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Monotone Comparative Statics for Games With

Strategic Substitutes

Abstract

This paper studies comparative statics of equilibria in models where the optimal responses
under consideration are (weakly) decreasing in endogenous variables, and (weakly) increasing
in exogenous parameters. Such models include parameterized games of strategic substitutes.
The analysis provides a sufficient condition for existence of increasing equilibria at a higher
parameter value. This condition is presented first for best-response functions; it can be
translated easily to payoff functions with one-dimensional individual strategy spaces, and it
has a natural analogue to best-response correspondences. The condition is tight in the sense
that with a weakenened condition, the same result may not obtain. The results here apply
to asymmetric equilibria, and are applied to two classes of examples – Cournot duopoly and
tournaments. Moreover, sufficient conditions are presented to exhibit strong comparative
statics of equilibria (that is, every equilibrium at a higher parameter value is greater than a
given equilibrium at a lower parameter value), and to show existence of increasing equilibrium
selections.



1 Introduction

As is well-known, games with strategic complements and strategic substitutes are found

in many areas of economics.2 Although comparative statics results for general games with

strategic complements are well-developed,3 results of similar generality are less commonly

available for games with strategic substitutes, or in games in which best-response functions

under consideration are weakly decreasing in endogenous variables.

For example, we are not aware of a general result for such games that can be applied

to show increasing equilibria in a simple, parameterized, asymmetric, Cournot duopoly with

linear demand, constant marginal cost, and the standard product order on strategy spaces,

such as the following. Consider a linear inverse market demand curve given by p = a −

b(x1 +x2), where x1 is the output of firm 1, and x2 of firm 2. Suppose each firm has constant

marginal cost c. Moreover, there is a subsidy of t ≤ c per unit, and this subsidy is split with

2Such games are defined in Bulow, Geanakoplos, and Klemperer (1985), and as they show, models of

strategic investment, entry deterrence, technological innovation, dumping in international trade, natural

resource extraction, business portfolio selection, and others can be viewed in a more unifying framework ac-

cording as the variables under consideration are strategic complements or strategic substitutes. Additional

classes of examples are provided by Cournot oligopolies, bargaining games (Nash demand game), and as de-

scribed in Dubey, Haimanko, and Zapechelnyuk (2006), include games of team projects with complementary

or substitutable tasks, and tournaments.
3Some of this work can be seen in Topkis (1979), Lippman, Mamer, and McCardle (1987), Sobel (1988),

Vives (1990), Milgrom and Roberts (1990), Zhou (1994), Milgrom and Shannon (1994), Milgrom and Roberts

(1994), Shannon (1995), Villas-Boas (1997), Edlin and Shannon (1998), Echenique (2002), and Echenique

and Sabarwal (2003), among others. Extensive bibliographies are available in Topkis (1998) and in Vives

(1999).

1



an exogenously specified share 3
5

for firm 1, and share 2
5

for firm 2.4 Thus, firm 1’s marginal

cost net of subsidy is c− 3
5
t, and that of firm 2 is c− 2

5
t. In this case, the unique equilibrium

is given by x∗(t) ≡ (x∗
1(t), x

∗
2(t)) = (

a−c+( 9

5
−1)t

3b
,

a−c+(2− 9

5
)t

3b
).

With the standard product order on strategy spaces, this example does not fit the

framework of Milgrom and Shannon (1994), because the profit functions are not quasi-

supermodular.5 Therefore, this game is not supermodular, and this example does not fit the

framework of Topkis (1979), Sobel (1988), or Vives (1990). If the order on one of the strategy

spaces is reversed, then it is known (see, for example, Milgrom and Shannon (1994), and a

detailed application in Amir (1996)) that this example is a quasi-supermodular game. Of

course, this does not imply that equilibria are increasing or weakly increasing in the original

product order in t.6 Moreover, asymmetric Cournot conditions rule out an application of

Amir and Lambson (2000), and of the intersection point theorem of Tarski (1955).7

4Alternatively, the parameter t can be thought of as technological improvement, and (3
5 , 2

5 ) can be thought

of as differential adaptation of technological improvement. A slightly more general example is presented later.
5Denote profit of firm 1 at (x1, x2, t) by f1(x1, x2, t), and consider the values a = 10, b = 1, c = 1, t = 0,

and consider (x1, x2) = (3, 2), and (x′

1, x
′

2) = (4, 3). Then, f1(x′

1, x2, t) ≥ f1(x1, x2, t), but f1(x′

1, x
′

2, t) <

f1(x1, x
′

2, t).
6Indeed, as shown below, with slight variations in this game, it is easy to have the equilibrium strategy

of either player increasing and that of the other player decreasing.
7Tarski’s intersection point theorem applies to linearly ordered spaces. It is noteworthy that one trick

that can work for the special duopoly case is to compose the reaction functions of the two firms. This yields

an increasing function. In this case, an equilibrium can be shown to exist, and at least for one of the players,

equilibrium can be shown to be increasing, but (in asymmetric Cournot) not necessarily for the other player.

Indeed, as shown below, it is easy to formulate examples of simple Cournot duopolies where the equilibrium

is increasing for one player, and decreasing for the other. The same point applies to techniques that apply

when the best-response of one player depends only on the aggregate best-response of other players. Of
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One result is available for games where best-responses of endogenous variables are weakly

decreasing. As shown by Villas-Boas (1997), in such games, equilibria do not decrease when

the exogenous parameter increases.8

This paper considers parameterized models in which best-responses under consideration

are weakly decreasing in endogenous variables, and weakly increasing in parameters.9 The

analysis provides a sufficient condition for existence of increasing equilibria at a higher pa-

rameter value. This condition is presented first for best-response functions; it can be trans-

lated easily to payoff functions with one-dimensional individual strategy spaces, and it has

a natural analogue to best-response correspondences. The condition applies to asymmetric

equilibria.

Moreover, sufficient conditions are also presented to exhibit strong comparative statics

of equilibria (that is, every equilibrium at a higher parameter value is greater than a given

equilibrium at a lower parameter value), and to show existence of increasing equilibrium

selections.

The condition on best-responses applies to games with strategic substitutes, finite num-

ber of players, finite-dimensional strategy spaces, continuous best-response functions, and

course, such techniques have been formulated primarily to prove existence theorems for Cournot oligopolies,

and not necessarily to show increasing equilibria. See, for example, Selten (1970), Roberts and Sonnenschien

(1976), Bamon and Fraysee (1985), Novshek (1985), Kukushkin (1994), and Amir (1996), and additional

discussion in Vives (1999).
8Additionally, some aspects of non-monotone mappings that are increasing in some variables and decreas-

ing in others are explored in Roy (2002). Also confer Roy and Sabarwal (2007/8) for another view of the

result of Villas-Boas.
9This class of models includes those in which endogenous variables are strategic substitutes for each other.
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partially ordered parameter spaces. The condition is tight in the sense that with a weakened

condition, the same result may not obtain. The results apply to asymmetric equilibria, and

are applied to two classes of examples – Cournot duopoly and tournaments, as described in

Dubey, Haimanko, and Zapechelnyuk (2006).

Intuitively, in games of strategic substitutes, there are two opposing effects of an increase

in the parameter value. The direct effect increases each player’s best-response, but strategic

substitutes imply that an increase in the best-response of other players has an additional

indirect and opposite effect on each player’s best-response. At a new parameter value, if this

indirect effect does not dominate the direct effect, then a larger equilibrium exists.10 The

condition presented in this paper identifies a measure of this combined effect.

A limitation of the paper is that the results apply mainly to best-responses, and not

to payoff functions. This work highlights that an appropriate measure of the combined

direct and indirect effects on the best-responses plays a central role in identifying monotone

comparative statics. One translation of this effect to payoff functions is pointed out, and

a relationship of this effect to the standard concepts of quasi-supermodularity and single

crossing property is explored. At present, however, a full identification of properties on

payoff functions is unavailable.

Notice that as shown by Villas-Boas (1997), in the case of a Cournot oligopoly, when a new

partial order can be chosen as well, then there exists a new partial order in which equilibria

are increasing. The new partial order, however, might not necessarily be intuitive or relevant

for natural parametric policy experiments. For example, for a Cournot oligopoly, the product

order may be natural when considering the impact of taxes or subsidies on firm output, and

10Notably, in games with strategic complements, both effects work in the same direction.
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the existence of some other partial order under which equilibria are increasing might not be

relevant. In games of strategic complements, the product order is used commonly for the

same reason; that is, to investigate the impact of different parameters on each agent’s choice.

The results here apply to cases where a partial order is considered as fixed.

The paper proceeds as follows. Section 2 presents a sufficient condition on continuous

best-response functions for the existence of increasing equilibria when these functions are

weakly decreasing in endogenous variables, and weakly increasing in parameters, and applies

this condition to two classes of examples. A translation to payoff functions with real-valued

individual strategy spaces is presented. Section 3 presents three additional propositions

based on the result in Section 2. The first proposition identifies a sufficient condition for

strong comparative statics (that is, every equilibrium at a higher parameter value is greater

than a given equilibrium at a lower parameter value). The second proposition identifies a

condition for existence of increasing equilibrium selections. The third proposition extends

the main theorem to best-response correspondences.

2 Existence of Increasing Equilibria

This section considers models in which the best-response functions under consideration are

weakly decreasing in endogenous variables, and weakly increasing in parameters.

The model space for endogenous variables is assumed to be a partially ordered, non-

empty, compact, convex subset of Euclidean space, denoted (X,�). The space for exogenous

parameters is assumed to be a partially ordered set, denoted T .11 An admissible family

11When no confusion arises, the same symbol � denotes the partial order on T .
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of functions is a function g : X×T → X such that for every t, the function g(·, t) is weakly

decreasing12 and continous,13 and for every x, the function g(x, ·) is weakly increasing.14 For

each t, let FP (t) = {x ∈ X | x = g(x, t)} be the fixed points of g at t. Brouwer’s theorem

implies that for every t, FP (t) is non-empty.

Notice that for a N -player game with strategic substitutes, the product of the best-

response functions of the players satisfies the weakly decreasing property.

To develop a better understanding of the general result, it is helpful to view it explicitly

first in the special case of a game with two agents, each with a decreasing best-response

function, each with a one-dimensional strategy space, and with the partial order determined

by the product order. This case is considered below, and for additional insight, in this case,

a direct proof is provided as well.

Consider a game with two agents, indexed i = 1, 2. Agent i’s action space is a non-empty,

compact, convex interval X i of the real numbers, and there is a partially ordered parameter

space T . Agent i’s best-response function is gi : Xj × T → X i, with i 6= j. For each i and t,

suppose that gi(·, t) is strictly decreasing, and for each i, and for each xj ∈ Xj , suppose that

gi(xj , ·) is strictly increasing.15 Let X = X1 ×X2, and with the product order (denoted ≤).

Suppose g(x1, x2, t) ≡ (g1(x2, t), g
2(x1, t)) is a continuous function in (x1, x2), and let FP (t)

be the set of fixed points of g at t.16

12For every x, y ∈ X , x � y, ⇒ g(y, t) � g(x, t).
13The assumption of continuity is made to guarantee existence of equilibrium via Brower’s theorem.
14For every t � t̂, ⇒ g(x, t) � g(x, t̂).
15Note that for the general case considered in the paper, only weakly decreasing in endogenous variables

and weakly increasing in parameters are required.
16For reference, notice that this class of games allows for multiple equilibria, and allows for agent conditions

to be asymmetric.
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Proposition 1. Fix t∗ ∈ T , let x∗ = (x∗
1, x

∗
2) ∈ FP (t∗), and consider t̂ ∈ T with t∗ � t̂. Let

(ŷ1, ŷ2) = (g1(x∗
2, t̂), g

2(x∗
1, t̂)), and let (x̂1, x̂2) = (g1(ŷ2, t̂), g

2(ŷ1, t̂)).

If x∗
1 ≤ x̂1 and x∗

2 ≤ x̂2, then there is x̂∗ = (x̂∗
1, x̂

∗
2) ∈ FP (t̂) such that x∗ ≤ x̂∗.

Proof. 17 For notational convenience, in this proof only, for i = 1, 2, let gi
t(·) ≡ gi(·, t), and

let gt(·) ≡ g(·, t). Notice that x̂1 ≤ ŷ1, because (g1
t̂
)−1 is decreasing, and

(g1
t̂
)−1(ŷ1) = x∗

2 = g2
t∗(x

∗
1) ≤ g2

t̂
(x∗

1) = ŷ2 = (g1
t̂
)−1(x̂1),

where the inequality follows from g2
t (x

∗
1) is increasing in t. Moreover, notice that (g1

t̂
)−1 is

defined on [x̂1, ŷ1].

The first condition in the hypothesis, along with g2
t̂

is decreasing implies that

g2
t̂
(x̂1) ≤ g2

t̂
(x∗

1) = ŷ2 = (g1
t̂
)−1(x̂1),

and the second condition in the hypothesis implies that

g2
t̂
(ŷ1) = x̂2 ≥ x∗

2 = (g1
t̂
)−1(ŷ1).

Therefore, by the intermediate value theorem, there is x̂∗
1 ∈ [x̂1, ŷ1] such that g2

t̂
(x̂∗

1) =

(g1
t̂
)−1(x̂∗

1). Let x̂∗
2 = (g1

t̂
)−1(x̂∗

1). Then x̂∗ = (x̂∗
1, x̂

∗
2) ∈ FP (t̂). Finally, notice that x∗

1 ≤ x̂1 ≤

x̂∗
1, and moreover, x̂∗

1 ≤ ŷ1 implies that x̂∗
2 = (g1

t̂
)−1(x̂∗

1) ≥ (g1
t̂
)−1(ŷ1) = x∗

2, whence x∗ ≤ x̂∗.

The conditions in this proposition can be viewed explicitly, as follows. Starting from an

existing equilibrium, x∗ = (x∗
1, x

∗
2) at t = t∗, an increase in t has two effects on g2(·, ·). One

effect is an increase in g2, because best-response functions are increasing in t. (This is a

17We are grateful to an anonymous referee for this version of the proof.
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direct effect of an increase in t.) The other effect is a decrease in g2, because an increase in t

increases g1(x∗
2, t), and x1 and x2 are strategic substitutes. (This is an indirect effect arising

from the response of player 1 to an increase in t.) Similar statements are valid for player 1

as well. Taken together, the conditions in the theorem say that for each player, as long as

the indirect strategic substitute effect does not dominate the direct parameter effect, there is

a new equilibrium that is larger than x∗ = (x∗
1, x

∗
2). A simple graphical illustration of these

conditions is presented in figure 1.

0 x1

x2

g1(., t∗)

g1(., t̂)

g2(., t∗)

g2(., t̂)
x∗

2

x̂2

x∗
1 x̂1

Figure 1: Existence of Increasing Equilibria

It is useful to note that if either condition is not satisfied, this result may not necessarily

apply. This can be seen in the following simple example, and graphically in figure 2, where

the first condition is violated but the second condition is satisfied. An alternative figure can

be constructed similarly where the reverse is true.
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0 x1

x2

g1(., t∗)

g1(., t̂)

g2(., t∗)

g2(., t̂)

x∗
2

x̂2

x∗
1x̂1

Figure 2: Violation of first condition

Example 1. Consider a standard Cournot duopoly with a linear inverse market demand

curve given by p = a − b(x1 + x2), where x1 is output of firm 1, and x2 of firm 2. Suppose

each firm has constant marginal cost c. Moreover, there is a subsidy of t ≤ c per unit,

and this subsidy is split with share ξ ∈ [0, 1] for firm 1, and share 1 − ξ for firm 2.18

Thus, firm 1’s marginal cost net of subsidy is c − ξt, and that of firm 2 is c − (1 − ξ)t. In

this case, the best-response function of firm 1 is g1(x2, t) = a−c+ξt−bx2

2b
, and that of firm 2

is g2(x1, t) = a−c+(1−ξ)t−bx1

2b
. It is easy to check that g(x1, x2, t) ≡ (g1(x2, t), g

2(x1, t)) is a

strictly decreasing function in (x1, x2), it is strictly increasing in t, and the unique equilibrium

18The example in the introduction is the case where ξ = 3
5 .
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at t is x∗(t) ≡ (x∗
1(t), x

∗
2(t)) = (a−c+(3ξ−1)t

3b
,

a−c+(2−3ξ)t
3b

). Consequently,

ξ < 1
3

⇔ x∗
1(t) is decreasing in t, and x∗

2(t) is increasing in t,

1
3
≤ ξ ≤ 2

3
⇔ x∗

1(t) is increasing in t, and x∗
2(t) is increasing in t, and

2
3

< ξ ⇔ x∗
1(t) is increasing in t, and x∗

2(t) is decreasing in t.

Moreover, for t∗ ≤ t̂, x̂2 = g2(g1(x∗
2(t

∗), t̂), t̂) = 1
12b

[4(a− c) + (6− 9ξ)(t̂− t∗) + (8− 12ξ)t∗],

whence for t∗ ≤ t̂, x∗
2(t

∗) ≤ x̂2 ⇔ ξ ≤ 2
3
. Similarly, for t∗ ≤ t̂, x̂1 = g1(g2(x∗

1(t
∗), t̂), t̂) =

1
12b

[4(a− c)+ (9ξ− 3)(t̂− t∗)+ (12ξ− 4)t∗], whence for t∗ ≤ t̂, x∗
1(t

∗) ≤ x̂1 ⇔ ξ ≥ 1
3
. Thus,

if ξ < 1
3
, then the first condition is violated, but the second is satisfied, and if ξ > 2

3
, then

the first condition is satisfied, but the second is violated.

A similar tradeoff between direct and indirect effects is useful in proving a more general

theorem.

Theorem 1. Let g : X × T → X be an admissible family of functions. Fix t∗ ∈ T , and let

x∗ ∈ FP (t∗). Consider t̂ ∈ T such that t∗ � t̂, and let ŷ = g(x∗, t̂), and x̂ = g(ŷ, t̂).

If x∗ � x̂, then there is x̂∗ ∈ FP (t̂) such that x∗ � x̂∗.

Proof. Notice that x∗ � ŷ, because g is weakly increasing in t. Moreover, for every x

in [x∗, ŷ], g(x, t̂) ∈ [x∗, ŷ], and this can be seen as follows. Suppose x∗ � x � ŷ. Then

x � ŷ implies that g(x, t̂) � g(ŷ, t̂) � x∗, where the first inequality follows from the fact

that g(·, t̂) is weakly decreasing, and the second follows from the condition in the theorem.

Moreover, x∗ � x implies that g(x, t̂) � g(x∗, t̂) = ŷ, where the inequality follows from weakly

decreasing g(·, t̂), and the equality follows from definition of ŷ. Therefore, the restriction of

g(·, t̂) to [x∗, ŷ] is a map from [x∗, ŷ] to [x∗, ŷ]. By Brouwer’s theorem, there is x̂∗ ∈ [x∗, ŷ]

such that g(x̂∗, t̂) = x̂∗, and consequently, there is x̂∗ ∈ FP (t̂) such that x∗ � x̂∗.
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Notice that for the special case considered in proposition 1, the conditions here specialize

to those in proposition 1. The intuition for the general case is the same as for the special

case.

The following example uses the condition in the previous theorem to exhibit increas-

ing equilibria in cases where equilibria may be asymmetric, and might not necessarily be

computable analytically.

Example 2. Consider games of tournaments.19 Suppose a tournament has 3 players, where

a parameterized reward r(t) (with 0 ≤ t ≤ T , and r′(t) > 0)20 is shared by the players

who succeed in the tournament. If one player succeeds, he gets r(t) for sure, if two players

succeed, each gets r(t) with probability one-half, and if all players succeed, each gets r(t)

with probability one-third. Expected reward for player i is

r(t)xi(1 − xj)(1 − xk) +
r(t)

2
xixj(1 − xk) +

r(t)

2
xixk(1 − xj) +

r(t)

3
xixjxk.

The quadratic cost of effort xi is ci

2
x2

i , and is allowed to be asymmetric across players. The

payoff to player i is expected reward minus cost of effort. It is easy to calculate that the

best-response of player i is

gi(x−i, t) =
r(t)

ci

(1 −
1

2
(xj + xk) +

1

3
xjxk),

and this best-response is decreasing in other player actions, and increasing in t. Let the

equilibrium at t = t∗ be given by (x∗
1, x

∗
2, x

∗
3). Then it is easy to check that gi(x∗

−i, t) = r(t)
r(t∗)

x∗
i .

19The version used here is the one presented in Dubey, Haimanko, and Zapechelnyuk (2006).

20As shown below, the best-response function depends on r(t)
ci

, where ci measures player i’s costs, and

therefore, r(t) can be viewed as a relative reward enhancement parameter, relative to a player’s costs.

11



Consequently, for player i,

gi(gj(x∗
−j , t), g

k(x∗
−k, t), t) =

r(t)

ci

(1 −
1

2

r(t)

r(t∗)
(x∗

j + x∗
k) +

1

3
(

r(t)

r(t∗)
)2x∗

jx
∗
k).

When viewed as a function of t, the derivative of this function evaluated at t∗ is

r′(t∗)

ci

(1 − (x∗
j + x∗

k) + x∗
jx

∗
k) =

r′(t∗)

ci

(1 − x∗
j )(1 − x∗

k).

Given the domain restriction of strategies to the unit interval, this expression is positive

exactly when both x∗
j < 1 and x∗

k < 1. Similar results hold for players j and k. Consequently,

if the equilibrium is not degenerate, (that is, no player wins the tournament for sure,) then

the equilibrium increases with the parameter.

The idea of this example is that if an estimate of an equilibrium is available (perhaps

because we observe a particular equilibrium under given economic conditions), then it can be

concluded whether an increase in economic conditions will increase the equilibrium. Similar

applications of the theorem can be made to other games when an estimate of an equilibrium

is available, and best-response functions are computable. In particular, an application of

this theorem does not require that best-response functions have analytically closed forms.

Therefore, from a practical point of view, this theorem can have broader applications.

Notice that in the particular case of real-valued strategies, the condition in the theorem

translates to a condition on payoff functions, as follows. For player i = 1, the condition in

the theorem can be written as

∂

∂t

(

g1(g2(x−2, t), g
3(x−3, t), . . . , g

N(x−N , t), t)
)

∣

∣

∣

∣

(x∗,t∗)

≥ 0,

and for each player i = 2, . . . , N , a similar condition with an appropriate change of index.21

21Of course, to apply this version, we suppose that the derivative is well-defined; in particular, (x∗, t∗) is

in the interior.
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Using the implicit function theorem, it is easy to calculate that

∂

∂t

(

g1(g2(x−2, t), . . . , g
N(x−N , t), t)

)

∣

∣

∣

∣

(x∗,t∗)

≥ 0 ⇔ f 1
1,t +

N
∑

n=2

f 1
1,n

(

−
fn

n,t

fn
n,n

)

∣

∣

∣

∣

∣

(x∗,t∗)

≥ 0.

Here, a superscript on a payoff function f indexes a player, and subscripts denote partial

derivatives. Thus, for example, f i
i,n = ∂2f i

∂xi∂xn
, and f i

i,t = ∂2f i

∂xi∂t
.22

With an appropriate change of index, it follows that if for every i = 1, . . . , N ,

f i
i,t +

∑

n 6=i

f i
i,n

(

−
fn

n,t

fn
n,n

)

∣

∣

∣

∣

∣

(x∗,t∗)

≥ 0,

then the sufficient condition in the theorem is satisfied.

These conditions are a natural analogue to those in the proposition and theorem above.

For a given player i, the term f i
i,t is positive, and captures the direct effect of an increase in

t on i’s marginal profits, f i
i . The term

∑

n 6=i

f i
i,n

(

−
fn

n,t

fn
n,n

)

is negative, and captures the indirect

effect of an increase in t. This indirect effect can be viewed as the sum of indirect effects,

one for each competitor player n 6= i, where each competitor player’s effect is given by

f i
i,n

(

−
fn

n,t

fn
n,n

)

. In this last expression,
(

−
fn

n,t

fn
n,n

)

measures the (positive) change in player n’s

best-response from an increase in t, and f i
i,n measures the (negative) change in i’s marginal

profits from an increase in n’s best-response. As earlier, if the indirect effect does not

dominate the direct effect, an increasing equilibrium is guaranteed.

This condition on payoff functions can be applied to the two examples considered earlier

to yield the same results. Details are provided in the appendix.

The idea of competing direct and indirect effects helps relate the conditions here to those

22Notice that in a parameterized game of strategic substitutes, for n 6= i, f i
i,n < 0 formalizes strategic

substitutes, and for n = i, f i
i,n < 0 formalizes strict concavity in own argument. Moreover, f i

i,t > 0 formalizes

increasing differences in t.

13



that arise in models with strategic complements. In those models, the direct and indirect

effects work in the same direction, and therefore, once a parameter increases, both effects

serve to move the new equilibrium set higher. Moreover, in those models, once increasing

equilibria have been demonstrated, additionally higher parameter values serve to increase

equilibria further, and do not reverse any increases. When direct and indirect effects work in

opposite directions, increasing equilibria are no longer guaranteed. Moreover, even when the

tradeoff between indirect and direct effects implies a larger equilibrium at a higher parameter

value, that tradeoff might not necessarily hold at additionally higher parameter values, and

therefore, a demonstration of a favorable tradeoff at a parameter value does not necessarily

imply increasing equilibria at additionally higher parameter values.

3 Remarks and Extensions

This section presents three additional propositions based on ideas related to theorem 1.

The first proposition identifies a sufficient condition for strong comparative statics (that

is, every equilibrium at a higher parameter value is greater than a given equilibrium at

a lower parameter value). The second proposition identifies a condition for existence of

increasing equilibrium selections. The third proposition extends theorem 1 to best-response

correspondences.

3.1 Strong Comparative Statics

This subsection presents a condition that strengthens the result in the previous section to

show that all equilibria at t̂ are greater than x∗.

14



Proposition 2. Let g be an admissible family of functions, fix t∗ � t̂, and let x∗ ∈ FP (t∗).

Consider h(x, t̂) = g(g(x, t̂), t̂), and let x̂L = infX
{

x|h(x, t̂) � x
}

.

If x∗ � x̂L, then for every x̂∗ ∈ FP (t̂), x∗ � x̂∗, and

If x∗ ≺ x̂L, then for every x̂∗ ∈ FP (t̂), x∗ ≺ x̂∗.

Proof. Notice that h is weakly increasing in x, and therefore, by Tarski’s theorem, x̂L

exists, and is the smallest fixed point of h at t̂. Moreover, the set of fixed points of h at t̂ is

a complete lattice. The result now follows by noting that the set of fixed points of g at t̂ is

a subset of the set of fixed points of h at t̂.

Another condition that guarantees the conclusion of the second statement (strictly in-

creasing equilibria) in this proposition is the following.

If x∗ � x̂L, and if FP (t̂) is not a singleton, then for every x̂∗ ∈ FP (t̂), x∗ ≺ x̂∗.

To prove this statement, we use results in Dacic (1981), and Roy and Sabarwal (2007/8),

which imply that in games with strategic substitutes, the set of fixed points is completely

unordered; that is, no two elements are comparable. Therefore, if x∗ � x̂L, and if FP (t̂) is

not a singleton, then x∗ 6∈ FP (t̂), and the result follows.

3.2 Existence of Increasing Selections

This subsection presents a sufficient condition for existence of increasing equilibrium selec-

tions.

Suppose a game has N ≥ 2 players, the payoff function of player i is given by f i(xi, x−i, t),

and her best-response function is given by gi(x−i, t). Suppose that each gi is weakly decreas-

ing and continuous in x−i, and weakly increasing in t. (Thus, the product of best-responses

15



is an admissible family of functions.) Fix x̄ ∈ X arbitrarily, and consider the function,

f̃ i(xi, t) = f i(xi, g−i(x̄, t), t), where g−i(x̄, t) is the combined best-response of the non-i play-

ers at (x̄, t).

Proposition 3. Suppose for each x̄ ∈ X, and for each i = 1, . . . , N , f̃ i is quasi-supermodular

in xi and satisfies the single crossing property in (xi, t). Then for every weakly increasing

sequence (tn) in T , there is an increasing selection from {FP (tn)}.

Proof. If f̃ i(xi, t) is quasi-supermodular in xi and satisfies the single crossing property in

(xi, t), then by Milgrom and Shannon (1994), gi(g−i(x̄, t), t) = argmaxxi
f̃ i(xi, t) is increasing

in t. In particular, when we fix t∗ � t̂ arbitrarily, and consider a fixed point x∗ at t∗, then

setting x̄ = x∗ shows that for t∗ � t̂, x∗
i = gi(g−i(x

∗, t∗), t∗) � gi(g−i(x
∗, t̂), t̂), thereby

satisfying the condition in Theorem 1, and yielding a higher equilibrium at t̂. Therefore, for

every weakly increasing sequence (tn) in T , there is an increasing selection from {FP (tn)}.

Notice that a limitation of this proposition is that its application requires knowledge of

best-responses. On the other hand, an advantage is that knowledge of an equilibrium is not

required.

3.3 An Extension to Correspondences

This subsection extends theorem 1 to the case of correspondences.23

Suppose the model space for endogenous variables is a partially ordered, non-empty,

complete, sub-lattice of Euclidean space, denoted (X,�). Denote the induced set order

23We are grateful to an anonymous referee for pointing out this extension. This subsection uses standard

lattice terminology. See, for example, Topkis (1998).
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on P (X)\ {∅} by ⊑.24 The space for exogenous parameters is assumed to be a partially

ordered set, denoted T .25 An admissible family of correspondences is a correspondence

g : X × T ։ X such that for every t, g(·, t) is weakly decreasing,26 upper hemi-continuous,

non-empty valued, and convex-subcomplete-sublattice valued, and for every x, the function

g(x, ·) is weakly increasing.27 For each t, let FP (t) = {x ∈ X | x ∈ g(x, t)} be the fixed

points of g at t. Kakutani’s theorem implies that for every t, FP (t) is non-empty.

Notice that for a N -player game with strategic substitutes, the product of the best-

response correspondences of the players satisfies the weakly decreasing property.

Proposition 4. Let g : X ×T ։ X be an admissible family of correspondences. Fix t∗ ∈ T ,

and let x∗ ∈ FP (t∗). Consider t̂ ∈ T such that t∗ � t̂, and let ŷ = supXg(x∗, t̂).

If x∗ � infXg(ŷ, t̂), then there is x̂∗ ∈ FP (t̂) such that x∗ � x̂∗.

Proof. Notice that x∗ � ŷ, because g is weakly increasing in t, (hence g(x∗, t∗) ⊑ g(x∗, t̂),)

x∗ ∈ g(x∗, t∗), and sup g(x∗, t∗) � ŷ. Moreover, for every x in [x∗, ŷ], g(x, t̂) ⊂ [x∗, ŷ], and

this can be seen as follows. Suppose x∗ � x � ŷ. Then x � ŷ implies that inf g(x, t̂) �

inf g(ŷ, t̂) � x∗, where the first inequality follows from the fact that g(·, t̂) is weakly decreasing

with respect to ⊑, and the second follows from the condition in the proposition. Moreover,

x∗ � x implies that sup g(x, t̂) � sup g(x∗, t̂) = ŷ, where the inequality follows from weakly

decreasing g(·, t̂), and the equality follows from definition of ŷ. Therefore, the restriction

of g(·, t̂) to [x∗, ŷ] is a map from [x∗, ŷ] to [x∗, ŷ]. In ℜN , a sublattice is complete if, and

24For non-empty subsets A, B of X , A ⊑ B if for every a ∈ A, and for every b ∈ B, a ∧ b ∈ A, and

a ∨ b ∈ B, where the operations ∧,∨ are with respect to �.
25When no confusion arises, the same symbol � denotes the partial order on T .
26For every x, y ∈ X , x � y, ⇒ g(y, t) ⊑ g(x, t).
27For every t � t̂, ⇒ g(x, t) ⊑ g(x, t̂).
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only if, it is compact, and therefore, by Kakutani’s theorem, there is x̂∗ ∈ [x∗, ŷ] such that

x̂∗ ∈ g(x̂∗, t̂). Consequently, there is x̂∗ ∈ FP (t̂) such that x∗ � x̂∗.
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Appendix

The condition on payoff functions presented in Section 2 above is applied to the two examples
considered earlier.
Example 1 (continued). Consider the Cournot duopoly example. The profit of each firm
is given by

f 1(x1, x2, t) = (a − b(x1 + x2))x1 − (c − ξt)x1, and
f 2(x1, x2, t) = (a − b(x1 + x2))x2 − (c − (1 − ξ)t)x2.

Therefore,
f 1

1,2 = −b, f 1
1,t = ξ, f 2

2,2 = −2b, f 2
2,t = 1 − ξ,

and consequently,

f 1
1,t + f 1

1,2

(

−
f2

2,t

f2

2,2

)
∣

∣

∣

(x∗,t∗)
> 0 ⇔ ξ > 1

3
, and

f 2
2,t + f 2

1,2

(

−
f1

1,t

f1

1,1

)
∣

∣

∣

(x∗,t∗)
> 0 ⇔ ξ < 2

3
.

It follows that equilibria increase in the range ξ ∈ (1
3
, 2

3
), as earlier.

Example 2 (continued). Consider the tournaments example. The payoff to player i is
given by expected reward minus quadratic cost of effort xi. That is,

f i(xi, xj , xk) = r(t)πi(xi, xj , xk) −
ci

2
x2

i ,

where the expected reward per unit is given by

πi(xi, xj , xk) = xi(1 − xj)(1 − xk) +
1

2
xixj(1 − xk) +

1

2
xixk(1 − xj) +

1

3
xixjxk.

Notice that

f i
i,j = r(t)πi

i,j(xk), f i
i,k = r(t)πi

i,k(xj), f i
i,t = r′(t)πi

i(xj , xk),

−
f

j
j,t

f
j
j,j

=
r′(t)πj

j (xi,xk)

cj
, −

fk
k,t

fk
k,k

=
r′(t)πk

k
(xi,xj)

ck
,

x∗
i =

r(t∗)πi
i(x

∗

j ,x∗

k
)

ci
, x∗

j =
r(t∗)πj

j (x∗

i ,x∗

k
)

cj
, x∗

k =
r(t∗)πk

k
(x∗

i ,x∗

j )

ck
.

Therefore,

f i
i,t + f i

i,j(−
f

j
j,t

f
j
j,j

) + f i
i,k(−

fk
k,t

fk
k,k

)

∣

∣

∣

∣

(x∗,t∗)

> 0

⇔ r′(t)πi
i(xj , xk) + r′(t)πi

i,j(xk)xj + r′(t)πi
i,k(xj)xk

∣

∣

(x∗,t∗)
> 0

⇔ πi
i(x

∗
j , x

∗
k) + πi

i,j(x
∗
k)x

∗
j + πi

i,k(x
∗
j)x

∗
k > 0.

Moreover,

πi
i(x

∗
j , x

∗
k) + πi

i,j(x
∗
k)x

∗
j + πi

i,k(x
∗
j )x

∗
k

= (1 − x∗
j )(1 − x∗

k) + 1
2

(

x∗
j (1 − x∗

k) + x∗
k(1 − x∗

j )
)

+ 1
3
x∗

jx
∗
k

+
[

1
3
x∗

k −
1
2
((1 − x∗

k) + x∗
k)

]

x∗
j +

[

1
3
x∗

j −
1
2

(

(1 − x∗
j) + x∗

j

)]

x∗
k

= (1 − x∗
j )(1 − x∗

k),

21



implies that the condition on payoff functions is satisfied, if each of x∗
i , x

∗
j , x

∗
k is less than 1.

In other words, if the equilibrium is not degenerate, that is, no player wins the tournament
for sure, then the equilibrium increases with the parameter, as earlier. The result extends
to N player tournaments. The notationally intensive details for that case are provided
below. Additional examples of games where these results may apply can be found in Dubey,
Haimanko, and Zapechelnyuk (2006), for example, games of team projects with substitutable
tasks.
Example 2 (continued). Suppose a tournament has N ≥ 2 players, where a parameterized
reward r(t) (with 0 ≤ t ≤ T , and r′(t) > 0) is shared by the players who succeed in the
tournament. If one player succeeds, she gets r(t) for sure, if two players succeed, each gets
r(t) with probability one-half, and if all players succeed, each gets r(t) with probability
one-third. For player i = 1, the expected reward per unit is

π1(x1, . . . , xN ) = x1

∏

i1∈{2,...,N}

(1 − xi1)

+ 1
2

N
∑

i1=2

x1xi1

∏

i2∈{2,...,N}\{i1}

(1 − xi2)

+ 1
3

N
∑

i1=2

N
∑

i2=i1+1

x1xi1xi2

∏

i3∈{2,...,N}\{i1,i2}

(1 − xi3)

+ 1
4

N
∑

i1=2

N
∑

i2=i1+1

N
∑

i3=i2+1

x1xi1xi2xi3

∏

i4∈{2,...,N}\{i1,i2,i3}

(1 − xi4)

+ . . .

+ 1
N

x1x2 · · ·xN ,

and the expected reward is
r(t)πi(x1, . . . , xN).

The quadratic cost of effort x1 is c1
2
x2

1, and it is allowed to be asymmetric across players.
The payoff to player 1 is expected reward minus cost of effort. That is,

f 1(x1, . . . , xN) = r(t)π1(x1, . . . , xN) −
c1

2
x2

1.

Following the same argument as in the text, it follows that

f 1
1,t +

N
∑

n=2

f 1
1,n

(

−
fn

n,t

fn
n,n

)

∣

∣

∣

∣

(x∗,t∗)

> 0

⇔ π1
1(x

∗
−1) +

N
∑

n=2

x∗
nπ1

1,n(x∗
−(1,n)) > 0.

Here, as usual, x∗
−(1,n) is the vector x∗ without components 1 and n. The details below show

that

π1
1(x

∗
−1) +

N
∑

n=2

x∗
nπ1

1,n(x∗
−(1,n)) =

N
∏

n=2

(1 − x∗
n).

A similar result holds for each player i, and therefore, it follows that if the equilibrium is
not degenerate, then equilibrium increases with the parameter.
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Details. Notice that

π1
1(x

∗
−1) =

∏

i1∈{2,...,N}

(1 − x∗
i1
)

+ 1
2

N
∑

i1=2

x∗
i1

∏

i2∈{2,...,N}\{i1}

(1 − x∗
i2
)

+ 1
3

N
∑

i1=2

N
∑

i2=i1+1

x∗
i1
x∗

i2

∏

i3∈{2,...,N}\{i1,i2}

(1 − x∗
i3
)

+ 1
4

N
∑

i1=2

N
∑

i2=i1+1

N
∑

i3=i2+1

x∗
i1
x∗

i2
x∗

i3

∏

i4∈{2,...,N}\{i1,i2,i3}

(1 − x∗
i4
)

+ . . .

+ 1
N

x∗
2 · · ·xN .

Moreover, for each n = 2, . . . , N ,

π1
1,n(x∗

−(1,n)) = −
∏

i1∈{2,...,N}\{n}

(1 − x∗
i1
)

+ 1
2

∏

i2∈{2,...,N}\{n}

(1 − x∗
i2
)

− 1
2

∑

i1∈{2,...,N}\{n}

x∗
i1

∏

i2∈{2,...,N}\{i1,n}

(1 − x∗
i2
)

+ 1
3

∑

i2∈{2,...,N}\{n}

x∗
i2

∏

i3∈{2,...,N}\{i2,n}

(1 − x∗
i3
)

− 1
3

∑

i1∈{2,...,N}\{n}

∑

i2∈{i1+1,...,N}\{n}

x∗
i1
x∗

i2

∏

i3∈{2,...,N}\{i1,i2,n}

(1 − x∗
i3
)

+ 1
4

∑

i2∈{2,...,N}\{n}

∑

i3∈{i2+1,...,N}\{n}

x∗
i2
x∗

i3

∏

i4∈{2,...,N}\{i2,i3,n}

(1 − x∗
i4
)

− 1
4

∑

i1∈{2,...,N}\{n}

∑

i2∈{i1+1,...,N}\{n}

∑

i3∈{i2+1,...,N}\{n}

x∗
i1
x∗

i2
x∗

i3

∏

i4∈{2,...,N}\{i1,i2,i3,n}

(1 − x∗
i4
)

+ . . .

+ 1
N

∏

i1∈{2,...,N}\{n}

x∗
i1
.

Using the above expression for π1
1,n(x∗

−(1,n)), notice that the first term in x∗
nπ1

1,n(x∗
−(1,n)),

the one that has a coefficient of −1, is

−x∗
n

∏

i1∈{2,...,N}\{n}

(1 − x∗
i1
),

and therefore, the sum of such terms, as n varies over 2, . . . , N , can be written as

−
∑

i1∈{2,...,N}

x∗
i1

∏

i2∈{2,...,N}\{i1}

(1 − x∗
i2
).

Similarly, notice that the term in x∗
nπ1

1,n(x∗
−(1,n)) that has a coefficient of +1

2
is

1

2
x∗

n

∏

i2∈{2,...,N}\{n}

(1 − x∗
i2
),
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and therefore, the sum of such terms, as n varies over 2, . . . , N , can be written as

1

2

∑

i1∈{2,...,N}

x∗
i1

∏

i2∈{2,...,N}\{i1}

(1 − x∗
i2
).

Now notice that the sum of the previous two sums cancels the second term in the expression
for π1

1(x
∗
−1), the one with coefficient 1

2
.

Similarly, it can be calculated that the term in x∗
nπ1

1,n(x∗
−(1,n)) that has a coefficient of

−1
2
, when summed as n varies over 2, . . . , N , can be written as

−1
2

N
∑

n=2

∑

i1∈{2,...,N}\{n}

x∗
nx∗

i1

∏

i2∈{2,...,N}\{i1,n}

(1 − x∗
i2
)

= −
N
∑

i1=2

N
∑

i2=i1+1

x∗
i1
x∗

i2

∏

i3∈{2,...,N}\{i1,i2}

(1 − x∗
i3
),

where the equality follows from adding terms that appear exactly two times. In the same
manner, the term in x∗

nπ1
1,n(x∗

−(1,n)) that has a coefficient of +1
3
, when summed as n varies

over 2, . . . , N , can be written, after adding terms that appear exactly two times, as

2

3

N
∑

i1=2

N
∑

i2=i1+1

x∗
i1
x∗

i2

∏

i3∈{2,...,N}\{i1,i2}

(1 − x∗
i3
).

Notice again that the sum of the last two double sums cancels the third term in the expression
for π1

1(x
∗
−1), the one with coefficient 1

3
. Similarly, it can be concluded that

π1
1(x

∗
−1) +

N
∑

n=2

x∗
nπ1

1,n(x∗
−(1,n)) =

N
∏

n=2

(1 − x∗
n),

as desired.
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