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1 Introduction

More than forty years ago, Kaldor (1961) singled out the constancy of the
output-capital ratio and the steady increase of the labor productivity as two
of the main stylized facts characterizing western industrialized economies.
With medium run fluctuations, these facts have been confirmed till the cur-
rent years (see for example Romer 1989 and Evans 2000). Two questions
arise: first, why technical change is biased towards labor augmentation; sec-
ond, what accounts for the extent of labor productivity increases. The stan-
dard neoclassical growth model, though compatible with these facts, provides
no answer to each of the questions. Harrod neutrality is assumed as the only
kind of technical change compatible with the existence of steady states, and
the magnitude of the growth rate of technology is also a given.

Determining endogenously the rate of technical change in a model based
on the neoclassical theory of distribution was indeed problematic. Under
perfectly competitive conditions, factors of productions are paid according
to their marginal productivities. This implies that under constant returns
to scale in labor and capital the whole product is just sufficient to pay their
remuneration, and nothing is left to reward the cost of introducing an innova-
tion. The endogenous growth literature has overcome this impasse. Leaving
aside the human capital and AK models and focusing on R&D driven tech-
nical change, two alternatives have been explored. In the early 90s the aban-
donment of perfect competition and the introduction of a degree of monopoly
into growth models provided the rents necessary to justify a costly research
activity; models of horizontal (Romer 1987, 1990) and vertical (Grossman
and Helpmann 1991, Aghion and Howitt 1992) innovation have been devel-
oped by adopting this framework. Abandoning the assumption of constant
returns to scale in production while retaining perfect competition provided
a second option. Under decreasing returns to scale competitive firms earn
positive profits in equilibrium; such profits may be used to pay for the cost
of innovation. Recent contributions have developed this possibility (Hellwig
and Irmen 2001, Irmen 2005). However, the endogenous growth literature
in its various forms simply assumed that innovations would improve labor
productivity thus neglecting (with the notable exception of Acemoglu 2002,
2003, 2007) the issue of the direction of technical change.

The idea that market mechanisms may influence the direction of change
in technology traces back at least to Hick’s (1932, pp. 124-5) suggestion that
technical change would tend to economize the factors becoming relatively
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expensive. Theorists of the 60s (von Weizsacker (1962), Kennedy (1964),
Samuelson (1965) and Drandakis and Phelps (1966)) formally developed this
intuition. In particular, this literature known as ‘induced innovation’ intro-
duced an innovation frontier to describe the trade-off between growth rates
of labor and capital productivity available to the firm. Figure 1 represents
the original formulation of the innovation possibility frontier put forward by
Kennedy as the function η = g(µ), where µ is the rate of growth of capital
productivity and η is the rate of growth of labor productivity; all the points
below the curve represent couples of rates of growth of labor and capital
productivity freely available to the firm. Firms are assumed to choose a
combination of factors productivity augmentation in order to maximize the
current rate of unit cost reduction given factors employment and prices. The
maximization problem solution implies that the direction of technical change
depends on factors shares: the market economy has an endogenous tendency
to save the factor of production whose share is increasing. Provided that
the elasticity of substitution between labor and capital is smaller than one,
the economy converges to a steady state equilibrium with constant factors
shares and purely labor-augmenting technical progress. In turn, Harrod neu-
tral technical change finds an explanation rooted in the economic behavior
of firms. From an empirical point of view, the induced innovation hypothesis
seems to be confirmed by, or at least is consistent with, the positive reaction
of labor productivity growth to an increase in the labor share that seems to
characterize most industrialized countries (see Gordon 1987).

In these models however, the position of the innovation possibility fron-
tier was assumed to be given so that the steady state growth rate of labor
productivity was necessarily exogenous.

Working within R&D models based on imperfect competition Acemoglu
(2002, 2003, 2007) has been able to endogenize at the same time the direction
and the intensity of technical change. I attempt a similar procedure in a
model that combines neoclassical elements, such as perfect competition and
convexity of individual costs structure, with classical ones such as the division
in classes (workers, capitalists and entrepreneurs) and a non-clearing labor
market. While the interest rate brings about the equality between demand
and supply in the loanable funds market, the employment rate depends only
on technology and on the level of installed productive capacity. In the spirit
of the induced innovation literature the existence of a possibility frontier
is assumed. However, it is not given exogenously; its position depends on
firms’ investment, and innovating is therefore costly: the model provides a
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Figure 1: Innovation possibility frontier

microfoundation of both the direction and the size of innovation.
A steady state solution with constant output-capital ratio, labor produc-

tivity growth, factors shares and employment ratio is derived. The main
finding is that, contrary to Acemoglu’s results, fiscal policy is effective: an
increase in subsidies to R&D increases steady state per capita growth, wage
share and employment ratio.

2 The Model

2.1 Individual firm

We start by considering the static problem of the firm at time t. Firms
produce a homogeneous output and are price takers; at time t each firm
faces the problem of choosing the level of capacity xi,t, and the one period
growth rates of augmentation of capital and labor efficiency (µi,t, ηi,t) which
will determine the firm’s technology at time t + 1. At t + 1, given capacity
and the state of technology the firm will hire the profit maximizing mass of
labor ni,t+1. Output at t + 1 is given by the Leontief production function
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Figure 2: Innovation cost function

Yi,t+1 = min[xi,tbt(1 + µi,t), at(1 + ηi,t)ni,t+1] where bt and at are respectively
the level of efficiency reached by capital and labor in the economy at time t.
Notice that bt and at are not indexed by i since innovations are assumed to
be freely available after one period of monopoly.

Technology characterization requires the specification of the cost function
of productive capacity and innovation. In order to increase capacity from xt−1
to xt (I assume no depreciation) the firm has to invest the amountK(xt, xt−1)
of output. The innovation technology is such that by investing V (µ, η, Yi)
units of output each firm can improve the technology from (bt, at) to (bt(1 +
µ), at(1 + η)). The function V is intended to allow the technological frontier
to become endogenous. The technological frontier represents the trade-off
between the possibility of augmenting capital or labor efficiency; it is usually
assumed to be exogenous and given at a certain level. With the aid of the
cost function introduced we can represent a whole family of technological
frontiers as the level curves associated to different levels of R&D spending.
Figure 2 shows the level curves of the cost function of innovation associated
to the level of investment K0, K1.

In order to work out the solution to our problem we make the following
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assumptions:
K(xt, xt−1) = xt−1Γ(xt/xt−1)

Γ(.) is twice continuously differentiable with:
Γ(1) = Γ′(1) = 0,Γ′(xt/xt−1),Γ

′′(xt/xt−1) > 0
V (µ, η, Yi) = YiC(µ, η) with (µ, η) ∈ �2 −�2

−

C(.) is twice continuously differentiable with:
C(0, 0) = 0 , C(µ, η) > 0 otherwise.

∇C(0, 0) = 0, ∇C(µ, η) > 0 otherwise.
D2C(µ, η) is positive definite.

Notice that the cost function for innovation is not defined in the negative
quadrant as past technologies are freely available to the firm. Moreover, both
for capacity and innovation, we have assumed zero marginal cost at the origin
to assure positive investment. As usual in the literature of investment cost,
the assumption of convexity can be justified through the idea of adjustment
costs, and it is necessary in order for the static optimization problem to be
well-defined. Moreover, the cost functions of innovation and capacity are
scaled respectively to initial output and to initial capacity to avoid that the
unit cost of increasing productivity or capacity would asymptotically tend to
zero.

Since production emerges only at period t + 1, firms have to borrow at
time t to pay for the cost of investment in capacity and innovation; they will
pay the interest rate it upon the amount of output borrowed.

Profit maximization requires ni,t+1 = xi,tbt+1/at+1 so that the profit max-
imization problem at t is

Max
xit,µit,ηit

Πt = δ[Yi,t+1 − w
e
t+1

(1 + µit)btxit
(1 + ηit)at

− (1 + it)V (µit, ηit, Yi) − (1 +

it)K(xi,t, xi,t−1)] =

= δ

[
(1 + µit)btxit[1−

wet+1
(1 + ηit)at

]− (1 + it) [btxi,t−1C(µit, ηit)− xi,t−1Γ(xi,t/xi,t−1)]

]

with δ ∈ (0, 1] being the discount factor. Notice that today’s profit maxi-
mizing plan depends on the expected level of the wage rate as today’s choice
of capacity in fact fixes the amount of labor the firm will decide to hire in
the next period.
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Given the assumptions on V and K the maximand function is strictly
concave and the first order conditions are sufficient and necessary for a max-
imum:

∂Π

∂xit
= δ

[
(1 + µit)bt[1−

wet+1
(1 + ηit)at

]− (1 + it)Γ
′(xi,t/xi,t−1)

]
= 0 (1)

∂Π

∂µit
= δ

[
btxit[1−

wet+1
(1 + ηit)at

]− (1 + it)btxi,t−1Cµt(µit, ηit)

]
= 0 (2)

∂Π

∂ηit
= δ

[
btxit

(1 + µit)w
e
t+1

(1 + ηit)
2at

− (1 + it)btxi,t−1Cηt(µit, ηit)

]
= 0 (3)

Let us define the labor share as ω. Then ωt =
wt
at

and
wet+1
at

= ωet+1 is the

expected labor share. Notice that the labor productivity level considered to
calculate the expectation on tomorrow’s labor share is today’s productivity
at. It is so as firm i will have a one period monopoly over the technology it
develops and, at the same time, firms do not take into account the possibility
that their own behavior might be adopted by the rest of firms population.
ωet+1 becomes the key variable in choosing innovation direction. Using (2)
and (3) we get:

Cµ(µit, ηit)

Cη(µit, ηit)
=

[1−
wet+1

(1 + ηit)at
]

(1 + µit)w
e
t+1

(1 + ηit)
2at

=

(
1 + ηit − ω

e
t+1

)
(1 + ηit)

(1 + µit)ω
e
t+1

or in a simpler fashion

1 + µit
1 + ηit

Cµ(µit, ηit)

Cη(µit, ηit)
=
1 + ηit − ω

e
t+1

ωet+1
(4)

The observation of (4) confirms the result of the directed technical change
literature. An increase in the expected wage share has to be accommodated
by increasing labor productivity more than capital productivity. There is a
tendency in the market system to introduce a bias in the technical change
towards the factor whose share is increasing. A sufficient condition for this
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result is Cηη(µit, ηit)Cµ (µit, ηit) ≥ Cµη(µit, ηit) Cη(µit, ηit). The condition
requires that the level curves of the cost function representing the trade-off
between capital and labor augmentation corresponding to different levels of
R&D spending be concave: i.e. it is analogous to the assumption of concavity
of the innovation possibility frontier1.

2.2 Closure of the model

In order to move to the macroeconomic equilibrium we assume a represen-
tative firm. Along classical lines it is also assumed that workers consume
all their wages and capitalists save their whole income and offer it on the
financial market to earn the interest rate i.

For a given expectation on the wage share ωet+1 and interest rate it the
firm’s maximization problem determines the equilibrium values:
{ x∗t (ω

e
t+1, it), µ

∗

t (ω
e
t+1, it), η

∗

t (ω
e
t+1, it), n

∗

t+1(ω
e
t+1, it) } . Solving for the equilib-

rium of the economic system at a certain point in time requires that we specify
the equilibrium conditions for the interest rate and the wage rate, together
with the way expectations on the wage rate are determined.

The role of the interest rate is to clear the output market. It will as-
sume the value at which the excess of output over workers’ consumption (the
economy’s saving) is fully invested either in innovation or in capacity:

Yt = btxt−1 = (5)

= wt
btxt−1
at

+ V (µ∗t (ω
e
t+1, i

∗

t ), η
∗

t (ω
e
t+1, i

∗

t ), Yt) +K(x
∗

t (ω
e
t+1, i

∗

t ), xt−1)

Current production is consumed either as workers’ consumption or as
investment in innovation and capacity.

Since labor demand at a certain point in time is determined by the pre-
vious period profit maximizing investment in capacity and technical change
there is no guarantee that the labor market will clear. In turn: Lt � btxt−1/at,
where Lt is the (inelastic) labor supply at time t. Let us assume that la-
bor market tightness influences the expectation on next period wage rate,

1Consider the level k of expenditure in innovation. Then we have C(µ, η) = k. By totally

differentiating Cηdη +Cµdµ = 0, so that
dµ

dη

∣∣∣∣ C = k = −
Cη
Cµ
. In turn,

d2µ

dη2

∣∣∣∣ C = k =

−
Cη,ηCµ −Cµ,ηCη

C2µ
and

d2µ

dη2

∣∣∣∣ C = k < 0⇔ Cη,ηCµ > Cµ,ηCη.
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and let such tightness be measured by the employment rate vt ≡ nt/Lt =
btxt−1/(atLt). Then, expectations on the wage rate can be modeled according
to

wet+1 = f(wt, vt) (6)

with fwt, fvt > 0.
Finally, we impose that in equilibrium expectations are correct

wet+1 = w
∗

t+1. (7)

For any initial condition {a0, b0, x−1}
2 we have six conditions (1, 2, 3, 5, 6, 7)

to determine a sequence of temporary equilibrium values for six endogenous
variables (xt, µt, ηt, it, w

e
t+1, wt+1). Notice the different nature of the prices of

labor and capital. The interest rate adjusts instantaneously to clear the mar-
ket of loanable funds while the wage rate is determined by its past history
and the disequilibrium on the labor market in the previous period.

2.3 Dynamical system

The evolution of the equilibrium can be represented as a system of difference
equations in the three state variables (bt, vt, ωt). If we define the function
h(vt) ≡ wt+1/wt = f(wt, vt)/wt, the expected wage share can be expressed
as ωet+1 = h(vt)ωt. From equation (5) the interest rate can be obtained as a
function of the three state variables: i∗t = i(bt, vt, ωt). In turn we have the
following system:

bt+1 = bt(1 + µ
∗

t (h(vt)ωt, i
∗

t )

vt+1 = vt
(1 + µ∗t (h(vt)ωt, i

∗

t ))(x
∗

t/xt−1(h(vt)ωt, i
∗

t ))

(1 + η∗t (h(vt)ωt, i
∗

t ))(1 + gL)

ωt+1 = ωt
h(vt)

1 + η∗t (h(vt)ωt, i
∗

t )

(8)

where gL is the exogenous rate of population growth. The system deter-
mines the evolution of the capital productivity, employment ratio and labor
share. In the process, the remaining endogenous variables (µ∗t , i

∗

t , η
∗

t , x
∗

t ) are
determined as functions of the state variables and the parameters describing
technology and the labor market.

2To keep notation consistent I have denoted x−1 the initial capacity the representative
firm is endowed with at the beginning of time t0.
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2.3.1 Steady state

Stationary equilibrium requires bt = bt+1 = bss; vt = vt+1 = vss; ωt = ωt+1 =
ωss.

The system becomes:

µss(h(vss)ωss, i(bss, vss, ωss)) = 0
(1 + gx(h(vss)ωss, i(bss, vss, ωss) = (1 + ηss(h(vss)ωss, i(bss, vss, ωss))(1 + gL)

h(vss) = 1 + ηss(h(vss)ωss, i(bss, vss, ωss))
(9)

where gx is the steady state growth rate of capacity. Using (9) and dividing
(5) by Yt the equilibrium conditions can be rewritten as:

bss[1− ωss] = (1 + iss)Γ
′((1 + gL)h(vss)) (1 bis)

(1 + gL)h(vss)[1− ωss] = (1 + iss)Cµ(0, h(vss)− 1) (2 bis)

(1 + gL)ωss = (1 + iss)Cη(0, h(vss)− 1) (3 bis)

1− ωss = C(0, h(vss)− 1) +
Γ((1 + gL)h(vss))

bss
(5 bis)

Solving for (1 + iss) in (3 bis) and for bss dividing (1 bis) by (2 bis) and by
plugging (1 + iss) and bss back in (1 bis) we find

ωss =
Cη(0, h(vss)− 1)h(vss)

Cµ(0, h(vss)− 1) + Cη(0, h(vss)− 1)h(vss)
.

The steady state value for the labor share is always economically meaning-
ful being positive and smaller than one. Using ωss in (3 bis) and 1 (bis) we ob-

tain: (1+iss) =
(1+gL)h(vss)

Cµ(0,h(vss)−1)+Cη(0,h(vss)−1)h(vss)
, and bss =

(1+gL)h(vss)Γ
′((1+gL)h(vss))

Cµ(0,h(vss)−1)
.

Finally, substituting for bss and ωss into (5 bis) determines implicitly
h(vss).

1−
Cη(0, h(vss)− 1)h(vss)

Cµ(0, h(vss)− 1) + Cη(0, h(vss)− 1)h(vss)
= C(0, h(vss)−1)+

Cµ(0, ηss)Γ(1 + gL)h(vss)

(1 + gL)h(vss)Γ′(1 + gL)h(vss)
.

(10)
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After bss, ωss, vss and iss have been determined, (9) solves for ηss = h(vss)−1,
and g

x
= (1+gL)h(vss). Notice also that since Yt+1 = xtbt(1+µt) the steady

state growth rate of output is gy = gx ≈ gL+ηss , i.e. the equality between the
warranted and natural growth rates. Notice however that the growth rate
of labor productivity is endogenous both as it is determined as the profit
maximizing decision of the firm, and, as we will see in Section 4, as it can be
affected by the action of the policy maker.

Using the definition of profits we can calculate the steady state level of the
profit rate as: rss = (Πt/xt−1)ss = δbss[(1+gx)(1−ωss)−(1+iss)(C+Γ/bss)],
which, given (5 bis), implies rss = δbss(1 − ωss)(gx − iss). The gross profit
rate of the economy, δbss(1 − ωss)gx, is divided between the remuneration
of the interest on saving and the residual compensation of entrepreneurs.
Entrepreneurs profits are positive if and only if the rate of growth of the
economy exceeds the interest rate. This possibility arises from the restriction
to entry in production. In fact, as it is custumary in general equilibrium
analysis (see MacKenzie, 1959), equilibrium extra-profits can be conceived
of as a rent rewarding the fixed factor entrepreneurship.

3 Discussion of the Model

Several papers in recent years have provided microfoundations of growth
models under perfectly competitive conditions. I have adopted a framework
similar to the one developed by Bester and Petrakis (2003), Hellwig and Ir-
men (2001), and Irmen (2005) which assumes perfect competition and strictly
convex investment cost in capacity and innovation. In these models the as-
sumption of convexity is fundamental as increasing marginal costs provide
the equilibrium inframarginal rents necessary to pay for the cost of inno-
vation. At the same time, even when the innovation possibility frontier is
exogenous and only the direction of technical change is chosen by the firm
(see Funk, 2002), convexity is necessary to assure that the individual firm’s
production plan be bounded. In my model, since no free entry is assumed,
there exist positive profits part of which can be used to finance the cost of
innovation. Therefore convexity simply guarantees that the investment plan
is finite.

Also like in Hellwig and Irmen (2001) and Bester and Petrakis (2003) I
assume Leontief production function. However, contrary to those models,
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even though at a given point in time there is zero substitutability between
factors, by directing innovation towards either factors of production firms
can use technical change to substitute one factor to the other. Much in the
spirit of Kaldor’s (1957) suggestion to abolish the neoclassical distinction
between movements along the production function due to capital deepen-
ing, and shifts of the production function due to technical change, technical
progress is required to change factors proportion. A similar idea has been
developed by Foley and Michl (1999) and Michl (1999) through the concept
of fossil production function. They show that a pattern resembling a smooth
neoclassical production function with capital deepening can be obtain as
the trace of successive adoptions of labor saving and capital using technical
change. My model differs from their approach as firms do not face an exoge-
nous labor-saving capital-using evolution of technology but choose both the
size and the direction of innovation.

The dynamical system of employment rate, wage share and capital pro-
ductivity described in (8) can be seen as a Goodwin (1967) growth model
generalized to encompass the possibility of endogenous direction of technical
change. It has been first studied by Shah and Desai (1981) and later analyzed
by van der Ploeg (1987), Thompson (1995), Foley (2003) and Julius (2005)
among the others. They have shown that, once coupled with the innovation
possibility frontier, the cyclical behavior of the Goodwin model collapses to
a stable steady state with constant factor shares, capital productivity and
growth rate of labor productivity. Under one respect my system is funda-
mentally different. Since the innovation possibility frontier is endogenous the
steady state productivity growth and income distribution are not uniquely
pinned down by the innovation technology but they depend on the incentive
to accumulate. As we see in the next Section 4 this opens up the possibility
for policy action.

4 Policy Analysis

The per-capita growth rate of the economy in the standard neoclassical model
is exogenous. This exogeneity is to be understood in a twofold way. On the
one hand, the growth rate is exogenous as technical change is not the outcome
of profit-maximizing agents’ decision. On the other hand, it is independent
of the propensity to save and, in turn, it cannot be affected by the action of
the policy maker.
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Section 2 developed the ‘descriptive’ model where growth is endogenous
as it is the result of firms’ investment in innovation. This section shows that,
in our model, growth is endogenous as the policy maker can affect the steady
state per capita growth by means of tax/subsidy to investment in innovation
and capital accumulation.

Let α be the tax/subsidy rate on investment in R&D, and let β be the
tax/subsidy rate on capacity investment. (α, β) will represent a tax if α, β ≥
0, and a subsidy in case α, β ≤ 0. Subsidies on investment are financed
through lump sum taxes on capitalists’ saving; analogously, in case of a
positive tax rate, taxes on investment are transferred to capitalists. The
fiscal budget remains unaffected as fiscal policy simply transfers income from
one class to another one. Let A ≡ 1 + α and B ≡ 1 + β, the model (1 bis -
5 bis) becomes

bss[1− ωss] = (1 + iss)BΓ
′((1 + gL)(1 + ηss)) (1 tris)

(1 + gL)(1 + ηss)[1− ωss] = (1 + iss)ACµ(0, ηss) (2 tris)

(1 + gL)ωss = (1 + iss)ACη(0, ηss) (3 tris)

1− ωss = C(0, ηss) +
Γ((1 + gL)(1 + ηss))

bss
(5 tris)

where we used h(vss) = 1+ηss. Notice that equation (5 tris) is not affected
by the policy action: a change in the cost of investment at the right hand
side (αC(0, ηss)+ βΓ((1+ gL)(1+ ηss))/bss) cancels out at the left hand side
with an equivalent change in the economy’s saving.

Proceeding analogously to what we did to find (10) we obtain:

1−
Cη(0, ηss)(1 + ηss)

Cµ(0, ηss) + Cη(0, ηss)(1 + ηss)
= C(0, ηss)+

ACµ(0, ηss)Γ((1 + gL)(1 + ηss))

(1 + gL)(1 + ηss)BΓ
′((1 + gL)(1 + ηss))

.

(11)
In the attempt to prove our result let us start by considering the case

where the policy maker only targets innovation. We set in turn B = 1 in
(10). By totally differentiating and rearranging we find

12



−
CµΓ

(1 + gL)(1 + ηss)Γ
′
dA = [Cη +

AΓΓ′(Cµη(1 + ηss)− Cµ)

(1 + gL) [(1 + ηss)Γ
′]2

+

+
ACµ(Γ

′
2

− ΓΓ
′′

)

(1 + ηss)Γ
′2

+
(1 + ηss) [Cη,ηCµ − Cµ,ηCη] + CµCη

[Cµ + Cη(1 + ηss)]
2 ]dη,where we used

the fact that in steady state dµ = 0.
In turn, since the concavity of the isocosts of the innovation production

implies Cη,ηCµ > Cµ,ηCη, a sufficient condition for
dη

dA
< 0 is given by Cµη(1+

ηss) � Cµ and Γ′
2

� ΓΓ
′′

. Under such conditions a reduction in the cost of
innovation fosters steady state per capita growth3.

The subsidy to innovation also affects income distribution and employe-
ment. In steady state, we have h(vss) = 1+ηss and ωss =

Cη(0,ηss)(1+ηss)
Cµ(0,ηss)+Cη(0,ηss)(1+ηss)

;

since h′(.) > 0 and dωss/dηss =
(1 + ηss) [Cη,ηCµ − Cµ,ηCη] + CµCη

[Cµ + Cη(1 + ηss)]
2 > 0, by

increasing the steady state rate of growth of labor productivity, a subsidy to
innovation raises the labor share and the employment ratio.

Analogously, we can study the effect of a change in the subsidy to capital
accumulation on the steady state per capita growth rate. Since B enters
equation (11) in exactly the same way as 1/A, it follows necessarily that

sign
dη

dB
= −sign

dη

dA
. In turn, the sufficient conditions derived before guar-

antee
dη

dB
> 0: reducing the cost of capital accumulation reduces steady state

per capita growth.
Our policy analysis has shown that, under plausible conditions, steady

state per-capita growth can be fostered both by subsidizing innovation and
by taxing capital accumulation.

3To appreciate the non-restrictiveness of this condition consider as an example Γ =
γ (xt/xt−1)

δ
, with γ > 0, δ > 1 to assure strict convexity; and C(µ, η) = a(µ2+ η2)+ cµη,

with a, c > 0, a symmetric positive definite quadratic form. Under this assumption the
sufficient conditions for a positive impact of an increase in subsidy to R&D is always
satisfied as Γ′

2

−ΓΓ′′ = γ2δ2(xt/xt−1)2δ−2−γ2δ(δ−1)(xt/xt−1)2δ−2 = γ2δ(xt/xt−1)2δ−2 >
0, and Cµη(1 + ηss)−Cµ = c > 0 (where we used µss = 0).
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5 Conclusions

The paper provides a proposal to unify endogenous growth and induced in-
novation literature. With firms allowed to choose both the direction and
the size of innovation, the productivity growth rate is not uniquely pinned
down by technology. The policy maker is capable of affecting the economy’s
performance in terms of steady state growth and income distribution and
employment by subsidizing either innovation or capital accumulation.

References

[1] Acemoglu, D. (2002), ‘Directed Technical Change’, Review of Economic

Studies, 69, 781-810.

[2] Acemoglu, D. (2003), ‘Labor- and Capital-Augmenting Technical
Change’, Journal of European Economic Association, 75 (5), 1371-1409.

[3] Acemoglu, D. (2007), ‘Equilibrium Bias of Technical Change’, Econo-

metrica, 1, 1-37

[4] Aghion, P. and P. Howitt (1992), ‘A Model of Growth through Creative
Destruction’, Econometrica, 60(2), 323-51.

[5] Barbosa-Filho, N. and L. Taylor (2006), ‘Distributive and Demand Cy-
cles in the US Economy- a Structuralist Goodwin Model’, Metroeconom-

ica, 57 (3), 389—411.

[6] Bester, H. and E. Petrakis (2003), ‘Wages and Productivity Growth in
a Competitive Industry’, Journal of Economic Theory, 109 (1), 52-69.

[7] Drandrakis, E. and E. Phelps (1966), ‘A Model of Induced Invention,
Growth, and Distribution’, Economic Journal, 76, 823— 40.

[8] Evans, P. (2000), ‘US Stylized Facts and Their Implications for Growth
Theory’, WP.

[9] Foley, D. (2003), ‘Endogenous Technical Change with Externalities in a
Classical Growth Model’, Journal of Economic Behavior and Organiza-

tion, 52, 201-233.

14



[10] Foley, D. and T. Michl (1999), Growth and Distribution, Cambridge,
MA, Harvard University press.

[11] Funk, P. (2002), ‘Induced Innovation Revisited’, Economica, 69, 155-
171.

[12] Gordon, R. J. (1987), ‘Productivity, wages, and prices inside and outside
of manufacturing in the US, Japan, and Europe’, European Economic

Review, 31, 685-733.

[13] Gordon, R. J. (2000), ‘Interpreting the ‘One Big Wave’ in US long-term
Productivity Growth’, CEPR No. 2608.

[14] Goodwin, R. (1967), ‘A Growth Cycle’, in Socialism, Capitalism and

Economic Growth, C. Feinstein ed., Cambridge, MA, Cambridge Uni-
versity Press.

[15] Grossman, G.M. and E. Helpman (1991), ‘Quality Ladders in the Theory
of Growth’, Review of Economic Studies 58, 43-61.

[16] Hellwig, M. and A. Irmen (2001), ‘Endogenous Technical Change in a
Competitive Economy’, Journal of Economic Theory, 101 (1), 1-39.

[17] Hicks, J.R. (1932), The Theory of Wages, London: Macmillan, 1960.

[18] Irmen, A. (2005), ‘Extensive and Intensive Growth in a Neoclassical
Framework’, Journal of Economic Dynamics and Control, 29(8), 1427-
1448.

[19] Julius, A.J. (2005), ‘Steady-State Growth and Distribution with an En-
dogenous Direction of Technical Change’, Metroeconomica, 56(1), 101-
125.

[20] Kaldor, N. (1961), ‘Capital Accumulation and Economic Growth’, in
Lutz, F. A. and Hague, D. C. The Theory of Capital, New York, St.
Martin’s press.

[21] Kennedy, C. (1964): ‘Induced Bias in Innovation and the Theory of
Distribution’, Economic Journal, 74, 541—47.

[22] McKenzie, L. (1959) ‘On the existence of a general equilibrium for a
competitive market’, Econometrica, 27: 54-71.

15



[23] Michl, T.M. (1999), ‘Biased Technical Change and the Aggregate Pro-
duction Function’, International Review of Applied Economics, 13.

[24] Romer, P. (1987), ‘Growth Based on Increasing Returns Due to Special-
ization’, The American Economic Review Papers and Proc.77.

[25] Romer, P.M. (1989), ‘Capital Accumulation in the Theory of Long-Run
Growth’, in Barro, R. J. Modern Business Cycle Theory, Cambridge,
MA, Harvard University Press.

[26] Romer, P.M. (1990), ‘Endogeneous Technological Change’, Journal of

Political Economy 98, S71-S102.

[27] Samuelson, P. (1965), ‘A Theory of Induced Innovation along Kennedy—
Weizsäcker Lines’, Review of Economics and Statistics, 47, 343—56.

[28] Shah A. and Desai (1981), ‘Growth Cycles with Induced Technical
Change’, Economic Journal, 91, 977-987.

[29] Thompson, F. (1995), ‘Technical Change, Accumulation, and the Rate
of Profit’, Review of Radical Political Economy, 27, 97-126.

[30] van der Ploeg, F. (1987), ‘Growth Cycles, Induced Techincal Change, ad
Perpetual Conflict over the Distribution of Income’, Journal of Macro-

economics, 9 (1), 1-12.

[31] von Weizsäcker C. C. (1966), ‘Tentative Notes on a Two-Sector Model
with Induced Technical Progress’, Review of Economic Studies, 95, 245—
52.

16


