
MPRA
Munich Personal RePEc Archive

Acyclicity of improvements in finite game
forms

Kukushkin, Nikolai S.

Russian Academy of Sciences, Dorodnicyn Computing Center

27. November 2008

Online at http://mpra.ub.uni-muenchen.de/11802/

MPRA Paper No. 11802, posted 27. November 2008 / 22:11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7301243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/11802/


Acyclicity of improvements in finite game forms∗

Nikolai S. Kukushkin†

November 27, 2008

Abstract

Game forms are studied where the acyclicity, in a stronger or weaker sense, of (coali-
tion or individual) improvements is ensured in all derivative games. In every game form
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1 Introduction

A.-A. Cournot considered best response dynamics long before the expression “game theory”

came into use. Such processes were studied in various contexts since then (Topkis, 1979, 1998;

Moulin, 1984; Vives, 1990; Milgrom and Roberts, 1991; Kandori and Rob, 1995). Monderer and

Shapley (1996) started a similar approach to better reply dynamics.

This paper continues the search for natural classes of strategic games where the acyclicity, in

a stronger or weaker sense, of (coalition or individual) improvements is ensured (Rosenthal, 1973;

Germeier and Vatel’, 1974; Sela, 1992; Monderer and Shapley, 1996; Milchtaich, 1996; Holzman

and Law-yone, 1997; Konishi et al., 1997; Kukushkin, 1999, 2000, 2002ab, 2004ab, 2006, 2007bc;

Friedman and Mezzetti, 2001; Kukushkin et al., 2005). Unlike most of the previous literature,

we only consider game forms, i.e., we put no restrictions on the preferences of the players, only

on strategic interactions.

The topic is somewhat related to the study of consistent, or solvable, game forms (Gurvich,

1975, 1988; Moulin, 1976; Peleg, 1978; Abdou 1995, 1998; Abdou and Keiding, 2003; Boros et

al., 2007); however, the acyclicity of improvements is a much stronger (and rarer) property than

just the existence of an equilibrium.

In the case of two players, a kind of complete description of game forms where all individual

improvement paths in all derivative games lead to Nash equilibria was obtained by Boros et

al. (2008ab); for more than two players, there is no clear prospect for that. Weaker notions of

acyclicity of individual improvements result in wider classes of game forms, also without clear

prospects for a characterization. The most interesting and important class of game forms with

acyclic individual improvements is that of games with perfect information (Kukushkin, 2002a);

the results of that paper are somewhat extended here. Similar properties of “ordered voting

game forms” (Proposition 3.4 and Theorem 3.6) are also established; such game forms have been

considered before (e.g., Moulin, 1980, Kukushkin, 1995, or Mariotti, 2000), but improvement

dynamics in them seem to have never been studied.

Concerning coalition improvements, a complete description of game forms where all such

improvement paths in all derivative games lead to strong equilibria is obtained; not surprisingly,

there are not so many of them (Theorem 4.2). A slight weakening of the requirement widens

the class significantly. It is shown that “voting by veto” procedures (Mueller, 1978; Peleg, 1978)

generate game forms where the convergence of coalition improvements to strong equilibria is

ensured if the players restrict themselves to “minimal” strategy changes (Theorem 4.10).

In Section 2 the basic definitions concerning improvement dynamics in finite strategic games

are given; the notion of a game form is introduced and examples of game forms ensuring the
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acyclicity of improvements are provided. Section 3 contains some general results about game

forms with acyclic individual improvements; the class of “ordered voting game forms” is defined.

Subsection 3.2 is about games with perfect information; Subsection 3.3, about exact potential,

a cardinal analog of acyclicity. Section 4 contains the characterization of game forms with

acyclic coalition improvements; in Subsection 4.2, voting by veto procedures are defined and

their interesting properties proven.

2 Basic Notions

2.1 Improvement paths in strategic games

Our basic model is a finite strategic game with ordinal preferences. It is defined by a finite

set of players N (we denote n = #N), and finite strategy sets Xi and ordinal utility functions

ui : XN → R, where XN =
∏

i∈N Xi, for all i ∈ N . We denote N = 2N \{∅} (the set of potential

coalitions) and XI =
∏

i∈I Xi for each I ∈ N ; instead of XN\{i} and XN\I , we write X−i and

X−I , respectively. If n = 2, then −i refers to the partner of player i.

Remark. Whenever vi : R → R is strictly increasing, the functions ui and vi ◦ ui represent

the same ordering. Therefore, any meaningful definition, condition, statement, etc., involving

ordinal utility functions must be invariant to strictly increasing transformations. Auxiliary

constructions, however, may well use numeric values.

With every strategic game, a number of improvement relations on XN are associated (i ∈ N ,

I ∈ N , yN , xN ∈ XN):

yN BInd
i xN  [y−i = x−i & ui(yN) > ui(xN)]; (2.1a)

yN BInd xN  ∃i ∈ N [yN BInd
i xN ] (2.1b)

(individual improvement relation);

yN BsCo
I xN 

[
y−I = x−I & ∀i ∈ I [ui(yN) > ui(xN)]

]
; (2.2a)

yN BsCo xN  ∃I ∈ N [yN BsCo
I xN ] (2.2b)

(strong coalition improvement relation);

yN BwCo
I xN 

[
y−I = x−I & ∀i ∈ I [ui(yN) ≥ ui(xN)] & ∃i ∈ I [ui(yN) > ui(xN)]

]
; (2.3a)

yN BwCo xN  ∃I ∈ N [yN BwCo
I xN ] (2.3b)

(weak coalition improvement relation).
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Defining the best response correspondence Ri : X−i → 2Xi for each i ∈ N in the usual way,

Ri(x−i) = Argmax
xi∈Xi

ui(xi, x−i)

for every x−i ∈ X−i, we may introduce one more relation:

yN BBR
i xN  [y−i = x−i & xi /∈ Ri(x−i) 3 yi]; (2.4a)

yN BBR xN  ∃i ∈ N [yN BBR
i xN ] (2.4b)

(best response improvement relation).

It is often convenient to speak of just “an improvement relation” B without specifying which

of the above-defined relations is meant. A maximizer of an improvement relation B, i.e., a

strategy profile xN ∈ XN such that yN B xN holds for no yN ∈ XN , is an equilibrium: a

Nash equilibrium if B is BInd; a (“very”) strong equilibrium if B is BsCo (BwCo). Every Nash

equilibrium is a maximizer of BBR. If Ri(x−i) 6= ∅ for all i ∈ N and x−i ∈ X−i, then the converse

statement is also true; in a finite game, the condition holds automatically.

Following Kukushkin (2004a), we consider an arbitrary binary relation B on a finite set X.

An improvement path (for B) is a (finite or infinite) sequence {xk}k=0,1,... such that xk+1 B xk

whenever k ≥ 0 and xk+1 is defined. A finite improvement cycle is an improvement path

x0
N , x1

N , . . . , xm
N = x0

N (m > 0); a relation is acyclic if it admits no finite improvement cycle.

On a finite set, that property is equivalent to the impossibility of an infinite improvement

path; therefore, every improvement path, if continued whenever possible, reaches a maximizer

(equilibrium) in a finite number of steps.

It is easy to see that a binary relation B on a finite set X is acyclic if and only if it admits

a numeric potential, i.e., a function P : X → R such that

∀y, x ∈ X [y B x ⇒ P (y) > P (x)]; (2.5a)

the property is also equivalent to the existence of an order potential, i.e., an irreflexive and

transitive binary relation Â on X such that

∀y, x ∈ X [y B x ⇒ y Â x]. (2.5b)

The relation B is weakly acyclic if every x ∈ X is connected to a maximizer of B with

an improvement path, i.e., there is a finite improvement path {x0, . . . , xm} (m ≥ 0) such that

x0 = x and xm is a maximizer. The weak acyclicity does not exclude the possibility that an

improvement process may continue indefinitely without reaching an equilibrium; however, this

is improbable under reasonable assumptions (Kalai and Schmeidler, 1977; Milchtaich, 1996;

Friedman and Mezzetti, 2001).
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Clearly, acyclicity implies weak acyclicity, which, in turn, implies the existence of a maximizer

of B. Neither statement can be reversed.

An essential feature of the improvement relations in a strategic game defined by (2.1)–(2.4)

is their disjunctive structure, reflected in (2.1b), etc. It allows us to introduce an intermediate

class of properties. We consider an abstract relation B with a disjunctive structure, i.e., assume

that there are a finite set M (in strategic games, M = N for individual improvements and

M = N for coalition improvements) and binary relations Bi on X for each i ∈ M such that

y B x ⇐⇒ ∃i ∈ M [y Bi x] for all y, x ∈ X. We say that B is acyclic under restrictions if

there are binary relations B> and B>i on X such that, for all i ∈ M and y, x ∈ X, there holds

y B>i x ⇒ y Bi x; (2.6a)

∃y ∈ X [y Bi x] ⇒ ∃z ∈ X [z B>i x]; (2.6b)

y B> x ⇐⇒ ∃i ∈ M [y B>i x]; (2.6c)

B> is acyclic. (2.6d)

If B is acyclic, then all conditions (2.6) are satisfied by B itself as B>, i.e., B is acyclic under

restrictions. In any case, the conditions (2.6a) and (2.6b) imply that every improvement path

of B> is an improvement path of B and both relations have the same maximizers. It follows

immediately that a relation acyclic under restrictions is weakly acyclic. When B is acyclic

under restrictions, an order potential of B> may be called a restricted order potential of B [cf.

Proposition 6.4 of Kukushkin (2004a)].

Restricted acyclicity means that it is possible to impose restrictions on each player’s (or

coalition’s) strategy changes so that whenever an improvement is possible, an admissible im-

provement is possible as well, and the convergence to an equilibrium is ensured. When an

improvement relation is only weakly acyclic, an agreement between the players as to who is

allowed to improve at each stage may be needed. (Explicit cooperation can be replaced with a

stochastic choice of the player or coalition to move at each step.) The example in Section 7.7

of Kukushkin (2004a) clarifies the difference between the weak acyclicity and acyclicity under

restrictions.

The (weak or restricted) acyclicity of the individual improvement relation BInd (2.1) in a finite

strategic game Γ is called the (weak or restricted) finite individual improvement property ((weak

or restricted) FIP) of Γ. Similarly, the (weak or restricted) finite coalition improvement property

((weak or restricted) FCP) refers to the strong coalition improvement relation BsCo defined by

(2.2); the (weak or restricted) FCP+, to the weak coalition improvement relation BwCo defined

by (2.3); the (weak or restricted) FBRP, to the best response improvement relation BBR defined
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by (2.4). It is easy to see that the following implications hold:

FCP+ ⇒ FCP ⇒ FIP ⇒ FBRP

⇓ ⇓ ⇓ ⇓
restricted FCP+ ⇒ restricted FCP ⇒ restricted FIP ⇐ restricted FBRP

⇓ ⇓ ⇓ ⇓
weak FCP+ weak FCP weak FIP ⇐ weak FBRP

.

Actually, the FBRP is a restricted FIP.

These properties admit the same dynamic interpretation as the (weak or restricted) acyclicity

of an abstract binary relation. The FCP(+), FIP, or FBRP ensure that all appropriate adaptive

dynamics converge to an equilibrium in a finite number of steps. The weak FCP(+), weak FIP,

or weak FBRP ensure the convergence to an appropriate equilibrium in a finite number of steps

with probability one under reasonable assumptions. The properties are also conducive to the

convergence of more sophisticated scenarios (Young, 1993; Kandori and Rob, 1995; Friedman

and Mezzetti, 2001).

Remark. According to Proposition 6.4 of Kukushkin (2004a), weak and restricted FBRP are

equivalent for two person games; unfortunately, neither property seems natural for game forms,

which are the subject of this paper. The equivalence does not hold w.r.t. the FIP or FCP(+).

2.2 Game forms

A game form G is defined by a finite set of players N , a finite strategy set Xi for each i ∈ N , a

finite set of outcomes A and a mapping g : XN → A, where XN =
∏

i∈N Xi is the set of strategy

profiles. For notational simplicity, we assume Xi ∩ Xj = ∅ whenever i 6= j; the assumption is

obviously innocuous. We denote X =
⋃

i∈N Xi.

Once preferences of the players over the outcomes are specified (and we always assume this

to be done with ordinal utilities υi : A → R), a derivative game G(υN) (where υN denotes a list

〈υi〉i∈N) emerges, in which the set of players is N , the strategy sets are Xi’s and utilities are

ui(xN) = υi(g(xN)).

If every derivative game G(υN) possesses a Nash (strong) equilibrium, G is called Nash

(strong) consistent. We say that G has the FIP, FCP or FCP+) if so does every derivative

game G(υN). We also use the expression G is an FIP, or FCP(+) game form. If G has the FIP

(FCP), then G is Nash (strongly) consistent; the converse statements are wrong.

Remark. FBRP game forms could be defined quite similarly; however, there is no example of

an FBRP game form without the FIP. Moreover, Corollary 2 from Kukushkin (2007a) shows

that the FIP and FBRP are equivalent as properties of two person game forms.
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Example 2.1. Let us consider four game forms with two players:

a.




a a a

b b b

c c c


 b.




a a a

b c c

b d e


 c.




a a a

a b b

a b c


 d.




a a c

a b b

c b c


.

It is easily seen that each of them has the FIP, but only the first has FCP (and FCP+ at that).

Example 2.2. Let us consider two game forms with two players:

a.




a a a

a b c

a d e


 b.




a a a

a b a

a a b


.

It is easily checked that both game forms are Nash consistent; actually, the northwestern corner

is a Nash equilibrium for all utilities. Meanwhile, the underlined strategy profiles form an

improvement cycle for appropriate utilities in either game form, hence neither has the FIP.

However, there is an important difference between them.

Suppose that the utilities of the players in the first game form satisfy these inequalities:

υ1(b) > υ1(e) > υ1(d) > υ1(c) > υ1(a) and υ2(c) > υ2(d) > υ2(b) > υ2(e) > υ2(a). The

northwestern corner is a unique Nash equilibrium; an agreement to choose it is self-policing

in the usual sense. On the other hand, an agreement not to choose equilibrium strategies is

self-policing as well: if I believe that my partner honors the agreement, I have no incentive to

cheat. Moreover, each player would prefer the second agreement, which ensures the choice of

one of the underlined outcomes, to the first, notwithstanding the fact that the resulting outcome

remains unpredictable. The “irrelevance of equilibria” of this kind was discussed by Kreps (1990,

pp. 416-417). Example 1.3 in Kukushkin (2002b) demonstrates a similar problem concerning

strong equilibria.

One could argue that the second agreement is just to choose a mixed equilibrium; note,

however, that our players have ordinal preferences, hence they need not be able to compare

probability distributions on the set of outcomes. More technically speaking, a mixed equilib-

rium whose support consists of the underlined strategy profiles exists for every pair of utility

functions representing the same preferences, but its probability distribution is not invariant

under monotonic transformations.

No such ugly thing may happen when a game has the FIP or FCP(+); actually, the weak

FIP or weak FCP(+) is sufficient (Theorems 3.1–3.3 of Kukushkin, 2002b). The second game

form has the weak FIP, hence is immune to this pathology at least.

Remark. No game form is known such that every derivative game has the weak FIP or weak

FCP(+), but not necessarily a restricted FIP or FCP(+).
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The notion of restricted acyclicity admits a strengthening when applied to game forms.

An admissible change (by coalition I ∈ N ) relation is a binary relation `I on XN such that

x−I = y−I whenever xN `I yN . When I = {i}, we use the notation `i. Such a relation is liberal

if

∀xN , yN

[
[y−I = x−I & g(yN) 6= g(xN)] ⇒ ∃zN [xN `I zN & g(zN) = g(yN)]

]
, (2.7)

i.e., if every change of outcome available to a coalition (or a player) can be done in an admissible

way.

A game form G has an almost unrestricted FIP if there is a list of admissible change rela-

tions 〈`i〉i∈N such that every `i is liberal and, in every derivative game G(υN), the admissible

improvement relation B> defined by (2.6c) with M = N and

yN B>i xN  [xN `i yN & yN BInd
i xN ] (2.8)

is acyclic. A game form G has an almost unrestricted FCP if there is a list of admissible

change relations 〈`I〉I∈N such that every `I is liberal and, in every derivative game G(υN), the

admissible improvement relation B> defined by (2.6c) with M = N and

yN B>I xN  [xN `I yN & yN BsCo
I xN ] (2.9)

is acyclic. Naturally, an almost unrestricted FIP (FCP) of a game form ensures the existence of

a (strong) Nash equilibrium in every derivative game, but it is much more than that.

Remark. The game form in Example 2.2b has an almost unrestricted FCP although it seems

not to be covered by Theorems 3.6 or 3.13 or 4.10 below.

The notion admits a more concrete interpretation. We may assume that there are costs

associated with every change of strategy and that a change is admissible if its cost is minimal

among all changes leading to the same outcome. To be more formal, we define a quasidistance

on XI as a mapping δ : XI ×XI → N ∪ {+∞} such that δ(xI , yI) ≤ δ(xI , zI) + δ(zI , yI) for all

xI , yI , zI ∈ XI . When an almost unrestricted FIP is concerned, only singleton I are needed,

naturally. Given a family of quasidistances on XI parameterized with x−I ∈ X−I , we define an

admissible change relation by

xN `I yN 
[
y−I = x−I & @zI ∈ XI [g(zI , x−I) = g(yN) & δx−I

(xI , zI) < δx−I
(xI , yI)]

]
. (2.10)

Since XI is finite, (2.7) holds, i.e., the relation is liberal. Therefore, a list of quasidistances on

all XI (Xi) generates an admissible improvement relation B>, based on (2.10), (2.9) or (2.8),

and (2.6c) with M = N or M = N , in every derivative game G(υN).
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Proposition 2.3. A game form G has an almost unrestricted FCP (FIP) if and only if there

is a family of quasidistances δx−I
(δx−i

) on each XI (Xi) such that the admissible improvement

relation B> generated in every derivative game G(υN) is acyclic.

Proof. Sufficiency is tautological. Let G have an almost unrestricted FCP with an admissible

improvement relation B>. For each I ∈ N , we define `∗I as the transitive closure of `I , and

δx−I
(xI , yI) = 0 if (xI , x−I) `∗I (yI , x−I) while δx−I

(xI , yI) = +∞ otherwise. Clearly, every δx−I

is a quasidistance. Now (2.10) with this family δx−I
defines `∗I ; in every derivative game, (2.9)

defines the admissible improvement relation B>∗
I , which is the transitive closure of B>I ; therefore,

B>∗ is acyclic too. The case of an almost unrestricted FIP is treated in the same way.

In the following theorems, we always define admissible changes through quasidistances, i.e.,

“costs,” which look reasonable in each case.

A fragment G′ of G is a game form with the same set of players N , nonempty subsets

∅ 6= X ′
i ⊆ Xi for all i ∈ N , and the restriction of g to X ′

N as g′. If G has the FIP (FCP), then

so does every fragment of G; (strong) Nash consistency, or even a restricted FIP (FCP), need

not be “inherited” in this sense.

3 FIP Game Forms

3.1 Simple and ordered voting game forms

A game form G is separable if it is possible to define a “pointer” mapping p : X → A such that

g(xN) ∈ {p(xi)}i∈N (3.1)

for every xN ∈ XN . In principle, the same g may be described by (3.1) with different mappings

p; moreover, some p(xi) may be arbitrary. An interpretation should be clear: choosing a strategy

xi, player i as if expresses a wish to see p(xi) chosen; the mapping g determines whose desire

will be fulfilled at each strategy profile.

Remark. The term is due to Vladimir Gurvich (a seminar presentation). Boros et al. (2008b)

suggest “assignable game forms”; however, the inevitable association with the “assignment prob-

lem” appears undesirable.

Hypothesis 3.1. Every FIP game form is separable.

The converse implication is obviously wrong. Every game form in Examples 2.1 and 2.2 is

separable. For n = 2, the statement is proven in Boros et al. (2008b).
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The simplest separable game forms are dictatorial ones, where there is a player i ∈ N such

that g(xN) = p(xi) for all xN ∈ XN ; see Example 2.1a. Unless g(XN) is a singleton, there

cannot be more than one dictator; p(xj) for j 6= i may be arbitrary.

A game form is simple if it is separable and there is a linear order on X such that

g(xN) = p(min
i∈N

xi) (3.2)

for every xN ∈ XN . (Again, the same g may be described by (3.2) with different orders on X .)

Besides a desirable outcome, every strategy specifies a priority of the desire; then the choice

with the highest priority is implemented. If G is dictatorial, we may define xi < xj for every

strategy of the dictator i and all j 6= i. Every fragment of a simple game form is simple as well.

Remark. Boros et al. (2008ab) call such game forms “totally reducible”; however, a lone ad-

jective seems preferable.

Given a game form, we call xi ∈ Xi simple if #g(xi, X−i) = 1.

Proposition 3.2. A game form G is simple if and only if there is a simple strategy in every

fragment of G.

Proof. If G is simple and G′ is a fragment of G, we pick the minimal strategy in
⋃

i∈N X ′
i; (3.2)

immediately implies that it is simple in G′. Conversely, we pick a simple strategy in X and

declare it the least in X ; then we forget it and define a linear order on X by induction.

Theorem 3.3. Every simple game form has the FIP.

Proof. Suppose to the contrary that x0
N , x1

N , . . . , xm
N = x0

N (m > 0) is an individual improvement

cycle in a derivative game G(υN). Without restricting generality, we may assume that there

is no shorter improvement cycle. For each i ∈ N , we define X ′
i = {x0

i , x
1
i , . . . , x

m−1
i }. By

Proposition 3.2, the fragment contains a simple strategy; let it be xk
i . Without restricting

generality, we may assume that xk
N BInd

i xk−1
N , hence xk+1

N BInd
j xk

N with j 6= i. Since xk
i =

xk+1
i and xk

i is simple, we have g(xk
N) = g(xk+1

N ), which contradicts the supposed inequality

uj(x
k+1
N ) > uj(x

k
N).

All game forms in Example 2.1 except the last one are simple. Theorem 5 of Boros et al.

(2008a) shows that every two person game form which has the FIP but is not simple must

contain that matrix. When n > 2, even that much cannot be asserted, see Example 4.8 below.

“Dually” to dictatorial game forms, priorities of the strategies may be determined by the

outcomes pointed to. Let A be linearly ordered and

g(xN) = min
i∈N

p(xi) (3.3)
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for each xN ∈ XN ; Example 2.1c presents such a game form. A possible interpretation: each

player chooses a maximal “level of cooperation” she is ready to accept; then the highest level

acceptable to everybody becomes the norm. The term unanimity game forms may be appropri-

ate.

Proposition 3.4. Every unanimity game form has the FIP.

Proof. The game form is simple: yi > xj whenever p(yi) > p(xj); the strategies with the same

p(xi) are ordered arbitrarily. Now Theorem 3.3 applies.

Generalizing the notion, we may assume that an outcome is socially acceptable if a certain

fraction of players finds it so; the median is most usual in political sciences. Moulin (1980)

considered such game forms, with the addition of “fixed votes” to the players’ choices, and

established some nice properties of them when the preferences are single-peaked. Here we

abandon the anonymity requirement and allow arbitrary preferences. Thus, the order on the

set of outcomes becomes an element of the decision making procedure, unrelated to the players’

preferences.

An ordered voting game form is defined by the following construction. A is linearly ordered

and Xi = A for each i ∈ N . Strictly speaking, our assumption Xi ∩ Xj = ∅ is thus violated,

but it does not matter here. For each i ∈ N , a “weight” µi ≥ 0 is given; for each a ∈ A, a

number λa > 0. We assume that λa decreases in a. Given xN ∈ XN and a ∈ A, we denote

N−(a, xN) = {i ∈ N | xi < a}, κ−(a, xN) =
∑

i∈N−(a,xN ) µi, and define

g(xN) = max{a ∈ A | κ−(a, xN) < λa}.

The interpretation is that each player chooses a “personal cap” xi supported by her weight µi;

λa is the minimal total weight against a that makes it ineligible.

If all µi = 1 and λa = 1, we have a unanimity game form, the FIP of which was established

by Proposition 3.4; if all µi = 1 and λa = n, we have g(xN) = maxi∈N xi, i.e., Proposition 3.4 is

still applicable after the order on A is reversed. Generally, there is no FIP.

Example 3.5. Let us consider an ordered voting game form G with N = {1, 2}, A = {a, b, c}
(a > b > c), both µi = 1, λc = λb = 2, and λa = 1 (median voting scheme with a fixed vote at

b). The game form is described by the following matrix:

a b b

b b b

b b c
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The underlined outcomes form an improvement cycle in G(υN) with appropriate utilities; there-

fore, G does not have the FIP (although it is Nash consistent).

Somewhat unnatural behavior may be observed in the cycle: in the “clockwise” movement,

player 2 switches from a to b by choosing c, and from c to b by choosing a.

Given a, b ∈ A, we define the order distance between them as

d(a, b) = #{x ∈ A | min{a, b} ≤ x < max{a, b}}; (3.4)

then we define an admissible change relation by (2.10) with d as δx−i
for every i ∈ N and

x−i ∈ X−i. In other words, a change of strategy is admissible if the same change of outcome

could not be produced by a shorter movement of xi.

Theorem 3.6. Every ordered voting game form has an almost unrestricted FIP with the qua-

sidistance on each Xi defined by (3.4) [independently of x−i].

Proof. We denote M = {µi}i∈N ⊂ R and N(m) = {i ∈ N | µi ≥ m} for each m ∈ M .

Given xN ∈ XN and m ∈ M , we define γ−m(xN) = max{a ∈ A | κ−(a, xN) + m < λa} and

γ+
m(xN) = max{a ∈ A | κ−(a, xN) − m < λa}; clearly, γ−m(xN) ≤ g(xN) ≤ γ+

m(xN). Then we

define Cm(xN) = {a ∈ A | γ−m(xN) ≤ a ≤ γ+
m(xN)}, Bm(xN) = {i ∈ N(m) | xi ∈ Cm(xN)}, and

Pm(xN) =
∑

i∈Bm(xN ) υi(xi)}. A binary relation on XN is defined as a lexicography:

yN ºm xN 
[
Cm(yN) ⊂ Cm(xN) or

[
Cm(yN) = Cm(xN) &

(
Bm(yN) ⊃ Bm(xN) or [Bm(yN) = Bm(xN) & Pm(yN) ≥ Pm(xN)]

)] ]
;

yN Âm xN 
[
Cm(yN) ⊂ Cm(xN) or

[
Cm(yN) = Cm(xN) &

(
Bm(yN) ⊃ Bm(xN) or [Bm(yN) = Bm(xN) & Pm(yN) > Pm(xN)]

)] ]
.

Clearly,

yN Âm xN ⇐⇒ [
yN ºm xN & xN 6ºm yN

]
.

Finally, a lexicographic aggregate is formed of ºm (m ∈ M):

yN Â xN  ∃m ∈ M
[
yN Âm xN & ∀m′ > m [yN ºm′ xN ]

]
.

Obviously, Â is a strict order; we’ll show that it is a potential, in the sense of (2.5b), for

admissible improvements. Let i ∈ N and xN , yN ∈ XN be such that y−i = x−i; we denote

a = g(xN) and b = g(yN) and assume b 6= a. For every c ∈ A, we denote c + 1 the next point in

A, uniquely defined by c + 1 > c and d(c, c + 1) = 1.

12



Step 3.6.1. b ∈ Cµi
(xN).

Proof. Since κ−(b, yN) < λb while κ−(b, yN) ≥ κ−(b, xN) − µi, we have κ−(b, xN) < λb + µi,

hence b ≥ γ−µi
(xN). For each c > γ+

µi
(xN), we have κ−(c, yN) ≥ κ−(c, xN)−µi ≥ λc, hence c 6= b;

therefore, b ≤ γ+
µi

(xN).

Step 3.6.2. xN `i yN ⇐⇒ yi = b.

Proof. If xi < a, then κ−(a, yN) ≤ κ−(a, xN) < λa, hence b > a. If xi > a, then κ−(a+1, yN) ≥
κ−(a + 1, xN) ≥ λa+1, hence b < a.

Let b > a; then xi ≤ a. If yi < b, then κ−(b, yN) = κ−(b, xN) ≥ λb: a contradiction.

Obviously minyi≥bi
d(xi, yi) is attained when yi = b.

Let b < a; then xi ≥ a. If yi > b, then κ−(b+1, yN) = κ−(b+1, xN) < λb+1: a contradiction.

Obviously minyi≤bi
d(xi, yi) is attained when yi = b.

In the following, we assume yi = b.

Step 3.6.3. Cm(yN) ⊆ Cm(xN) for each m ≥ µi.

Proof. Let b > a; then κ−(c, yN) ≤ κ−(c, xN) for each c ≤ b, while κ−(c, yN) = κ−(c, xN) for

each c > b. Since γ−m(xN) ≤ a < b ≤ γ+
m(xN), we have γ−m(yN) ≥ γ−m(xN) and γ+

m(yN) = γ+
m(xN).

The case of b < a is treated dually.

Step 3.6.4. yN ºm xN for each m > µi.

Proof. Indeed, Cm(yN) ⊆ Cm(xN) by Step 3.6.3. If the inclusion is strict, we even have yN Âm

xN . Otherwise, Bm(yN) = Bm(xN) and Pm(yN) = Pm(xN) since yN(m) = xN(m).

Step 3.6.5. If υi(b) > υi(a), then yN Âµi
xN .

Proof. Again, Cµi
(yN) ⊆ Cµi

(xN) by Step 3.6.3. Since i ∈ Bµi
(yN), we only have to consider

the case of Cµi
(yN) = Cµi

(xN) and Bµi
(yN) = Bµi

(xN), i.e., i ∈ Bµi
(xN). If xi = a, we

have Pµi
(yN) − Pµi

(xN) = υi(b) − υi(a) > 0. Suppose xi < a; then γ−m(xN) ≤ xi < a and

b = yi > a. On the other hand, κ−(a, yN) ≥ κ−(a, xN)− µi, hence κ−(a, yN) + µi < λa, hence

γ−µi
(yN) ≥ a > γ−µi

(xN), hence Cµi
(yN) ⊂ Cµi

(xN), contradicting our assumption. The case of

xi > a is treated dually.

In the light of Steps 3.6.4 and 3.6.5, the proof of the theorem is accomplished.
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Theorem 3.6 becomes wrong if strategy sets Xi ⊂ A are allowed: the assumption X2 = {a, c}
in Example 3.5 would make the changes made by player 2 along the cycle unique.

Remark. In the absence of fixed votes, i.e., when λa is the same for all a ∈ A, an ordered

voting game form is obviously separable: p(xi) = xi. The statement seems to be wrong generally

although I have not studied the question carefully.

3.2 Games with perfect information

The most important examples of game forms with FIP or almost unrestricted FIP are pro-

vided by the normal form of games with perfect information. Following Kukushkin (2002a), we

reproduce the familiar concepts in a fashion most convenient for our purposes.

A perfect information game form (PIGF ) is a game form with arbitrary (finite) sets N and

A, and strategies and the mapping g generated by a construction as follows. A game tree K

is a finite partially ordered set satisfying these two conditions. (a) For every α ∈ K, the set

{β ∈ K | β ≤ α} is a chain. (b) There exists the minimum α0 of K (the origin), α0 ≤ α for

every α ∈ K. The existence of the meet (greatest common lower bound) α∧β for every α, β ∈ K

easily follows. We call β ∈ K an immediate successor of α ∈ K if α < β while α < β′ < β is

impossible; the set of all immediate successors of α ∈ K is denoted Xα. Imagining an arc from

every α ∈ K to every β ∈ Xα turns K into a tree in a geometrical sense.

The set of maximizers of the order on K is denoted T (terminal nodes); the set K \ T , D

(decision nodes). There is an ownership mapping ν : D → N ; player i moves at nodes from

Di = ν−1(i). We denote Xi =
∏

α∈Di
Xα for i ∈ N and XN =

∏
i∈N Xi. We identify XN with∏

α∈D Xα. For every xN ∈ XN and α ∈ D, we denote π(α, xN) ⊆ K the intersection of all

subsets K ′ of K satisfying these two conditions: α ∈ K ′ and [β ∈ K ′ ⇒ xβ ∈ K ′]; note that

π(α, xN) is a chain: a play of the game starting at α. The unique element of T ∩ π(α, xN) is

denoted τ(α, xN): the result of playing xN starting at α.

Finally, there is a mapping γ : T → A and g(xN) = γ(τ(α0, xN)). If γ is a bijection, G is

called free; in this case, we may just assume A = T (as was done in Kukushkin, 2002a). For

each α ∈ D, we denote F (α) = γ({β ∈ T | β > α}), the set of outcomes feasible if the play

passes through α.

To avoid pathologies, we always assume that #Xα > 1 and #F (α) > 1 for every α ∈ D

(i.e., there is no “meaningless” decision node), while Xα ∩Di = ∅ for all i ∈ N and α ∈ Di (i.e.,

no player can make two consecutive choices). The restrictions are innocuous and allow more

compact formulations of Theorem 3.8, Hypothesis 3.10, and Proposition 3.19 below.
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Proposition 3.7. A game form is simple if and only if it can be represented as a perfect

information game form where D is a chain in the tree order, i.e., there exists a play of the game

containing all decision nodes.

Proof. Straightforward.

Theorem 3.8 (Theorem 1 of Kukushkin, 2002a). If G is a free perfect information game

form, then G has the FIP if and only if each Di is a chain in the tree order, i.e., for each player

there exists a play of the game containing all his decision nodes.

The sufficiency part, naturally, holds for every PIGF, which cannot be said about the neces-

sity.

Example 3.9. Let us consider a three-person perfect information game form with five decision

nodes, six terminal nodes, and five outcomes. We assume D1 = {α0, α2, α3}, D2 = {β2},
D3 = {β3} and A = {a, b, c, d, e}; γ is described by putting outcomes at terminal nodes.

a
1←−−− α2

2←−−− β2
1←−−− α0

1−−−→ β3
3−−−→ α3

1−−−→ e

1

y 2

y
y3

y1

b c c d

The FIP is not difficult to check.

To extend Theorem 3.8 to the general case, we introduce the following requirements. First,

the decision nodes of each player form a subsemilattice of the game tree, i.e., if a player moves

at two incomparable nodes, he must move at their meet too:

α, α′ ∈ Di ⇒ α ∧ α′ ∈ Di. (3.5a)

The second condition needs some auxiliary notations. For i ∈ N and α, β ∈ Di, we denote:

F ∗(α, β) = γ({t ∈ T | α < t ∧ β < β & t ∧ β /∈ Di});

F ∗∗(α, β) =





F ∗(α, β), if #F (β) > 2;

F ∗(α, β) \ F (β), if #F (β) = 2.

Now the condition is

∀i ∈ N ∀α ∈ Di ∀β′, β′′ ∈ Di \ {α} [β′ ∧ β′′ = α & c′ ∈ F ∗∗(α, β′) & c′′ ∈ F ∗∗(α, β′′) ⇒ c′ = c′′].
(3.5b)

If Di is a chain, then (3.5a) holds trivially while (3.5b) holds by default. Generally, conditions

(3.5) mean that each Di contains a subchain D∗
i such that if player i makes the play to turn

towards a decision node from Di\D∗
i then all other players have a rather little say in determining

the outcome.
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Hypothesis 3.10. A perfect information game form has the FIP if and only if it satisfies

assumptions (3.5).

The necessity part is easily derived from the proof of Theorem 1 in Kukushkin (2002a).

Proposition 3.11. Every perfect information game form satisfying assumptions (3.5) is sepa-

rable.

Proof. Given i ∈ N and xi ∈ Xi, we define α(xi) as the greatest in the tree order (i.e., the

furthest from the origin) decision node of player i that can be reached when player i chooses xi.

It is well defined because of (3.5a). Now if xi prescribes to player i to choose a terminal node t

at α(xi), i.e., if xα(xi) = t ∈ T , we define p(xi) = γ(t); otherwise, p(xi) ∈ A is arbitrary.

Checking (3.1) is easy. Let τ(α0, xN) = t, hence g(xN) = γ(t). We denote i the player who

made the last move in the play ending at t, and β the decision node where that last move was

made. Obviously, β = α(xi) and γ(t) = p(xi).

By Proposition 3.7, every two-person perfect information game form satisfying assumptions

(3.5) is simple. The converse to Proposition 3.11 is wrong: the proof only needs (3.5a). On the

other hand, Proposition 3.11 becomes wrong if assumptions (3.5) are dropped altogether.

Example 3.12. Let us consider a free two-person perfect information game form with three

decision nodes; we assume D1 = {α0} and D2 = {β′, β′′}.

a
2←−−− β′ 1←−−− α0

1−−−→ β′′ 2−−−→ d

2

y
y2

b c

If it were a separable game form, we could, without restricting generality, assume p(β′) = a and

p(β′′) = d. Now if p(b, c) 6= b, then (3.1) is violated for xN = 〈β′, (b, c)〉; if p(b, c) 6= c, then (3.1)

is violated for xN = 〈β′′, (b, c)〉.

Given a perfect information game form, we define the distance between two strategies of the

same player i ∈ N as

d(xi, yi) = #{α ∈ Di | yα 6= xα}. (3.6)

Then we define admissible change relations for each i ∈ N by (2.10) with the quasidistances

δx−i
(xi, yi) = d(xi, yi) for every x−i ∈ X−i. In other words, a change of the strategy of a player

is admissible if the number of nodes involved is minimal, i.e., there was no change at irrelevant

nodes.
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Theorem 3.13 (Theorem 3 of Kukushkin, 2002a). Every perfect information game form

has an almost unrestricted FIP with admissible change relations defined by the “costs” (3.6).

Remark. A modification of the proof from Kukushkin (2002a) allows us to derive a corollary

(Proposition 3.18 in the next subsection), which may be of some interest.

Proof. Let xN ∈ XN and t ∈ T ; we say that t is blocked by player i at xN if there exist α ∈ Di

and β ∈ Xα such that t ∈ π(β, xN) \ π(α, xN) (it follows immediately that τ(β, xN) = t and

xα 6= β). Let t 6= τ(α0, xN); then the set {α < t | t /∈ π(α, xN)} is a nonempty chain, so we

may pick its maximum α and denote i = ν(α). Obviously, t is blocked by i at xN and t cannot

be blocked at xN by any other player. We thus obtain a partitioning of T \ {τ(α0, xN)} into

subsets Bi(xN) of terminal nodes blocked by each particular player i ∈ N at xN .

It is important to note that #Bi(xN) does not depend on xN ; actually, #Bi(xN) =

[
∑

α∈Di
#Xα] − #Di because choosing any alternative from Xα for α ∈ Di, player i does not

choose each of #Xα − 1 others thereby blocking the same number of terminal nodes (exactly

which terminal nodes are blocked depends on the choices at successive nodes).

Defining P (xN) = −∑
i∈N

∑
t∈Bi(xN ) υi ◦ γ(t)}, let us show that P is a numeric potential of

B>. Assuming yN B>i xN , we have to prove that P (yN) > P (xN).

We denote t = τ(α0, xN) and t′ = τ(α0, yN); then υi ◦ γ(t′) > υi ◦ γ(t) and t ∧ t′ ∈ Di. Let

us show first Bj(xN) ⊆ Bj(yN) for each j 6= i. Assuming t′′ ∈ Bj(xN), we, by the definition of

blocking, have α ∈ Dj and β ∈ Xα such that t′′ ∈ π(β, xN) \ π(α, xN). Since j 6= i, yα = xα,

hence t′′ /∈ π(α, yN) and t′′ 6= t′; moreover, t′′ ∧ t′ ≤ α. Now t′′ 6= τ(β, yN) could only be possible

if there were β′ ∈ π(β, xN) such that yβ′ 6= xβ′ , hence β′ ∈ Di; but then the replacement of

xβ′ with yβ′ would be a superfluous change incompatible with the minimization of “costs” (3.6).

More formally, considering zi which coincides with xi at β′ and with yi at all other nodes from

Di, we immediately see that g(zi, x−i) = g(yi, x−i) = g(yN) while δx−i
(xi, zi) < δx−i

(xi, yi).

Therefore, τ(β, yN) = t′′, hence t′′ ∈ Bj(yN).

Now Bj(xN) ⊆ Bj(yN) implies Bj(xN) = Bj(yN) for all j 6= i. It follows immediately that

Bi(yN) = (Bi(xN) \ {t′}) ∪ {t}, hence

P (yN)− P (xN) = υi ◦ γ(t′)− υi ◦ γ(t) = ui(yN)− ui(xN). (3.7)

Thus, we have P (yN) > P (xN).

An extension of the notion of a PIGF is met in the literature quite often, see, e.g., Boros

and Gurvich (2003) and references therein. Suppose there is a directed graph, its nonterminal

nodes are partitioned among the players, and one of them is fixed as the origin. Each player

is free to choose an arc leading from each of her decision nodes (“stationary strategies”); once
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all strategies are chosen, a play of the game is uniquely defined: after a finite number of steps,

either a terminal node is reached, or a cycle starts repeating itself ad infinitum. Treating cycles

as additional outcomes, we obtain a game form.

If the players were allowed to condition their choices on history, we would return to a game

on a (finite or infinite) tree. The stationarity requirement is effectively equivalent to imperfect

information: when making a decision at a node, the player does not know how the play has

come there. It is well known that a game with imperfect information, even on a finite tree,

need not possess a Nash equilibrium (unless mixed strategies are invoked). In this class of

games, however, the lack of information only concerns the past, which does not affect future

possibilities. Therefore, it seems natural to expect no big difference with the standard perfect

information model.

Indeed, if the graph is acyclic, i.e., the underlying tree is finite, an equilibrium can be obtained

by the standard backward recursion. If cycles are possible, the underlying tree becomes infinite,

and there is nowhere to derive an equilibrium from. An intermediate case emerges when the

graph contains cycles, but every cycle is worse for each player than any terminal node (Boros

and Gurvich, 2003); then no infinite play can result from any improvement.

Here we briefly consider the possibility to extend Theorem 3.13 to a game on an acyclic

graph. The result, Theorem 3.14 below, is distinctly weaker; to be more precise, a restricted

FIP is established, but an almost unrestricted FIP is not (so far).

The definition of a positional acyclic game form is most conveniently given in the same style

as in the beginning of this subsection. Instead of a game tree, we consider a finite partially

ordered set K satisfying condition (b) from the definition of a PIGF: the existence of the origin

α0. The partition of K into decision nodes D and terminal nodes T is the same; the ownership

mapping ν : D → N is the same; the definitions of immediate successors Xα of α ∈ K, as well

as strategies Xi =
∏

α∈Di
Xα and strategy profiles XN =

∏
i∈N Xi =

∏
α∈D Xα are the same.

Since condition (a) from the definition of a PIGF is dropped, we may always assume that γ is

a bijection, i.e., T = A. A play of the game starting at α, π(α, xN) ⊆ K, is defined in the same

way, and still is a chain; the result of playing xN starting at α, τ(α, xN), is still uniquely defined.

Finally, the assumption Xα ∩Di = ∅ for all i ∈ N and α ∈ Di no longer looks innocuous and is

not made.

We start with the definition of a strengthened version of restricted FIP. Given a family of

“costs” δx−i
on each Xi, we define the cost-efficient individual improvement relation on XN by

yN B>i xN 
[
yN BInd

i xN &

@zi ∈ Xi [δx−i
(xi, zi) < δx−i

(xi, yi) & ui(zi, x−i) ≥ ui(yN)]
]

(3.8a)
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and

yN B> xN  ∃i ∈ N [yN B>i xN ]. (3.8b)

A game form has an FCIP if there are “costs” δx−i
on each Xi such that the cost-efficient

individual improvement relation (3.8) is acyclic in every derivative game.

Theorem 3.14. Every positional acyclic game form has an FCIP with the “costs” (3.6).

Proof. Given xN ∈ XN and α ∈ D, we define vα(xN) = υν(α)(τ(α, xN)): what the player who

moves at α would get if the play passes through the node. Then we define a lexicographic order

on XN :

yN Â xN 
[∃α ∈ K [vα(yN) > vα(xN)] &

∀α ∈ K
(
vα(yN) < vα(xN) ⇒ ∃β ∈ K [β > α & vβ(yN) > vβ(xN)]

)]
. (3.9)

Clearly, Â is a strict order.

Supposing that xN , yN ∈ XN and yN B>i xN , we show that yN Â xN . We denote B = {β ∈
K | yβ 6= xβ} 6= ∅. Exactly as in the proof of Theorem 3.13, we have B ⊆ Di ∩ π(α0, yN), hence

there exists β∗ = max B.

Let us show that vβ∗(yN) > vβ∗(xN). Supposing the contrary, we define zN ∈ XN by

zβ∗ = xβ∗ and zα = yα for all α 6= β∗. Clearly, ui(zN) = vβ∗(zN) = vβ∗(xN) ≥ vβ∗(yN) = ui(yN).

Since d(xi, zi) < d(xi, yi), we have a contradiction with the assumption yN B>i xN .

Finally, let α ∈ K and vα(yN) 6= vα(xN), hence B ∩ π(α, yN) 6= ∅. Picking β ∈ B ∩ π(α, yN),

we have β∗ ≥ β ≥ α. Since vβ∗(yN) > vβ∗(xN), (3.9) holds.

It is impossible to derive an almost unrestricted FIP from the above argument: the inequality

vβ∗(yN) > vβ∗(xN) need not hold without the “cost-efficiency” of the improvement. Whether

the conditions of Theorem 3.14 imply the property itself remains an open question.

Proposition 3.15. A positional acyclic game form has an almost unrestricted FIP with admis-

sible change relations defined by the “costs” (3.6) if each Di is an anti-chain, i.e., all β, β′ ∈ Di

are incomparable in the order on K.

Proof. Let yN B>i xN . In the notation from the proof of Theorem 3.14, we have B = {β∗},
hence vβ∗(yN) = ui(yN) > ui(xN) = vβ∗(xN), hence yN Â xN .

It is funny to contrast Proposition 3.15 with Theorem 3.8.

Proposition 3.16. A positional acyclic game form has the FIP if each Di is a singleton.
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Proof. Retaining the notation from the proof of Theorem 3.14 and arguing in the same way, it

is easy to show that yN Â xN whenever yN BInd xN .

The converse to Proposition 3.16 is wrong. There is no plausible hypothesis about necessary

and sufficient conditions for FIP in this class of game forms.

3.3 Cardinal utilities and potentials

Although our main subject are games with ordinal preferences and we do not consider mixed

extensions, it seems impossible not to say a few words about cardinal utilities. Actually, Mon-

derer and Shapley (1996) paid most attention to that case. Moreover, they assumed that the

utilities of all players are measured in the same scale; we make the same assumption here.

Let Γ be a game with such “co-cardinal” utilities. Monderer and Shapley (1996) defined an

exact potential of Γ as a function P : XN → R such that

ui(yN)− ui(xN) = P (yN)− P (xN) (3.10)

whenever i ∈ N , yN , xN ∈ XN , and y−i = x−i. An ordinal potential of Γ is a function P : XN →
R such that

sign(ui(yN)− ui(xN)) = sign(P (yN)− P (xN)) (3.11)

whenever i ∈ N , yN , xN ∈ XN , and y−i = x−i. The latter notion is indeed ordinal, i.e., invariant

under strictly increasing transformations of utilities. Voorneveld and Norde (1996) showed that

the existence of an ordinal potential is equivalent to the absence of “weak improvement cycles.”

Obviously, (3.10) implies (3.11), of which it is the most natural cardinal analogue.

Theorem 3.17. For every game form G, the following statements are equivalent.

1. Every derivative game G(υN) admits an exact potential.

2. Every derivative game G(υN) admits an ordinal potential.

3. G is dictatorial.

Proof. The implications [Statement 3 ⇒ Statement 1 ⇒ Statement 2] are straightforward. Let

Statement 2 hold.

Step 3.17.1. If i, j ∈ N , i 6= j, xN , yN , zN ∈ XN , x−i = y−i, y−j = z−j, and g(xN) 6= g(yN),

then g(yN) = g(zN).
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Proof. Supposing the contrary, we denote y′N = (zj, x−j). Then we pick a constant as υj, and

define υi(g(xN)) = 1 and υi(g(yN)) = 0. If g(y′N) = g(zN), we obtain a weak improvement

cycle in G(υN): υi(g(xN)) > υi(g(yN)), υj(g(yN)) = υj(g(zN)), υi(g(zN)) = υi(g(y′N)), and

υj(g(y′N)) = υj(g(xN)); clearly, this is incompatible with (3.11). Otherwise, if g(xN) = g(zN),

we set υi(g(y′N)) = 0 and again obtain the same cycle: υi(g(xN)) > υi(g(yN)), υj(g(yN)) =

υj(g(zN)), υi(g(zN)) > υi(g(y′N)), and υj(g(y′N)) = υj(g(xN)). Finally, if g(xN) 6= g(zN) 6=
g(y′N), we set υi(g(y′N)) = υi(g(zN)) [a numeric value cannot be specified because both g(y′N) =

g(xN) and g(y′N) = g(yN) are possible] and again obtain the same cycle.

Step 3.17.2. If i ∈ N , xN , yN ∈ XN , x−i = y−i, and g(xN) 6= g(yN), then player i is a dictator.

Proof. Given j ∈ N \ {i}, Step 3.17.1 immediately implies that g(yi, zj, x−ij) = g(yN) and

g(xi, zj, x−ij) = g(xN) for all zj ∈ Xj. For every zN ∈ XN such that z−i = x−i = y−i, we

have either g(zN) 6= g(xN) or g(zN) 6= g(yN), hence the previous argument applies and player j

cannot change the outcome. Therefore, if x′−j = x−j and y′−j = y−j, then the assumptions of the

lemma hold for x′N and y′N as well, hence no player k can change the outcome deviating from

xk at x′−k. Iterating the reasoning, we see that player i is a dictator.

If #g(XN) = 1, then every player is a dictator. If g(xN) 6= g(yN), then there is a strategic

path x0
N , x1

N , . . . , xn
N such that x0

N = xN and xn
N = yN . Clearly, we must have g(xk

N) 6= g(xk+1
N )

for some k, hence Step 3.17.2 applies.

We call G a nearly potential game form if there is a liberal admissible change relation `i

on XN for each i ∈ N , and a function P : XN → R for every derivative game G(υN) such that

(3.10) holds whenever i ∈ N , yN , xN ∈ XN , xN `i yN , and g(yN) 6= g(xN). We call G an almost

potential game form if there is a function P : XN → R for every derivative game G(υN) such

that (3.10) holds whenever i ∈ N , yN , xN ∈ XN , x−i = y−i, and g(yN) 6= g(xN). Clearly, every

almost potential game form has the FIP while every nearly potential game form has an almost

unrestricted FIP.

Proposition 3.18. Every perfect information game form is a nearly potential one. If ν is

injective, i.e., each player has at most one decision node, then it is an almost potential game

form.

Proof. Defining the admissible change relations by the “costs” (3.6) and potential P as in the

proof of Theorem 3.13, we refer to (3.7). If each Di is a singleton, then every change of strategy

producing a change of outcome is admissible.

Proposition 3.19. If a free perfect information game form is an almost potential one, then ν

is injective.
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Proof. The necessity of (3.5a) for the FIP is easy to see regardless of Hypothesis 3.10, so if ν

is not injective, we may assume that ν(α) = ν(α′) = i while α < α′. By the non-degeneracy

assumptions, there must be β ∈ Dj such that α < β < α′ and j 6= i. Since G is free, there must

be a fragment of the type
a b b

a c d

where player i chooses columns and player j rows, and different letters denote different out-

comes. Individual changes of strategies starting at the northwestern corner produce this cycle

of outcomes: a → b → c → d → b → a. Therefore, (3.10) would imply that υi(b) − υi(a) +

υj(c)−υj(b)+υi(d)−υi(c)+υj(b)−υj(d)+υi(a)−υi(b) = 0, hence υi(d)−υi(c) = υj(d)−υj(c).

Clearly, the equality does not hold for all utility functions.

The assumption that the game form is free cannot be dropped. Example 4.8 below disproves

putative hypotheses like “every nearly (or almost) potential game form can be represented as

a perfect information game form”; on the other hand, such examples seem rare, so a plausible

hypothesis may be obtainable.

4 FCP Game Forms

4.1 Characterization

Given I ∈ N \ {N}, a superfragment of G is a game form with two players, “I” and “−I,”

nonempty subsets of XI and X−I as strategy sets, respectively, and the appropriate restriction

of g. The FCP(+) of G obviously implies the same property of every superfragment; no such

assertion holds for the FIP.

Following Boros et al. (2008a), we call a game form G totally tight if every 2×2 superfragment

of G contains a simple strategy; in other words, if the condition

{g(x′I , x
′
−I), g(x′′I , x

′′
−I)} ∩ {g(x′I , x

′′
−I), g(x′′I , x

′
−I)} 6= ∅ (4.1)

holds for each I ∈ N , x′I , x
′′
I ∈ XI and x′−I , x

′′
−I ∈ X−I .

Proposition 4.1. Let G be a game form such that g(XN) = {q, a}. Then G is totally tight if

and only if there is an ordering ºI on XI for every I ∈ N such that

∀I ∈ N ∀xN , x′N ∈ XN [g(x′N) = q & x′I ºI xI & x′−I = x−I ] ⇒ g(xN) = q. (4.2)
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An interpretation should be clear: all strategies of a player or a coalition are (weakly) ordered

according to how much effort is spent in trying to switch from a status quo ante outcome q to

the unique available alternative; whenever the effort proves insufficient, less effort cannot be

sufficient. The term “a binary lobbing game form” may be appropriate.

Proof. Necessity. Let (4.1) hold everywhere. For each I ∈ N , we define a binary relation on

XI :

yI ºI xI  ∀x−I ∈ X−I [g(yI , x−I) = q ⇒ g(xI , x−I) = q]; (4.3)

the relation is obviously a preorder. Incomparability of yI and xI would immediately imply a

violation of (4.1); therefore, ºI is an ordering for every I ∈ N . The “monotonicity” requirement

(4.2) immediately follows from (4.3).

Sufficiency. Suppose that (4.2) holds, but (4.1) is violated by a superfragment. Without

restricting generality, x′′I ºI x′I and x′′−I º−I x′−I ; therefore, g(x′I , x
′
−I) = q. The supposed

negation of (4.1) implies that g(x′′I , x
′
−I) = g(x′I , x

′′
−I) = a, but then g(x′′I , x

′′
−I) = a by (4.2).

Theorem 4.2. A game form G has the FCP if and only if G is either dictatorial, or totally

tight with #g(XN) ≤ 2.

Remark. So far, there is no explanation for the obvious similarity with Arrow’s impossibility

theorem.

Proof. Sufficiency. A dictatorial game form poses no problem. Let G be totally tight with

g(XN) = {a, q} and x0
N , x1

N , . . . , xm
N = x0

N be a coalition improvement cycle in a derivative

game G(υN). Without restricting generality, g(x0
N) = a, hence g(x2k

N ) = a, g(x2k+1
N ) = q,

and m is even. We denote I = {i ∈ N | υi(a) > υi(q)}, J = {i ∈ N | υi(q) > υi(a)},
and N0 = {i ∈ N | υi(a) = υi(q)}. Each player i ∈ N0 chooses the same strategy at each

xk
N ; without restricting generality, we may assume N = I ∪ J . Obviously, x2k+1

I = x2k
I and

x2k+2
J = x2k+1

J for all k. By Proposition 4.1, we have x2k+2
I ÂI x2k+1

I = x2k
I for each k, which

contradicts the assumption xm
N = x0

N .

Necessity. Let G have the FCP. We start with an auxiliary statement.

Step 4.2.1. #g(X ′
N) ≤ 2 for every 2× 2 superfragment of G.

Proof. Suppose the contrary: there is a superfragment of G of the type a b
d c with a 6= b 6= c 6= a.

Let I choose rows and −I columns. We consider a utility vector υN such that υi(a) > υi(c) >

υi(b) for each i ∈ I and υi(b) > υi(a) > υi(c) for each i /∈ I. A coalition improvement cycle in

G(υN) is obvious: a → b → c → a.
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Suppose that G is not dictatorial. Then for each i ∈ N there is xi ∈ Xi such that

#g(xi, X−i) ≥ 2. Moreover, at least two players are not “dummies,” i.e., there is x−i ∈ X−i

such that #g(Xi, x−i) ≥ 2. Whenever i ∈ N , xi, x
′
i ∈ Xi, x−i, x

′
−i ∈ X−i and g(x′i, x−i) 6=

g(xi, x−i) 6= g(xi, x
′
−i), there holds g(x′i, x−i) = g(xi, x

′
−i) by Step 4.2.1. It follows immediately

that #g(xi, X−i) ≤ 2 for every non-dummy i ∈ N and xi ∈ Xi.

If #g(XN) > 2, there must exist i ∈ N , xi, x
′
i ∈ Xi and a, b, c, d ∈ A such that a 6= b 6= c 6= a,

b 6= d 6= c, g(xi, X−i) = {a, b}, and g(x′i, X−i) = {c, d}. We pick x−i ∈ X−i such that g(xi, x−i) =

b. If g(x′i, x−i) = a, we pick x′−i ∈ X−i such that g(x′i, x
′
−i) = c and obtain a contradiction with

Step 4.2.1. If g(x′i, x−i) = c, we pick x′−i ∈ X−i such that g(x′i, x
′
−i) = a and again obtain a

contradiction with Step 4.2.1.

Thus, either G is dictatorial or #g(XN) = 2. In the latter case, the necessity of (4.1) is

shown exactly as in Moulin (1976).

Proposition 4.3. Every FCP game form is separable.

Proof. If G is dictatorial, there is nothing to prove. If A = {q, a}, we define p(xi) = q for all

strategies of one player, p(xj) = a for another, and arbitrarily for all others.

Theorem 4.4. A game form G has the FCP+ if and only if it has the FCP and either #g(XN) =

1 or #N ≤ 2.

Proof. Sufficiency. Let #N = 2. Given a utility vector υN , we take υ∗N with the property

υ∗i (a) > υ∗i (b) ⇐⇒
[
υi(a) > υi(b) or [υi(a) = υi(b) & υ−i(a) > υ−i(b)]

]

for each i ∈ N and a, b ∈ A. Clearly, a weak coalition improvement path in G(υN) is a coalition

improvement path in G(υ∗N), hence G has the FCP+ as well as the FCP.

Necessity. Let #g(XN) > 1; then there are i ∈ N xi, x
′
i ∈ Xi, and x−i ∈ X−i such

that a = g(xi, x−i) 6= g(x′i, x−i) = b. Supposing #N > 2, we can pick j, k ∈ N such that

j 6= i 6= k 6= j. Whenever υi(a) = υi(b), υj(a) > υj(b), and υk(a) < υk(b), we have a weak

coalition improvement cycle where player i switches between xi and x′i back and forth, while the

other players choose x−i.

4.2 Voting by veto

The title of this subsection refers to a class of voting procedures; each of them defines a game

form. There are finite sets of players N and of outcomes, or alternatives, A. The players may

have arbitrary preferences over the outcomes. A voting by veto procedure specifies positive
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integer numbers λa and µi for each a ∈ A and i ∈ N : µi is the number of black balls given

to player i; λa is the “veto-resistance” of outcome a. Each player allocates his/her black balls

among the outcomes; if the number of balls allocated to a ∈ A equals or exceeds λa, the outcome

is vetoed. To ensure the existence of non-vetoed outcomes, we impose the restriction

∑
a∈A

λa ≥
∑
i∈N

µi + 1. (4.4)

A linear order is assumed on A; if several outcomes are not vetoed, the highest of them is

selected.

To describe strategies formally, we assume there is a finite set D of black balls with an

ownership mapping ν : D → N . Balls from Di = ν−1(i) are given to player i; we assume

#Di = µi. A strategy of player i is a mapping xi : Di → A; a strategy profile can be understood

as a mapping xN : D → A. For each I ∈ N , we denote DI =
⋃

i∈I Di; every strategy of the

coalition can be understood as a mapping xI : DI → A. Given a ∈ A, I ∈ N , and xI ∈ XI , we

denote κ(a, xI) = #x−1
I (a), the number of balls cast to a by I under xI . An outcome a is vetoed

at a strategy profile xN if κ(a, xN) ≥ λa and over-vetoed if the inequality is strict. g(xN) is the

highest non-vetoed outcome.

For brevity, a game form generated by a voting by veto procedure is called a VV game

form. Every ordered voting game form from Subsection 3.1 with integer µ’s and λ’s can be

represented as the fragment of a VV game form: each player i can choose a ∈ A \ {min A}
and put µi black balls against a and each outcome above a. Since N and A are finite, it seems

plausible that integer µ’s and λ’s are sufficient to generate all ordered voting game forms. Non-

integer µ’s and λ’s, apparently, would generate a broader class of VV game forms; however, such

voting procedures may seem too exotic, and are outside the realm of finite game forms anyway.

Generally, fragments of VV game forms do not possess any nice property: the underlined 2× 2

fragment in Example 4.6 is not even Nash consistent.

Remark. If there is b ∈ A such that
∑

a>b λa ≥
∑

i∈N µi + 1, then b /∈ g(XN). In a sense, the

elimination of such outcomes would not change the game form; however, their presence creates

no difficulties either.

Proposition 4.5. Every VV game form G with #g(XN) ≤ 2 has the FCP.

Proof. Without restricting generality, we assume g(XN) = {q, a} with q > a; then λq + λa >∑
i∈N µi. For each I ∈ N and xI , x

′
I ∈ XI , we define x′I ºI xI  κ(q, x′I) ≥ κ(q, xI). It is clear

now that G satisfies (4.2), hence the sufficiency part of Theorem 4.2 applies.
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Example 4.6. Let A = {a, b, c}, a > b > c, N = {1, 2}, and every µ and λ be equal to 1. The

game form is described by the following matrix:

b c b

c a a

b a a

Assuming υ1(a) = υ1(b) = 1, υ1(c) = 0, υ2(a) = υ2(b) = 0, υ2(c) = 1, we see that the

underlined outcomes form an improvement cycle in G(υN); therefore, G does not have even the

FIP (although it is strongly consistent).

Example 4.6 carries a subtler message as well. We might distinguish between “outcomes”

from A and “voting proposals”: since υi(a) = υi(b) for both i in the example, we may assume

that a and b are just different proposals implying the same outcome, hence #A = 2. Therefore,

Proposition 4.5 would not survive this generalization of the notion of voting by veto.

Theorem 4.7. Let G be a game form with N = {1, 2} and A = {q, a}. Then the following

statements are equivalent.

1. G has the FCP.

2. G is simple.

3. G can be represented as the fragment of a VV game form.

Proof. Suppose Statement 1 holds, hence Theorem 4.2 applies. If G is dictatorial, then both

Statements 2 and 3 are obvious. Otherwise, we define an ordering ºi on each Xi by (4.3). We

pick x−i and x+
i (for each i ∈ N) among, respectively, the least and the greatest strategies in Xi

w.r.t. ºi. Let us show that X contains a simple strategy. Pick i ∈ N ; if g(x−i , x+
−i) = q, then

g(x−i , x−i) = q for all x−i ∈ X−i, and we are home; if g(x−i , x+
−i) = a, then g(xi, x

+
−i) = a for all

xi ∈ Xi, and we are home again. Thus, G is simple by Proposition 3.2.

To start the derivation of Statement 3, we define ri(xi) for i ∈ N and xi ∈ Xi as the rank

of xi w.r.t. Âi, hence ri(x
′
i) = ri(xi) ⇐⇒ x′i ∼i xi, in particular, ri(xi) = 0 ⇐⇒ xi ∼i x−i .

We denote mi = ri(x
+
i ). The definition (4.3) of ºi implies that there is an increasing mapping

γ : [0,m1]× [0,m2] → {0, 1} such that g(xN) = a if and only if γ(r1(x1), r2(x2)) = 1.

Step 4.7.1. If i ∈ N , ξi ∈ [0,mi[, ξ−i ∈ [0,m−i[, γ(ξi, ξ−i) = q, and γ(ξi, ξ−i + 1) = a, then

γ(ξi +1, ξ−i) = a. If i ∈ N , ξi ∈]0,mi], ξ−i ∈ [0,m−i[, γ(ξi, ξ−i) = q, and γ(ξi, ξ−i +1) = a, then

γ(ξi − 1, ξ−i + 1) = q.
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Proof. By (4.3), there must be η−i ∈ [0, m−i] such that γ(ξi, η−i) = q while γ(ξi + 1, η−i) = a.

Neither η−i < ξ−i, nor η−i ≥ ξ−i + 1 are compatible with the monotonicity of γ, hence η−i = ξ−i

and we are home. The proof of the second implication is dual.

It is immediately clear from (4.3) that no ξi ∈]0,mi[ is simple. Denoting η−i(ξi) = min{ξ−i |
γ(ξi, ξ−i) = a}, we obtain from Step 4.7.1 that ξi + η−i(ξi) does not depend on ξi, nor on i; we

denote the constant λq. Clearly, g(xN) = a ⇐⇒ ∑
i∈N ri(xi) ≥ λq.

Now we consider a VV game form Ḡ with the same N , A = {q, a, b}, q > a > b, µi =

mi + #Xi, λq just defined, λa =
∑

i∈N µi + 1 and an arbitrary λb. To represent G as a fragment

of Ḡ, we order each strategy set, i.e., pick an arbitrary bijection oi : Xi → {1, . . . , #Xi}; now

each strategy xi ∈ Xi is interpreted as putting ri(xi) balls at q, oi(xi) balls at a, and all the

rest at b. Clearly, a is never vetoed, hence b is never chosen and a is chosen if and only if q is

vetoed. Therefore, g coincides with the restriction of ḡ to XN .

Given Statement 2, we notice that (3.2) implies (4.1); then Proposition 4.1 and Theorem 4.2

imply Statement 1. The implication Statement 3 ⇒ Statement 1 immediately follows from

Proposition 4.5.

Example 4.8. Let N = {1, 2, 3}, player 1 choose rows, player 2 columns, and player 3 matrices.

[
q a

q q

] [
a a

q a

]

Condition (4.1) obviously holds, but there is no simple strategy. Thus, the implication State-

ment 1 ⇒ Statement 2 from Theorem 4.7 does not hold when n > 2 even if #A = 2. The

invalidity of the converse implication when #A > 2 even if n = 2 is shown by Example 4.6.

It is not difficult to check that the game form is an almost potential one; however, it cannot

be represented as a perfect information game form.

Example 4.9. Let N = {1, 2, 3}, player 1 choose rows, player 2 columns, and player 3 matrices:




q a a

q q q

q q q







q a a

q q a

q q a







q a a

q a a

q q a







a a a

a a a

q q a


.

Conditions (4.1) are easy to check, hence the game form is totally tight. Suppose it can be

represented as the fragment of a VV game form. Since the roles of a and q are perfectly

symmetric, we may, without restricting generality, assume q > a; therefore, a is selected when

and only when q is vetoed. We denote xs
i the number of black balls cast at q by player i(∈ {1, 2})

when using s-th strategy, counting upwards for player 1 and from the left to right for player 2.
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The rightmost matrix shows that x2
1−x1

1 > x2
2−x1

2; the leftmost, that x3
1−x2

1 > x3
2−x2

2; therefore,

x3
1−x1

1 > x3
2−x1

2. On the other hand, each of the middle matrices shows that x3
2−x1

2 > x3
1−x1

1.

Thus, the implication Statement 1 ⇒ Statement 3 from Theorem 4.7 does not hold when

n > 2 even if #A = 2.

Theorem 4.10. Every VV game form has an almost unrestricted FCP.

Proof. For every xN , yN ∈ XN , a ∈ A, t ∈ D, and I ∈ N , we define:

ε(a, xN) = max{κ(a, xN)− λa, 0}; E(xN) =
∑
a∈A

ε(a, xN)

(over-vetoing at a and total over-vetoing);

β(a, xN) = max{λa − κ(a, xN), 0}

(“empty slots” at a);

C(xN) = {b ∈ A |
∑

a>b

β(a, xN) < 2 & ε(b, xN) = 0} 3 g(xN); B(xN) = x−1
N (C(xN))

(the sets of outcomes that are “close enough” to being selected and of the balls cast there);

δ(xN , yN ; t) =





0, if yN(t) = xN(t);

+∞, if yN(t) 6= xN(t) & ε(yN(t), yN) > 0;

d(yN(t), xN(t)) + 1, otherwise [with d defined by (3.4)];

(4.5a)

δx−I
(xI , yI) =

∑
t∈DI

δ(xN , (yI , x−I); t). (4.5b)

For every I ∈ N , the family of quasidistances on XI defined in (4.5) generates an admissible

change relation `I , hence an admissible improvement relation B> in every derivative game. The

notion of admissibility combines the ideas from the proofs of Theorems 3.6 and 3.13: the players

shift as few balls as possible and move them as short a distance as possible; first of all, however,

they avoid over-vetoing at any cost.

Given a list of utilities 〈υi〉i∈N , we define

P (xN) = −
∑

t∈B(xN )

υν(t)(xN(t));

yN Â xN 
[∀a ∈ A [ε(a, xN) ≥ ε(a, yN)] &

(
E(xN) > E(yN) or B(xN) ⊂ B(yN) or

[B(xN) = B(yN) & P (xN) < P (yN)]
) ]

. (4.6)
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The rest of the proof consists in showing that Â is an order potential for the admissible improve-

ment relation B>. It seems worthwhile to describe it informally: we monitor the over-vetoing at

each outcome, what balls are cast at C(xN) and who cast them; one strategy profile “dominates”

another if either there is a strict decrease in over-vetoing, or more balls come under observation,

or the balls are the same but the players try to veto worse (for them) outcomes.

Let xN , yN ∈ XN , I ∈ N , y−I = x−I , a = g(xN), b = g(yN), and D∗ = {t ∈ D | xN(t) 6=
yN(t)}. We have to show that yN Â xN in every derivative game where yN B>I xN .

By the definition of g, two things are necessary and sufficient for b to be selected at yN : b

must not be vetoed; everything above b must be vetoed. Formally:

β(b, yN) > 0 = ε(b, yN); (4.7a)

∀c > b [β(c, yN) = 0]. (4.7b)

We start with the demonstration of the possibility to switch from a to b without any increase

in over-vetoing. If β(b, xN) = 0, then ε(b, xN) + 1 balls must be taken from b to ensure (4.7a);

Inequality (4.4) ensures that the total number of “empty slots,”
∑

c∈A β(c, xN), is no less than

that. Therefore, the members of I can make (4.7a) fulfilled without creating over-vetoing.

(Since coalition I was able to make b selected, #x−1
I (b) must be large enough.) Similarly, no

over-vetoing could help ensuring (4.7b). Since yI is the least cost way to switch from a to b, there

must be δx−I
(xI , yI) < +∞. Therefore, there was no increase in over-vetoing at any outcome

c ∈ A when xN was replaced with yN , i.e.

∀c ∈ A [ε(c, yN) ≤ ε(c, xN)]. (4.8)

Secondly, if ε(b, xN) > 0, we have E(yN) < E(xN), hence yN Â xN and we are home. The

same conclusion is reached if ε(c, yN) < ε(c, xN) for any c ∈ A. In the following, we assume that

ε(b, xN) = 0; (4.9a)

∀c ∈ A [ε(c, yN) = ε(c, xN)]. (4.9b)

Thirdly, (4.7) immediately implies b ∈ C(yN). The final argument depends on whether b > a

or a > b.

A. Let b > a. By (4.9a), shifting just one ball from b is enough to get that outcome selected;

therefore, D∗ = {t∗} and xN(t∗) = b. The minimality of δ(xN , yN ; t∗) implies that the ball goes

to the nearest empty slot, which is a, i.e., yN(t∗) = a. It is clear now that B(yN) = B(xN) and

P (yN) − P (xN) = υν(t∗)(b) − υν(t∗)(a) > 0. Therefore, yN Â xN by the last disjunctive term in

(4.6).
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B. Let b < a. We again consider two alternatives. If b /∈ C(xN), then every c ∈ C(xN) is

above b, hence C(xN) ⊂ C(yN), hence B(xN) ⊂ B(yN) because at least one ball was added at

a ∈ C(yN). Therefore, yN Â xN by the second disjunctive term in (4.6).

Now let b ∈ C(xN); then β(a, xN) = 1 and β(c, xN) = 0 for every c such that b < c < a.

Therefore, D∗ = {t∗}, yN(t∗) = a, and xN(t∗) ≤ b. If xN(t∗) = b, then B(yN) = B(xN) and

P (yN)−P (xN) > 0, hence yN Â xN , exactly as in the case of b > a. This alternative must hold

if β(b, xN) = 0. Finally, let xN(t∗) = c < b, hence β(b, xN) > 0, hence c /∈ C(xN). We see that

t∗ ∈ B(yN) \B(xN), hence yN Â xN exactly as in the previous paragraph.

Example 4.6 above shows that the adjective “almost unrestricted” in Theorem 4.10 cannot

be dropped; actually, both improvements by player 1 there create over-vetoing.

In principle, the notion of voting by veto can be extended by considering other rules for the

selection of a single non-vetoed outcome at every strategy profile. Assuming that (4.4) holds as

an equality, the existence of a strong equilibrium can be shown for any g (Moulin, 1983). Under

a strict inequality, even Nash consistency is not ensured.

Example 4.11. Let A = {a, b, c, d}, N = {1, 2}, every µ and λ be equal to 1. It is convenient

to assume that each player just chooses an outcome, xi, to veto. Let g be defined as follows: If

{x1, x2} ⊆ {c, d}, then g(xN) = a if x1 = x2 and g(xN) = b if x1 6= x2; otherwise, g(xN) = d if d

is not vetoed whereas g(xN) = c if d is vetoed. The rule produces this matrix:

d d d c

d d d c

d d a b

c c b a

.

Player 1 cannot ensure g(xN) ∈ {a, c}; player 2 cannot ensure g(xN) ∈ {b, d}. Therefore, the

game form is not Nash consistent (Gurvich, 1975, 1988; Moulin, 1976).

It remains unclear to what extent Theorem 4.10 could be generalized to other mappings

g. So far, an almost unrestricted FCP was only established for a rather peculiar tie-breaking

procedure suggested by Gol’berg and Gurvich (1986), which is only defined when (4.4) holds as

an equality. Example 2.1d is generated by that procedure.
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