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the long-run Taylor principle given in Davig and Leeper (2007) is preferred to a
determinacy-indeterminacy model motivated by Lubik and Schorfheide (2004).
These empirical results indicate that, even though a passive policy regime pro-
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1 Introduction

The empirical literature (e.g., Stock and Watson (1996, 2002)) has demonstrated that

postwar U.S. macroeconomic data have experienced structural changes with compli-

cated patterns such as persistent increases and decreases in means and variances.

From a theoretical perspective, agents in the economy should, given these struc-

tural changes, have a different understanding about the economy over time and react

to the instability. In terms of the U.S. economy, less volatile GDP and inflation

since the mid-1980s are the two striking examples of structural changes. Economists

have been debating the causes of the “Great Moderation” and two popular explana-

tions are improved monetary policy1 and the “Good Luck” hypothesis.2 Meanwhile,

even if active monetary policy has stabilized the U.S. economy since the mid-1980s,

the source of highly volatile economy before the mid-1980s is not fully understood.

Lubik and Schorfheide (2004) have argued that passive monetary policy led to inde-

terminacy, implying that sunspot shocks were the cause of higher volatility in the

1970s. By contrast, Davig and Leeper (2007) suggest a theoretical alternative that

passive policy generated higher volatility by amplifying “fundamental” shocks under

determinacy in the long-run, rather than “sunspot” shocks under indeterminacy. This

amplification of fundamental shocks under determinacy occurs if the passive policy is

conducted only for short periods of time or the degree of the passive policy is close to

the boundary between the active and passive policies. Davig and Leeper refer to the

conditions that satisfy determinacy given periods of passive policy as the “long-run

Taylor principle.”

I estimate and compare New Keynesian DSGE models with regime changes in

order to examine the sources of high volatility of U.S. output and inflation in the

1970s and the so-called “Great Moderation” in the 1980s. I find stronger support for

1For examples of good monetary policy argument, see Clarida, Gali, and Gertler
(2000), Lubik and Schorfheide (2004), and Boivin and Giannoni (2006).

2For examples of “Good Luck” story, see Stock and Watson (2002), Ahmed, Levin, and Wilson
(2004) and Justiniano and Primiceri (2008).
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regime switching in monetary policy than in technology or nominal rigidities based

on model comparison using marginal likelihoods of models. Also, I find that the long-

run Taylor principle-type monetary policy regime switching model is preferred to the

determinacy-indeterminacy model. These empirical results mean that, even though a

passive policy regime produced more volatility in the economy from the early 1970s

to the mid-1980s, the long-run Taylor principle holds over the entire postwar period,

implying equilibrium determinacy and no role for sunspot shocks in explaining the

changes in volatility.

While motivated by the existing literature, my analysis is distinguished from the

conventional New Keynesian model studies in several ways.

First, I endogenously make inference about regime changes and the inferences take

into account agents’ probabilistic assessments of regimes. In particular, the response

to inflation and output gap in monetary policy, the growth rate and the variance of

technology shock, and the nominal rigidity parameter could be dependent on regimes

of the economy. I also consider both monetary policy change and stochastic volatility

together, but changes are treated as independent, allowing me to isolate the effects of

the “Good Luck” and monetary policy on the volatility decline after the early 1980s.

Second, the agents in the economy form expectations about key variables in the

next period by considering possible regime changes in each period. In particular,

transition probabilities are incorporated in model equations directly. This specifica-

tion is different from the conventional regime switching analysis such as Hamilton

(1989) and Kim and Nelson (1999b) in which the data generating process depends

only on the true underlying regimes, rather than probabilistic assessments of regimes,

implying that agents know current and past regimes and believe that the current

regime will last forever. Meanwhile, the possibility of a transition to other regimes

can affect the equilibrium under a given regime and the dynamics in the economy.

Davig and Leeper’s (2007) long-run Taylor principle expands the set of determinate

rational expectation equilibria. In this paper, I adopt their idea but extend it to gen-

3



eral regime switching models (e.g., technology, nominal rigidities as well as monetary

policy).

Third, building on the literature on Bayesian estimation of DSGE models, I de-

velop a method for estimating models with forward-looking regime switching along

the lines of the form proposed in Davig and Leeper (2007). They present the long-

run Taylor principle theoretically, but they do not examine it in an empirical setting.

In order to link observed data to unobservable regime-dependent state variables in

multiple regime equations, I integrate the regime-dependent state variables3 in each

period over the probability of each regime. The probability of the regime is calculated

and updated recursively based on Bayes’ rule every period.

Fourth, I “endogenously” estimate the timing of regime changes in a determinacy-

indeterminacy DSGE model that is motivated by Lubik and Schorfheide (2004). This

model specification is different from regime switching models discussed above in the

sense that the agents in this economy regard the current regime as a permanent

regime and do not allow for the possibility of regime changes in the future. How-

ever, the parameters for the model are unrestricted, so as to allow for the possibility

of indeterminacy. Comparing this determinacy-indeterminacy regime change model

with the long-run Taylor principle-type model allows me to determine whether the

higher volatilities of economic variables were induced by (i) sunspot shocks when the

economy is under indeterminacy or (ii) a passive monetary policy with the long-run

Taylor principle holding.

The rest of this paper proceeds as follows. Section 2 introduces forward-looking

rational expectations model with regime switching and compare it to conventional

regime switching model by using a simple univariate model. Section 3 describes a

standard New Keynesian DSGE model without regime switching. Section 4 intro-

duces forward-looking rational expectations models with recurring regime changes

3In Bayesian econometrics, “state variable” often represents a latent variable which governs struc-
tural breaks or regime-switchings. However, I use state variables only for unobservable variables in
the state-space form in order to avoid confusion.

4



in the context of DSGE models and shows how to construct a state-space form for

these models. Section 5 discusses the endogenous identification of determinacy and

indeterminacy in the setting of regime switching analysis. Section 6 explains how to

make inferences about model parameters and the probability of regimes in a Bayesian

econometrics framework and summarizes empirical results. Section 7 concludes.

2 Illustrative Examples of Forward-Looking Regime

Switching Rational Expectations Models

In this section, I explain how to solve regime switching rational expectations (RSRE)

models in which agents in the economy take into account the possibility of regime

changes in “deep” parameters. I start with a single equation model with an economic

variable. This rational expectations model is a simplification of multivariate dynamic

stochastic general equilibrium (DSGE) models but this specification is rich enough

to understand the nature of equilibrium. I introduce no regime switching model as

a benchmark model at first and consider and compare conventional regime switching

and forward-looking regime switching models.

2.1 A constant parameter model

A constant parameter model has an economic variable in a purely forward-looking

setting as follows.

xt = aEt[xt+1] + ǫt (1)

ηt = xt − Et−1[xt] (2)

where xt is an endogenous variable, ǫt is a random exogenous shock with i.i.d.

N(0, σ2
ǫ ), and ηt is a forecasting error. Before I estimate this model, I need to solve

the rational expectations model so that I express the model as a reduced form. In this
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paper, I use the approach suggested by Sims (2002) and use his notation to describe

the rational expectations model. I can rewrite equations (1) and (2) as a matrix form




1 −a

1 0





︸ ︷︷ ︸

Γ0




xt

Et[xt+1]





︸ ︷︷ ︸

ξt

=




0 0

0 1





︸ ︷︷ ︸

Γ1




xt−1

Et−1[xt]





︸ ︷︷ ︸

ξt−1

+




1

0





︸︷︷︸

Ψ

ǫt +




0

1





︸︷︷︸

Π

ηt. (3)

A solution to equation (3) is a bounded stochastic process ξt. Sims (2002) develops

a solution algorithm and provides conditions on the matrices Γ0, Γ1, Ψ, and Π under

which there exists a unique solution (determinacy), multiple solutions (indetermi-

nacy), and no solution (explosive process). The nature of equilibrium depends on

generalized eigenvalues of matrices (Γ0, Γ1).
4 I assume that agents in the economy

know the model structure of dynamics5 as well as the model parameters (a, σ2
e). They

can also observe, at time t, history of economic variables {xt, xt−1, xt−2, ...}.

2.2 Purely forward-looking regime switching model

The forward looking regime switching rational expectation (RSRE) model, the focus

of this paper, can be distinguished from a conventional regime switching model in

the following way. In the forward looking RSRE model, agents take into account the

possibility of regime switching in the near future, while in the conventional RSRE

model, agents believe that the current regime will last forever. This difference makes

the dynamics and equilibrium conditions different given the same model parameters

for both models.

To make this model specification simple but still to see the difference between two

frameworks, I consider two regimes in the models. However, it is straightforward to

extend into more than two regimes and all the properties of dynamics and equilibrium

4For details, see Sims (2002) and Lubik and Schorfheide (2003, 2004). For the purely forward
looking model, if |a| < 1, the dynamics is under determinacy, and if |a| ≥ 1 it is under indeterminacy
and has multiple equilibria.

5For example, agents understand which variable is included as expectation, current time, and
lagged forms in the model.
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conditions can be appropriately adjusted. In a conventional regime switching model,

the model parameter a in equation (1) can be equal to a1 under the first regime or

a2 under the second regime. Then, given the current regime st = i, equation (1) is

changed to

xt = aiEt[xt+1] + ǫt

and as a matrix form




1 −ai

1 0





︸ ︷︷ ︸

Γ0,st=i




xt

Et[xt+1]





︸ ︷︷ ︸

ξt

=




0 0

0 1





︸ ︷︷ ︸

Γ1,st=i




xt−1

Et−1[xt]





︸ ︷︷ ︸

ξt−1

+




1

0





︸︷︷︸

Ψ

ǫt +




0

1





︸︷︷︸

Π

ηt. (4)

Thus, the regime at the previous date t− 1 does not directly affect dynamics at the

current date t and only ai’s govern the dynamics.

However, in a forward looking RSRE model, if agents know that the current

regime can be different from the future regime, this expectation should be reflected

when agents make decisions about their behaviors on the current date. For example,

even though the current monetary policy is conducted under the passive regime, if

agents expect that the passive policy regime will be changed to the active regime in

the near future, the effect of the passive policy under the consideration of possibility

of switching to the active policy in the near future on the economy could be different

from that of a purely passive policy without the possibility of switching to the active

regime. This effect of forward looking expectations is described in Figure 1 (a).

Agents believe that the probability that the current regime st = i switches to the

regime st+1 = j on the next date is pij . The transition probability matrix for regimes

is

P =




p11 p12

p21 p22



 .

Thus, given the current regime i, the summation of the probabilities of all the possible

regimes on the next date should be equal to one (
∑2

j=1
pij = 1 ∀i.).
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Figure 1: Structure of Transition Probability: Two regime Model
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(b) Forward-looking Regime Switching Model with lagged variables
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I assume that agents also know the transition probability pij but do not know the

probability of the current regime. The agents utilize Bayes’ rule to make inference

about the probability of the current regime (P[st = i|It]) given currently available

information such as new observation (xit), the probability of each regime at time t−1

(P[st−1 = i|It−1]), the transition probability (pij), and the model structure (likelihood

function). Agents in the economy consider current regime and regime changes in the

future when they form the expectations of variables as follows.

Et[xt+1|st = i] = pi1Et[x1t+1] + pi2Et[x2t+1] (5)

where Et[xt+1|st = i] is the expectation of a variable of time t + 1 at time t given

regime st = i, xit is the value of variable x at time t given regime st = i. I rewrite

this purely forward-looking regime switching model as a matrix form as follows.











1 0 −p11a1 −p12a1

0 1 −p21a2 −p22a2

0 0 1 0

0 0 0 1











︸ ︷︷ ︸

Γ0











x1t

x2t

Et[x1t+1]

Et[x2t+1]











︸ ︷︷ ︸

ξt

=











0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0











︸ ︷︷ ︸

Γ1











x1t−1

x2t−1

Et−1[x1t]

Et−1[x2t]











︸ ︷︷ ︸

ξt−1

+











1 0

0 1

0 0

0 0











︸ ︷︷ ︸

Ψ




ǫ1t

ǫ2t





︸ ︷︷ ︸

ǫt

+











0 0

0 0

1 0

0 1











︸ ︷︷ ︸

Π




η1t

η2t





︸ ︷︷ ︸

ηt

(6)

In this expanded form, the system matrices Γ0, Γ1, and Ψ accommodate directly

transition probabilities (pij , for i, j = 1, 2) as well as model parameters. All the

model matrices (Γ0, Γ1, Ψ, Π) are independent of regimes and dates. It depends on

the values of pij where i, j = 1, 2 as well as αi where i = 1, 2 whether the economy
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is under determinacy or indeterminacy. For example, even though α2 is less than

1, some appropriate values of α1, p11, and p22 can induce determinacy such as a big

value of α1 ≫ 1 or a highly persistent p11 close to but less than 1.

Although the regime switching assumption is embedded in the transition equation

system, the form of this system is the same as the usual rational expectations form

except that the number of equations is the multiplication of the number of regimes

and the number of equations in a one regime model. Thus, this rational expectations

model can be solved in the same way as the conventional no-regime switching model.

This property is different from the conventional regime switching analysis as

in equation (4), Hamilton (1989), and Kim and Nelson (1999b). The conventional

regime switching models have only regime-dependent parameters and do not include

regime change probabilities explicitly in the model dynamics. Thus, the conven-

tional approach implicitly solves the rational expectations model independently for

each fixed regime and implies that the agents in the economy believe that the cur-

rent regime will last forever and do not think about the possibility of future regime

changes.

2.3 Forward-looking Regime-switching model with lagged vari-

able

Similar to the previous case, I adopt the known transition probability assumption

for a rational expectations model with lagged variables. The agents also believe that

the current regime i at time t comes from the past regime k at time t − 1 with the

transition probability pki. Notice that, given the regime k at time t − 1 and the

regime i at time t, pki should be the same over the entire periods. If agents’ belief

about the transition probability from the past to the present is time-varying and

updated recursively, there is no reason for agents to believe that the transition prob-

ability from the present regime to the one period ahead regime is constant as in this

paper and literature (e.g. Davig and Leeper (2007) and Farmer, Waggoner, and Zha
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(2008)). However, if I allow for recursively updated beliefs about the transition prob-

ability, making inferences about this model is computationally infeasible since agents

need to update information about transition probability and current regime probabil-

ity every period. This simple assumption that the transition probability is constant

over time enables the expanded state-space form to be a constant parameter model

and makes it feasible to determine whether the dynamics of the economy is under

determinacy or indeterminacy since the determinacy conditions need to be checked

just once rather than every period. In addition, the first order Markov property keeps

the number of regimes in history as two rather than 2T when the sample size is T

and the number of regimes at each period is two.

As an extension of equation (1), I introduce a constant parameter model with a

lagged variable as follows.

xt = aEt[xt+1] + bxt−1 + ǫt (7)

When considering regime changes in all the parameters, given a regime i the equa-

tion (7) changes to

xit = ai(pi1Et[x1t+1] + pi2Et[x2t+1]) + bi(p1ix1t−1 + p2ix2t−1) + ǫit (8)
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and as a matrix form











1 0 −p11a1 −p12a1

0 1 −p21a2 −p22a2

0 0 1 0

0 0 0 1











︸ ︷︷ ︸

Γ0











x1t

x2t

Et[x1t+1]

Et[x2t+1]











︸ ︷︷ ︸

ξt

=











p11b1 p21b1 0 0

p12b2 p22b2 0 0

1 0 0 0

0 1 0 0











︸ ︷︷ ︸

Γ1











x1t−1

x2t−1

Et−1[x1t]

Et−1[x2t]











︸ ︷︷ ︸

ξt−1

+











1 0

0 1

0 0

0 0











︸ ︷︷ ︸

Ψ




ǫ1t

ǫ2t





︸ ︷︷ ︸

ǫt

+











0 0

0 0

1 0

0 1











︸ ︷︷ ︸

Π




η1t

η2t





︸ ︷︷ ︸

ηt

. (9)

Then, the algorithm to solve the purely forward-looking RSRE models can be applied

to models with lagged variables.

Farmer, Waggoner, and Zha (2008) suggest a method to solve regime-switching

models which are linear in variables. I propose a new method to solve more gen-

eral regime switching models in the sense that regime switching rational expectations

models are non-linear in both variables and parameters. The difference is that eco-

nomic state variables in Farmer, Waggoner, and Zha (2008) are not regime-dependent

and they turn on and off channels depending on current and previous regimes.

3 A Standard New Keynesian DSGE model

In this paper, I use a standard New Keynesian dynamic stochastic general equilibrium

(DSGE) model, which involves three main equations (an IS relationship, a Phillips

curve, and a monetary policy rule), two exogenous shock processes (a technology

shock and a preference shock), and a log-linear approximation. These equations are
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derived in Woodford (2003) and An and Schorfheide (2007) as follows.

x̂t = Et[x̂t+1] + ĝt − Et[ĝt+1] −
1

τ
(R̂t − Et[π̂t+1] − Et[ẑt+1]) (10)

π̂t = βEt[π̂t+1] + κ(x̂t − ĝt) (11)

R̂t = ρRR̂t−1 + (1 − ρR)[ψ1π̂t + ψ2x̂t)] + ǫRt (12)

ẑt = ρgẑt−1 + ǫzt (13)

ĝt = ρgĝt−1 + ǫgt (14)

Let x̂t = ln(xt/x) denote the percentage deviation of a variable xt from their steady-

state x where xt = Xt/At is a detrended variable and At is aggregate productivity

at time t. The aggregate productivity At follows a stochastic process with the gross

growth rate γ and the exogenous shock zt:

lnAt = lnγ + lnAt−1 + lnzt

where zt evolves according to univariate AR(1) process in (13).6 Equation (10) is the

intertemporal Euler equation and is derived from the households’ optimization prob-

lem where τ−1 denotes the intertemporal substitution elasticity. Since the model does

not include the capital accumulation channel, consumption is proportional to output

and perturbed by the exogenous shock gt which follows the AR(1) process in (14).

The shock gt is interpreted broadly as a preference shock as well as a governmen-

tal expenditure shock. The expectational Phillips curve in equation (11) is produced

from a continuum of monopolistically competitive firms’ profit maximization problem

where κ is a measure of nominal price stickiness due to quadratic adjustment costs

and β is the households’ discount factor. The central bank follows a Taylor-type

rule by adjusting the nominal interest rate in response to deviations of inflation and

6Output is directly detrended by estimating the growth rate of the technology and removing the
stochastic trend of output in a measurement equation of state-space model form.
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output from their steady-state levels. The shock ǫRt is the unexpected deviation from

the policy rule. In addition, the central bank is assumed to smooth the policy interest

rate.

Let ηπ
t and ηx

t denote the expectational errors for the inflation deviation and

output gap at time t given the information time t− 1 respectively.

ηπ
t = π̂t − Et−1[π̂t]

ηx
t = x̂t − Et−1[x̂t]

Moreover, the one period ahead expectation of exogenous shock depends on the cur-

rent value of the shock and its persistence:

Et[ĝt+1] = Et[ρgĝt + ǫgt] = ρgĝt (15)

Et[ẑt+1] = Et[ρz ẑt + ǫzt] = ρz ẑt. (16)

Substituting (15) and (16) into (10), the IS equation can be expressed in terms of

the current period variables. The rational expectations model system includes all

the equations and exogenous shock processes which consist of endogenous variables,

expectational errors, and exogenous shocks. Thus, the system can be rewritten as a

matrix form as follows.

Γ0ξt = Γ1ξt−1 + Ψǫt + Πηt

where ξt = [x̂t, π̂t, R̂t,Et−1[x̂t],Et−1[π̂t], ĝt, ẑt]
′, ǫt = [ǫgt, ǫzt, ǫRt]

′, and ηt = [ηx
t , η

π
t ]′.

The matrices Γ0, Γ1, Ψ, and Π contain the appropriate model parameters. Then,

I can easily solve this rational expectations model by using Sims’s gensys code and

get a reduced form as follows.

ξt = Gξt−1 + Wǫt

The measurement equations allow for linking observables (the growth rate of per
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capita output: ∆yt, the annualized inflation rate: πt, and the nominal interest rate:

Rt) to unobservable state variables in the transition equation system.








∆yt

πt

Rt








=








γQ + x̂t − x̂t−1 + ẑt

πA + 4π̂t

πA + rA + 4γQ + 4R̂t








=








γQ

πA

πA + rA + 4γQ








︸ ︷︷ ︸

A

+








1 0 0 0 0 0 1 −1

0 4 0 0 0 0 0 0

0 0 4 0 0 0 0 0








︸ ︷︷ ︸

B























x̂t

π̂t

R̂t

Et−1[x̂t]

Et−1[π̂t]

ĝt

ẑt

x̂t−1























︸ ︷︷ ︸

ξt

(17)

Note that the lagged variable x̂t−1, which is not initially included in the vector of

state variables, is augmented in the vector in order to detrend output.

4 New Keynesian DSGE models with Regime Switch-

ing

In the previous section, I briefly outlined the standard log-linearized equations for

New Keynesian DSGE models. However, this analysis is distinguished from conven-

tional New Keynesian studies. I take account of recurring regime changes in mone-

tary policy, technology, and nominal price rigidities. Agents in the economy consider

the possibility of the regime changes and know deep parameters but do not know

the current regime. Thus, the agents make inference about the current regime in a

probabilistic manner by updating their information recursively. The possibility of a
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transition to the other regimes can alter the stability conditions and the dynamics in

this economy. Davig and Leeper (2007) pointed out this possibility for monetary pol-

icy regimes corresponding to active and passive policy, and introduced a generalized

long-run Taylor principle which expands the set of determinate rational expectation

equilibrium. In this paper, I adopt their idea but extend it to general regime switching

models (e.g., technology, nominal rigidities as well as monetary policy). Throughout

this paper, two regimes are taken into account but it is straightforward to develop

models with more regimes.

4.1 Regime switching in policy

Davig and Leeper (2007) argue that the passive monetary policy might have induced

the higher volatility before 1980s, even with the long-run Taylor principle holding.

The idea is that the passive policy for some periods can still generate the determinacy

equilibrium if the passive policy is conducted only for short periods of time or the

degree of the passive policy is close to the boundary between the active and passive

policies. Based on this idea, I endogenously make inference about regime changes

from the viewpoint of agents who learn about regimes of the economy. In addition,

I allow for regime changes in the smoothing parameter (ρR) and the inflation target

(πA) as well as the reaction coefficients to inflation deviation from the inflation target

(ψ1) and output gap (ψ2). Under a regime i, the monetary policy rule is given by

R̂it = p1iρRiR̂1t−1 + p2iρRiR̂2t−1 + (1 − ρRi)[ψ1iπ̂it + ψ2ix̂it] + ǫeit (18)

πA = πA
i , i = HorL (19)

and the inflation target is estimated in the measurement equation system as the mean

of the annualized inflation rate.7 The mean of inflation is also regime-dependent. I

7Schorfheide (2005) estimates a monetary policy DSGE model in which the target inflation rate
is subject to regime switches. He assumes that the reaction coefficients to inflation and output gap
are constant and the entire U.S. postwar economy is under determinacy equilibrium. His analysis
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assume that the central bank performs an active monetary policy with low inflation

target and a passive monetary policy with high inflation target.

4.2 Regime switching in technology

Stochastic volatility and the so-called “Great Moderation” have featured prominently

in the business cycle literature. This Markov-switching structure on volatility can

capture these volatility changes in a parsimonious and tractable way and represent

“Good Luck” story for the volatility reduction. I explicitly specify this feature by

introducing regime changes in technology.

ẑit = p1iρziẑ1t−1 + p2iρziẑ2t−1 + ǫzit,

ǫzit ∼ N (0, σ2
zi) σ2

z1 < σ2
z2. (20)

Meanwhile, Hamilton (1989) and Kim and Nelson (1999a) show that a simple

Markov-switching regime model can capture business cycle properties by matching

estimated probabilities of a recession regime to NBER recession dates. Thus, the

growth rate of technology shocks is associated with changes between boom and re-

cession in the present regime switching model. Then, given a regime i, the regime

switching technology is directly related to the growth rate of output.

∆yit = γQ
i + x̂it − p1ix̂1t−1 − p2ix̂2t−1 + ẑit

γQ
i = γQ

H or γQ
L (21)

4.3 Regime switching in nominal rigidities

I also consider the possibility of time-varying price stickiness. The idea is that firms

have the incentive to reset prices more frequently when the economy faces bigger

shocks. Thus, the nominal rigidity parameter κ, which has a negative relationship

shows that the inflation target was higher from the mid 1970s to the mid 1980s than other periods.
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with price stickiness, may increase in the variance of exogenous productivity shock:

π̂it = βEt[π̂t+1|st = i] − κi(x̂t − ĝt)

= β(pi1Et[π̂1t+1] + pi2Et[π̂2t+1]) + κi(x̂it − ĝit). (22)

The technology shock process for the changes in the volatility is the same as equa-

tion (20) but the growth rate of technology shock is constant.

4.4 Construction of state-space form

4.4.1 Transition equations

In forward-looking regime switching rational expectations models, state variables in

the state-space form are regime-dependent. Suppose the current regime is st = i

regime. Then, the monetary policy and the expectational Phillips curve equations

are modified to equations (18) and (22) respectively. In addition, the IS equation

consists of regime-dependent variables as follows.

x̂it = Et[x̂t+1|st = i] + ĝit − Et[ĝt+1|st = i] −
1

τi
(R̂it − Et[π̂t+1|st = i] − Et[ẑt+1|st = i])

= pi1Et[x̂1t+1] + pi2Et[x̂2t+1] + ĝit − pi1ρg1ĝit − pi2ρg2ĝit

−
1

τi
(R̂it − pi1Et[π̂1t+1] − pi2Et[π̂2t+1] − pi1ρz1ẑit − pi2ρz2ẑit) (23)

In equation (23), the expectations of the exogenous shocks are calculated by consid-

ering the possibility of regime change from regime i to regime j = 1, 2 as

Et[ĝt+1|st = i] = pi1ρg1ĝit + pi2ρg2ĝit

Et[ẑt+1|st = i] = pi1ρz1ẑit + pi2ρz2ẑit.

Then, the transition equations are collected in a multivariate equations form. For the

case of two regimes, I need to consider two sets of state variables for the transition
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equations in the state-space form.
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After solving the rational expectations model, the transition equations system can be

rewritten as 


ξ1t

ξ2t



 = G




ξ1t−1

ξ2t−1



 + W




ǫ1t

ǫ2t





where

ξit =
[

x̂it, π̂it, R̂it,Et−1[x̂it],Et−1[π̂it], ĝit, ẑ
′

it

]
′

.

4.4.2 Measurement equations

In order to construct a likelihood function, I utilize the Kalman filter given a state-

space form of measurement and transition equations. The measurement equations
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link observables to unobservable state variables in the transition equation system.

However, in forward-looking regime switching models, the measurement equations

also contain the probability information of each regime. The measurement equations

are constructed by multiplying the probability of each regime up to time t − 1 in-

formation by the measurement equations of each regime so that regime dependent

variables are integrated over the probabilities of each regime.








∆yt

πt

Rt








=

2∑

j=1

P[st = j|It−1]








γQ
j + (x̂jt − p1j x̂1t−1 − p2j x̂2t−1 + ẑjt)

πA
j + 4π̂jt

πA
j + rA + 4γQ

j + 4R̂jt








(24)

In equation (24), the probability of the current regime up to time t − 1 information

is calculated by multiplying Markov transition probability by probabilities of regimes

at time t up to time t− 1 information.

P[st = j|It−1] = p1j × P[st−1 = 1|It−1] + p2j × P[st−1 = 2|It−1] (25)

The probability of regime st = j at time t is updated recursively based on Bayes’ rule

with data yt = [y1, · · · , yt]
′.

P[st = j|It] = P[st = j|yt, It−1]

=
f(yt, st = j|It−1)

f(yt|It−1)

=
f(yt|st = j, It−1)P[st = j|It−1]

∑
2

k=1
f(yt|st = k, It−1)P[st = k|It−1]

(26)

4.5 Independent regime changes in technology and monetary

policy

I also consider monetary policy changes and stochastic volatility together. The two

are treated as independent, allowing us to isolate the effects of “Good Luck” and
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monetary policy on volatility reduction after the early 1980s. Thus, this specifica-

tion examines whether it was monetary policy or so-called “Good Luck” that played

the key role in the “Great Moderation.” For this specification, I introduce two in-

dependent regime switching transitions. For example, monetary policy follows the

first Markov-switching system and stochastic volatility follows the second Markov-

switching system. I will take this approach in the next section in order to verify the

source of volatility reduction in the latter portion of the sample period. Let P 1 and

P 2 denote two transition matrices respectively and assume that each regime switching

system consists of two regimes. Then, the number of all the possible regimes from

two independent structures is four (= 2 × 2).

P = P 1 ⊗ P 2

and

st = 1 if (s1t = 1, s2t = 1)

st = 2 if (s1t = 1, s2t = 2)

st = 3 if (s1t = 2, s2t = 1)

st = 4 if (s1t = 2, s2t = 2)

(27)

where ⊗ denotes the Kronecker product. Then, as in (25)

P[sit = j|It−1] = pi
1j × P[sit−1 = 1|It−1] + pi

2j × P[sit−1 = 2|It−1]. (28)
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Updating the probability of the current regime by observing data at time t is given

by

P[sit = j|It]

= P[sit = j|yt, It−1]

=
f(yt, sit = j|It−1)

f(yt|It−1)

=
f(yt|sit = j, It−1)P[sit = j|It−1]

∑
2

l=1

∑
2

k=1
f(yt|sit = k, s−it = l, It−1)P[sit = k, s−it = l|It−1]

=

∑2

l=1
f(yt|sit = j, s−it = l, It−1)P[sit = j, s−it = l|It−1]

∑4

k=1
f(yt|st = k, It−1)P[st = k|It−1]

.

where the subscript −i in s−it indicates any regime −i 6= i

5 Endogenous Identification of Determinacy and

Indeterminacy Equilibria

Following the idea of Clarida, Gali, and Gertler (2000), Lubik and Schorfheide (2004)

show, using a DSGE model, that a change in monetary policy can explain higher

volatility in pre-Volcker years. They argue that the passive monetary policy led to

indeterminacy, implying that sunspot shocks played a role in generating the higher

volatility. They split postwar U.S. data into two subsamples “exogenously” based on

the appointment of Paul Volcker as Chairman of the Board of Governors of the Fed-

eral Reserve system and excluding Volcker disinflation period (1979:Q4 to 1982:Q3). I

estimate the determinacy-indeterminacy regime switching DSGE model and “endoge-

nously” identify two regimes. The agents in this economy regard the current regime

as a permanent regime and do not allow for the possibility of regime changes in the

future. Thus, technically I solve the rational expectations model for each regime

separately and estimate regime changes by adopting a conventional regime-switching

estimation technique. This model specification allows for determining whether the
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higher volatilities of economic variables are induced by (i) a passive monetary policy

with the long-run Taylor principle holding or (ii) sunspot shocks when the economy

is under indeterminacy. In this paper, Hamilton’s filter and Kim’s filter enable me

to estimate this model. For more details about Hamilton’s filter see Hamilton (1989)

and Hamilton (1994), and about Kim’s filter see Kim (1994) and Kim and Nelson

(1999b).

6 Bayesian Estimation

6.1 Methodology

I develop a method to estimate forward-looking regime switching models. Davig

and Leeper (2007) present the long-run Taylor principle theoretically, but they do

not examine it in an empirical setting. In addition, they take into account only the

transition equations. However, I append the model with measurement equations in

order to evaluate a likelihood function through Kalman filtering for the state-space

form as in (24). Econometricians observe one data set but transition equations and

unobservable regime dependent variables such as xit in (5) are based on multiple

regimes. Thus, I integrate state variables over the probabilities of each regime in

order to match them to the observables. The probability of the regime is calculated

and updated recursively based on Bayes’ rule every period as in (25) and (26). While

agents in the economy know deep parameter values, they do not know the current

regime and so they are learning about it. I, as an econometrician, estimate model

parameters and probabilities of regimes each period.

I estimate and compare various regime switching models with a likelihood-based

approach. by adopting the Metropolis-Hastings (MH) algorithm with randomized

multiple blocks. Chib and Greenberg (1995) suggest the use of fat-tailed proposal

to ensure that proposed values visit the tails of the posterior distributions and I

use three blocks of parameters and Student-t distributed errors with the degrees of
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freedom of 15. In particular, Chib and Ramamurthy (2008) develop an approach that

randomly generates blocks and finds a proposal density for each block by adapting the

location and curvature and holding other blocks fixed at every iteration. Although

the random-walk MH proposal with a single block, most of likelihood-based DSGE

estimations have used, is faster and convenient to calculate marginal likelihoods,

the recent literature advocates the use of the randomized multiple blocks in DSGE

models due to following reasons. An and Schorfheide (2007) show that the single

block random-walk proposal often gets stuck at a local posterior mode. In such

a case, the performance and reliability of the MH algorithm are sensitive to the

starting point, making it important to find the global posterior mode accurately. In

addition, Sims, Waggoner, and Zha (2008) point out that it takes multiple weeks of

CPU time to find the posterior mode especially in large Markov-switching models and

propose the use of a blockwise optimization method. Chib and Ramamurthy’s (2008)

idea is similar to the blockwise optimization but it is more reliable in the sense that

this algorithm reoptimizes over iterations and the simulation does not hinge on the

starting point which is possibly a local mode. In particular, having adopted multiple

blocks, it is not known which parameters should be in the same block. In New

Keynesian DSGE models, all the parameters are highly-nonlinearly related by model

equations and their equilibrium conditions. Thus, the randomized block scheme is an

alternative approach.

This analysis is based on postwar U.S. quarterly data from 1960:Q1 to 2007:Q4.

The estimation of model parameters and probability of regimes can be affected by

initial values of state variables and regime probabilities. Thus, the initial values are

determined from pre-sample period from 1954:Q1 to 1959:Q4. I restrict parameter

space to induce determinacy equilibrium in the forward-looking regime switching

models, but the determinacy-indeterminacy regime switching model obviously allows

for both determinacy and indeterminacy regimes.
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6.2 Model priors

The models are characterized in Table 1 and priors are listed in Table 2. In the

Table 1: DSGE Models with Regime-Switching

Model Regime-Switching parameters
M0: No regime switching None
M1: Growth rate of technology γQ

M2: Monetary policy ψ1,ψ2, π
A, ρR

M3: Variance of tech. shock σz

M4: Price stickiness and variance of tech. κ, σz

M5: Monetary policy(1st); Variance of tech.(2nd) 1st: ψ1,ψ2, π
A, ρR; 2nd: σz

regime switching models, I regard the first regime as ordinary (e.g., active monetary

policy, boom, or less volatile economy) and the second regime as unusual (e.g., passive

monetary policy, recession, or highly volatile economy). Model M0 is a benchmark

model without regime switching. Priors for the “no regime switching” model and the

first regime in the various regime switching models are similar to An and Schorfheide

(2007) except for some key parameters related to regime switching. Among regime

switching models, model M1 allows for regime switching for growth rate of produc-

tivity. Hamilton (1989) applied his Markov-switching model of univariate autore-

gressive regression to U.S. real GNP growth and found that the MLE estimate of

the growth rate under the recession regime is -0.36. Thus, the prior for the growth

rate under the recession regime is a Normal distribution with mean -0.2 and stan-

dard deviation 0.2 while the prior mean of growth rate under the usual regime is

0.6 with standard deviation 0.2. The regime change in monetary policy is exam-

ined in model M2. I choose priors for reaction coefficients to inflation and output

gap consistent with those of the previous literature such as Clarida, Gali, and Gertler

(2000) and Lubik and Schorfheide (2004). The prior of the inflation coefficient is a

Gamma distribution with mean 2.50 and standard deviation 0.25 under the active

policy regime, while 0.50 and 0.25 respectively under the passive policy regime. I

also allow for change in smoothing policy parameter ρR. Notice that the prior for
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an autoregressive coefficient ρR is the same across regimes with a Beta distribution

with mean 0.5 and standard deviation 0.2 so that it is reasonably diffuse. Model M3

represents the so-called “Good Luck” story or stochastic volatility. In this model,

the technology shock is the main source of fluctuations in the economy so that only

the variance of technology shock is allowed to change. I estimate standard deviations

for variances of shocks rather than variances directly and the standard deviation has

an Inverse Gamma distribution. Model M4 incorporates regime changes in nominal

rigidities in response to the size of exogenous productivity shock. Since the price

rigidity parameter κ increases in the volatility of technology shock, the prior mean is

0.2 under the ordinary regime and 0.4 under the high volatile regime. In model M5,

there are two independent regime switching systems in order to identify the source

of “Great Moderation,” as explained in the previous section. One regime switching

system is related to the stochastic technology shock and the other is related to the

monetary policy. I complete this section by explaining priors for the transition prob-

abilities. All the transition probabilities pii where i = 1, 2 have a Beta distribution

with mean 0.9 and standard deviation 0.09. This prior is diffuse enough not to affect

making inferences about probabilities of regimes.

6.3 Empirical results

I compare various models with marginal likelihood calculations and report the nature

of regime switching in postwar U.S. economy. The marginal density calculations are

based on Chib and Ramamurthy (2008). Given model Ms, the marginal density

m(y|Ms) can be written as

m(y|Ms) =
π(θ, P )f(y|θ, P )

π(θ, P |y)

Then, for any θ, basic marginal likelihood identity holds and the logarithm of marginal

likelihood of model Ms can be estimated at θ∗, which is usually the mode of posterior
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Table 2: Priors for no regime-switching model

1st regime
Para Range Density Mean SD
τ R

+ Gamma 2.00 0.50
κ R

+ Gamma 0.20 0.10
ψ1 R

+ Gamma 2.50 0.25
ψ2 R

+ Gamma 0.50 0.25
ρR [0, 1) Beta 0.50 0.20
ρg [0, 1) Beta 0.80 0.10
ρz [0, 1) Beta 0.66 0.15
rA

R
+ Gamma 1.00 0.50

πA
R

+ Gamma 5.00 2.00
γQ

R Normal 0.60 0.20
σR R

+ InvGamma 0.40 4.00
σg R

+ InvGamma 0.20 4.00
σz R

+ InvGamma 0.20 4.00

Table 3: Priors for regime-switching model

1st regime 2nd regime
Para Range Density Mean SD Mean SD
κ R

+ Gamma 0.20 0.10 0.40 0.10
ψ1 R

+ Gamma 2.50 0.25 0.50 0.25
ψ2 R

+ Gamma 0.50 0.25 0.50 0.25
ρR [0, 1) Beta 0.50 0.20 0.50 0.20
πA

R
+ Gamma 5.00 2.00 7.00 2.00

γQ
R Normal 0.60 0.20 - 0.20 0.20

σz R
+ InvGamma 0.20 4.00 1.00 4.00

pii [0, 1) Beta 0.90 0.09 0.90 0.09

Notes: Priors for parameters which is not subject to regime-switching are adopted
from priors for parameters in no-regime switching model.
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density,

lnm̂(y|Ms) = lnf(y|θ∗,Ms) + lnπ(θ∗|Ms) − lnπ̂(θ∗|y,Ms).

The estimates of marginal likelihoods are reported in Table 4. Based on the marginal

likelihood calculations, the monetary policy regime switching model is selected. Thus,

I focus most of my discussion on the “no regime switching” model M0 and the

monetary policy model M2.

Table 4: Model Comparison and Marginal Likelihood

Model Log-Marginal Likelihood
M0: No regime switching -923.02
M1: Growth rate of technology -896.16
M2: Monetary policy -830.82
M3: Variance of tech. shock -870.64
M4: Price stickiness and variance of tech. -855.71
M5: Monetary policy(1st); Variance of tech.(2nd) -835.23

Table 5: Posteriors for no regime-switching model

Para Mean 90% interval
τ 4.2616 [3.2498, 5.3857]
κ 0.2295 [0.1411, 0.3332]
ψ1 1.2982 [1.1958, 1.3974]
ψ2 0.3537 [0.1179, 0.6840]
ρR 0.7205 [0.6649, 0.7735]
ρg 0.9871 [0.9762, 0.9960]
ρz 0.9823 [0.9678, 0.9931]
rA 1.7063 [1.1049, 2.1890]
πA 4.5876 [2.7052, 6.7993]
γQ 0.2047 [0.0500, 0.4804]
σR 0.3415 [0.3098, 0.3768]
σg 1.0698 [0.9752, 1.1757]
σz 0.0958 [0.0787, 0.1168]

I begin by looking at results from no regime switching model (M0). The posterior

distributions are summarized in Table 5. In this model, the inflation reaction coeffi-
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cient in monetary policy from the posterior distribution is greater than one, at least

according to the 90% credible set. In the monetary policy regime switching model

(M2), under the active policy regime, the central bank increases the nominal interest

rate by 2.25 percent (posterior mean) in response to 1 percent inflation deviation

from the target while it adjusts 1.09 percent under the passive regime. These coeffi-

cient estimations are close to 2.19 and 0.89 respectively that Lubik and Schorfheide

(2004) attained in subsample analysis. Although the posterior mean of the coeffi-

cient under the passive regime from Lubik and Schorfheide’s (2004) estimation is

below one and my estimate of the posterior mean is greater than one, the 90%

credible set of the coefficient under the passive regime includes a lot of mass be-

low one. This fact is illustrated well in Figure 2 and reported in Table 6. Note that

in Lubik and Schorfheide (2004) the passive regime was driven by indeterminacy in

the pre-Volcker years. However, this regime switching analysis shows that even the

passive monetary policy induced a determinacy equilibrium in the long run due to

the possibility of the switching to active policy, although the passive policy could be

a source of high volatility.8 In this scenario, the postwar U.S. economy experienced

two regime switching points around early 1970s from active to passive policy and

around mid-1980s from passive to active policy as shown in Figure 3. In addition,

the target inflation was high with 7.02 comparing to 1.72 under the active regime. It

also reflects the “Great Inflation” of the 1970s. Although the transition matrix for the

regime switching is not restricted to generate persistent regimes a priori, agents’ belief

about regimes clearly looks like two structural breaks. In addition, the second regime

switching point is consistent with the estimate of a structural break in the form of

a volatility reduction in Kim and Nelson (1999a) and McConnell and Perez-Quiros

(2000). As for other parameters that are subject to regime switching, the reaction to

the output gap is more aggressive in the active policy regime (0.84 vs 0.20) and the

8 Boivin and Giannoni (2006) performed VAR analyses and counterfactual experiments and
showed that the strong response to inflation expectations stabilizes the economy in the post-1980
period.
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Figure 2: Posterior Distributions from Monetary Policy Regime Switching Model
(M2)
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Figure 3: Probability of Passive Monetary Policy Regime (M2)
(P[st = passive policy|It])
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Table 6: Posteriors for Model M2

1st regime 2nd regime
Para Mean 90% interval Mean 90% interval
τ 4.3651 [3.3126, 5.4667]
κ 0.2731 [0.2271, 0.3150]
ψ1 2.2427 [1.8729, 2.6694] 1.0886 [0.9407, 1.2572]
ψ2 0.8441 [0.5337, 1.1238] 0.2037 [0.0712, 0.3239]
ρR 0.8715 [0.8272, 0.9017] 0.6758 [0.6185, 0.7210]
ρg 0.9337 [0.9135, 0.9601]
ρz 0.7073 [0.6565, 0.7577]
rA 1.5151 [0.8807, 2.0505]
πA 1.7237 [1.3339, 2.3027] 7.0170 [6.2986, 8.0015]
γQ 0.1803 [0.0838, 0.3105]
σR 0.3425 [0.3134, 0.3740]
σg 0.9781 [0.8584, 1.1066]
σz 0.3908 [0.3155, 0.4693]
p11 0.9232 [0.9047, 0.9418]
p22 0.9589 [0.9395, 0.9763]

nominal interest rate adjustment involves more smoothing in the active policy regime

(0.83 vs 0.68). This finding is consistent with the argument of Bullard and Mitra

(2007) that the monetary policy inertia helps induce determinacy equilibrium given

the degree of response to inflation discrepancy.

I also estimate the determinacy-indeterminacy model. In terms of timing, the

probability of the indeterminacy regime in postwar U.S economy has a similar pat-

tern to the probability of the passive regime from a forward-looking monetary policy

regime-switching model. The marginal likelihood calculation shows that the marginal

likelihood of the determinacy-indeterminacy model is -887.23 while the forward-

looking rational expectations model fits postwar U.S. data better with a marginal

likelihood of -830.82. From this analysis, I can conclude that the long-run Taylor

principle holds in the entire postwar U.S. economy.
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7 Conclusion

I estimate DSGE models with recurring regime changes in monetary policy (inflation

target and reaction coefficients), technology (growth rate and volatility), and/or nom-

inal price rigidities. In the models, agents are assumed to know deep parameter values

but make probabilistic inference about prevailing regimes based on Bayes’ rule and

form the one period ahead expectations by taking account of possibilities of regime

changes. Building on a literature on Bayesian estimation of DSGE models, I develop

a method for estimating models with forward-looking regime switching along the lines

of the form proposed in Davig and Leeper (2007). In an application to postwar U.S.

data, I find stronger support for regime switching in monetary policy than in tech-

nology or nominal rigidities. Under the active policy regime, the policy reaction to

deviations from the targets of inflation and output was more aggressive and the nomi-

nal interest rate adjustment is smoother. I also estimate a determinacy-indeterminacy

DSGE model and compare this specification to the Davig and Leeper-type monetary

policy DSGE model. A marginal likelihood based model selection procedure prefers

the monetary policy regime switching model. This empirical finding implies that

even though a passive policy regime produced more volatility in the economy from

the early 1970s to the mid-1980s, the long-run Taylor principle appears to hold in

the entire postwar period, implying equilibrium determinacy and there is no role for

sunspot shocks in explaining the changes in volatility.
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Appendix

Figure 4: Probability of Low Growth Rate Regime (M1)
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Figure 5: Probability of Large Exogenous Shock Regime (M3)
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Figure 6: Probability of Large Exogenous Shock with Less Sticky Price Regime (M4)
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Figure 7: Probabilities of Passive Monetary Policy Regime and Large Exogenous
Shock Regime (M5)
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Table 7: Posteriors for Model M1

1st regime 2nd regime
Para Mean 90% interval Mean 90% interval
τ 4.8187 [3.5287, 6.4544]
κ 0.2834 [0.1788, 0.4246]
ψ1 1.4088 [1.1262, 1.8839]
ψ2 1.3359 [0.5957, 2.3099]
ρR 0.7408 [0.6612, 0.8309]
ρg 0.9760 [0.9550, 0.9889]
ρz 0.7115 [0.5538, 0.8273]
rA 1.1799 [0.3895, 2.0672]
πA 3.9586 [1.8065, 6.3989]
γQ 0.2485 [0.0602, 0.4706] -0.1554 [−0.5596, 0.1945]
σR 0.3355 [0.2888, 0.3926]
σg 0.8383 [0.6377, 1.2158]
σz 0.4162 [0.2623, 0.6075]
p11 0.9771 [0.9007, 0.9988]
p22 0.9152 [0.8774, 0.9562]
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Table 8: Posteriors for Model M3

1st regime 2nd regime
Para Mean 90% interval Mean 90% interval
τ 4.3690 [3.2896, 5.5264]
κ 0.3329 [0.2377, 0.4829]
ψ1 1.3292 [1.0285, 1.8445]
ψ2 0.8540 [0.2059, 1.6429]
ρR 0.7685 [0.6908, 0.8288]
ρg 0.9629 [0.9387, 0.9837]
ρz 0.5528 [0.3667, 0.6963]
rA 1.0613 [0.3524, 1.7039]
πA 2.0511 [1.5754, 2.4774]
γQ 0.1697 [0.0632, 0.2734]
σR 0.3537 [0.3012, 0.4125]
σg 0.7650 [0.6285, 0.9569]
σz 0.1818 [0.1136, 0.2825] 0.7092 [0.5221, 0.8820]
p11 0.9897 [0.9777, 0.9982]
p22 0.9490 [0.9340, 0.9667]
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Table 9: Posteriors for Model M4

1st regime 2nd regime
Para Mean 90% interval Mean 90% interval
τ 4.2980 [3.3131, 5.3196]
κ 0.2128 [0.1411, 0.3039] 0.2950 [0.2160, 0.4449]
ψ1 1.2886 [1.0506, 1.5713]
ψ2 0.7562 [0.3721, 1.2294]
ρR 0.7491 [0.6825, 0.8017]
ρg 0.9749 [0.9536, 0.9889]
ρz 0.5266 [0.3486, 0.6847]
rA 1.1281 [0.4433, 1.6643]
πA 2.0316 [1.7372, 2.4613]
γQ 0.1490 [0.0438, 0.2713]
σR 0.3631 [0.3134, 0.4184]
σg 0.7721 [0.5737, 0.9198]
σz 0.2133 [0.1151, 0.3636] 0.7085 [0.5218, 0.9092]
p11 0.9879 [0.9754, 0.9979]
p22 0.9546 [0.9426, 0.9659]
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Table 10: Posteriors for Model M5

1st regime 2nd regime
Para Mean 90% interval Mean 90% interval
τ 4.8929 [3.3554, 6.7933]
κ 0.2632 [0.1781, 0.3665]
ψ1 2.6329 [1.9647, 3.2367] 0.8905 [0.8012, 0.9791]
ψ2 1.2318 [0.4302, 2.1938] 1.9685 [0.9157, 3.0793]
ρR 0.9084 [0.8591, 0.9499] 0.5006 [0.3406, 0.7062]
ρg 0.9700 [0.9367, 0.9897]
ρz 0.5297 [0.2847, 0.7639]
rA 1.7654 [0.8646, 2.6793]
πA 2.3075 [1.2003, 3.1614] 6.2472 [3.4939, 9.7099]
γQ 0.2354 [0.0315, 0.4456]
σR 0.2495 [0.1408, 0.3903]
σg 1.1079 [0.8945, 1.3847]
σz 0.2451 [0.0185, 0.5884] 1.2624 [0.6318, 1.9460]
p11 0.8722 [0.8301, 0.9494] 0.6281 [0.4646, 0.7240]
p22 0.9952 [0.9872, 0.9988] 0.8258 [0.7275, 0.8967]
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