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Abstract

Cost asymmetry is generally thought to hinder collusion because a more e¢ -

cient �rm has both more to gain from a deviation and less to fear from retaliation

than less e¢ cient �rms. Our paper reexamines this conventional wisdom and char-

acterizes optimal collusion without any prior restriction on the class of strategies.

We �rst stress that �rms can credibly agree on retaliation schemes that maximally

punish even the most e¢ cient �rm. This implies that whenever collusion is sustain-

able under cost symmetry, some collusion is also sustainable under cost asymmetry;

e¢ cient collusion, however, remains more di¢ cult to sustain when costs are asym-

metric. Finally, we show that, in the presence of side payments, cost asymmetry

generally facilitates collusion.
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1 Introduction

Economists and policy-makers generally agree that cost asymmetry hinders collusion.

In his classical industrial organization textbook for example, Scherer (1980) states that

"...the more cost functions di¤er from �rm to �rm, the more trouble �rms will have

maintaining a common price policy". The US Merger Guidelines refer to some of the

underlying arguments for this conventional wisdom when stating that "...the extent of

homogeneity may be relevant both for the ability to reach terms of coordination and to

detect or punish deviations from those terms".

There are three main reasons why cost asymmetry is thought to hinder collusion.1

First, coordination problems are obviously more complex when �rms have divergent pref-

erences concerning collusive prices and there are no natural focal points. Second, it may

be di¢ cult to convince an e¢ cient �rm to join a cartel, since it may earn relatively high

pro�ts even under competition. Third, cost asymmetry may also hinder the sustainability

of collusion, since (i) it may be more di¢ cult to retaliate against an e¢ cient �rm in case

it deviates from the cartel agreement, and (ii) a more e¢ cient �rm may gain relatively

more from deviating in the short-term.

This paper examines the sustainability of collusion in homogenous-good Bertrand

oligopoly supergames with discounting where �rms face di¤erent unit costs. Our aim is

to analyze the maximum scope for collusion. Threats of severe retaliation against cheating

�rms are clearly optimal for cartel stability, since they reduce deviation incentives and

thereby facilitate cooperation. Of course, punishment threats must be credible to be

e¤ective. We illustrate that there exist credible punishments that leave any cheating �rm

with zero continuation pro�ts. Hence, even if the deviator faces lower marginal production

costs than all other industry participants, the other �rms can credibly force the deviator

down to minmax continuation pro�ts. Thus, cost asymmetry weakens retaliation only if

there is some reason why �rms should use standard trigger strategies or other restricted

forms of punishments instead of these maximal credible punishments.

This implies that a more e¢ cient �rm does not necessarily have stronger incentives to

deviate from a collusive agreement than a less e¢ cient �rm. Suppose, for instance, that

the industry is made up of two �rms, and that the more e¢ cient �rm has a non-drastic

cost advantage over the less e¢ cient �rm. Consider a stationary collusive path on which

the price is equal to the low-cost �rm�s monopoly price and �rms split demand equally in

1See Ivaldi et al. (2003) for an overview of the di¤erent arguments.
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every period. The optimal one-shot deviation for each �rm is then to slightly undercut

the collusive price so as to "steal" its rival�s consumers, thereby doubling its pro�t in the

deviation period. The �rms�relative short-term deviation incentives are hence symmetric.

Therefore, when all punishments indeed minmax deviators, so that deviators�punishment

pro�ts are symmetric as well, the critical discount factor for this collusive scheme is 1
2
.

The discount factor threshold for some collusion is thus the same under cost asymmetry

as under cost symmetry.

This conclusion di¤ers from those in the previous literature that has focused on grim

trigger strategies. Bae (1987) as well as Harrington (1991), whose frameworks very closely

resemble ours, determine the set of prices and output quotas sustainable by standard grim

trigger strategies. Since the most e¢ cient �rm�s punishment pro�t increases with the size

of its cost advantage in this case, cost asymmetry renders the deterrence of deviations

more di¢ cult. Cost asymmetry therefore hinders collusion sustained by standard grim

trigger strategies, even if allowing for ine¢ cient allocations from the viewpoint of the

cartel so as to render short-term deviation gains symmetric.

When the focus is on collusive allocations that are Pareto-e¢ cient for the cartel mem-

bers (in the absence of side payments), on the other hand, our qualitative results are in

line with the previous literature. Unless only the most e¢ cient �rm produces, Pareto-

e¢ ciency for the �rms requires a price above the most e¢ cient �rm�s monopoly price. For

such prices, however, the most e¢ cient �rm has a disproportionately high deviation gain:

it not only gains market share, but also switches to its pro�t-maximizing price. Firms

with higher monopoly prices have relatively less to gain from a deviation. Collusion on a

statically Pareto-e¢ cient allocation is thus more di¢ cult to sustain under cost asymmetry

than under cost symmetry.

This paper focuses on the sustainability of collusion rather than on how �rms select

a speci�c equilibrium and coordinate on it. As is well known, repeated games generally

have a multitude of equilibria and there is no uncontested method to select one of them.

Firms may even be "locked" into a bad equilibrium in which some cartel members earn

less than in the absence of any collusion. Nonetheless, our analysis gives some guidance as

to which collusive equilibria �rms may reasonably select, since we characterize the Pareto

frontier of the set of payo¤s attainable on stationary perfect equilibrium paths.2

2Schmalensee (1987) applies a variety of selection criteria to model the choice of price and output

quotas by an asymmetric cartel. His paper, however, does not examine explicitly whether a selected

outcome is also sustainable. Bae (1987) and Harrington (1991), on the other hand, analyze the selection
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Another contribution of our paper is to analyze the role of side transfers. As Bain

(1948) argued more than 50 years ago, if �rms have di¤erent marginal costs, the maxi-

mization of industry pro�ts by a cartel requires side payments: without transfers, some

production must be allocated to high-cost �rms to induce their compliance. While an-

titrust rules typically prohibit direct transfers, there is evidence that some (illegal) cartels

nevertheless use illegal payments. In the Florida bid rigging scheme for providing school

milk, for example, dairies used side payments to compensate cartel members for refraining

from bidding.3 In the worldwide lysine cartel, �rms with realized market shares above

their allotments had to compensate the other �rms through inter-�rm sales.4 In the New

York trash haulers cartel, "[an] undercover police detective posing as a carting executive

paid more than $790,000 in "dues" to the [trash haulers�] associations and in compensation

to other carters".5

Our analysis con�rms that side payments facilitate collusion between asymmetric

�rms; more surprisingly, it also shows that cost asymmetry generally facilitates collu-

sion when side payments are feasible. The latter result runs completely counter to the

conventional wisdom on the impact of cost asymmetries. Side transfers allow �rms to

increase the total pie by allocating more production to the most e¢ cient �rm without

inducing a deviation by a less e¢ cient �rm. In a way, �rms agree on a mutually bene�cial

scheme of compensation payments for being inactive.

While side transfers are typically ruled out in complete-information models of collusion

like ours, they play an important role in the existing literature on (explicit as well as

implicit) cartels between privately informed �rms. The di¢ culty there is to induce �rms to

truthfully report their potentially asymmetric costs so as to allocate production e¢ ciently.

In this context, side transfers - from the �rm with the lowest reported cost to the other

cartel members - can be used as part of a mechanism to ensure truthtelling. However,

the early literature analyzing this idea (Roberts (1985), Cramton and Palfrey (1990),

Kihlstrom and Vives (1992) and McAfee and McMillan (1992)) does not model dynamics

of an allocation within the set of collusive outcomes sustainable by standard grim trigger strategies;

Bae uses the balanced temptation requirement of Friedman (1971), while Harrington (1991) applies the

more general Nash bargaining solution. Our analysis of the Pareto frontier of sustainable allocations

corresponds to the set of Nash bargaining solutions with minmax pro�ts as threat points.
3See Pesendorfer (2000).
4See Hammond (2005). Similar compensation schemes were also employed in the citric acid cartel (see

European Commission (2001)), or the sodium gluconate cartel (see European Commission (2002)).
5See Porter (2005) for this citation from the New York Times, June 23, 1995.
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explicitly. More recently, Athey and Bagwell (2001, 2006) consider Bertrand supergames

in which �rms receive privately observed cost shocks in every period. When �rms cannot

make side transfers, future market share favors can then be used as a means of providing

thruthtelling incentives to �rms with high cost realizations. As also shown by Athey and

Bagwell (2001), side transfers further help collusion by facilitating information revelation

and thus the e¢ cient allocation of production.

On the theoretical side, our paper also relates to the literature on collusion under

other forms of competition or cost asymmetry. In the existing literature on collusion

in asymmetric Cournot supergames, the authors often either choose to or are bound to

impose some restrictions on the strategies considered. Rothschild (1999) uses standard

grim trigger strategies, which again implies that more e¢ cient �rms have less to fear from

retaliation than less e¢ cient cartel members. Vasconcelos (2005) looks for more general

punishments in the class of equilibria with proportional market shares on all equilibrium

paths; he shows that optimal punishments, with a stick-and-carrot structure as proposed

by Abreu (1986, 1988), exist within this restricted class of equilibria. For a limited range of

parameters, these punishments are also maximal and would thus be optimal even without

any restrictions.

In the related literature on collusion with asymmetric capacity constraints where �rms

compete in prices, the characterization of optimal punishments is unfortunately quite

di¢ cult. While Lambson (1987) shows that optimal punishments exist in models with

symmetric capacity constraints, Lambson (1994) provides only a partial characterization

in the asymmetric case. The impact of asymmetry in capacities on collusive sustainability

was studied by Davidson and Deneckere (1990) in the context of standard grim trigger

strategies. Compte, Jenny and Rey (2002) extend this analysis and allow for harsher

punishments, but restrict attention to a particular class of equilibria where market shares

along any punishment path are the same as on the collusive path and the �rms�prices

are symmetric on any equilibrium path. Dechenaux and Kovenock (2003) extend this

literature by allowing each (capacity constrained) �rm to set in every period not only its

price but also the maximum quantity the �rm is willing to sell at that price. In the thus

altered game, the authors construct credible stick-and-carrot punishments that improve

upon, in the sense of being more severe, the punishments applied in Lambson (1994)

as well as in Compte, Jenny and Rey (2002). Finally, Lambson (1995) allows for small

asymmetries in marginal costs as well as in capacity constraints and discount rates. In

this very general framework, he shows that if the game is nearly symmetric, then optimal
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punishments minmax deviators.

Our analysis proceeds as follows. Section 2 sets out the framework. Section 3 discusses

optimal punishments in models of repeated price setting when �rms have asymmetric unit

costs. Section 4 deals with stationary collusion without side payments. We �rst derive

the set of all sustainable collusive outcomes as a function of the discount factor. Next,

we restrict attention to Pareto-e¢ cient collusion. We also derive the Pareto frontier

of sustainable allocations, i.e. the Pareto-e¢ cient subset of the set of all sustainable

allocations. In section 5, which has the same structure as section 4, we allow for side

payments. Section 6 concludes. All proofs are relegated to the appendix.

2 Framework

We consider a simple model of in�nitely repeated Bertrand competition between n � 2

�rms indexed by i = 1; 2; :::; n. Entry by other �rms is blockaded; it may, however, happen

that not all n �rms indeed sell in equilibrium.6 Firms produce perfect substitutes, but

may face di¤erent constant marginal costs of production:

0 < c1 � c2 � ::: � cn:

Aggregate demand for the �rms�output as a function of the price p isD(p) : R+ ! R+.

We make the following assumptions:

A1 There exists a �nite choke price p > cn such that D(p) > 0 if p < p, and D(p) = 0 if

p � p.

A2 D(p) is continuous and strictly decreasing on [0; p], and twice continuously di¤eren-

tiable on (0; p).

A3 For all i 2 f1; :::; ng, �i(p) � (p� ci)D(p) is strictly concave on [ci; p].

For every �rm i 2 f1; :::; ng, there then exists a unique monopoly price pmi 2 (ci; p)
that maximizes �i(p). A standard argument ensures that pm1 � pm2 � ::: � pmn . Unless

explicitly stated otherwise, we assume that the cost advantage of �rm 1 compared to �rm

2 is non-drastic:

pm1 > c2:

6The source of advantage of each of the n �rms - whether it is actively selling or not - over outsiders

could for example be a patent or a licence that cannot be traded freely.
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In this set-up, we analyze the subgame perfect equilibria of the supergame obtained by

in�nitely repeating the stage game described next and discounting payo¤s with discount

factor � 2 (0; 1).
In the stage game, �rms simultaneously choose prices. We assume that no �rm ever

sets a price outside of [0; p], and denote the vector of prices in period t = 0; 1; 2; ::: by

P t = (pt1; p
t
2; ::; p

t
n) 2 [0; p]

n. In every period, the whole market demand goes to the lowest

priced �rm(s). In case of a price tie at the lowest price, consumers are indi¤erent between

a number of sellers, and we will allow total demand to be split between the lowest priced

�rms in any way consistent with the equilibrium (that is, no �rm has an incentive to

deviate to a di¤erent price).7 We denote by �n�1 the (n� 1)�dimensional unit simplex:
�n�1 = f(s1; s2; :::; sn) 2 Rn j si � 0 for all i,

Pn
i=1 si = 1g. The market sharing rule in

period t is then a mapping st(�) : Rn+ ! �n�1 such that sti(�) = 0 if pti 6= minj2f1;ngfptjg.
In the in�nite horizon game obtained by repeating this price game, a path is an in�-

nite sequence of actions fP tg1t=0. Given the sequence of market sharing rules fst(�)g
1
t=0,

�rm i�s sum of discounted payo¤s from period s onwards along the path fP tg1t=0 isP1
t=s �

t�ssti(P
t)�i(p

t
i). A �rm�s strategy

8 is an in�nite sequence of action functions, where

the period t action function maps from the set of possible histories of the game at time t,

[0; p]nt, into [0; p].

3 Minmax Punishments

For tacit collusion to be successful, �rms need to agree on some credible retaliation mech-

anism to punish deviations. The scope for collusion is greatest if deviations from the

collusive agreement are punished as harshly as possible. By the same logic, it is easiest

to punish a �rm if deviations from the prescribed punishment are retaliated against as

severely as possible.

The minmax of each �rm�s pro�t is zero in our model: while a �rm can always avoid

negative pro�ts by charging a price above its marginal cost, any other �rm can drive its

pro�ts down to zero by undercutting its price. A security level punishment for �rm i is

7In his closely related analysis, Harrington (1991) also assumed that demand is divided between the

lowest priced �rms in any way consistent with the equilibrium. Bernheim and Whinston (1990, p. 4,

footnote 8) point out that a useful way to think about this is to imagine that products are almost perfectly

homogenous. For a su¢ ciently small degree of product di¤erentiation, prices can then be set at slightly

di¤erent levels so as to achieve any desired split of market demand with almost no e¤ect on pro�ts.
8We restrict attention to pure strategies.
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thus a path with a continuation value of zero for �rm i. Obviously, if �rms are able to

credibly "collude" on punishment strategies such that any deviation by a particular �rm

triggers a security level punishment for this �rm (that is, if such punishment strategies can

arise as part of a perfect equilibrium of the supergame), then these punishment strategies

maximize the scope for collusion, and the optimal penal code is a security level penal

code.9

We will now argue that there indeed exists a security level penal code for any � 2 (0; 1)
in the game considered here. The focus will be on trigger strategy pro�les generating

punishment paths that consist of a constant sequence of some static Bertrand-Nash equi-

librium (where the selection of the static equilibrium may depend on the identity of the

deviator).

If c1 = c2 � ::: � cn, it is easy to punish any deviator down to minmax continuation
pro�ts by means of standard Nash reversion: �rms can simply agree to revert upon any

deviation to the one-shot Bertrand equilibrium in which each �rm i sets price ci, and all

�rms earn zero pro�ts.10

If c1 < c2 � ::: � cn, then there is a continuum of Bertrand equilibria in the underlying
stage game. Consider any price p1 2 [c1; c2]. With any market sharing rule that assigns
all the demand to �rm 1 if it is one of the lowest priced �rms (at price p1), the following is

a one-shot Bertrand equilibrium: �rm 1 posts price p1, �rm 2 posts price p1, and any �rm

i 2 f3; :::; ng posts price ci.11 Firm 1�s equilibrium pro�t is �1 (p1) 2 [0; �1 (c2)]. There
hence always exists a static equilibrium in which �rm 1 earns minmax pro�ts.

Now consider the following trigger punishments:

� any deviation by �rm 1 triggers reversion to the one-shot Bertrand equilibrium

described above in which consumers pay c1; formally, in every period from the �rst

period after the deviation onwards the price vector is (c1; c1; c3; :::; cn) and the vector

of market shares is (1; 0; :::; 0).

9We focus on punishment strategy pro�les such that any deviation by a particular �rm, be it from

collusion or from a punishment already in play, triggers the start of the same (�rm-speci�c) punishment

path. Abreu (1988) shows that this focus on simple penal codes does not imply any loss of generality. If

several �rms deviate simultaneously, no punishment is started.
10Any market sharing rule is consistent with this static equilibrium.
11Note also that if we allow for mixed strategies, then any price between c1 and c2 can be supported

in equilibrium without making appeal to a market sharing rule favoring �rm 1. In such equilibria, �rm

2 randomizes in a neighbourhood above the equilibrium market price p1 while �rm 1 continues to play a

pure strategy. See Deneckere and Kovenock (1989 and 1996, footnote 10) and Blume (2003).
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� any deviation by a �rm i 6= 1 triggers reversion to the one-shot Bertrand equilibrium
decribed above in which consumers pay c2; formally, in every period from the �rst

period after the deviation onwards the price vector is (c2; c2; c3; :::; cn) and the vector

of market shares is (1; 0; :::; 0).

Clearly, these are security level punishments. Moreover, it is trivial that no �rm has an

incentive to deviate from any of these punishments: no �rm can make a short-term gain

by deviating from a static equilibrium, but a deviation starts a security level punishment

for the deviator.

Even if c1 < c2, an optimal penal code thus prescribes security level punishments for

all �rms, including �rm 1. This means that the conventional wisdom that retaliation

against an e¢ cient �rm is di¢ cult hinges upon the use of non-optimal punishments. In

particular, standard trigger strategies, where a deviation by any �rm, including the most

e¢ cient one, triggers reversion to the one-shot equilibrium with price c2, do not punish

all �rms as severely as possible.

Discussion Whenever c1 < c2, then the punishment for �rm 1 proposed here has a

characteristic that some readers may �nd unattractive: in every period, �rm 2 plays

a weakly dominated strategy in the one-shot game.12 Indeed, in the stage game we

consider it is common to rule out all the one-shot equilibria with prices strictly below c2 as

implausible, since such equilibria cannot be obtained as limits of equilibria in undominated

strategies in discrete approximations to the game with a continuous strategy space.13 Two

remarks are in order. First, as long as n > 2, all that is needed for a static equilibrium

that minmaxes �rm 1 is for one of the other �rms to charge c1. The other n� 2 �rms can
charge whatever prices they want, for instance their monopoly prices. This implies that

by rotating the identity of the �rm holding �rm 1 down, the punishing �rms can engage

in a "stationary" policy that does not have any single punishing �rm playing a weakly

dominated strategy in the one-shot game in every period.14 Second, for n = 2, it is easy

to design an optimal penal code in which deviations by �rm 1 trigger a stick-and-carrot

12Note that by setting c1, �rm 1 plays a weakly dominated strategy in the one-shot game as well; how-

ever, �rm 1�s strategy can be obtained as the limit of undominated strategies in discrete approximations

to the game, whereas �rm 2�s strategy cannot. Similarly, if c1 = c2, the the one-shot Bertrand equilibrium

involves the play of weakly dominated strategies, but these are again limits of undominated strategies of

�nite strategy space games.
13See Deneckere and Kovenock (1996, footnote 8).
14I am grateful to the editor Dan Kovenock for this suggestion.
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punishment à la Abreu (1986, 1988), provided that the discount factor is su¢ ciently high

for some collusion to be sustainable and thus serve as a carrot; see proposition A1 in the

appendix for a proof of this in the general case with n �rms. Firm 2 then charges a price

below c2 only during the initial stick phase of �rm 1�s punishment.

4 Collusion without Side Payments

4.1 Sustainability

We de�ne a stationary collusive outcome by a vector (p; s), where p 2 (c2; p) is the market
price, i.e. the lowest price quoted by any of the �rms, and s = (s1; :::; sn) 2 �n�1 is the

associated vector of market shares. In this section, we characterize the set of all stationary

collusive outcomes that are sustainable in a subgame perfect equilibrium.15 An outcome

is sustainable if and only if it can be supported by an optimal penal code, which, as shown

in the previous section, is a security level penal code in the game considered.

Note �rst that no sustainable stationary collusive scheme can ever assign a positive

market share to a �rm whose cost is above the collusive price p; otherwise, such a �rm

would make negative pro�ts by sticking to collusion, whereas it could ensure zero contin-

uation pro�ts by deviating to a higher price, even if the ensuing punishment is maximal.

We therefore de�ne the set of "active �rms" by16

A(p) = fi j ci < pg:
15Proposition A2 in the appendix shows that if no stationary outcome with a price strictly above c2

can be supported in a subgame perfect equilibrium, then on any equilibrium path �rm 1�s nomalized

discounted payo¤ lies in [0; �1 (c2)] and any �rm i 6= 1�s payo¤ is zero. As argued in section 3, any of

these payo¤ pro�les can also be supported on a stationary path for all � 2 (0; 1). If the discount factor
is so low that no stationary paths with p > c2 is sustainable, the stationarity restriction is hence without

loss of generality. Therefore, the stationarity assumption does not drive the results of our comparison of

the critical discount factors for some collusion under cost symmetry and under cost asymmetry. The sta-

tionarity restriction may imply a loss of generality for higher discount factors however; see the discussion

concluding section 4.2.2.

16If ci = p and si > 0 under collusion, �rm i�s non-deviation constraint would be satis�ed trivially,

since both its collusive and its deviation pro�ts would be zero. Granting a positive market share to �rm

i would then hinder collusion in the sense that some other �rm�s market share would need to be reduced.

We therefore restrict the set of active �rms to those with marginal costs strictly below the collusive price.

This assumption will simplify the exposition, but does not in�uence the critical discount factor.
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Inactive �rms can be thought of as potential entrants. Formally, since "exit" is not part

of a �rm�s set of actions, we specify that each inactive �rm i sets pmi in every period

along the collusive path. Our focus is then on paths such that in every period t, pti = p

if i 2 A(p) and pti = pmi if i =2 A(p).17 The associated sequence of market sharing rules
results in market shares st = s 2 �n�1 in all time periods t where obviously si = 0 if

i =2 A(p).
Sustainability of collusion then boils down to the requirement that none of the active

�rms has an incentive to deviate from the collusive outcome. The optimal one-shot

deviation18 for a �rm i 2 A(p) is to charge pmi if the collusive price lies above pmi , and to
slightly undercut its rivals�price otherwise. The non-deviation constraint of any active

�rm i 2 A(p) is hence
1

1� � si�i(p) � �i (min[p; p
m
i ]) . (Ci)

A collusive outcome (p; s) is sustainable if and only if it satis�es conditions (Ci) for all

i 2 A(p). We denote the set of all sustainable stationary collusive outcomes as a function
of the discount factor by � (�):

� (�) �
�
(p; s) 2 (c2; p)��n�1 j (Ci) holds for all i 2 A(p), si = 0 for all i =2 A(p)

	
(1)

Adding up the non-deviation conditions (Ci) of all active �rms, using the fact that their

market shares must add up to one, yields the following necessary condition for collusion

at price p:

� � e�(p); (2)

where

e�(p) � P
i2A(p)

�i(min[p;pmi ])
�i(p)

� 1P
i2A(p)

�i(min[p;pmi ])
�i(p)

: (3)

It is easy to see this condition on the price is not only necessary but also su¢ cient:

whenever (2) is satis�ed, there exists a vector of market shares s such that the non-

deviation conditions (Ci) hold for all active �rms.

17Given stationarity, the assumption that all active �rms indeed quote the market price p does not

restrict the analysis of sustainability. If a stationary outcome at which some �rm j 2 A(p) sets a price
pj > p (and thus has a market share sj = 0) is sustainable, then an otherwise indentical outcome with

pj = p and sj = 0 is also sustainable: the �rms�collusive pro�ts are identical in the two scenarios, and

the scope for deviations is either the same or less if �rm j sets p instead of some higher price.
18By the one-shot deviation principle, a "strategy pro�le is subgame perfect if and only if there are no

pro�table one-shot deviations" (proposition 2.2.1 in Mailath and Samuelson (2006), p. 30). It is hence

su¢ cient to consider one-shot deviations.
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We denote the number of active �rms, that is of elements in A(p), by m(p) 2 [2; n].
Clearly, m(p) is (weakly) increasing: as the collusive price rises, more �rms could prof-

itably undercut p and must therefore join the collusive agreement for it to remain sus-

tained.

For collusive prices p 2 (c2; pm1 ], the critical discount factor is e�(p) = m(p)�1
m(p)

, which is

also the threshold for collusion between m(p) symmetric �rms. This result arises because

in this case each active �rm�s optimal deviation would consist in slightly undercutting

its rival, and all �rms�punishments impose zero continuation pro�ts. Each active car-

tel member�s deviation incentives then only depend on its market share relative to the

discount factor, and the non-deviation constraint for any i 2 A(p) is simply

si � 1� �. (C 0i)

Note that even for prices below the most e¢ cient �rm�s monopoly price, the critical

discount factor may exhibit upward jumps if the number of active �rms m(p) increases,

so that the market must be shared by a larger number of �rms to preserve collusion.

Suppose for example that n = 3, and c2 < c3 < pm1 . Then the critical discount factor e�(p)
is 1

2
for p 2 (c2; c3], but e�(p) = 2

3
for p 2 (c3; pm1 ]. For p 2 (c2; pm1 ], e�(p) is hence weakly

increasing.

For p > pm1 , on the other hand, the discount factor threshold e�(p) is strictly increas-
ing even if the number of active �rms remains constant. This result is driven by the

wedge between a �rm�s stand-alone collusive pro�ts �i(p) and its deviation pro�ts �i(pmi )

whenever p > pmi . Given any market sharing rule, �rm i�s incentive to deviate is then

clearly higher the larger the (positive) di¤erence between the collusive price and its own

monopoly price. For p > pm1 , this di¤erence is positive for at least the most e¢ cient �rm

1, which drives up the critical discount factor. If the collusive price exceeds the monopoly

prices of several �rms, this e¤ect is further reinforced.

The critical discount factor is thus increasing in p for two reasons: (i) a price increase

may attract "entry", which in turn forces �rms to share the market with more �rms in

order to preserve collusion, and (ii) by creating or increasing the wedge between stand-

alone collusive pro�ts and short-term deviation pro�ts, higher prices may increase the

deviation incentives of already active �rms. Note that limp!pe�(p) = 1.
The minimum market share that must be granted to an active �rm i 2 A(p) such that

collusion at price p 2 (c2; p) is indeed sustainable for some discount factor � � e�(p) is
esi(p; �) � (1� �)�i (min[p; pmi ])

�i(p)
:

12



This lower bound esi(p; �) is such that (Ci) is binding. Moreover, each �rm�s market
share is restricted upwards by the other �rms�non-deviation constraints. In particular,

the maximum market share that can possibly be granted to �rm i without triggering a

deviation by some other �rm is 1 �
P

j2A(p)�i esj(p; �). For p 2 (c2; pm1 ], when the non-
deviation constraints are independent of the collusive price, market shares are restricted by

si2A(p) 2 [1��; 1� (m(p)�1)(1��)] and
P

i2A(p) si = 1, as under cost symmetry between

m(p) �rms. For prices above pmi , the lower bound on �rm i�s market share, esi(p; �), strictly
increases with the price to accommodate i�s increasing deviation incentives.

The set of all sustainable allocations as a function of the discount factor can then be

expressed as follows:

� (�) =

8<: (p; s) 2 (c2; p)��n�1 j e�(p) � �, si = 0 for all i =2 A(p),
si 2

hesi(p; �); 1�Pj2A(p)�i esj(p; �)i for all i 2 A(p)
9=; : (4)

The impact of the discount factor on the size of the set � (�) is as follows. First, since
@e�(p)
@p

� 0 as explained above, the set of prices satisfying e�(p) � � (weakly) increases with
�. Second, @esi(p;�)

@�
< 0, which implies for any given sustainable price the set of possible

collusive market shares expands as the discount factor rises.

Figure 1 provides a graphical representation of � (�) when n = 2. In this case, (p; s1)

fully de�nes an outcome, with the understanding that s2 = 1 � s1. For � below 1
2
, the

discount factor threshold under cost symmetry, no collusion is sustainable: � (�) = ? if

� < 1
2
. For � = 1

2
, the set of sustainable outcomes consists of all allocations such that

p 2 (c2; pm1 ] and s1 = 1
2
. As under cost symmetry, only equal market sharing rules are

sustainable at the critical discount factor 1
2
. For higher discount factors, prices above pm1

and asymmetric market sharing rules are sustainable as well. This is illustrated in Figure

1 for some �0 2 (1
2
;e�(pm2 )]. The set of sustainable allocations �(�0) includes all outcomes

in the striped region, that is, all allocations that are (i) left of or on the line labelled

C2(�
0), along which �rm 2 is indi¤erent between complying and deviating, and (ii) right

of or on the line labelled C1(�
0), along which �rm 1 is indi¤erent between deviating and

complying. Both non-deviation constraints are binding at the maximal collusive price,

which is denoted by p0 in the �gure. Note that since e�(p) is strictly increasing for p > pm1 ,
the highest sustainable price p0 is uniquely de�ned by the condition e�(p0) = �0.
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Figure 1: Sustainable Collusive Outcomes without Side Payments (n = 2)

4.2 Pareto-E¢ cient Collusion

The previous section provided a complete characterization of the set of sustainable sta-

tionary collusive outcomes. It is clear, however, that an outcome that is sustainable may

fail to be optimal in the sense that the �rms could achieve a Pareto-improvement by

moving to another sustainable outcome.

In this section, we incorporate the concern of Pareto-e¢ ciency (for the �rms) into

the analysis. For simplicity, we restrict attention to an industry with only two �rms,

i.e. n = 2, for the whole section. The analysis will consist of two main parts. First, we

derive the set of allocations that are Pareto-e¢ cient for the �rms in the stage game. We

show that the critical discount factor for stationary collusion on one of these allocations

is higher when �rms are asymmetric than when they are symmetric. Second, we analyze

the Pareto-e¢ cient subset of the set of sustainable stationary outcomes.

4.2.1 Stationary Collusion on Pareto-E¢ cient Outcomes

Let us �rst analyze the Pareto-optimal allocation of production between two �rms with

strictly asymmetric marginal costs, ignoring the issue of collusive sustainability.

Solving the following problem for every � 2 [0; 1] yields a simple characterization of

14



all Pareto-e¢ cient outcomes for the �rms:19

max
fp;s1g

[s1�1(p)]
� [(1� s1)�2(p)]1�� : (P1)

The solution for each � is such that

s1 = �; (5)

and that the two �rms�iso-pro�t lines are tangent:

�s1
�01(p)

�1(p)
= (1� s1)

�02(p)

�2(p)
: (6)

As � varies between 0 and 1, the optimal market sharing rule s1 varies between 0 and 1,

and the optimal price varies between pm2 and p
m
1 .

Solving (6) for s1 yields the following one-to-one correspondence:

sO(p) =
(c2 � c1)D(p) + (p� c2)�01(p)

(c2 � c1)D(p)
: (7)

As can be easily seen from (6), sO(pm1 ) = 1, s
O(pm2 ) = 0 and

@sO

@p
(p) < 0 for all p 2 [pm1 ; pm2 ].

The inverse function of sO : [pm1 ; p
m
2 ] ! [0; 1] will be denoted by pO : [0; 1] ! [pm1 ; p

m
2 ].

The set of Pareto-e¢ cient outcomes can then be de�ned as follows:

PO �
�
(p; s) 2 (c2; p)��1 j p = pO(s1)

	
: (8)

Next, let us check for which discount factors the intersection between the set of Pareto-

e¢ cient allocations, PO, and the set of sustainable allocations, �(�), is non-empty.

Proposition 1 Let n = 2 and c1 < c2. Then, there exists a discount factor thresholdb� > 1
2
such that

� � (�) \ PO = ? if and only if � < b�, and
� for � � b�, there exists a market share threshold bs1 (�) 2 (1� �; �] such that all
outcomes

�
pO(s1); s1; 1� s1

�
with s1 2 [bs1 (�) ; �] are both Pareto-e¢ cient and sus-

tainable, i.e. are elements of � (�) \ PO.

Figure 2 illustrates the results of Proposition 1 in the space (s1; p), with the under-

standing that s2 = 1 � s1. For � = b�, the unique allocation in the intersection between
� (�) and PO has p = pO

�b�� and s1 = b�. For �0 > b�, all allocations such that p = pO (s1)
19See exercise 6.1 in Tirole (1988) for a detailed treatment of an equivalent problem.
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and s1 2 [bs1 (�0) ; �0] are both Pareto-e¢ cient and sustainable. Note also that bs1 (�0) is the
lowest market share s1 for which, given the discount factor �

0, �rm 1 is willing to go along

with collusion at price pO (s1).

The result that b� > 1
2
is intuitive. For any outcome (p; s) 2 (c2; p) � �1 to be

sustainable, it is necessary that s1 < 1, otherwise �rm 2 could pro�tably deviate. If

s1 < 1, however, then Pareto-e¢ ciency for the �rms requires that p > pm1 . This in turn

implies that for �rm 1, the short-term deviation pro�t �1(pm1 ) strictly exceeds the stand-

alone collusive pro�t �1(p). To render deviations unpro�table for the low-cost �rm, it is

therefore necessary that its collusive market share s1 strictly exceeds 1� �:

s1 > 1� �: (9)

Moreover, to rule out pro�table deviations of the the high-cost �rm, it is necessary that

1� s1 � 1� �: (10)

Adding up (9) and (10) yields � > 1
2
.

The comparison with the situation in which costs are symmetric is straightforward.

If c1 = c2, then any allocation such that p = pm1 is Pareto-e¢ cient for the �rms. The

discount factor threshold for some e¢ cient collusion is hence 1
2
: collusion at the common

monopoly price is possible for any discount factor larger than or equal to this threshold

if the �rms split the market evenly, i.e. if s1 = 1
2
. Thus, it is more di¢ cult to sustain

e¢ cient collusion if costs are asymmetric than if costs are symmetric.

4.2.2 The Pareto Frontier of Sustainable Outcomes

We now analyze the Pareto-e¢ cient subset of the set of sustainable stationary outcomes

for each discount factor, still restricting attention to the case n = 2. This approach takes

account of the methodological point, underlined by Harrington (1991), that an allocation

only provides a sensible collusive outcome if it is indeed implementable by a self-enforcing

agreement. By restricting attention to the set of sustainable collusive equilibria a priori,

the �rms automatically solve this implementation problem.

Proposition 2 Let n = 2 and c1 < c2. Then, the Pareto-e¢ cient subset of the set of

sustainable stationary collusive outcomes is


(�) = � (�) \
�
PO [

�
(p; s1; 1� s1) j s1 = �; p 2

�
pm1 ; p

O(�)
�	�

:
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Figure 2: E¢ cient Stationary Collusion

Constrained Pareto-optimal outcomes thus either lie on �rm 2�s non-deviation con-

straint or/and are unconstrained Pareto optima. In the former case, prices lie between

�rm 1�s monopoly price and pO(�). Figure 3 illustrates the sets of Pareto-undominated

sustainable allocations for two di¤erent discount factors, �1 and �2, one below and one

above b�.
It is easy to understand the intuition behind these results graphically. First note that

any allocation (p; s) 2 � (�) with p < pm1 is Pareto dominated by the allocation (pm1 ; s),
which is also included in � (�); similarly, any allocation (p; s) 2 � (�) with p > pm2 is

Pareto dominated by the allocation (pm2 ; s) 2 � (�). Therefore, we can restrict attention
to sustainable allocations with p 2 [pm1 ; pm2 ]. For such prices, �rm 1�s iso-pro�t lines in the
(s1; p) space are strictly increasing and concave; in fact, for p � pm1 , the iso-pro�t curve for
pro�t level (1� �)�1(pm1 ) coincides with C1(�). Firm 1�s payo¤ increases in the southeast
direction, as �rm 1 prefers a higher market share s1 and prices closer to its own monopoly

price. For prices below pm2 , �rm 2�s iso-pro�t lines in the (s1; p) space are increasing and

convex. For allocations with p < pO(s1) they are �atter than, for allocations such that

p = pO(s1) tangent to, and for allocations such that p > pO(s1) steeper than the iso-pro�t
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Figure 3: The Pareto Frontier of Sustainable Allocations

lines of �rm 1. Moreover, �rm 2�s payo¤ increases in the northwest direction: �rm 2

prefers a higher market share s2 = 1� s1 and prices closer to pm2 .
Having said this, it is straightforward to exclude sustainable allocations with p >

pO(s1) from any 
 (�): moving along �rm 1�s iso-pro�t curve towards pO(s1) always

increases �rm 2�s pro�ts without hindering collusive sustainability. Now consider any

allocation where p < pO(s). If �rms are able to move northeast along �rm 1�s iso-pro�t

line without violating sustainability, a Pareto improvement within � (�) is attainable: the

high-cost �rm is strictly better o¤ thanks to the price increase although its market share

(1� s1) is lower. The only sustainable allocations with p < pO(s1) that are undominated
are then those for which the high-cost �rm�s non-deviation constraint is binding, i.e.

s1 = �, so that no further northeast moves are feasible. Finally, unconstrained Pareto

optimal allocations are obviously undominated if sustainable. For � � b�, the set of Pareto
undominated sustainable allocations therefore always includes part of the set PO.

Finally, note that for su¢ ciently high discount factors, there can exist subgame perfect

equilibria with non-stationary paths that Pareto-dominate (for the �rms) allocations in


(�). While a full analysis of collusion on non-stationary paths is beyond the scope of
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this paper, let us illustrate this point by means of an example.

In the case of two �rms, consider the following collusive outcome: the �rms set pm1

in even periods and pm2 in odd periods, and �rm i makes all the sales in periods with

price pmi . Starting from t = 0, �rm 1�s average discounted payo¤ is 1
1+�
�1(p

m
1 ) and �rm

2�s average discounted payo¤ is �
1+�
�2(p

m
2 ). As can be easily checked, if � =

3
4
, then this

agreement is sustainable,20 and the �rms�average discounted payo¤s are 4
7
�1(p

m
1 ) and

3
7
�2(p

m
2 ), respectively.

It is also easy to check that
�
pO
�
4
7

�
; 4
7
; 3
7

�
2 
(3

4
) whenever �1

�
pO
�
4
7

��
� 7

16
�1 (p

m
1 ).

Suppose that this is indeed the case. Then, the allocation
�
pO
�
4
7

�
; 4
7
; 3
7

�
belongs to 
(3

4
)

but the agreement with alternating monopolies described above is also sustainable and

yields higher discounted payo¤s for both �rms.

The stationarity assumption hence restricts the scope of the analysis of e¢ cient collu-

sion. It does not, however, drive our results when comparing the discount factor thresholds

for some collusion under cost symmetry and under cost asymmetry, nor does it drive our

basic points concerning the collusion facilitating impact of side payments in the presence

of cost asymmetry; see proposition A2 in the appendix and its discussion in footnote 16.

5 Collusion with Side Payments

Side payments are often ruled out in the literature on collusion,21 since antitrust law

forbids overt monetary transfers in most jurisdictions. Nonetheless, as shown by the

examples in the introduction, cartel agreements sometimes include side payments. In the

following analysis, there are no restrictions at all on side payments. This is clearly an

extreme case that does not re�ect reality, yet it allows us to identify the mechanism by

which cost asymmetry a¤ects cartel sustainability when side payments are feasible. The

main qualitative insight will carry over if the extent of side payments is limited.

5.1 Sustainability

We now consider an in�nitely repeated interaction based on the following extensive form

stage game. At the beginning of each period, the �rms simultaneously quote prices. Then,

20The critical discount factor is
p
5�1
2 .

21Exceptions include Jehiel (1992), as well as articles on collusion between privately informed �rms

such as Athey and Bagwell (2001).
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the lowest priced �rm(s) serve(s) the entire demand. Finally, every �rm with (strictly)

positive sales unilaterally decides how much money to transfer to each of the other �rms.

We can restrict attention to collusive outcomes such that �rm 1 carries out all the

production in every period: letting any other �rm produce a positive quantity would

not alter deviation pro�ts, but lower (or at best leave unchanged if several �rms have

marginal cost c1) total collusive pro�ts, which can be shared by means of side payments.

We then de�ne a stationary collusive outcome with side payments by a vector (p; S),

where p 2 (c2; p) is the collusive market price and S = (S1; S2; :::; Sn) 2 �n�1 is the

vector of pro�t shares. In every period, all �rms quote price p, �rm 1 serves the entire

demand D (p), and �nally pays Si�1(p) to each �rm i 6= 1.
Note that �rm 1 has no reason to make positive side payments to �rms with marginal

costs above (or equal to) p, since those �rms cannot credibly threaten to undercut the col-

lusive price. Hence, only �rms that belong to the previously de�ned set A(p) = fi j ci < pg
need to receive positive transfers to prevent deviations: Si = 0 for all i =2 A(p).22

As shown in section 3, a security level penal code exists for any � 2 (0; 1) in the absence
of side payments. Since �rms cannot be punished more severely than that in the periods

following a deviation, there is no point in introducing side payments on punishment paths.

Firm 1�s optimal one-shot deviation from the collusive outcome is to charge min[p; pm1 ]

and refuse all side payments. The low-cost �rm�s non-deviation constraint is thus

�1 (min[p; p
m
1 ]) �

1

1� �S1�1(p): (D1)

The optimal one-shot deviation of any �rm i 2 A(p) n 1 would be to slightly undercut
p if p � pmi , or to charge pmi otherwise.23 Such a deviation would not only trigger the start
of i�s punishment in the next period, but also make i lose the side payment from �rm 1

22As in the analysis without side payments, we could speci�y that on the collusive path pti = pmi for

all t if i =2 A(p). This would not a¤ect our results.
23It is obvious that the deviator has no incentive to make side payments.
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in the deviation period.24 The non-deviation constraint of any �rm i 2 A(p) n 1 is hence

�i (min[p; p
m
i ]) �

1

1� �Si�1(p): (Di)

A collusive outcome (p; S) is then sustainable if and only if conditions (Di) are satis�ed

for all �rms i 2 A(p), and Si = 0 for all i =2 A(p). The implied necessary and su¢ cient
condition on the discount factor for collusion at price p is:

� � e�T (p);
where e�T (p) � P

i2A(p)
�i(min[p;p

m
i ])

�1(p)
� 1P

i2A(p)
�i(min[p;pmi ])

�1(p)

: (11)

The following proposition compares the critical discount factor for collusion with side

payments to the critical discount factor for collusion without side payments.

Proposition 3 Consider any p 2 (c2; p). Then, the critical discount factors e�T (p) de�ned
in (11) and e�(p) de�ned in (3) may be ranked as follows:
� If ci > c1 for some i 2 A(p), then e�T (p) < e�(p).
� If ci = c1 for all i 2 A(p), then e�T (p) = e�(p).
These results are intuitive. First, if all active �rms have symmetric marginal costs (and

there are no �xed costs), then no advantage can be derived from allocating production.

Whether all the production is carried out by �rm 1 and each �rm i 2 A(p) then receives a
share Si of �1 (p), or each �rm i 2 A(p) produces and sells a share si = Si of total output
D(p) makes no di¤erence for the active �rms�collusive or deviation pro�ts. Hence, the

feasibility of side payments is irrelevant.

If the active �rms have asymmetric costs, side payments facilitate collusion. This is

true because any �rm i 2 A(p) with ci > c1 has less to gain when deviating from the

24Since we assume that only �rm(s) with positive sales can make side payments, we automatically

obtain a kind of "within period" punishment: whenever �rm 1 is undercut by a deviator, it reneges on

its side payments. If instead �rm 1 could make side payments even after being undercut, an optimal

punishment code would need to have the following feature: If on the collusive path �rm 1 reneges on its

side payment after observing a deviation by a �rm i 6= 1, then this will not trigger �rm 1�s punishment

but �rm i�s. It would then be optimal for �rm 1 to indeed refuse side payments after a deviation by any

other �rm.
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collusive outcome (p; S) than when deviating under collusion without side payments from

an outcome with the same price p and s = S. In the presence of side payments, compliance

permits a less e¢ cient �rm to bene�t from the cost advantage of �rm 1, while the �rm

would have to rely on its own inferior production technology when deviating.

It is worth noting that the threshold e�T (p) is increasing for all p 2 (c2; p). For p < pm1 ,
a price reduction alleviates the non-deviation constraints of active �rms with marginal

costs above c1.25 In fact, if c1 < c2, then e�T (p) ! 0 as p ! c2, so that some collusion is

sustainable for any � > 0. For p > pm1 , a price rise increases the deviation incentives of

all active �rms: �i(min[p;p
m
i ])

�1(p)
is increasing in p for all i 2 A(p) in this case. Finally, for all

p 2 (c2; p), a price increase may lead to a rise in the number of active �rms, which clearly
raises the critical discount factor.

Figure 4 illustrates the set of sustainable outcomes for some discount factor �0 2�e�T (pm1 );e�T (pm2 )� if n = 2 and c1 < c2. Since n = 2, the vector (p; S1) fully de�nes a

collusive outcome. The set of sustainable outcomes for discount factor �0 then includes all

(p; S1) that are (i) on or right of the line labelled D1 (�
0) along which �rm 1 is indi¤erent

between complying and deviating, and (ii) on or left of the line labelled D2 (�
0) along

which �rm 2 is indi¤erent between complying and deviating. Note that D2 (�
0) lies to the

right of the line de�ned by S1 = �
0: the less e¢ cient �rm is willing to comply even if its

pro�ts share 1� S1 is less than 1� �0 because compliance allows the �rm to bene�t from

�rm 1�s cost advantage.

As already noted by Bernheim and Whinston (1990), this is related to collusion under

multi-market contact. When each �rm has a marginal cost advantage in one market,

multi-market contact facilitates collusion: by shifting sales towards the most e¢ cient

�rm in each market, collusive pro�ts go up, and the gains from deviating fall. A similar

mechanism is at work here: side payments allow a shift of sales to the most e¢ cient �rm,

which raises collusive pro�ts and decreases the deviation gains of less e¢ cient �rms.

5.2 Pareto-E¢ cient Collusion with Side Payments

5.2.1 Collusion on Pareto-E¢ cient Outcomes

With side payments, any collusive outcome such that p = pm1 and �rm 1 carries out all

the production is e¢ cient, since �rms cannot jointly gain by either changing the price

or reallocating production. The unconstrained Pareto pro�t frontier thus consists of all

25It is easy to check that if ci > c1, then
�i(min[p;p

m
i ])

�1(p)
is strictly increasing in p for all p 2 (c2; p).
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Figure 4: Sustainable Collusive Ouctomes with Side Payments

possible divisions of �1 (pm1 ). The critical discount factor for collusion on a Pareto-e¢ cient

outcome with side payments is simply equal to e�T (pm1 ).
Under cost asymmetry, more precisely if ci > c1 for some i 2 A (pm1 ), e�T (pm1 ) lies strictly

below the critical discount factor for collusion on a Pareto-e¢ cient outcome without side

payments. First, by Proposition 3, if ci > c1 for some i 2 A (pm1 ), then e�T (pm1 ) < e�(pm1 ).
Second, without side payments, for a statically Pareto-e¢ cient outcome to be sustainable,

it is necessary that the price exceeds pm1 .
26 This implies that the discount factor threshold

for e¢ cient collusion without side payments lies strictly above e�(pm1 ), which, as just argued,
already exceeds e�T (pm1 ).
Proposition 3 also implies that if ci > c1 for some i 2 A (pm1 ), then e�T (pm1 ) < e�(pm1 ) =

m(pm1 )�1
m(pm1 )

. This means that e�T (pm1 ) is smaller than the threshold for e¢ cient collusion, that
is, collusion on the common monopoly price, between m (pm1 ) symmetric �rms.

Consider n = 2 for example. If c1 = c2, the critical discount factor for e¢ cient collusion

26Without side payments, any statically Pareto-e¢ cient outcome with price pm1 must assign si = 0 to

�rm i if ci > c1. This means that any �rm i 2 A (pm1 ) with ci > c1 could pro�tably deviate from such

an outcome. All other Pareto-e¢ cient outcomes must involve prices strictly above pm1 : if the price were

below pm1 , all �rms could gain from moving to an outcome with the same market shares but price pm1 .
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is 1
2
. If c1 < c2, the critical discount factor for collusion on a Pareto-e¢ cient allocation

lies strictly below 1
2
if side payments are feasible, but strictly above 1

2
if side payments

are impossible (see also Proposition 1).

Finally, note that the comparison between the critical discount factors for e¢ cient col-

lusion with side payments under cost symmetry and under cost asymmetry would be less

straightforward if �rms used "standard" trigger strategies instead of optimal punishments.

Cost asymmetry would have two countervailing e¤ects in that case: on the one hand, it

would increase the punishment payo¤ of the most e¢ cient �rm and thereby hinders collu-

sion, but on the other hand, since side payments are feasible, cost asymmetry would tend

to facilitate collusion by alleviating the ine¢ cient �rms�non-deviation constraints.

5.2.2 The Pareto Frontier of Sustainable Outcomes

We now analyze the Pareto-e¢ cient subset of the set of sustainable outcomes with side

payments. For simplicity, we restrict attention to n = 2, as in the corresponding analysis

without side payments. The set of unconstrained Pareto-e¢ cient outcomes then consists

of all (p; S) 2 (c2; p) � �1 such that p = pm1 . Obviously, if any unconstrained e¢ cient

outcome is sustainable, then this outcome is also part of the Pareto-e¢ cient subset of the

set of sustainable outcomes. As the following proposition shows, the constrained Pareto

frontier moreover always includes one or several outcomes such that �rm 2�s non-deviation

constraint is binding and the price lies strictly below pm1 .
27

Proposition 4 Let n = 2 and c1 < c2. For every �, de�ne pU (�) as the highest sustain-

able price, uniquely de�ned by the implicit condition e�T �pU (�)� = �. Moreover, assume
that 2 [D0 (p)]2 > D(p)D00(p) for p 2 (c2; pm1 ). There then exists, for every �, a unique
price pL (�) 2 [c2; pm1 ) such that the following statements are true.

� If � � e�T (pm1 ), then the Pareto-e¢ cient subset of the set of sustainable stationary
collusive outcomes with side payments is equal to


T (�) =

�
(p; S1; 1� S1) j p = pm1 ; S1 2

�
1� �; 1� (1� �) �2 (p)

�1 (p)

��
[
�
(p; S) 2 (c2; p)��1 j p 2

�
pL (�) ; pm1

�
; S1 = 1� (1� �)

�2 (p)

�1 (p)

�
:

27To show that this is true, we do not need the assumption 2 [D0 (p)]
2
> D(p)D00(p) made in proposition

4. The role of this assumption is to guarantee the existence of a unique threshold pL (�) as characterized

in the proposition.
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� If � < e�T (pm1 ), then the Pareto-e¢ cient subset of the set of sustainable stationary
collusive outcomes with side payments is equal to


T (�)=

�
(p; S) 2 (c2; p)��1 j p 2

�
min

�
pL (�) ; pU(�)

	
; pU(�)

�
; S1 = 1� (1� �)

�2 (p)

�1 (p)

�
:

Figure 4 illustrates the Pareto-e¢ cient subset of the set of sustainable collusive out-

comes for some discount factor �0 > e�T (pm1 ). Why are outcomes with prices strictly below
pm1 part of the constrained Pareto frontier? This is because �rm 1�s preferred sustainable

outcome is not the e¢ cient outcome at price pm1 for which S1 is as large as possible with-

out provoking a deviation by �rm 2. In fact, �rm 1 prefers to move to a price strictly

below pm1 : a marginal move has a negative second-order e¤ect on �1(p
m
1 ), but this e¤ect

can be more than o¤set by a positive �rst-order e¤ect on S1, since the price reduction

alleviates �rm 2�s no-deviation constraint. The shapes of the constrained Pareto fron-

tiers with and without side payments thus bear some resemblance. In both cases, the

constrained Pareto frontier consists (i) of all unconstrained Pareto-e¢ cient outcomes that

are sustainable, and (ii) of some outcomes at which �rm 1�s market (respectively, pro�t)

share is as large as possible given the price and the discount factor, and the price lies

below the Pareto-e¢ cient level (pO(�) or pm1 , respectively).

6 Concluding Remarks

By using optimal punishments and allowing for side payments, this paper addresses two

largely unexplored aspects in the existing literature on collusion between cost asymmetric

�rms. We have derived three main results: (i) Without side payments, some collusion is

sustainable under cost asymmetry whenever collusion is sustainable under cost symmetry.

(ii) Without side payments, e¢ cient collusion is more di¢ cult when costs are asymmetric.

(iii) With side payments, cost asymmetries facilitate collusion. The key policy implica-

tion is that the feasibility of side payments between cartel members plays a particularly

important role when �rms have asymmetric cost structures.

We characterize the maximum scope for collusion in the textbook model of Bertrand

competition under cost asymmetry. Interesting avenues for future research may be to

explicitly model the costs associated with disguising side transfers, or to use more general

cost sstructure to check the robustness of our results.
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A Appendix

Proof of Proposition 1: Let n = 2, c1 < c2, and (p; s) 2 (c2; p) ��1. Then, (p; s) 2
PO \ � (�) if and only if

p = pO(s1); (12)

s1�1
�
pO(s1)

�
� (1� �)�1

�
p1m
�
; and (13)

s1 � �. (14)

The �rst condition ensures that (p; s) 2 PO. The latter two conditions are the non-

deviation constraints (C1) and (C2) when substituting pO(s1) for p and using the fact

that pO(s1) 2 [pm1 ; pm2 ] for all s1 2 [0; 1].
Firm 1�s per period pro�t s1�1

�
pO(s1)

�
is equal to 0 for s1 = 0 and equal to �1 (p1m)

for s1 = 1. Moreover, since @�1
@p
< 0 for p > pm1 and @pO

@s1
< 0, s1�1

�
pO(s1)

�
is strictly

increasing in s1 for all s1 2 [0; 1]. These observations imply that �rm 1�s non-deviation

constraint in (13) is satis�ed if and only if

s1 � bs1 (�) ; (15)

where the one-to-one correspondence bs1 (�) : (0; 1) ! (0; 1) is implicitly de�ned by the

following condition:28

bs1 (�)�1 �pO(bs1 (�))� = (1� �)�1 �p1m� . (16)

It is easy to see that lim�!0 bs1 (�) = 1, lim�!1 bs1 (�) = 0, and @bs1
@�
< 0 for all � 2 (0; 1).

There therefore exists a unique b� such that
bs1 �b�� = b�. (17)

Since �1 (p1m) > �1
�
pO(s1)

�
for all s1 2 [0; 1), it follows from the de�nition of bs1 (�) in

(16) that bs1 (�) > 1� � for all � 2 (0; 1). It directly follows that the threshold b� as de�ned
by condition (17) exceeds 1

2
: b� > 1

2
:

28Indeed, bs1(�) is closely related to the lower bound on �rm 1�s market share derived in section 4.1:

bs1(�) = es1 �pO(�� ; �):
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Now suppose � < b�. Then, since @bs1
@�
< 0,

bs1 (�) > �:
Hence, conditions (15) and (14) are incompatible, which implies that PO \ � (�) = ?.
If � � b�, on the other hand, then bs1 (�) � �. In this case, PO \ � (�) is non-empty

and contains all allocations (p; s) 2 (c2; p)��1 such that p = pO(s1) and s1 2 [bs1 (�) ; �].
Q.E.D.

Proof of Proposition 2: Let n = 2 and c1 < c2. De�ne the payo¤ functions Vi(p; s1)

for i = 1; 2 as follows:

V1(p; s1) � s1�1(p);

V2(p; s1) � (1� s1)�2(p):

Then, the set of sustainable allocations � (�) consists of all (p; s) 2 (c2; p)��1 such that

the following two non-deviation conditions are satis�ed:

V1(p; s1) � (1� �)�1 (min [p; pm1 ]) ; (18)

V2(p; s1) � (1� �)�2 (min [p; pm2 ]) : (19)

An allocation (p; s) 2 
(�) if and only if (p; s) 2 � (�) and there does not exist any
(p0; s0) 2 � (�) such that Vi (p0; s0) � Vi(p; s) for all i 2 f1; 2g and Vi (p0; s0) > Vi(p; s) for
at least one i 2 f1; 2g.
Obviously, if (p; s) 2 � (�)\PO, i.e. if (p; s) is an unconstrained Pareto optimum and

sustainable for discount factor �, then (p; s) 2 
(�).
For all V 2 (0; �1(pm1 )), de�ne the contour sets of �rm 1�s payo¤ as29

C (V ) � f(p; s1) j s1 = �(p;V ); p 2 [min fp j �1(p) � V g ;max fp j �1(p) � V g]g ;

where

�(p;V ) � V

�1(p)
:

Suppose that (ep; es) 2 � (�) for the remainder of this proof, and let eV � V1 (ep; es1).
Then, es1 = �(ep; eV ) 2 (0; 1) and (ep; es1) 2 C �eV �. Now consider any
29Assumption A3 implies that for any V 2 (0; �1(pm1 )) there exists a unique min fp j �1(p) � V g 2

(c1; p
m
1 ) and a unique max fp j �1(p) � V g 2 (pm1 ; p), and that �1(p) > V for all p 2

(min fp j �1(p) � V g ;max fp j �1(p) � V g). Note also that if (p; s1) 2 C (V ), then s1 2 (0; 1].
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p0 2
h
min

n
p j �1(p) � eV o ;maxnp j �1(p) � eV oi.30 Then, �p; �(p; eV )� 2 C �eV � for

all p between ep and p0, and
V2

�
p0; �(p0; eV )�� V2 (ep; es1) = Z p0

ep
dV2
dp

�
p; �(p; eV )� dp; (20)

where
dV2
dp
(p; �(p; eV )) = (1� �(p; eV ))�02(p)� ���(p; eV )�01(p)�1(p)

�
| {z }

=�0(p;eV )
�2(p): (21)

Recall from section 4.2.1 that for any s1 2 [0; 1],

pO(s1) : (1� s1)�02(pO(s1)) = �s1
�01(p

O(s1))

�1(pO(s1))
�2(p

O(s1)): (22)

Since pO(s1) 2 [pm1 ; pm2 ] for all s1 2 [0; 1], and �i(p) is strictly concave with maximizer pmi ,
the following inequalitites, which will play a key role in the remainder of this proof, hold:

dV2
dp
(p; �(p; eV )) < 0 if p > pO(�(p; eV )); (23)

dV2
dp
(p; �(p; eV )) > 0 if p < pO(�(p; eV )): (24)

We �rst show that if es1 = � and pm1 � ep < pO(�), then (ep; es) 2 
 (�). Suppose not.
Then there exists an allocation (p0; s0) 2 � (�) that Pareto-dominates (ep; es) for the �rms.
First, it is easy to see that p0 < ep. Since pm1 � ep, �1(p0) � �1(ep) if p0 � ep. Moreover,
(p0; s0) 2 � (�) implies that s01 � �, otherwise �rm 2�s non-deviation constraint would be

violated. Therefore, V1(p0; s01) < V1(ep; es1) if p0 � ep and (p0; s0) 6= (ep; es). Suppose therefore
that p0 < ep. Next, we show that for any p 2 [p0; ep], p < pO(�(p; eV )). The concavity
of �1 implies that �1 (p) � min [�1 (p

0) ; �1 (ep)]. It follows from this that �(p; eV ) � �:

s01 � es1 = �, otherwise �rm 2�s non-deviation constraint would be violated at (p0; s0), and

�(p; eV ) = eV
�1(p)

= es1 �1(ep)�1(p)
� V1(p0;s01)

�1(p)
= s01

�1(p0)
�1(p)

by the requirement that (p0; s0) Pareto-

dominates (ep; es). As pO(�) is decreasing, �(p; eV ) � � implies that pO(�) � pO(�(p; eV )).
Finally, since ep < pO(�), we can conclude that for any p 2 [p0; ep], p < pO(�(p; eV )).
From (24) it then follows that dV2

dp

�
p; �(p; eV )� > 0 for all p 2 [p0; ep]. Since p0 < ep, this

implies that
R p0ep dV2

dp
(p; �(p)) dp < 0, so that, by (20), V2

�
p0; �(p0; eV )� < V2 (ep; es1). Since

V1 (p
0; s01) � V1 (ep; es1) only if s01 � �(p0; eV1) and @V2

@s1
< 0, this implies that V2 (p0; s01) <

V2 (ep; es1), so that we have a contradiction. Hence, (ep; es) 2 
 (�).
30Since es1 2 (0; 1), �1 (ep) > eV . The set hminnp j �1(p) � eV o ;maxnp j �1(p) � eV oi hence inludes

prices both above and below ep.
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To prove the statement of the proposition, all that remains to be done is to exclude

(ep; es) that are neither in PO nor such that es1 = � and pm1 � ep < pO(�) from 
 (�). Let us
distinguish between three di¤erent cases:

Case 1: ep < pm1
It is straightforward to see that (ep; es) =2 
(�) in this case. First, (pm1 ; es) 2 � (�): the

non-deviation constraints for collusion boil down to 1 � � � es1 � � at both allocations.
Second, Vi(pm1 ; es) > Vi(p; es) for i = 1; 2.
Case 2: ep > pO(es1)
In this case, (23) implies that a Pareto-improvement for the �rms can be achieved

locally by means of a small price decrease coupled with a marginal change in market

shares so as to keep �rm 1�s payo¤ constant. Since �i(min [p; pmi ]) is non-decreasing in p

for i = 1; 2, such a Pareto-improvement can be achieved without leading to a violation of

the non-deviation constraints, that is, within � (�). We conclude that (ep; es) =2 
(�).
Case 3: pm1 � ep < pO(es1), es1 < �
In this case, by (24), the �rms can achieve a Pareto-improvement locally by means of

a marginal price increase coupled with a marginal increase in �rm 1�s market share so as

to keep �rm 1�s payo¤ constant. Such a Pareto-improvement can be achieved within the

set � (�). First, �rm 2�s non-deviation constraint, which is es1 � � at (ep; es), remains slack
by continuity: es1 < � by assumption and �(p; eV ) is continuous in p. Second, since pm1 � ep,
�rm 1�s deviation pro�t is una¤ected by a marginal price increase. Hence, (ep; es) =2 
(�).
Q.E.D.

Proof of Proposition 3: Let p 2 (c2; p). Recall that

e�(p) = P
i2A(p)

�i(min[p;p
m
i ])

�i(p)
� 1P

i2A(p)
�i(min[p;pmi ])

�i(p)

:

If ci = c1 for all i 2 A(p), then �i(p) = �1(p) for all i 2 A(p). Hence, e�(p) = e�T (p).
If ci > c1 for some i 2 A(p), however, then �i(p) < �1(p) for some i 2 A(p), while still

�i(p) � �1(p) for all i 2 A(p). Hence,
P

i2A(p)
�i(min[p;p

m
i ])

�1(p)
<
P

i2A(p)
�i(min[p;p

m
i ])

�i(p)
, which

implies that e�T (p) < e�(p). Q.E.D.
Proof of Proposition 4: Let n = 2 and c1 < c2. Denote by �T (�) the set of sustainable

stationary collusive outcomes with side payments:

�T (�) �
�
(p; S) 2 (c2; p)��1 j (Di) holds for i = 1; 2

	
:
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Similarly, denote by 
T (�) the Pareto-e¢ cient subset of �T (�) that we seek to char-

acterize. (p; S) 2 
T (�) if and only if (p; S) 2 �T (�) and there does not exist any

(p0; S 0) 2 �T (�) that Pareto-dominates (p; S) for the �rms.
It is easy to the see that 
T (�) never includes any outcomes with p > pm1 . First, if any

given outcome (p; S) with p > pm1 belongs to �
T (�), then also (pm1 ; S) 2 �T (�). Second,

Si�1 (p
m
1 ) > Si�1 (p) for all i and for any vector S.

Moreover, no outcome (p; S) 2 �T (�) such that p < pm1 and (D2) is slack can belong to


T (�). This is because if, given �, (D2) is slack at (p; S), then, by continuity, (D2) is also

satis�ed at (p+ "; S) for su¢ ciently small " > 0. Moreover, if (D1) is satis�ed at (p; S),

then, for any " 2 (0; pm1 � p], (D1) is also satis�ed at (p+ "; S). However, �01 (p) > 0 for

all p < pm1 , which implies that for any " 2 (0; pm1 � p], Si�1 (p+ ") > Si�1 (p) for all i.
Hence, if (p; S) 2 
T (�), then either p = pm1 , or p < pm1 and (D2) is binding.

If � � e�T (pm1 ), then �T (�) contains some unconstrained Pareto-e¢ cient outcomes.
Obviously, if an unconstrained Pareto-e¢ cient outcome is sustainable, i.e. if (p; S) 2
�T (�) and p = pm1 , then (p; S) 2 
T (�).
For the remainder of this proof, consider any

�ep; eS� 2 �T (�) and any � 2 (0; 1) such
that

c2 < ep < pm1
and (D2) is binding: eS1 = 1� (1� �) �2 (ep)

�1 (ep) :
Let us examine whether there exists any outcome in �T (�) that Pareto-dominates

�ep; eS�.
At any alternative outcome with p < ep, at least one of the �rms must be worse o¤, since the
total prie �1 (p) is smaller than �1 (ep).31 Hence, to check whether �ep; eS� is a constrained
Pareto-optimum or not, we only need to consider alternative outcomes with prices aboveep.
This implies that if there are no outcomes with p > ep in �T (�), that is, if � = e�T (ep),32

then
�ep; eS� 2 
T (�). This latter observation implies that whenever � < e�T (pm1 ), then�

pU (�) ; SU1 ; 1� SU1
�
2 
T (�), where pU (�) denotes the highest sustainable price, uniquely

de�ned by e�T �pU (�)� = �, and SU1 = 1� (1� �) �2(pU (�))�1(pU (�))
.

Therefore, let us focus on the case � > e�T (ep) from now onwards, and consider only

alternative outcomes with prices above ep. In fact, we can also restrict attention to alter-
31Obviously, �rm 1 would also earn a lower payo¤ at any alternative outcome that has p = ep.
32Recall that if c1 < c2, then e�T (p) is strictly increasing for all p 2 (c2; p).
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native outcomes with prices at most equal to pm1 : if, given �, there exists a sustainable

outcome with a price strictly above pm1 that Pareto-dominates
�ep; eS�, then there also

exists a sustainable outcome with price pm1 that Pareto-dominates
�ep; eS�.

It is easy to see that moving from
�ep; eS� to an alternative outcome (p0; S 0) 2 �T (�)

with p0 2 (ep; pm1 ] always bene�ts �rm 2: �rst, �1 (p0) > �1 (ep), and second, 1�S 01 > 1� eS1,
since �rm 2�s non-deviation constraint becomes more di¢ cult to satisfy as p increases (as

is easy to check, �2(p)
�1(p)

is increasing in p in the relevant range). The question is hence

whether there exists an alternative outcome (p0; S 0) 2 �T (�) at which �rm 1 earns higher
pro�ts than at

�ep; eS�. �ep; eS� 2 
T (�) if and only if the answer to this question is no.
For any � and p such that � � e�T (p), �rm 1�s equilibrium (per-period) payo¤ is

maximal if S1 is as large as possible, i.e. if (D2) is binding. Firm 1�s maximal collusive

payo¤ as a function of p 2 (c2; pm1 ] given � is thus equal to

�1(p; �) � �1 (p)� (1� �)�2 (p) :

The derivative of �1(p; �) with respect to p is

�
0
1(p; �) = �

0
1 (p)� (1� �)�02 (p) :

Clearly:
d�

0
1(p; �)

d�
= �02 (p) > 0:

This implies that for every p 2 (c2; pm1 ] there exists a unique b�(p) � 1� �01(p)
�02(p)

such that

�
0
1(p;

b�(p)) = 0,
�
0
1(p; �) < 0 if � < b�(p), and �01(p; �) > 0 if � > b�(p). It is straightforward to check that

@b�(p)
@p

> 0() 2 [D0 (p)]
2
> D(p)D00(p): (25)

Moreover, b�(pm1 ) = 1 and limp!c2
b�(p) 2 (0; 1).

Assuming that (25) holds, we can conclude the following. If � > limp!c2
b�(p), then

there exists a unique pL (�) 2 (c2; pm1 ) such that �
0
1(p; �) > 0 if and only if p < pL (�).

If � � limp!c2
b�(p) instead, then �01(p; �) < 0 for all p 2 (c2; pm1 ]. In the latter case, let

pL (�) = c2.

The implications of this are as follows:

If ep < min
�
pL (�) ; pU (�)

�
, then the �rms can achieve a Pareto-improvement within

the set of sustainable outcomes: the outcome (p0; S 0) de�ned by p0 = min
�
pL (�) ; pU (�)

�
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and S 01 = 1 � (1� �)
�2(p0)
�1(p0) is sustainable and yields higher payo¤s than

�ep; eS� for both
�rms.

If ep � pL (�), on the other hand, then �ep; eS� 2 
T (�): any outcome in �T (�) with a
price above ep yields lower pro�ts than �ep; eS� for �rm 1, and as argued above, any outcome
with a price below ep must yield a lower payo¤ for at least one of the �rms. Hence, no
Pareto-improvement is achievable within �T (�). Q.E.D.

Proposition A1 Suppose that (stationary) collusion on some price p� > c2 and associ-

ated market shares s� can be supported by minmax punishments. Select any pP 2 [0; c1)
and T such that

(1� �T )�1(pP ) + �T s�1�1(p�) = 0; (26)

and let " 2 [0; c1 � pP ].
Then the following punishment strategies minmax deviators and, together with the

initial collusive path, form a subgame perfect equilibrium:

� Upon any deviation by �rm 1, the sequence of prices and market shares starting

from the �rst period after the deviation t = 1 is as follows:h��
pP ; pP + "; :::; pP + "

�
; (1; 0; :::; 0)

	T
t=1
; f(p�; :::; p�); s�g1t=T+1

i
:

� Upon any deviation by a �rm i 6= 1, �rms revert to the one-shot Bertrand equilibrium
with market price c2 from the �rst period after the deviation onwards.

Proof. First note that s�1 > 0, otherwise �rm 1 could pro�tably deviate from sta-

tionary collusion on price p� > c2 and associated market shares s�, even if the ensuing

punishment is maximal for �rm 1. Since c1 > 0, there then always exist pP 2 [0; c1) and
T such that (26) holds.

The proposed punishments minmax deviators by construction. First, by (26) �rm 1�s

punishment leaves zero continuation pro�ts to 1. Second, any �rm i 6= 1 earns zero pro�ts
in every period of i�s punishment.

It remains to establish that the proposed strategy pro�le is indeed credible. For this

we need to show that no �rm has an incentive to deviate from any punishment at any

stage and be punished in turn. As usual, it su¢ ces to consider one-shot deviations.33

33By the one-shot deviation principle, "a strategy pro�le is subgame perfect if and only if there are no

pro�table one-shot deviations" (proposition 2.2.1 in Mailath and Samuelson (2006)).
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It is straightforward that no �rm has an incentive to deviate from the punishment of

any �rm i 6= 1: no �rm can make a short-term gain by deviating from a static equilibrium,
and a deviation starts a minmax punishment for the deviator.

To show that no �rm has a strict incentive to deviate from 1�s punishment, it is

su¢ cient to consider deviations at t = 1. Clearly, no �rm has an incentive to deviate for

t > T if the proposed punishment strategies are indeed credible, since by assumption the

collusive path can be supported by minmax punishments. Also, a �rm has no incentive to

deviate in any period t 2 [2; T ] if it has no incentive to deviate at t = 1: The short-term
gains from a deviation are the same at any stage t 2 [1; T ], whereas the cost of foregoing
the future switch to collusion increases with t.

Firm 1�s best possible deviation from its own punishment at t = 1 is to charge a price

above pP + " to earn zero instead of negative pro�ts in the �rst period. This deviation

would trigger the restart of �rm 1�s punishment with zero continuation pro�ts. The �rm

is hence indi¤erent between complying and deviating optimally.

A �rm i 6= 1 cannot bene�t by deviating from 1�s punishment at t = 1 either: a devi-

ation could not generate any short-term bene�t but would nonetheless trigger a minmax

punishment for �rm i. Moreover, the assumption that the collusive path is sustainable

by minmax punishments trivially implies that all �rms earn non-negative pro�ts in the

carrot phase of �rm 1�s punishment. Hence, no �rm i 6= 1 wants to deviate from 1�s

punishment:

0 + � � 0 = 0 � 0 + �T si�i(p�):

Proposition A2 If �(�) = ?, i.e. if no stationary outcome with a market price strictly

above c2 can be supported in a subgame perfect equilibrium, then in any subgame perfect

equilibrium �rm 1�s normalized discounted payo¤ lies in [0; �1 (c2)], and the sum of dis-

counted payo¤s of any �rm i 2 f2; :::; ng is equal to 0.
Proof. Let B = fi 2 f1; :::; ng j ci � c2g, and denote by bn 2 [2; n] the number of �rms

with marginal costs at most equal to c2, that is, the number of elements of B. Then, as

follows directly from the analysis in section 4.1, �(�) = ? if and only if � < bn�1bn .
Consider any path fP tg1t=0. Let pt � min fptig

n
i=1 and ep � sup fptg1t=0. Since pti 2 (0; p)

for all i and all t, a �nite ep exists.
Suppose that � < bn�1bn and that ep > c2. For the path fP tg1t=0 to be supported as

a subgame-perfect equilibrium outcome, with the associated sequence of market sharing
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rules fst (�)g1t=0, it is necessary that the following non-deviation condition holds in every
period t and for every i 2 B:,

1X
T=t

�T�tsTi
�
P T
�
�i(p

T
i ) � �i

�
min

�
pt; pmi

��
: (27)

As sti (P
t) = 0 if pti 6= pt, (27) implies that

1X
T=t

�T�tsTi
�
P T
�
�i(p

T ) � �i
�
min

�
pt; pmi

��
: (28)

Since �i(p) � �i(min [p; pmi ]) for any t, it follows from (28) that

1X
T=t

�T�tsTi
�
P T
�
�i(min

�
pT ; pmi

�
) � �i

�
min

�
pt; pmi

��
: (29)

Moreover, since �i(min [p; pmi ]) is non-decreasing in p, we have �i(min [p
t; pmi ]) � �i(min [ep; pmi ])

for all i and all t. (29) hence implies that

1X
T=t

�T�tsTi
�
P T
�
�i(min [ep; pmi ]) � �i �min �pt; pmi �� : (30)

From ep > c2 it follows that �i(min [ep; pmi ]) > 0 for all i 2 B. Therefore, (30) is equivalent
to 1X

T=t

�T�tsTi
�
P T
�
� �i (min [p

t; pmi ])

�i(min [ep; pmi ]) : (31)

Summing over all i 2 B and noting that
P

i2B s
T
i

�
P T
�
� 1 for all T yields

1

1� � �
X
i2B

�i (min [p
t; pmi ])

�i(min [ep; pmi ]) . (32)

The right-hand side of (32) can be made arbitrarily close to bn by choosing t appropriately.
However, � < bn�1bn if and only if 1

1�� < bn. There must hence be contradiction of (32) for
some t. We can conclude that if � < bn�1bn , then no subgame perfect equilibrium has pt > c2
in any period t.

Thus, if �(�) = ?, then on any subgame perfect equilibrium path sti (P
t)�i(p

t
i) �

max f�i(c2); 0g in every period t and for all i. Firm 1�s normalized discounted equilibrium
payo¤ therefore cannot exceed �1(c2) and the normalized discounted payo¤ of any �rm

i 2 f2; :::; ng is as most 0. Finally, no �rm can be forced down to a normalized discounted
payo¤ below the �rm�s minmax, which is 0 here, on any equilibrium path.
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