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Abstract

The Asset Backed CDS contract was introduced in 2005 as an
extension of the standard corporate CDS. It generally trades under
the ISDA “pay-as-you-go” (PAUG) confirmation which handles the
unique features of ABS – amortization, principal writedowns and in-
terest shortfalls. The current market standard for pricing is a simple
adaptation of the widely used intensity based model, where the amor-
tization schedule of the security is deterministic.

Taking example from some European ABS, we establish stylized
facts about their default. In particular, we show that principal write-
downs often come along with an extension of the ABS’ maturity and
can also be preceded by interest shortfalls. This paper introduces ad-
justments to the classical framework to account for these specificities,
with amortization profile becoming a default-dependent function. We
show that the resulting duration becomes an increasing function of
spread, capturing the fact that distressed ABS shift toward slower
amortization.
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1 Introduction

The European Structured Finance market has for long been quiet and pre-
served, not only from market turbulences, but also, and consequently, from
rational pricing. The risk premium for senior bonds was negligible and at-
tributed to non-credit risks, such as prepayment and liquidity. However the
subprime crisis and the emergence of a domestic credit default swap market
has pointed out the credit-risky nature of these securities. The same bonds
nowadays trade with significant premium, materializing the rising fear of
seeing defaults in the Asset Backed space. Yet the pricing assumptions have
seen limited debates in the marketplace, with traders and asset managers
relying on deterministic scenarios to price and risk manage their books, with
little attention to ABS complexity.

Notwithstanding a large literature devoted to credit risk, ABS and CDS
of ABS have been for now largely neglected. There has been for long ex-
tensive studies about the interest rate risk of mortgage backed securities
(MBS), though, but these securities are knowledgeably not subject to credit
risk. A recent paper from Brunel and Jribi [3] points out the inaccurateness
of the market practice, but still targets interest rate risk and neglects credit.
From our perspective, Fermanian [7] is the first to attempt to address credit
risk and moreover simultaneously model prepayment, default and interest
rate risk. However, this model intends more to be a relative value tool and
is difficult to apply to actual transactions.

The purpose of this paper is to provide a practicable framework for
the pricing of CDS of ABS (ABCDS) which accounts for ABS cash flow
specificities. We will establish in this paper what we see as the “default
paradox” of structured finance securities: how can one price a defaultable
bond and simultaneously input standard assumptions for the computation
of expected cash flows ? The dynamic of collateral losses together with the
securities complex structure will generally make that, for example, a 5-years
expected maturity bond is more likely to default in 10 or more years. But
for the sake of simplicity it will still trade as a 5-year bond and one will
generally ignore its extension risk. From our perspective, interest rate risk
is less decisive that is this form of extension risk, in that ignoring it can
particularly lead to an underestimation of the cost of protection.

The first part of this paper discusses extensively of ABS and introduces
several stylized facts about ABS’ default. We subsequently review the cur-
rent framework for the pricing of ABCDS and propose some adjustments to
account for extension risk and interest shortfalls. The last part compares the
approaches and develops the model impact and sensitivities to underlying
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parameters.

2 ABS and ABCDS, modeling and structures

Asset-backed securities are debt securities which cash flows come from an
underlying pool of securitized assets such as mortgages or auto loans. This
pool is purchased by an entity, the ABS trust, which funds by issuing a series
of notes (generally between two and a dozen, depending on the complexity
of the ABS structure). The redemption of these notes is made from the
payments of the borrowers, following a specific waterfall so as to modulate
their risk profile.

For example, BBVA RMBS 1 is a securitization of mortgages originated
and serviced by BBVA, the Spanish bank. In this transaction, BBVA sold
a portfolio of mortgage loans to the trust, that issued in turn five Series of
notes to fund the purchase of the portfolio. At the issue date in February
2007, the collateral consisted in 17,184 loans granted to finance the purchase,
building and renovation of residential homes located in Spain. As can be
seen on the table below, 91.8% of the collateral is made of senior securities –
the classes A1, A2 and A3, rated AAA. Symmetrically, note that the junior
tranches are very thin; this implies that even limited loss can fully wipe out
the bond. This was pointed out by Crouhy, Jarrow and Turnbull [4] as the
“cliff” effect that characterizes junior bonds, with devastating effects in the
ABS CDO space.

Overview of BBVA RMBS 1 (source : ABSNet, Prospectus)
Class Balance Balance Subord. Rating
Name (Eur million) (%) (%) Fitch / Moody’s Coupon
A1 400 16.0% 8.2% AAA/Aaa 3mE1+ 5 bps
A2 1,400 56.0% 8.2% AAA/Aaa 3mE + 13 bps
A3 495 19.8% 8.2% AAA/Aaa 3mE + 22 bps
B 120 4.8% 3.4% A/Aa3 3mE + 30 bps
C 85 3.4% - BBB/Baa2 3mE + 54 bps

AAA rating of senior tranches is mainly achieved through the subordi-
nation of classes B and C, as well as a reserve fund (a cash reserve funded
by a loan from BBVA) and excess spread. The excess spread is the differ-
ence between the weighted average interest rate received on the underlying
collateral and the weighted average coupon paid on the issued security. In

13-months Euribor.
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that case, it is structured through an interest rate swap which guarantees
a spread of 65 bps. Roughly speaking, each year the first 0.65% of losses
will be erased thanks to the excess spread, making the later the first layer
of protection against collateral losses.

Such a sophistication is necessary so as to tailor the tranches and even-
tually suit to investor needs while minimizing funding costs. Investors gen-
erally look for a satisfying yield with respect to the tranche rating and
expected maturity. From the originator point of view, the purpose of the se-
curitization is to obtain liquidity and remove credit risk linked to mortgages
on its balance sheet.

As shown by the example above, ABS’ complexity comes from both sides
of its balance sheet. We will discuss these largely in the below section, before
drawing conclusions about what properties a desirable model should exhibit.

2.1 Asset side : Collateral modeling

Though collateral cash flows are uncertain, its is common in the European
market – both cash and synthetic – to price on a standard forecasted sce-
nario. We remind 2 below the typical parameters that define such a scenario:

• CPR : Conditional Prepayment Rate, is the percentage of outstanding
mortgage loan principal that prepays in one year, based on the annu-
alization of the Single Monthly Mortality (SMM), which reflects the
outstanding mortgage loan principal that prepays in one month.

• CDR : Conditional Default Rate, the effective annual default rate ap-
plied to beginning collateral balance for that period (%).

• Recovery and arrears assumptions on the underlyings

• Call assumption (see below in section 2.2.2)

Note that the use of such aggregate parameters restrict this methodology
to granular pools such as mortgages. Market practice for the pricing of ABS
is akin to the pricing of cash bonds, e.g. the price P of an ABS tranche is
simply the discounted PV of forecasted cash flows.

P =
T∑

t=0

∆N(t) + Coupon(t)

(1 + r(t) + DM)(
T−t

Basis
)

2Source : Intex Knowledge Base
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Where ∆N(t) is the principal redeemed at time t, r (trivially) the risk-
free interest rate curve, Basis the day count adjustment (typically 365)
and DM the extra-yield required by an investor, e.g. the discount margin.
Hence – assuming a consensus on forecasted cash flows – quoting in price
or spread is equivalent. Practically, ABS are generally quoted in discount
margin together with the modeling assumption.

Proceeding that way allow market participants to trade ABS as vanilla
bonds, once having agreed on the modeling assumptions. The same method
is used to determine future cash flows for Credit Default Swaps (CDS).
Though convenient, this approach suffers from its inconsistency; it is para-
doxical to price a credit-risky security with standard assumptions that ex-
clude the very event of default. More generally, the drawback of this ap-
proach is that it does not account for the specific risks of ABS, namely
prepayment, interest rate and credit risk.

Note that those three are intimately correlated. High interest rate envi-
ronments offer little incentive for borrower to refinance, while low interest
rate is generally followed by flows of prepayments. This is a well-known
topic to US mortgage backed securities (MBS) academics and professionals
since the end of the 80’s (see [16] and [17] as references)3. Meanwhile, bad
economic condition will simultaneously cause credit losses and a decrease of
prepayment speed. It is useless to point out that credit risk and interest are
correlated as well.

Putting all pieces together, ABS cash flows are actually driven by pre-
payments and credit losses, both dependent of interest rate. To our knowl-
edge the only attempt to describe the ABS collateral in such a fashion was
performed by Fermanian [7]. However practical use of this model is made
difficult by the complexity of ABS liabilities – amortization rules, optional
redemption, performance-linked triggers, etc. – that we examine in the next
section.

2.2 Liability side : Structures

Indeed to the complexity of the underlying cash flows adds the one from
the ABS’ liabilities. Each deal has a unique waterfall mechanism that de-
termines cash flows allocation to the different tranches. Absent from any
standardization of structures in the ABS market, professionals rely on third-
party or proprietary cash flow models that replicate ABS waterfalls once

3Note that ABS differ from the later by the fact that they also bear credit risk – which
is usually covered by government-sponsored agencies for MBS.
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specified the forecasted scenario. We discuss below the main aspects of
these structures from a modeling perspective.

2.2.1 Amortization

A security’s principal is generally redeemed over its life from the underlying
proceeds. This means that there is no such thing as a single maturity and
that the stated maturity of a given bond is a “legal” maturity. The later
generally has to be greater than the longest of the underlyings and will be
much higher than the expected maturity date. Hence it generally provides
little insight about actual amortization of the security. A third metric widely
used by professionals, the weighted average life (WAL) is the average amount
of time that a bond’s principal is outstanding. It is computed as follow :

WAL =
T∑

t=0

∆N(t)∆t

For example the BBVA RMBS-1 A2 bond’s legal maturity is June 2050
(43.4 years at issuance) but the expected maturity stated in the prospectus is
march 2018 (11.1 years), assuming 10% CPR; under the same assumptions,
the average life of the bond is 5.2 years.

Deals generally embed triggers and events that strongly modify the al-
location of cash flows when losses and arrears appear in the pool – another
form of protection to the senior notes. In the example of BBVA, the normal
amortization of senior classes is sequential (that is, A2 notes amortization
starts when A1 notes are fully redeemed, and A3 with respect to A2). How-
ever, if the the amount of performing loans is less or equal than the amount
of the senior notes, principal due is to be allocated pro-rata between the se-
nior notes (a “Pro Rata Amortisation of Class A” event). The junior classes
normally amortize pro-rata once reached a satisfactory subordination level
and once the creditworthiness of the pool is satisfactory in terms of delin-
quencies and losses (“Conditions for Pro Rata Amortisation”). This indeed
implicitly defines triggers that defer the pro-rata amortization.

Then, when the quality of the underlying pools deteriorates – that is,
when an ABS is expected to ultimately default – the cash flow waterfall is
likely to change. In the case of BBVA, the senior tranches amortize pro rata
while the junior ones stop receiving principal. At this stage we can there-
fore point out two factors modifying the amortization of ABS tranches in
deteriorated environment. First, the redemption speed at the collateral level
should decrease when the economy slows down; second, triggers may either
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defer or accelerate tranche redemption as a consequence of deterioration of
underlying collateral performance. In the next part we will examine a third
one : optional redemption.

2.2.2 Optional Redemption

Deals generally embed options to call partially or fully outstanding liabilities,
conditionally on some specific event. The call can actually aim at tailoring
amortization, e.g. targeting a tranche’s expected maturity date or WAL: this
is extremely common as it allows to reduce amortization uncertainty and to
exhibit reasonable expected maturity to investor, making the security easier
to sell. In that case the ABS will be callable starting from a specific date,
which is typically the expected maturity. It can also be designed to allow
the originator to buy back outstanding classes when the collateral balance
has been substantially amortized. Not calling would indeed leave a small
amount of collateral to be serviced – which is generally uneconomical. The
later are clean-up calls and are typically exercisable when the outstanding
collateral falls below 10% of the original.

For the call option to be useful, e.g. so as to prove to market participants
that the actual maturity of the ABS will be the expected maturity, one need
to incentivize the call. In that objective there is usually a significant step-
up in the coupon rate in the event the call is not exercised. As a result,
ABS were commonly priced assuming the call is exercised, as the option is
expected to be deeply in the money at the call date. With the subprime
crisis going forward, this assumption has started to be stressed, however.

Back in 2005, Lehman Brothers [11] already pointed out the drivers
of callability, stressing that even slightly stressed environment could lead
to redemption deferral. In a study of a hypothetical UK non-conforming
transaction, they show that the more stressed the economic scenario, the
slower the ABS amortizes, in a conjunction of two effects: (i) because CPR
typically diminishes when the economy slows down and (ii) because the opti-
mal call time is postponed : “If the pool performance is weak, the originator
is likely to be better off earning just the excess spread for a while longer,
until either the step-up coupon reduces the excess spread available or further
sequential amortization increases the coupon costs from subordinate notes.”

As securities’ documentations generally stipulate the originator must
call all the outstanding tranches at par4, even more distressed scenarios
simply exclude the possibility of the bonds being called. Not only because

4With some exceptions, however; some junior tranches can sometimes be called at par
minus the amount of writedowns.
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exercising the call would incur a loss as a result, but because conditionally
on a given ABS bond being distressed, the originator will not necessarily
have the financial strength to call.

For pricing purposes, market participants generally assume that the se-
curity is eventually called – as well as they do forecast standard prepayment,
arrears, etc. It is the third pillar of our “default paradox”, with little con-
sequence for cash bonds though, as one eventually agrees on a price to par.
However, it is more problematic for ABCDS as the survival probabilities
and timing of default would be deceiving in such a framework. To our
knowledge there has been little research on this contradiction from a pricing
perspective. However before examining this issue quantitatively, we need to
examine the specificities of ABCDS contracts.

2.3 Stylized facts about default

2.3.1 ABCDS and Pay-As-You-Go

The adaptation of the corporate CDS settlement to ABS is not straightfor-
ward, due to the securities’ complexity. We remind that this contract allows
two counterparties to swap the default risk of a reference entity; the buyer
pays periodic payments to the seller in exchange for the right of a loss pay-
ment if a credit event occurs. This section sums up the main differences of
ABS Pay-As-You-Go (PAUG) templates versus corporate ones, as they are
stated by ISDA in the 2007 supplement [6]. Extensive studies have already
be done by dealers, so one can refer to [9] and [12] for further reading.

Principal writedown and failure to pay It is notable that asset backed
securities do not “default” – or more precisely do not jump to default as in
the corporate world, where the credit event terminates the CDS contract.
The default of an ABS is indeed almost predictable once the pool losses have
accrued to a critical level. However even if the ultimate default of an ABS
is unavoidable, it is likely that it will not be immediately effective. Prac-
tically, one notices a principal writedown when underlying losses allocated
to a tranche eventually result in a principal reduction (Principal writedown
event). It can also happen shall the security fails to pay principal (Failure
to pay principal event).

These events can take a long time to occur, as the non-payment of sched-
uled principal is not a default – only the failure of mandatory non-payment
is actually a default. This is mitigated when transactions embed a prin-
cipal deficiency ledger (PDL) to be used as an implicit writedown. This
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accounting ledger is debited when losses in a given tranche exceed available
credit enhancement and is credited if and when such losses are reversed.
Implicit writedown consequently ensures that the credit event would not be
too back-loaded. It is particularly efficient for junior bonds (with limited
subordination), yet it may still take some for senior tranches to be even-
tually hit – with the actual credit event generally occurring long after the
initially expected maturity.

Both events can either trigger a floating or a “hard” credit event in a
CDS, at the buyer’s option. A “hard” credit event implies physical delivery
of the underlying bond by the buyer to the seller and terminates the contract.
A floating event does not terminate the contract and implies a loss payment
of the protection seller that will be paid back whenever a reverse writedown
occurs.

Interest shortfalls Another characteristic in distressed or defaulting se-
curities is that they may miss or defer their interest payment. Standard Eu-
ropean PAUG implies the payment of the shortfall by the protection seller,
to the limit of the CDS premium (Fixed Cap) in a Floating Event. Shall
the ABS eventually pay the shortfall, a reverse payment would occur from
the buyer to the seller. In pricing terms, this means that one could account
for interest shortfalls either in a separate “floating” leg, or as a reduction of
the fee leg – we will adopt the latest in section 3.2.2.

Interest shortfalls are typical for subordinated notes when cash flows
normally allocated to the payment of coupons are diverted to pay the senior
classes’ or to increase their credit enhancement, such as a reserve fund. This
can also occur when the structure embed an Available Fund Cap5. Just as
previously, these events can take time to occur as triggers often divert cash
flows to ensure that all tranches have their coupon paid as long as possible,
deferring the credit event.

2.3.2 Examples

We plot below a few examples of amortization of three ABS tranches (two
seniors, one junior) realized thanks to ABSNet cash flow model. Each time

5AFC are mostly common in US Home Equity Loans ABS but are also prevalent in
US RMBS and certain European CMBS. Such structure caps bond interest to available
funds, which is the weighted average net coupon on the underlying collateral. Therefore,
when bond coupon rates rise above the AFC rate, there will be a shortfall in the interest
payments received by the holders of the reference obligation, exposing them to interest
rate risk unless there is enough excess interest in the deal to cover it.
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we plotted the forecasted factors under two scenarios6:

• a base amortization, where no significant losses occur in the under-
lying pool; the cash flows are run assuming the ABS is called at the
earliest call date.

• a stressed amortization, where the tranche eventually defaults,
where we assume a 5-10% CDR without exercice of the optional call.

As discussed beforehand, the amortization profile of BBVAR senior bonds
is sequential; but as of summer 2008, the A1 class had already amortized,
that’s why the A2 class plotted in figure 1 starts amortizing immediately.
The ABS structure is straightforwardly pass-through, e.g. all principal cash
flows are used to redeemed the A2 class. In the stressed scenario, amortiza-
tion is even faster as the tranche benefits from the recoveries of the defaulting
loans. But from year 2.75 amortization simply stops and the ABS will never
redeem anymore principal resulting in a final writedown of 53% of the prin-
cipal at year 27.0 when the collateral is depleted. In fact at year 2.75 the
funds become insufficient to fully pay the class C coupons and the proceeds
that were reserved to pay senior classes’ principal is diverted to pay as much
coupon as possible. As losses accrue, interest shortfalls then occur on the
class B (year 3.75) and to the senior tranches at year 11.25 (see figure 5,
p.22).

Though belonging to a complex Master Trust structure, the amortization
of Granite bond (figure 2) is quite standard as well. GRANM 2006-4 A7 is a
AAA/Aaa/AAA UK prime RMBS issued by Northern Rock. Normal amor-
tization is determined by an ad hoc schedule or “Controlled Redemption”
which is defined in the ABS’ prospectus [14]. The prospectus also stipulates
that when senior tranches subordination become insufficient to cover port-
folio losses (“asset trigger event”), all cash flows are to be passed through to
the senior classes. This is what happens here in the stressed scenario where
this mechanism proves to be efficient: the tranche eventually achieves to get
almost all principal back with only 14.9% of the principal written down in
year 21.0.

DELPH 2006-1 B (figure 3) is a Dutch RMBS junior note rated A1/A
by Moody’s and Fitch issued by Fortis Bank. The ABS structure stipulates
that repayments received under the mortgage loans shall be used to purchase
substitute mortgages to the originator up to the quarterly payment date

6The amortization profiles will be later respectively stated as the functions Ndef and
Ndef .
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preceding the first “Optional Redemption Date” (year 3.25). Fortis holds the
option to call from this date (or on any payment date thereafter) all tranches,
incentivized by the coupons step up after year 3.25 – and this is what occurs
in the base case. The call price is par, except for junior notes that can be
redeemed at their outstanding principal balance less any Principal Deficiency
Ledger balance at the the call’s date. We assumed here that the call is not
exercised in the stressed scenario, hence the tranche remains current until
exhaustion of the collateral in year 28.0, without redeeming any principal.
However as the structure embed a PDL, the underlying losses result in the
tranche being gradually written down between year 0.5 and 1.5. As a result
this tranche does not suffer from any extension risk: whatever the outcome
of the call, it actually endures front-loaded writedowns.

0
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Base Amortization Stressed Amortization

Figure 1: Amortization : BBVAR 2007-1 A2 (source : ABSNet).
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Figure 2: Amortization : GRANM 2006-4 A7 (source : ABSNet).
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Figure 3: Amortization : DELPH 2006-1 B (source : ABSNet).

We sum up the above results in terms of WAL in table 1 below.
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Base Amortization Stressed Amortization
BBVA RMBS-1 A2 5.7 14.8
GRANM 2006-4 A7 3.3 10.6

DELPH 2006-1 B 3.0 0.6

Table 1: Impact of default on ABS’ WAL

Putting all pieces together, we can picture a “stylized” view of ABS
defaults :

1. Amortization is strongly modified by the occurrence of default. While
prepayment speed typically decreases when default rise, diversion of
cash flows can either accelerate (figure 1, at least for a part of the amor-
tization path) or decelerate (figures 2 and 3) the redemption speed of
a security.

2. Principal writedown will occur after the expected maturity, unless
documentation allows for implied writedown, yet still requiring some
time for losses to exceed credit enhancement. As a result writedowns
will typically be back-loaded for senior tranches and front-loaded for
most junior tranches.

3. Interest shortfalls can precede a credit event, as in the example of
BBVAR 2007-1 A2 bond here.

Items 1. and 2. illustrate the “default paradox” of structured finance
securities that we somehow introduced throughout this part. Pricing ABS
on standard assumptions with no care to the the event of default is contra-
dictory. And, consequently, trading and risk managing an ABS only on the
base of its expected maturity or WAL is deceiving, neglecting the fact that
an ABS’ WAL is likely to increase would it go to default. We will later see
that this can lead to an underestimation of the ABCDS duration, with two
consequences. First, the valuation of the cost of protection will be erroneous.
Second, one willing to immune its book from spreads movements can end up
misleaded. Indeed provided a security is characterized by the stylized facts
1. or 2., its duration should have the property of increasing with spread –
as defaults come with a slow down of amortization. We will discuss further
that one can easily capture the above stylized facts while keeping a simple
model.
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3 Pricing model

The current standard for the pricing of ABCDS is an extension of the cor-
porate model for CDS such as Jarrow and Turnbull [8] (1995), Lando [10]
(1998) and Hull & White [15] (2000), where the credit event occurs at the
first jump time of some Poisson counting process. We will see that the
main difference is that the underlying’s notional is amortizing. This valua-
tion method is legitimated by the need of pricing ABS consistently between
bond and CDS, and by the fact that it is generally too expensive to adopt
a more computer-intensive approach. However this model suffers from the
same drawbacks as the pricing of cash bonds, failing at properly describing
ABS’ default. In particular, we will see that duration is always a decreas-
ing function of spread – a contradiction with the “default paradox” that we
exposed earlier.

3.1 Market practice

The classical framework is the reduced form model where default is a sin-
gle random event defined by a Poisson process. Amortization is modeled
through N(t), a deterministic, non-increasing function equal to the current
fraction of the notional at time t. By definition, N(0) = 1. We define T as
the maturity of the ABS, e.g. ∀t ≥ T, N(t) = 0 and ∀t < T,N(t) > 0. The
amortization function is computed with the same underlying assumptions
than the one used for the pricing of the ABS bond, hence T is the expected
maturity, not the legal maturity.

Let R be the (deterministic) recovery fraction of the notional recovered
in case of default. This means that for a given default time τ the loss is
then equal to (1 − R)N(τ). Provided there is actually an amortization of
the underlying security (e.g. the later is not a bullet bond), the recovery (in
terms of the initial notional) is stochastic as a result.

As a CDS of ABS is referenced on a single bond, there is only one matu-
rity to observe, which excludes the possibility of extracting term structure
of spreads for a single ABS. Apart from this single spread, there is gener-
ally limited insight on the timing of losses. There may be quotes on notes
of equivalent seniority on the same or on similar collateral, but of differing
maturities. Information can also be extracted from the capital structure of
a given ABS, e.g. the price of risk on bonds of different seniority backed
by the same collateral. However such material is not enough systematically
available to allow any robust method, unfortunately.

Assuming one wants to calibrate a model from the market spread only,
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such calibration must then be determined by a single parameter. The sim-
plest choice is to assume a constant value λ for the hazard rate. How-
ever, it is generally unlikely that an ABS would default in the first years
following issuance. This pleads for the intensity to be be an increasing
function of time λ(t), which favors back-loaded timing of defaults. A com-
mon choice is to assume a step-up function, with the intensity being nil
until a given time t0 where the it jumps to a positive value. Formally
λ(t) = 0, for t < t0, λ(t) = λ′ otherwise. We plot an example of equiva-
lent calibrations on figure 4 – note that in line with market practice, the
amortization curve is the default-proof one plotted on figure 2 p.13.
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Figure 4: Step Up in the hazard rate : example form GRANM 2006-4 A7

Unsurprisingly, we assume deterministic interest rates as in most credit
models, though the assumption is more challengeable for ABS where interest
rate is a major driver of prepayment and portfolio losses. As a matter of
simplification we will ignore accrued interest in case of default. We will also
assume that protection is paid at the very time of default. The expectation
of the default (or contingent) DL leg then writes :

E(DL)(λ) = Notional

∫ T

0
N(t)(1−R)B(0, t)f(t)dt (1)
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And the expectation of the fee (or premium) leg FL is :

E(FL)(λ) = Notional × Coupon× dur(λ) + UF

with

dur(λ) =
∫ T

0
N(t)P (τ > t) B(0, t)dt (2)

and where :

• f(t) is the density of the default time’s distribution, e.g. f(t)dt =
P(τ ∈ [ t, t + dt]). Survival probability can be defined as P(τ > t)
where τ is the default time of the ABS.

• B(t, T ) is the value at time t of the zero coupon bond maturing in T

• UF is the upfront fee (if any).

The model is calibrated by finding the λ for which the NPV of the CDS
is zero.

3.2 Adjusted model

We can identify several issues raised by the above methodology, particularly
the assumption of a deterministic amortization profile. One would expect to
see a stochastic amortization, the latest being be a function of interest rates
and intensity. From a valuation perspective, we cannot write a practical
model with true random prepayments to address credit risk. The European
market is too heterogeneous and not liquid enough to sustain this kind of
approach – which can however be relevant for relative value and price dis-
covery. Less ambitiously, we will solve the “default paradox” by allowing
defaults to occur after the expected maturity. Luckily this approach im-
plicitly correlates amortization and default so that duration will become an
increasing function of spreads.

3.2.1 Extension-risk adjustment

Let’s assume that, conditionally on the event of default, the ABS follows a
different amortization path, that we will call Ndef ; otherwise it will stick to
the same amortization profile as before, that we now name Ndef . Note that
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yet still being the commonly-agreed amortization curve, it is now risk-free.
Practically, market participants need to agree on a second cash-flow scenario
which generates the stressed curve, as in our examples in section 2.3.2 (p.10).
Let T def be the base-case maturity of the ABS, T def the maximum maturity
of the stressed amortization profile Ndef , so that:

N(t) =
{

N(t)def if τ ≤ T def

N(t)def if τ > T def

In this framework, defaults are characterized by τ ≤ T def . This means
that for all τ between 0 and T def , the security defaults and the CDS contract
terminates at this very time τ . Otherwise, the security survives and the ABS
matures in T def . Hence, the choice of Ndef is crucial in the characterizing
of extension :
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1. If T def < T def , the ABS ex-
hibits extension risk, because cash
flows and defaults can occur after
the standard expected maturity –
e.g. we allow defaults to occur in
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2. If T def > T def , defaults can
only occur in the smaller range
[0, T def ]: amortization accelerates
in case of default.
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3. Finally if T def = T def ,
the expected maturity remains the
same, but note that the ABS
can still exhibit a distinct stressed
amortization profile (in this exam-
ple, it simply does not amortize).

The most likely case is 1., which will be relevant for most senior and
mezzanine tranches. 2. is empirically true for junior bonds, but having
in mind that the market model already allows front-loaded defaults, no
adjustment to the curves is actually necessary for these cases. That’s why
we deliberately describe our model as extension-risk adjustment. We will
discuss more thoroughly the choice of the amortization curves in section
4.1.1.

For the computation of each leg of the CDS, we will mathematically
integrate on the range of all default times; the ABS will either follow the
deterministic amortization path Ndef or default in τ . We can now write the
expression of the default leg:

E(DLadj)(λ) = E
(
DL× ( 1τ≤T def + 1τ>T def )

)
= E

(
DL× ( 1τ≤T def )

)
+ E

(
DL× (1τ>T def )

)︸ ︷︷ ︸
=0

= Notional

∫ T def

0
N(τ)def (1−R)B(0, τ)f(τ)dτ (3)

This is the same as equation 1 previously, except that the losses are
recorded on the second amortization curve Ndef . It actually writes as the
losses scenarios weighted by their probability of occurrence f(τ). As the
event of default is only driven by T def , the expected maturity T def do not
figure in the equation.

In order to be able to compute the fee leg, we need to account for the
new amortization in the duration computation. Let’s have a look first at
the security duration, conditional on the default time τ . This duration is
the present value of 1 bp on notional N(t) until the default event τ :
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dur(τ) =
∫ τ

0
N(t)B(0, t)dt

Substituting N(t) by its adjusted values, we can define durdef (τ) and
durdef , respectively the default and risk-free durations :

durdef (τ) =
∫ τ

0
N(t)defB(0, t)dt

durdef =
∫ T def

0
N(t)defB(0, t)dt

Note that the duration is deterministic provided the bond survives; oth-
erwise there are as many amortization paths as default times. We can now
write the duration as an expectation under the distribution of τ (see the
proof in the Annex). With f(τ) being the density of the default time distri-
bution, we have :

duradj(λ) =
∫ ∞

0
dur(τ)f(τ)dτ (4)

=
∫ T def

0
durdef (τ)f(τ)dτ +

∫ ∞

T def

durdeff(τ)dτ

=
∫ T def

0
durdef (τ)f(τ)dτ + P(τ > T def ) durdef (5)

The duration is the average of the default time-contingent durations de-
fined before, weighted by the distribution of the default times.

The choice of a binary function might seem arbitrary at first glance;
it would be tempting to write a more sophisticated amortization profile
with a greater number of curves, each one associated to a range of default
times so as to weight prepayment scenarios by their likelihood of occurrence.
However one should have in mind that the amortization process of the ABS
actually stops at the default time τ . Therefore our approach generates as
many prepayment scenarios as default times.

More importantly, the models reaches its objective in allowing defaults
to occur after their expected maturity. Yet being simple in its form, it
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manages to describe the behavior of defaulting ABS. We will see later in
4.2.1 that the resulting duration, and the value of fee leg as a result, is
higher than the market model’s. This reflects the fact that default may take
time to occur, and then that buying protection can be more expensive than
expected. Besides the duration can become an increasing function of spread,
representing the fact that the riskier the asset, the higher the probability of
the amortization to slow down as the default will take time to materialize.

However, we have seen that interest shortfalls sometimes occur before
the default of a security. As these shortfalls are a floating event, they do not
terminate the CDS contract and are not accounted by the default leg. We
will now see that our framework can address the occurrence of these events.

3.2.2 Interest-shortfall adjustment

PAUG settlement imply that shortfalls in the payment of coupons trigger a
floating event where the corresponding loss is paid by the protection seller.
Under the Fixed Cap documentation, these payments are capped to the
amount of the CDS premium. Said otherwise, these shortfalls simply reduce
the outstanding notional of the security on which the CDS coupon is paid.
From a pricing perspective, while the extension effect was to increase the
value of the duration, we can expect the occurrence of interest shortfalls to
mitigate this effect by reducing it.

Figure 5 plots the impact of shortfalls on GRANM 2006-4 A7 bond in
the same distressed scenario discussed earlier (figure 2). The left-hand plot
(a) is the reproduction of figure 1 for comparison purposes. The right hand
(b) is the same after accounting for the interest shortfalls that occur in the
stressed case. Let’s assume a scenario where the default’s time occurs in
τ = 20. Ignoring for now the impact of interest shortfalls and assuming a
flat interest rate curve of 4%, the duration will be the present value on the
curve (a), e.g.

∫ 20
0 N(t)defB(0, t)dt = 7.79. Practically, the occurrence of

interest shortfalls will reduce the value of the coupons actually paid by the
protection buyer. The later will be paid on smaller notionals – plot (b) –
reducing the duration value to 6.47.
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(a) N(t)def (b) N(t)def after accounting for shortfalls

Figure 5: Interest shortfalls reduce the fee leg value, example from BBVAR
2007-1 A2 (source : ABSNet).

Hence we can simply model interest-shortfalls by assuming that, on av-
erage, a fraction of the fee leg won’t be paid in default events. Let’s call
s the share of the coupon that will be canceled due to shortfalls. We will
assume s to be a constant here, but one can easily set it to be a function of
time, for instance. The default-contingent duration formula now becomes :

durdef (τ) =
∫ τ

0
Ndef

i B(0, t)(1− s)dt (6)

Depending on the ABS’ waterfall, s can vary from 0 (no interest shortfall
is deemed conceivable, as in distressed scenarios the waterfall diverts under-
lying cash flows to pay the tranche’s coupon) to 1 (a defaulting tranche will
never pay any coupon). The choice of s is discussed in section 4.1.2.

As a result of this adjustment, the amortization profile used for the cal-
culation of the duration differs from the one used for the computation of
losses. Hence in the Granite example such modeling allow for a large, back-
loaded, loss 7 together with a decreasing coupon.

7which actually occurs in the stressed cash flow scenario run in ABSNet: the writedown
of principal actually occur at final maturity.
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4 Model calibration and results

4.1 Model calibration

As discussed ahead of time, we believe the strength of this model is its
simplicity. While staying close to the current market practice – and hence
to the corporate CDS pricer – it manages to account for stylized facts that
are typical of the structured finance world. We discuss below on the choice
of the parameters with this idea in mind.

4.1.1 Choice of amortization curves

Both amortization curves here are to be determined by market participants
through the use of a cash flow model such as Bloomberg, ABSNet or In-
tex. We remind that the amortization curve represents the percentage of
outstanding notional at time t. If computing such a value is quite straight-
forward in the base scenario, the stressed one requires a specific care.

Indeed, equation 3 states that the security’s losses are actually computed
on the factors Ndef : they are endogenously modeled in the default process.
This means that, when running the cash flow model, the Ndef (t) values
have to be equal to the outstanding notional before losses that occur in this
specific scenario. For example, if a given scenario generates writedowns at
years 12 and 13 but that no redemption occur until final maturity, then the
amortization profile should be bullet until maturity.

However, proceeding that way can lead to an underestimation of realistic
amortization in two cases :

• Front-loaded principal writedowns, typically for junior tranches
with PDL and limited subordination (see the example of DELPH 2006-
1 B in section 2.3.2 p. 10)

• Distressed rating, a downgrade to CCC/Caa2/CCC or below, or
a rating withdraw by one or more rating agency can trigger a credit
event. Again, this is predominantly true for junior tranches.

For example, assuming no amortization for DELPH 2006-1 B as in figure
3 would mean that defaults can occur until final maturity (year 27), which
is unrealistic. In this very example the ABS amortizes faster because of
realized losses; this would not be captured without adjustment to Ndef .
These situations obviously require a case-by-case treatment. As a rule of
thumb one could simply chose to use the market model in these cases (e.g.
Ndef = Ndef ).
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4.1.2 Recovery and interest shortfalls parameters

Recovery is a decisive parameter in CDS pricing, because of its impact on
default probabilities. For a given spread, the higher the recovery assump-
tion, the higher the default probability. Market practitioners usually set the
recovery parameter for ABS at 40%, in line with the practice of the cor-
porate world. But while the latter is well established and backed not only
by statistical figures but also by market levels8, there is no such proof for
structured finance securities.

As a calibration method, we suggest to simply use the realized recovery
in the benchmark default scenario. We find out that the 40% assumption
almost never hold for ABS, having in mind that for pricing purposes, the
recovery parameter is applied to the outstanding notional at the default
time. While this is not problematic for bullet corporate bonds, for amor-
tizing ABS the face recovery has nothing in common with the one observed
on the notional at the default time. Numerical investigations on the sample
ABS introduced in section 2.3.2 indicate that R should almost always be
equal to 0. We believe this is almost always true for amortizing or junior
bonds, provided they are remote from default – distressed bonds would ob-
viously require a specific treatment. Senior bullet ABS should behave as
senior corporate debt, however.

Again, the shortfall parameter should be computed through the same
default scenario as for the amortization curve and the recovery. For com-
putational reasons one would probably find more practical to use a single
parameter. We suggest setting it to the value of the actual shortfall share
in the later scenario. Calling sf(t) the actual shortfalls that occur in the
stressed scenario, then the proxy of interest shortfalls ŝ writes as follow :

ŝ =

∫ T Def

0 sf(t)dt∫ T Def

0 NDef (t)dt
(7)

Which is the WAL of interest shortfalls divided by the WAL of principal
payments – the average share of interest shortfalls on figure 5. For the later
ABS, we indeed have ŝ = 0.397.

8the recovery swaps market is barely liquid, though.
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4.2 Model results

Applied to the above ABS, the model yields significant results and properly
captures the cash flow “stylized facts” discussed earlier, e.g. duration are
higher and are (mostly) an increasing function of spreads. This is crucial
having in mind that duration not only indicates the cost of protection, but is
a risk measure as well. In the section below, we first compare our approach
to the current market practice and subsequently discuss the parameters
sensitivities and impact on the fair spread of ABCDS.

4.2.1 Models comparison

Figure 6 plots the durations of the Granite bond introduced earlier computed
with the current model (both Market and Step Up Intensity curves) as well
as ours (Extension Adjusted). We assumed R = 0 ans s = 0, in line with
the ABS’ scheduled cash flows; for step-up intensity we arbitrarily assumed
t0 = 2, with the intensity being nil for t < t0.

The two first curves are by definition capped by the ABS’ WAL of 3.39

(as it is equal to the non-discounted duration assuming no default). Both
durations are everywhere a decreasing function of spread, which means that
the riskier the CDS, the shorter is his expected duration. It is a classical
result for corporate CDS pricing : increasing spread increases hazard rate
(table 2) and decreases the survival probability which weights the cash flows
in the duration. Interestingly, step-up model exhibits lower durations than
the one assuming constant hazard rate. It is surprising as the shape of
the hazard rate curve should force back-loaded default. In fact the later is
true holding intensity constant; but for a given spread the jump in hazard
rate after t0 actually more than compensates the effect of having a zero
probability of default in the early years, and eventually reduces the duration.

On the contrary, the inherent extension risk of Granite bonds is well
captured with the extension-adjusted model where the duration is greater
everywhere. The effect of the adjustment is not negligible : for a $10 million
trade, the difference in fee leg is worth $20,000. Moreover, the duration is
here an increasing function of spread. When spreads widen, default probabil-
ity increases and so does the likelihood of “shifting” to a slower amortization
profile, increasing duration as a result. This is true provided the probability
of default is not too high (we will see later that too high a recovery rate can
induce such case).

9see table 1 p.14.
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Figure 6: Models comparison : example from GRANM 2006-4 A7.

We believe the extension-adjusted model does not require a sophisticated
shape for the hazard rate, as his flat intensity is already low, which makes
the probability of immediate default negligible as compared to the market
model (for example a premium of 100 bps will yield a hazard rate of 0.30%
vs. 0.86% for the market model, see table 2, below).

Market Model Step Up Extension-Adjuted
Spread = 25 Duration 3.01 3.00 3.06

Intensity 0.21% 0.37% 0.07%
Spread = 100 Duration 2.97 2.94 3.17

Intensity 0.86% 1.50% 0.30%
Spread = 200 Duration 2.93 2.86 3.34

Intensity 1.72% 3.04% 0.65%
Spread = 500 Duration 2.80 2.64 3.83

Intensity 4.34% 7.84% 2.05%

Table 2: Models comparison : numerical results (GRANM 2006-4 A7).
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4.2.2 Sensitivity to underlying parameters

We reproduce below the extension-adjusted durations with various assump-
tions of recovery (figure 7) and interest shortfalls (figure 8). For the sake of
simplicity we used the same bond as reference, but have in mind that the
below results are true provided the ABS exhibits extension risk.

Interestingly the higher the recovery assumption, the greater is the slope
of the curve in most cases. It is well known that holding spread constant, in-
creasing the recovery assumption increases the probability of default. In our
approach, this means putting more weight in the default amortization curve
– which means increasing duration. This holds for “reasonable spreads”,
however; for too high a recovery rate (and too high an intensity as a result),
the usual effect dominates, e.g. the increased intensity favors the probability
of defaulting earlier.
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Figure 7: Model sensitivity : Recovery (GRANM 2006-4 A7).

The shortfall sensitivity is more straightforward, with s unequivocally
driving the slope of the duration. The higher the value of the shortfall
assumption, the more the ABS tends to be insensitive to extension risk.
When the spread widens, so does the probability of default; but while the
losses (writedowns) will be computed in the default leg, interest shortfalls
are themselves accounted in the duration formula – preventing the coupon of
the CDS from being paid. Hence the present value of the stream of coupons
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may decrease with the occurrence of a default.
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Figure 8: Model sensitivity : Interest Shortfalls (GRANM 2006-4 A7).

4.2.3 Impact on fair value

The model adjustment also modifies the no-arbitrage spread that one may
infer from cash quotes10. Assuming no basis, one can compute the fair
spread of a floating-coupon ABS. If a CDS where to pay a premium equal
to the ABS’ coupon, then it would require to trade with an upfront to avoid
any arbitrage opportunity. The upfront is worth:

UF = Notional × (Issue Price− Price)/100

Once known the duration of the CDS, the fair spread is trivially:

Spread = (UF + Premium× duration)/duration

Table 3 depicts the impact of the adjustment on durations and breakeven
spreads on DELPH 2006-1 bonds. All tranches have a non-default WAL of
3.01 (they are actually bullet bonds), with default WAL of A bond at 20.48.
Please note that as discussed in section 4.1.1, we did not adjust for default

10A thorough study of no-arbitrage pricing can be found in [2].
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the amortization curve of the junior bonds. Again we assumed t0 = 2 for
the step-up model.

Class Price Coupon Model Spread Duration RR Shortfall
Market 94.7 2.74

A 97.73 12.0 Step Up 95.8 2.71 11.4% 43.2%
Adjusted 91.5 2.85
Market 289.4 2.68

B 92.85 22.0 Step Up 300.2 2.57 0.0% 58.7%
Adjusted 295.6 2.61
Market 621.3 2.56

C 85.06 37.0 Step Up 687.5 2.30 0.0% 59.5%
Adjusted 650.7 2.43
Market 656.0 2.54

D 85.09 70.0 Step Up 726.9 2.27 0.0% 59.5%
Adjusted 685.0 2.42

Table 3: Fair spread computation, DELPH 2006-1 (source : Markit,
Bloomberg, 22/08/2008)

The adjusted model (with respect with the market one) allows a greater
duration to the senior bond (though mitigated by the shortfall parameter)
and lower durations for junior bonds that suffer from the loss of most of
their coupon when the ABS defaults. We found the step-up approach to be
deceiving here as it probably leads to an overestimation of the fair spread.
In particular for the junior bonds, the duration appears to be lower than the
adjusted model (which accounts for interest shortfalls) – which is the very
fact that the step-up model wants to avoid.

5 Conclusion

We presented in this paper a way to account parsimoniously for the main
“stylized” specificities of ABS cash flows. We believe this method to be
more descriptive than the current market practice, while the later can yield
some surprising pitfalls. It is also more intuitive and flexible, allowing to
cope simultaneously with extension risk and interest shortfalls.
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We also discussed the issue of the choice of the CDS parameters. In par-
ticular, we believe the choice of the same recovery assumption as corporate
bonds to be generally deceiving.

Again, we stress this approach is satisfying for valuation purpose and
does not intends to price ABS in a no-arbitrage way. In particular, the
assumption of deterministic interest rate is critical and inconsistent with
the well-known pricing of mortgage backed securities in the US. Extending
our framework to deal with the latter would make a sensible step toward
no-arbitrage pricing.
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A Annex : Proof of the duration calculation

We start from the “classical” form of the duration stated in 2 :

dur(λ) =
∫ T

0
N(t)P (τ > t) B(0, t)dt

Using the fact that ∀x ≥ T, N(x) = 0 and replacing P (τ > t) by its
value, we have :

dur(λ) =
∫ ∞

0
N(t)

∫ ∞

t
f(τ)dτB(0, t)dt

=
∫ ∞

0

∫ ∞

t
N(t)f(τ)B(0, t)dτdt

=
∫ ∞

0

∫ τ

0
N(t)B(0, t)dtf(τ)dτ

=
∫ ∞

0
dur(τ)f(τ)dτ

The later being equation 4.
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