aedisearch algorithms that can locate a
local optimum that is not a global optimum. In ddudh, search algorithms can sometimes
be sensitive to the starting values of the pararseta fact, many previous MRC studies
have employed the Nelder-Mead simplex algorithmjctvhs not necessarily robust to
starting values and the initial simplex which havebe determined before the estimation.
Thus, it is possible that the simplex algorithm wenges to different local maxima
depending on the starting values and/or initialpdem. This potential optimization problem
is demonstrated in Abrevaya (2003) who shows bynse# simulations that the MRC
estimator exhibit many local maxima. The resultshif simulations also show that the
number of local maxima increase considerably whempde size decreases. Because of
these properties related to computation, at leasipplications with a small sample size it
might be reasonable to prefer SIR to MRC despientbaker assumptions of the latter. On
the other hand, if the used algorithm is not sesmsto the starting values or initial simplex,
MRC could be more robust than the other singlexntehniques, because it does not

require smoothing parameter of any kind.

Asymptotic properties of estimators. Concerning the statistical properties of the psmab
approach, it is worth emphasizing that the thremgestmethod elaborated above uses
estimators that are consistent under their assongtirhis means that the frontier function
can also be estimated consistently if all modelaggions are valid. In addition, we have
more specific asymptotic results for estimatorsdusedifferent stages. First of aln -
consistency and asymptotic normality of SIR and M#&tmators were shown by Duan and
Li (1991) and Cavanagh and Sherman (1998), reséytiwhile SIR allowsg(.) to be
totally unknown, its consistency depends on theaincondition explained above. Instead,
the consistency of MRC is assured by the monotiynafi g(.) with respect to the index.

Secondly, the univariate CNLS estimator, which vee in the second stage, has been
proved consistent by Hanson and Pledger (1976Yydvhiunder the stated distributional

assumptions for the composed error term, error tparameters can be estimated
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consistently in a parametric convergence rate, eflvéme avarage production function is

estimated with nonparametric or semiparametric oasl{see Fan et al., 1996).

Besides the asymptotic results above, the benktiteoproposed approach in comparison to
nonparametric frontier approaches is that it avdlus curse of dimensionality, as the
frontier function can be estimated as accuratelythes one-dimensional nonparametric
model regardless of the number of explanatory téag Of course, these better statistical
properties can be achieved by using stronger adsumsn the structure of the model than
in nonparametric estimation. Related to this, onssfpble weakness of the single-index
model in frontier applications can be the fact tta@ model assumes a nonparametric
functional form for the index function, not for intual variables. Despite the
semiparametric treatment of the frontier, it camstbe a somewhat restrictive specification
in certain applications. However, in contrast toewus techniques estimating
semiparametric stochastic frontier functions, timgle-index approach proposed here does
not require smooth frontier and is based on shapesttained estimation similarly to
popular deterministic frontier techniques.

4. Estimation of pollution generating technology

4.1. Modelling emissions

In many industries, firms or other productions siproduce undesirable outputs, such as
pollution, in addition to desirable outputs. Theeeging literature focuses on estimating
production technologies that create pollution dsy-groduct of their production processes.
In this literature, emissions are taken into actdaynestimating environmental production
or frontier functions that include emissions aslveal traditional inputs and outputs. We
next extend the semiparametric approach proposethdanpaper to the estimation of
pollution generating (or environmental producticiechnologies. To motivate for our
approach, we start by shortly reviewing variousrapphes used to estimate environmental
production frontiers and environmentally adjustedhnical efficiency or environmental
efficiency scores. For brevity, we will mainly camtrate on previous SFA approaches,
even though deterministic frontier approaches Hasen somewhat more common in the

applications on this research area.



22

The estimation of environmental production techg@e has mainly been based on DEA,
deterministic parametric programming and paramef@& methods. Evidently, the most
difficult question in estimating frontier functiomsd/or efficiency measures in this context
has been the issue of how to model emissions.d &though various approaches have
been given justification and many academic debates emerged, it is still open to

discussion which is the “correct way” to model esiuss when estimating pollution

generating technologies. Following the seminal papleFare et al. (1989), the most
common approach in DEA literature has been to medaksions as weakly disposable
outputs, which basically means that the model aatsofor the possibility that emissions

cannot be reduced freely. However, many alternatipproaches based on DEA or
parametric programming have been presented andiusggblications.

Instead, in classical and Bayesian SFA literatiireas been a common approach to model
emissions as inputs (e.g. Koop, 1998; Reinhard.et1899, 2000; Managi et al., 2006).
This “input approach” originates from environmengdonomics literature, where the
standard approach of modelling nonlinear productiod abatement processes is to treat
waste emissions “simply as another factor of prtidat (Cropper and Oates, 1992). The
main intuition behind this approach is that equewaly with input reduction pollution
abatement is costly, as abatement requires eithen@ease in traditional inputs or a
reduction in outputs. Therefore, it has been argihadl it is justified to model emissions
technically as inputs even if they represent umdbl outputs or residuals of the
production in the fundamental sense. Importanttg, tecent paper by Ebert and Welsch
(2007) also presents a rigorous justification fo view that emissions can be modelled or
interpreted as an input in the production prochksshis paper, it is formally shown that a
well-behaved production function with emissionsigsut is one of the three equivalent
ways to model a production technology if the malehalance is accounted for as an
additional conditioR. This result is of great importance, as some previstudies (e.qg.
Coelli et al., 2007) have argued conversely thatinput approach is not consistent with the

material balance condition.

13 According to the material balance condition (@ kv of mass conversion), the flow of materiakera
from the environment for economic use, generafsaof materials with an equal weight back inte th
environment.
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Two notable exceptions for the input approach iA $terature are Fernandez et al. (2002),
where emissions are modelled separately from toaudit inputs in a different equation, and

Fernandez et al. (2005), who model emissions aswalavutputs after data transformation.

While the essential limitation of the former studyhe separability assumption, the latter is
more general in the sense that it allows nonsepayatf outputs and inputs. On the other

hand, to obtain a dependent variable for the regmnesnodel, Fernandez et al. (2005) need
to transform emissions into desirable outputs astthmate a certain kind of parametric

aggregator function that combines both untransfdramed transformed outputs into one

aggregated output.

4.2. Semiparametric input approach

Here we follow the standard environmental econoramsroach by modelling emissions as
inputs in the estimation of environmental productimntiers. This means that we construct
a statistical model for the good output conditional inputs and emissions. It is worth
emphasizing that treating emissions similarly tpuits simplifies estimations, as we can
apply the framework proposed in Section 3. Furtlmeensince the econometric estimation
of multiple input, multiple output technologiesptagued with difficulties even in a fully
parametric context (compare e.g. Fernadez et @05)2 it seems sensible to use the input
approach in the semiparametric estimation.

To present the idea formally, let us now denotepHamensional vector of emissions Wy
and the m-dimensional traditional input vector Ry We will now consider the function
f(x,w), which we call environmental production frontier. Bylowing Section 3, we will
assume that this function takes the single-indermf(x,w) = f (B'’x+y'w), wheref is a
nonparametric functiobelonging to the shape-restricted cldss pand y are parameter
vectors andp'x+y'wis the (linear) index function. Shape constraimply that the

environmental production frontier is monotonicalhgreasing and concave with respect to

the index function.

As we model emissions similarly to traditional itpuwe can now present the frontier

model simply as
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Y= F(B% +yw ) +5 =g(B% +yW )+n,  i=1..n (15)

where g, =V, —y is the composed error term, is the expected inefficiency =& + ¢ is
the modified composite error term witE(7|%)=0 and g(.)=f(.)-u €F, is the

average environmental production function.

To estimate model (15), we can use the three shtpgeoach elaborated in Section 3.

Having estimated residualg, environmentally adjusted technical efficiency re=o (or

environmental efficiency scores) can be calculabgdemploying the Jondrow et al. (1982)
measure (7). There are some other measures aeaiflablthe environmental efficiency
estimation in SFA literature, but these require arametric functional form for the
environmental production function (see Reinhardlet1999; Fernandez et al., 2005).

5. Application to electric power plants

5.1. Data and estimations

In this section the proposed semiparametric teclasi@re applied to empirical data both to
illustrate the new techniques and to compare thieieicy estimates given by these
methods with those obtained by StoNED and stanD&# and SFA methods. We estimate
an environmental production frontier and environtaéy adjusted technical efficiency
scores for a set of U.S. coal-fired power plantaubyg the same data set as in Fare et al.
(2007a). This data set includes 92 observations fyear 1995 and is based on the larger
database used by Pasurka (2006) and Fare et GQrkRQt is important to notice that these
data only include plants in which at least 95%oték fuel consumption (in Btu) is provided
by coal. This guarantees that the plants includettheé data are comparable with respect to
their production technology.

For estimating the frontier functions and efficigrscores, we will use one desirable output,
two different emissions and two inputs. The deserautput is net electrical generation in
gigawatt-hours (GWh) and pollution variables in@usulfur dioxide (S€ and nitrogen
oxides (NQ) emissions. Input variables consist of capitatktmeasured in 1973 million
dollars and the annual average number of emplogédbke plant. Concerning the data
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sources, net electrical generation and fuel consomgata come from thAnnual Steam
Electric Unit Operation and Design Repppublished within the Department of Energy
(DOE) by the Energy Information Administration, EA87. These data are also used by
DOE to derive emission estimates of 2M0d NQ. Capital and labor data is based on the
information compiled by the US Federal Energy Ratpry Commission (FERC). For
details on how the data set has been constructeédoardifferent assumptions made to
elaborate the variables, we refer to Fare et B0D73). Table 1 presents descriptive statistics
for each variable used in the analysis.

Table 1. Descriptive statistics for the model variables

Variable Units Mean St.dev. Min. M ax.

Electricity GWh 4686.5 4065.3 166.6 18212.1

Capital stock Dollars (in millions, 240.0 146.4 394 750.0
1973%)

Employees The number of workers 185.2 110.9 38.0 535.0

SO, Short tons 40745.2 48244.8 1293.2 252344,

6
NOy Short tons 17494.0 16190.1 423.1 72524.1

Besides the variables in Table 1, Fare et al. (2p@¥%o included the heat content (in Btu)
of coal, oil and gas consumed at the plant asbi@san their DEA models. However, as we
next argue, there are some important reasons fgrtirse variables are not so useful in
stochastic frontier estimation. First of all, it svabserved in preliminary estimations that the
heat content of oil and gas did not have any extag power for electricity in these coal-
fired plants. In contrast, the heat content of ¢oaled out to correlate almost perfectly with
electricity generation, as the correlation coeffitiwas as high as 0.996. Since there is a
close to linear relationship between coal input afettricity, all regression models that
include the heat content of coal as an explanatariable would yield an almost perfect
regression fit independently of other variables dndctional form of the model. In
stochastic frontier estimation, this would implyaththe frontier function and average
production function are equal or that there is nefficiency according to the estimated
model. This was observed in the linear and logalir®~A models where the heat content of
coal was the only explanatory variable as wellrasnbore general models that included
many input variables. However, it needs to be emsigkd that this does not imply there to

be no inefficiency in the utilization of some otheputs or emissions generated by the
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plant. Due to these reasons, we think it is justifnot to include the heat content variables
in the stochastic frontier models in this cASEor comparability, we will also exclude these
variables from the DEA model we estimate. Nevea$®| we note that in DEA models the
inclusion of the coal variable does not create lasimproblems as in SFA and there is
inefficiency even after including it as the addiad model variable. The reason for the

divergence of DEA and SFA in these kinds of casdsfi for future research.

We estimate the frontier functions and efficiencpres by using a Cobb-Douglas SFA
estimator, StoNED, single-index stochastic frongstimators based on SIR and MRC as
well as a variable returns to scale (VRS) DEA eaton Since the data include plants that
differ notably with respect to their size, regressmodels with an additive error structure
are more sensitive to the heteroskedasticity proliflean models with a multiplicative error
structure. As a result of this data property, weidlsd to use the multiplicative error
specification (9) in the single-index and StoNED dals. Thus, in these models the
dependent variable is In(GWh) while independenialdes are measured in levels. Instead,
in the variable returns to scale DEA model we use level variable (i.e. GWh) as an

output, because DEA applications based on logarithariables are very rare.

The DEA and parametric SFA models were estimatdad wimdep. To estimate CNLS
regression used in the second stage of the sing&xifrontier models and in StoNED, the
GAMS code of Kuosmanen (2008) was used. The fiagjes of MRC and SIR frontier
models were estimated with GAUSS and R, respegtivar the former, we employed the
GAUSS code written by Jason Abrevaya, whereasatier lis based on thr package in R.

As explained in Section 3, the MRC estimation reggiione to use a non-gradient search
algorithm to optimize the non-smooth objective fuma. Similarly to other previous MRC

applications, an iterative Nelder-Mead simplex roétlwas used for that purpose. For
computations, we used the same iteration schenme @avanagh and Sherman (1998). As
starting values, we tried least squares estimat@ged as some other values. Unfortunately,
the coefficients were sensitive both to the stgrtmlues and the chosen initial simplex.

Taking into account the simulation results of Alaga (2003), we doubt this problem is a

4 However, if one would be interested in analysimeg éffect of various inputs on electricity genematithen
it could be warranted to include the heat contéebal in the regression model.
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consequence of the small sample size used in fhleaiion On the other hand, it should
be noted that although the parameter estimates sensitive to the starting values, the
effect was substantially slighter on the estimatetex functions. In the next section, we
will give the results of the single-index model &édson OLS starting values. However,
because of computational problems, it is importanbe cautious when interpreting the

results of the MRC estimation.

In contrast to MRC, the SIR estimates are not Sgadio computational issues. However,
in SIR, one has to determine the number of sligesed in the nonparametric step function.
We calculated parameter estimates and index furtiwith different values forQ.
Although the choice of) affected the values of coefficients, the indexction estimates
were very similar independently of the number afes. As an evidence of this, the
correlation coefficients between the index functstimates based on different valuefof
are of important note. For example, the correlagoefficients between index functions
based orQ = 3, 7 and 15 were 0.993, 0.995 and 0.9998, réspsc In the following, we
report the results based Q= 7.

5.2. Results

We start by illustrating the estimated single-indeatiers based on these data. Figures 1
and 2 plot the values of the index functior) @nd single-index frontiers based on SIR and
MRC. In both figures, the dependent variable In(GWihon the y-axis and the index
function on the x-axis. Nonetheless, the index @aluary between the figures, since they
are based on different methods. In both casesfroméier functions are piecewise linear,
monotonic and concave similarly to StoNED and DHAis is because we have used
CNLS in the second stage. Note that there are wig@ns (or index values) above the
estimated frontier functions. This is expectedfrastiers presented in the figures do no
account for observation-specific noise terms. Hawewas usual in SFA, noise terms are

accounted for in the estimation of inefficiency s

!5 Ccavanagh and Sherman (1998) report that theittsesare not sensitive to the starting values aitéhl
simplex. However, their sample included 18967 olzéons.
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Figure 1. Single-index frontier function for SIR
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Figure 2. Single-index frontier function for MRC

Since the estimated models include four input qulamatory variables, we cannot present
the estimated frontiers for StoNED, parametric SFAEA in figures. For the purpose of
comparison, we present summary statistics of th@r@mmentally adjusted technical
efficiency scores from different models in Tablewhjile Table 3 shows the correlation
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coefficients of efficiency scores between the mdshdn addition, the appendix includes
estimation results for error term parameter esesdtom different stochastic frontier
models. Concerning the technical efficiency scoffes, all stochastic frontier models
inefficiency scores were first estimated by empigythe Jondrow et al. measure. Then
these inefficiency scores were transformed intatined (or Farrell) efficiency scores by

applying the usual formuld g =eXp[—E(l1||€i )], where E(y |5i) Is the Jondrow et al.

measure.

Table 2. Summary statistics on environmentally adjustetin@eal efficiency scores

Mean St. dev. Min. Max.
Single-index, SIR 0.920 0.072 0.689 1
Single-index, MRC 0.873 0.109 0.616 1
StoNED 0.881 0.105 0.587 1
DEA (VRS) 0.737 0.207 0.273 1
SFA (Cobb-Douglas) 0.718 0.148 0.445 0.949

Table 3. Correlations of efficiency measures

Single- Single- StoNED DEA SFA
index, SIR index, MRC (VRS) (Cobb-Douglas)
Single-index, SIR 1
Single-index, MRC 0.903 1
StoNED 0.649 0.809 1
DEA (VRS) 0.676 0.806 0.848 1
SFA (Cobb-Douglas) 0.856 0.938 0.785 0.814 1

According to the results, average efficiency ishiesst for the SIR model and lowest for
Cobb-Douglas SFA. The difference between singlesnchodels and StoNED in average
efficiency is small, whereas deviation from DEA gratametric SFA is greater. Note that
the minimum value of the efficiency score is noyablwer for DEA than other models. In

addition, the standard deviation of efficiency ssofor DEA diverges from the others.
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As far as correlation of efficiency scores betwéesm methods is concerned, the highest
correlation coefficient 0,938 is between Cobb-Dasghnd MRC, while the lowest is

between SIR and StoNED. However, since all theetation coefficients are yet quite high,

it would be risky to present any general conclusi@bout the differences among the
methods. Naturally, a more systematic comparisornhef different techniques in small

samples would require the use of simulated data. 9¢evertheless, this application

demonstrates that the proposed semiparametric &giimtechniques can yield empirical

results that deviate from the results given byitiaahl DEA and SFA methods.

6. Conclusions

We have presented a new semiparametric approacstdohastic frontier estimation. We
showed how the proposed shape-constrained modebeagstimated in three stages by
using (1) single-index estimation techniques, (®hwex nonparametric least squares
(CNLS) and (3) method of moments. Importantly, as grocedure in the second and third
stages is similar to the StoNED approach presdmydduosmanen and Kortelainen (2007),
the proposed approach can be considered a semig@i@nextension of StoNED.

Furthermore, since the second stage in our apprizaalways univariate regression that
uses an index function as the only regressor réggdof the number of original

explanatory variables, one can perceive the fitages as a dimension reduction for the
second stage. This dimension reduction aspectexdptains why the proposed method is
not sensitive to the curse of dimensionality prable contrast to StoNED and many other

non- and semiparametric SFA approaches.

For the first stage estimation, we proposed twtedht methods: sliced inverse regression
(SIR) and the monotone rank correlation estima#iRC). Although there exist many other
single-index estimation techniques, we considert®l &d MRC most suitable for the
present model, because in contrast to all othehnigaes, these do not require the
differentiability of the frontier function. The maibenefit of MRC is that it does not need
any kind of bandwidth or a smoothing parameter,clwhmeans that its estimates are not
sensitive to an arbitrary smoothness assumptidnghhe case with most other single-index
techniques. However, since the MRC estimator i®tam the maximization of the non-
smooth objective function, the direct search atpomi used for the estimation can be

sensitive to the initial parameter values. This patational shortcoming can be especially
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problematic if sample size is relatively small, athiwas also the case in our empirical
application. In contrast to MRC, SIR is generallgryw easy to calculate and can be
implemented without any iteration procedures. Haoavevits main weakness is the

assumption on the linearity of the conditional estp&on E(b’x||3’x= z). In addition,

before estimation SIR requires one to specify theler of slices, which can have some
effect on the results. All in all, since SIR and ®Rhave their own strengths and
weaknesses, we find a good strategy to use botimitpees in empirical applications.

However, with access to a relatively large sampies might prefer MRC due to its weaker

assumptions.

In addition to showing how to estimate frontier aadhnical efficiency scores, we modified
the proposed semiparametric approach for the esdimaf environmental production
technologies and environmental sensitive techreffadiency scores. For this purpose, we
followed the standard environmental economics aggrdy modelling emissions as inputs.
We illustrated the presented approach with an aogbiapplication to the environmentally
adjusted performance evaluation of electric powants. Presumably due to a small sample
size (n = 92), the MRC estimates were somewhaitsen® the starting values of the used
Nelder-Mead simplex algorithm. As index functiortiesites given by the SIR estimator
were not sensitive to the number of slices, we natye on the results given by the latter
method in this application. It is left for furtheesearch to establish whether some other
optimization method (or a combination of optimidevgould be more robust in MRC

estimation with smaller sample sizes.

In the future, it would also be interesting and artpnt to compare the performance of our
semiparametric single-index approaches based ora&RVIRC to StoNED by employing
simulated data sets. This would perhaps revealhat\inds of settings the single-index
approach is an adequate modeling tool and eveerpidé to StoNED. Another important
research question would be to extend the proposaesmooth approach to the estimation
of smooth shape-constrained semiparametric froritinctions. In addition, it would be
important to use the approaches proposed in therpgapmther kinds of applications. For
example, profit frontier estimation would be a matuapplication area, since profit
functions have to satisfy shape-constraints impbganicroeconomic theory.
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Appendix

Table Al. Estimates for error term parameters

Single-index,  Single-index, StoNED SFA, Cobb-
SIR MRC Douglas
o’ 0,228 0,273 0,230 0,451
o 0,331 0,251 0,167 0,144
o2 0,161 0,138 0,081 0,225
A 0,689 1,088 1,384 3,130




