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Abstract 

This paper examines the identifiability of the standard single-equation stochastic frontier 

models with uncorrelated and correlated error components giving, inter alia, 

mathematical content to the notion of “near-identifiability” of a statistical model. It is 

seen that these models are at least locally identifiable but suffer from the “near-

identifiability” problem. Our results also highlight the pivotal role played by the Signal to 

Noise Ratio in the  “near-identifiablity” of the stochastic frontier models.  
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Identifiability of the Stochastic Frontier Models 

Debdas Bandyopadhyay3 & Arabinda Das4 
Department of Statistics 

University of Kalyani 
Kalyani-741 235 

India 

1. Introduction 

 Ever since its introduction, the stochastic frontier model (Aigner, Lovell and Schmidt, 

1977; Meeusen and van den Broeck, 1977 and Battese and Corra, 1977), hereafter SFM, 

has been extensively used for likelihood-based statistical inference regarding the firm 

level productive inefficiency (See, among others, Kumbhakar and Lovell, 2000 for an 

excellent introduction to the stochastic frontier literature). Likelihood-based inference, 

however, is possible only if the model is identifiable (for definition and characterization 

of the identification problem associated with different statistical models, see, among 

others, Rao, 1992 and references therein). When the model is not identifiable there are at 

least two different models (probability structures) with exactly equal likelihood of 

generating the sample observations. This makes the likelihood-based inference of 

unidentifiable models logically invalid, as the models can no longer be discriminated 

using the likelihood function. A more frequently encountered problem in statistics and 

econometrics, however, is the problem of “near-identification”. In this case there are two 

or more models with approximately equal likelihood of generating the sample. For a 

near- identifiable model, the likelihood-based inference is logically valid but the resulting 

estimates are imprecise and unstable as the information matrix of such a model, though 

non-singular, is near-singular. For example, though the maximum likelihood estimates of 

the parameters of a near-identifiable model have the usual optimal asymptotic properties, 

the estimates are imprecise (large asymptotic variance) and unstable (highly sensitive to 

small change in sample). Near-exact multicollinearity is a classic example of near-

identifiability of a statistical model. We may, however, note that although the 
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identification problem is a well-researched topic in both statistics and econometrics, the 

problem of near-identifiability has not received adequate attention in either literature 

(Rao, 1992, pp. 134).  

Greene (1993, pp. 79) was perhaps first to mention this problem in the context of 

estimation of the truncated normal SFM. He observed  “the cost (of non-zero µ ) appears 

to be that the log-likelihood is relatively flat in the dimension of µ ” (Greene 1993, pp 

79). Subsequently, Ritter and Simar (1997) showed through simulation that, even with 

the sample of a few hundred observations, it is difficult to correctly identify the normal-

gamma SFM when the sample is generated by one of its sub-model or limiting models. 

They also observed the classical symptoms associated with “near-identifiable” models 

viz. imprecise and unstable maximum likelihood estimates of the model parameters. 

Ritter and Simar (1997), however, neither analyzed the identification problem of the SFM 

analytically nor considered the near-identification as a problem distinct from the 

identification problem. As shown here the stochastic frontier models are in fact near-

identifiable.   

In this paper we carry forward the work of Ritter and Simar (1997) and examine 

analytically the identification status of the standard stochastic frontier models with 

uncorrelated and correlated error components. In doing so we give mathematical content 

to the notion of near–identifiability of a statistical model and show that all the single 

equation standard frontier models with uncorrelated error components viz. the 

exponential (Meeusen and van den Broeck, 1977), the half-normal (Aigner et al., 1977), 

the truncated-normal (Stevenson, 1980) and the gamma (Greene, 1990) frontiers are in 

fact either globally identifiable or at least locally identifiable but each of them suffer from 

near-identifiability problem. Secondly, the recently introduced truncated bivariate normal 

SFM (Pal and Sengupta, 1999; Bandyopadhyay and Das, 2006) is shown to be either 

unidentifiable or near-identifiable even in a restricted parameter space. Finally, we link 

the near-identifiability problem of an SFM with its signal to noise ratio (SNR) parameter 

and show that a disproportionately high or low SNR leads to the near-identifiability 

problem
5
.  

                                            
5 SNR is defined as the ratio of the variances of the inefficiency and noise in a stochastic frontier model (See, Bandyopadhyay and 
Das (2006), pp. 174). 
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In the next section we briefly discuss the identification and near-identification problem in 

the context of parametric statistical model and state the different criteria for identification 

and near-identification. In section 3, we use these criteria to examine the identification 

status of the different stochastic frontier models. In section 4, we relate near-

identifiability of an SFM with its SNR parameter. The final section sums up the findings 

of the study and scope for future work in the context of the problem of near-identifiability 

of the stochastic frontier models.     

 

2. The Identification Problem 

The problem of identification of a statistical model is concerned with proper specification 

of the theoretical structure of a model that generates the sample observations. The 

identification problem results from the inability of the sample to discriminate between the 

two probability structures. Likelihood-based inference, regarding the model, however, is 

possible only if each data generation process corresponds to one and only one probability 

structure. Thus when a model is not identifiable, there is no logical basis for likelihood-

based inference regarding the model.  

Consider the parametric statistical model given the family { }( ),F xθ θ∏= ∈Ω  where 

( )F xθ  is the distribution function, indexed by the parameter vector m
Rθ ∈Ω⊂ . Let 

( )f xθ  be the associated density function that satisfies all the regularity conditions for 

validity of the Cramer-Rao inequality  (See, Cramer 1946, pp. 479). Let S  denote the 

sample space and ( | )L xθ  be the likelihood function of θ  given the sample x∈S . We 

use the following definitions (Rothenberg, 1971): 

Definition 1: Two parameters 1 2,θ θ ∈Ω  are said to be observationally equivalent if 

1 2( | ) ( | )L x L xθ θ=  for some x∈S .  

Definition 2: A parameter 0θ ∈Ω  is said to be globally identifiable if there is no other 

parameter 0( )θ θ≠ ∈Ω , which is observationally equivalent to 0θ .  

Definition 3: The statistical model Π  is said to be globally identifiable when every 

parameter point θ  in Ω  is globally identifiable.  
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Definition 4: A parameter 0θ  is said to be locally identifiable if there exits an open 

neighborhood of 0θ , say, 0( )Nε θ  for some 0ε> , such that there is no 0( )Nεθ θ∈ , which 

is observationally equivalent to 0θ .  

We may note that global identification implies local identification but the converse is not 

true. Also there may exist an identifiable re-parameterization of the model even when the 

model is unidentifiable on its natural parameter space. 

 
2.1 Criteria for Global and Local Identification: 

Necessary and sufficient condition for global identification of 0θ  when the support of 

( )F yθ  is independent of θ  is given by the existence of unique solution of 0( , )H θ θ =0 at 

0θ θ= , where 0( , )H θ θ  is the expected Kullback-Leibler information for discriminating 

θ  and 0θ  (Rao, 1992, pp. 122). This condition, however, is difficult to check in practice 

as 0( , )H θ θ  will not generally have a closed form. For the distributions belonging to the 

exponential family this condition is equivalent to non-singularity of Fisher’s information 

matrix. However, no such result exists for the distributions belonging to the non-

exponential family (which is the case for all the stochastic frontier models) and the 

conditions of identification are derived in a problem specific manner (Rao, 1992). In this 

paper we shall use the following results to examine the global and local identifiability of 

the different SFM.  

Result 1 (Rothenberg, 1971, pp. 584): If there exist m  known functions 

( ) ( )1 ,........., mY Yφ φ  such that, for all θ  in Ω , ( )i iE Yθ φ =    for i=1,2…m, where iθ  is 

the ith element of θ , then every θ  in Ω  is identifiable.  

Result 2  (Rothenberg, 1971, pp. 579): Let 0θ  be a “regular point” of ( )0I θ , the Fisher’s 

information matrix at 0θ . Then 0θ  is locally identifiable if and only if ( )0I θ  is 

nonsingular
6
. 

                                            

6A point 0θ ∈Ω  is said to be a regular point of a matrix ( )M θ , whose elements are continuous functions of θ , if there exist an open 

neighborhood of 0θ  in which ( )M θ  has constant rank (Rothenberg, 1971, pp. 579).     
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We may note that while the Result 1 provides sufficient condition for global 

identification, the condition provided in the Result 2 is both necessary and sufficient for 

local identification. Therefore, in order to see if θ  is identifiable or not, we shall first 

check if Result 1 holds or not. When no conclusion regarding the global identifiability of 

a model could be drawn using the Result 1, only then we use the Result 2 to check if the 

model is locally identifiable or not.   

 
2.2 “Near-identification” Problem: 

The near-identification problem refers to the situation where two probability structures 

(parameters) are “nearly” observationally equivalent. Formally, we say a parameter 

0θ ∈Ω  is “nearly observationally equivalent” if there is another parameter 0( )θ θ≠ ∈Ω  

such that 0( | ) ( | )L x L xθ θ≈  for some x∈S . When 0θ  is near-identifiable, the likelihood 

surface is ‘nearly flat” around 0θ . Therefore, we define: 

Definition 5: A parameter 0θ  is said to be “near-identifiable” if there exits a 

neighborhood around 0θ , say, 0( )Nε θ , and a very small positive η  such that for all 

0( )Nεθ θ∈ , 0( , ) ( , )L x L xθ θ η− < . Equivalently, 0θ  is locally near-identifiable if 

                                             
0

log
lim 0

L

θ θ

δ

δθ→
=                                                          (2.1) 

Definition 6: A model { }( ),F xθ θ∏= ∈Ω  is said to be near-identifiable if there exists 

θ ∈Ω  such that θ  is near- identifiable. 

Clearly, when 0θ  is “regular”, a sufficient condition for near-identifiability of 0θ  is that 

the Fisher’s information matrix ( )I θ  becomes “nearly singular” as 0θ θ→ . In multi-

parameter case one can similarly define near-identifiability of a subset of components of 

0θ . Let us partition θ  and 0θ  as 
'

1 2( , )θ θ θ= and 0 01 02( , )θ θ θ= . Let 1 2( | , )L xθ θ  be the 

conditional likelihood of 1θ  given 2θ  and x. Then  

Definition 7: 01θ  is said to be locally near-identifiable if there exits a neighborhood 

around 01θ , say, 01( )Nε θ , and a very small positive η  such that 
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1 2 01 2( , | ) ( , | )L x L xθ θ θ θ η− <  for every 1 01( )Nεθ θ∈  and every 2θ . Equivalently, 01θ  is 

locally near-identifiable if 

                                              
1 01

01 2

1

log ( , | )
lim 0

L x

θ θ

δ θ θ

δθ→
=                                             (2.2)  

As in case of full parameter case, here too a sufficient condition for near identifiability of 

01θ  is given by near singularity of Fisher’s information matrix ( )I θ  as 1 01θ θ→ . 

Moreover, a model is near-identifiable when at least one component of θ  is near-

identifiable.  

3. Identification of the Stochastic Frontiers:  

The stochastic production frontier model of the ith firm is given by                                       

                             ( ).exp( )i i i iy f x v uβ= − , 1,2,i n= ⋯                                         (3.1) 

, 0v u−∞< <∞ < <∞  

where ( , )f x β  is the deterministic production frontier representing the maximum 

possible output achievable from a bundle of inputs ( x ) and a given technology (.)fβ ,  

indexed by the parameter vector β . It is assumed that the actual output ( y ) of a firm is 

affected by two random factors; one uncontrollable, called the statistical noise ( v ) and 

the other controllable, called the inefficiency (u ). The deterministic frontier subject to 

statistical noise, ( ).exp( )sy f x vβ= , is called the stochastic frontier and gives the 

potential output of a firm for different input bundles. The amount by which the actual 

output falls short of the potential output viz. exp( )u−  measures the technical inefficiency 

of the firm. We may note that the inefficiency u  is a non-negative random variable as 

sy y≤  for all x  and β . While the probability distribution of the “noise” is assumed to be 

normal, the same for the firm level inefficiency has been modeled by exponential, half-

normal, truncated normal or gamma distribution. The noise and the inefficiency are 

traditionally assumed to be statistically independent though recently, in a few studies, this 

assumption has been relaxed (Pal and Sengupta, 1999; Smith, 2004; Burns, 2004 and 

Bandyopadhyay and Das, 2006).   
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In this section we examine the identifiability of two stochastic frontier models viz. the 

normal-gamma frontier (Greene, 1990) and the truncated bivariate normal frontier (Pal 

and Sengupta, 1999; Bandyopadhyay and Das, 2006). We may note that these two 

models include all the standard stochastic frontier models either as a sub-model or as a 

limiting model. Before proceeding for identification, we should also note that i) the 

frontier ( ),if x β  of equation (3.1) is linear in k
Rβ ∈  and ii) the c.d.f. of the composite 

error v uε= − , ( )Fθ ε , is ‘regular” in the sense of Cramer (1946, pp. 479) and does not 

involve β . Thus, when ( )Fθ ε  is globally identifiable, the probability model of y , ( )G yη  

where '( , )η β θ= , is also identifiable as long as the matrix 1 2( , .... )kX x x x=  has full 

column rank. On the other hand, if ( )Fθ ε  is not identifiable, then ( )G yη  is also not 

identifiable even when 'X  has full column rank.  

   

 3.1 Identifiability of the Normal-Gamma SFM:  

In the parametric set up, the normal-gamma stochastic frontier model (Greene, 1990) 

provides the most flexible description of the firm’s inefficiency. However, the 

implementation of this model has been restricted as much because of the complicated 

nature of its likelihood function as its identification problem. Ritter and Simar (1997) was 

first to demonstrate through simulation that the model “is poorly conditioned for samples 

of up to several observations …” (pp. 2). They also observed that the estimates “suffer 

from substantial imprecision, are ambiguous or can not be calculated at all” and “the full 

model is hard to identify” (pp. 2). These observations indicate that the model is near-

unidentifiable. In this section we show that the normal-gamma stochastic frontier model 

is globally identifiable but suffers from the near-identifiablity problem.   

The normal-gamma SFM is given by the equation (3.1) along with the assumptions i) 

2(0, )vv N σ∼  ii) ( , )u G P θ∼  and iii) u and v are independently distributed. Let 

2 '( , , , )vPη β θ σ=  be the parameter vector and ( )I η  be the Fisher’s information matrix of 

the normal-gamma SFM. Then the following result shows that the normal-gamma SFM is 

globally identifiable.  

 

Theorem 1: Normal-Gamma SFM is globally identifiable. 
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Proof: See Appendix. 

We may note that global identification of normal-gamma SFM also establishes the global 

identification of normal-exponential SFM, as the later is a sub-model of the former at 

1P= . It also implies that the Fisher’s information matrix ( )I η  is non-singular at every 

point in the parameter space. However, in the next section we show that ( ) 0I η ≈  for 

some η  in the parameter space. In other words, we show that the normal-gamma SFM is 

near-identifiable.  

 
3.1.2 Near–identifiability of the Normal-Gamma SFM: 

The near-identifiability problem of the normal-gamma SFM can be demonstrated 

considering the limiting behavior of the characteristic function of the composite error 

term ε . For example, it can be easily checked as P→ ∞ , the inefficiency (gamma) 

distribution tends to the normal distribution and the parameters of the component 

distributions cannot be separately identified. In other words, the normal-gamma SFM 

tends to be near-identifiable for very large values of the shape parameter of the gamma 

distribution. Similarly, it can be shown that as 1P→  and θ→ ∞ , the inefficiency 

distribution becomes degenerate at 0 and the gamma frontier model tends to the Gaussian 

least squares model. In the next theorem we show that as 1P→  and θ→ ∞ , the log-

likelihood function of the normal-gamma SFM becomes “nearly-flat”. 

Theorem 2: 
1

ln ( )
lim 0
P

f

θ

γ

θ→
→∞

∂
→

∂
. 

 Proof: See Appendix.  

Thus the slope of the log-likelihood function becomes “nearly flat” and the normal-

gamma SFM becomes near-identifiable in that region of the parameter space where the 

shape parameter is around unity and the scale parameter is very large.  

 

3.2 Identifiability of the Truncated Bivariate Normal SFM: 

The truncated bivariate normal SFM, hereafter BNSFM, is obtained from equation (3.1) 

under the assumption that the component errors v  and u  are jointly distributed as 
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truncated bivariate normal; u being truncated at an unknown non-negative point, say, 0u . 

The p.d.f of y is given by            

   ( )

1
2

* *
*

2
* * **

1 2
;

1

u u y y
f y

λ λρ ξ ξ
η σ µ φ

σ λ σ σρ λσ

−
      + −  − −      = Φ − Φ +                −    

          (3.2)                           

                                                                                            y−∞ < < ∞                         

where ( )
'

* 0, , , , , ,v u uη β µ µ σ λ ρ= , ( )* 0 uu u µ= − , '

v uxξ β µ µ= + − , u vλ σ σ= , 

2 2 2

* 2u v u vσ σ σ ρσ σ= + −  and ( ) 21µ λ ρ ρ=− − −  .                                                            

 From the expression of the p.d.f. of y given in (3.2), it is obvious that if both uµ  and vµ   

are non-zero then the model is not identifiable as there are infinitely many combinations 

of uµ  and vµ  that  yield the same value for the likelihood function of the model. By the 

same argument, one can also see that the model is not identifiable if both 0u  and uµ  are 

non-zero. Thus the model may be identifiable in the following two alternative situations 

namely i) 0 0v uµ = =  (Pal and Sengupta, 1999) and ii) 0u vµ µ= =  (Bandyopadhyay 

and Das, 2006). Let ( )1 *,0, , , , ,0uη β µ σ λ ρ= , ( )2 *,0,0, , , ,0η β σ λ ρ=  and ( )I η  be the 

Fisher’s information matrix for the model. Then the following theorem shows that while 

the Bandyopadhyay and Das (2006) model is unidentifiable, the Pal and Sengupta (1999) 

model is near-identifiable.  

Theorem 3: ( )2I η  is singular. Also ( )1lim 0I
λ

η
→∞

= . 

 Proof: See Appendix. 

 
3.3 Identification of the Half-normal and the Truncated-Normal SFM:  

The BNSFM includes the half-normal ( 0 0v uu µ µ ρ= = = = ) and the truncated-normal 

( 0 0vu µ ρ= = = ) SFM as sub-models and tends to Gaussian least squares model as 

0λ→  (see section 3.3.1 below). The p.d.f. of y under the half-normal (Aigner et al., 

1977) and the truncated-normal (Stevenson, 1980) stochastic frontier models can be  

obtained  substituting in (3.2) 0 0v uu µ µ ρ= = = =  and 0 0vu µ ρ= = =  respectively. 
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It can be easily checked that the second and higher order moments of y under the 

truncated normal SFM are non-linear function of the parameters and the individual 

parameters of the model cannot be uniquely expressed as continuous function of the 

population moments. Thus the global identifiability of the model cannot be established 

using the Result 1. However, the following theorem establishes the global identifiability 

of the half-normal stochastic frontier. 

Theorem 4: The normal-half-normal SFM is globally identifiable.  

Proof: See Appendix 

 

3.3.1 Near-identifiability of the Truncated Bivariate Normal SFM: 

 As in case of normal-gamma SFM, we can examine the near-identifiability of the 

BNSFM studying the limiting behavior of its characteristic function given by 

( )

2 2

* *

2

2

exp
2 1

1

y

t it
it

t

σ α σ µ
ξ

µ
ψ

α

µ

   + − Φ        + 
=

  Φ    + 

 

where 2

0 *( ) ( 1 )uuα µ ρ σ λ= − − − , 2( ) 1µ λ ρ ρ= − − − , '

v uxξ β µ µ= + − . 

It can be checked that, as 0λ→ , the characteristic function of the BNSFM tends to that 

of the Gaussian least squares model. Therefore, when 0λ→ , normal-half-normal, 

normal-truncated-normal and truncated bivariate normal SFMs cannot be distinguished 

from each other. Moreover, it can be easily checked that under the following parametric 

transformation 

'

v uxξ β µ µ= + − , 

2 2 2

* 2v u v uσ σ σ ρσ σ= + −  

0

2

*1

uu µ
α

ρ σ λ

−
= −

−
, 

21

λ ρ
µ

ρ

−
= −

−
, 

y follows extended skew-normal distribution i.e. ( )*, , ,y ESN ξ σ µ α∼  which is known 

to be near-identifiable (Capitanio et al., 2003). Also using the characteristic function 
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approach, one can show that the p.d.f. of y tends to be that of skew-normal distribution as 

0uµ → . In the next theorem we show that the model is near-identifiable. Since following 

theorem holds for all values of uµ , it also shows that the normal-half-normal SFM, 

though globally identifiable, suffers from near-identifiability problem.  

Theorem 5: Normal-Truncated-normal SFM is near-identifiable. 

 Proof: See Appendix.  

 

4. Near–identifiability and the Signal to Noise Ratio: 

Bandyopadhyay and Das (2006, pp. 174) defined the signal to noise ratio (SNR) of a 

model as the ratio of the variances of inefficiency (u ) and the noise ( v ) and studied the 

relationship between SNR and the firm level inefficiency. In this section we discuss the 

relationship between SNR and the near-identifiability of a model. An interesting aspect of 

the above results on near-identifiability is that all the models considered in this paper 

tends to be near-identifiable as the ratio of u vσ σ λ=  tends to 0 and / or ∞ . Moreover, 

except in case of normal-gamma SFM, these results hold good irrespective of the values 

of the other parameters. Since the signal to noise ratio (SNR) for all the models tend to 0 

or ∞  according as λ  tends to 0 or ∞ , the above results on the near-identifiabiliy shows 

that all the standard models tend to be near-identifiable as the SNR tends to 0 or ∞ . 

Thus we see that as the variance of one of the component distributions becomes too large 

or too small vis-a-vis that of the other distribution the model becomes near-identifiable 

and it becomes difficult to identify the parameters of the component distributions. In so 

far as the expected information regarding the parameters of a distribution is inversely 

related to the variance of the distribution, the information content of the sample regarding 

the parameters of inefficiency distribution becomes negligible as the variance of the noise 

becomes extremely large in comparison with that of the noise. Consequently, it becomes 

difficult to separately identify the parameters of the inefficiency distribution on the basis 

of information provided in the sample. Exactly opposite happens as the variance of the 

inefficiency becomes extremely large in comparison with that of the noise. Thus our 

results analytically establish the empirical conclusion of Ritter and Simar (1997) viz. a 

disproportionately high or low value of the variance of one of the component distribution 

in SFM will make identification of the parameters of component distribution extremely 
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difficult. In other words, disproportionately large or small SNR will make the SFM near-

identifiable. 

 
5. Conclusions: 

Model identification is an essential prerequisite for the likelihood-based inference of a 

statistical model. In this article we have analytically examined the identifiability of the 

standard single equation SFMs with uncorrelated and correlated error components. 

Giving mathematical content to the notion of near-identifiability of a statistical model, we 

have shown that each of these SFMs suffers from near-identification problem although 

they are at least locally identifiable. In particular, we have determined for the different 

SFM the near-identifiable parameters around which the log-likelihood function becomes 

“nearly-flat”. Our results also provide the analytical support to the empirical conclusion 

of Ritter and Simar (1997) viz. a too large or a too small variance of one of the 

component distribution make the identification of their parameters extremely difficult. 

This result also highlights the pivotal role played by the SNR of a SFM in rendering it 

near-identifiable. However, some of the important questions that arise in this context and 

that have been left unanswered here are: how to determine from the sample the extent of 

“near-identifiablity” of a near-identifiable parameter? Does the near-identifiablity 

problem of the single equation SFM carry over to the simultaneous equation set-up? 

These are some of the questions that are currently being explored by the present authors 

in the context of the near-identification problem of the stochastic frontier models.  
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Appendix  

Proof of Theorem 1: 

In order to establish the global identifiability of the normal-gamma SFM, we note that the 

first four central moments of y are ( ) '

1 y x Pµ β θ= − , ( ) 2 2

2 vy Pµ σ θ= + , 

( ) 3

3 2y Pµ θ=  and ( ) 4 4 2 4

4 3 6 3 ( 2)v vy P P Pµ σ σ θ θ= + + +  (Greene, 1990, p. 152) from 

which one can obtain the following consistent estimates of β , θ , P and 2

vσ  as 

( ) ( )
1

' 'ˆ ˆˆx x x y Pβ θ
−

= − , ( )23 4 2
ˆ 3 3m m mθ =− − , 3

3
ˆˆ 2P mθ=− , 2 2

2
ˆˆ

v m Pσ θ= − . 

Therefore, by Result 1, the model is globally identified. 

Proof of Theorem 2: 

Let the parameter vector be ( )' 2, , , vPη β θ σ=   

Then the log-likelihood function of the model is given by  

( ) ( ) ( )' 2 2 ' 2log log 2 log {( }/ 2 log 1,vl p P y x y x h P yη θ θ β σ θ β σ θ= − − − + + Φ − + + −                                                                                    

where ( )
'

' 2, , , vPη β θ σ= , ( ) ( )111,
P

h P y E u
−

− =  and ( )' 2 2

1

1
,

2
v vu N y x β σ θ σ− +∼ . 

Then, from Greene (1990, pp. 150), 

ln ( ) ( , )
( ) ( | )

( 1, )

f P h P
E u E u

h P

η ε
ε

θ θ ε

∂
= − = −

∂ −
  

Also, from Greene (1990, pp. 157), we know, 
1
( / ) . ( / )u u

P
lt E u hε λ σ λ σ
→

= +  where 

2( . )uλ ε θ σ=− −  and h(.) is the hazard rate. Now, using the approximation, ( )h z z≈  we 

get 
1
ln ( ) 1

P
lt f η θ θ
→

∂ ∂ = . Therefore, 
1
ln ( ) 0

P
lt f

θ

η θ
→
→∞

∂ ∂ = .  

Thus, normal-gamma SFM becomes near-identifiable as the scale parameter tends to 

unity and the shape parameter becomes infinitely large.  

Proof of Theorem 3: 

Substituting 1η  in (3.2), we get the log-likelihood function of the model, ( )1l η  as 

( )
( )

2
'2 '

1 * 22
* * **

1 2
log log log

21

uu u u
y xy x

l
β µµ λ λρ µ β µ

η σ µ
σ λ σ σρ λσ

    − ++ −  − +   =− − Φ + Φ + −        −   
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Taking limits of the individual elements of the Fisher's information matrix for this model, 

one gets, 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ' 2 0111
10 10 112 2 3

* * * * * 8

2 0111
10 112 3

* * * * *

1 02
113

* *

1 1 1 1
1 1 0 ,

2

1 1 1
1 0 ,

2

lim 1 2 3
4

4

x x x E h z x m E h z x

E h z m E h z

I
λ

µ
µ µ µ λ ρ

σ σ σ σ µσ σ

µ
µ µ λ ρ

σ σ σ µσ σ

η

σ σ µ
→∞

  ΛΛ      − Λ + − Λ + − + + Λ +         

   ΛΛ       − Λ + + + Λ +      
   

= Λ
+ Λ − ( )

( )

12 11

2 2 3

* * * *

22

11

2 3

* *

1
0 ,

2

0 0

,

u

u

k m

m
k

µ
λ ρ

σ σ σ µρ µ

λ ρµ

σ ρ µ

                    Λ Λ     − +                   Λ   − −             

where ( )* *

i j

ij E z z Λ = Ψ    and 
'

*
vy x

z
β µ

µ
σ

− −
=  

Thus the determinant of the Fisher’s information matrix tends to zero as the ratio of the 

variances of inefficiency and noise increases indefinitely and hence the single equation 

version of the Pal and Sengupta (1999) model, though globally identifiable, becomes 

“near-identifiable” as the signal to noise ratio tends to zero.  

In order to show global unidentifiability of the Bandyopadhyay and Das (2006) model, let 

us substitute 2η  in (3.2) to get the log-likelihood function of the model as  

                                ( )
( )

2
''

2 * 2

* *

log log
2

y xy x
l

ββ
η σ µ

σ σ

  −−  =− + Φ −   
                                                                                                                    

 From the above log-likelihood function, it can be checked that the different elements of 

the observed information matrix satisfy the following relations:  

( ) ( )2 2

2 2

'

l l
c

η η

λ β ρ β

∂ ∂
=

∂ ∂ ∂ ∂
, 

( ) ( )2 2

2 2

* *

l l
c

η η

λ σ ρ σ

∂ ∂
=

∂ ∂ ∂ ∂
, 

( ) ( )2 2

2 2

2

l l
c

η η

λ ρ λ

∂ ∂
=

∂ ∂ ∂
, 

( ) ( )2 2

2 2

2

l l
c

η η

λ ρ ρ

∂ ∂
=

∂ ∂ ∂
 

where the vector ( ) ( )21 1c ρλ ρ= + − . 

Taking expectation of the both sides of the above relations, one gets the different 

elements of the   information matrix ( )2I η . It can be checked that the resulting 

information matrix is singular as the last two rows of ( )2I η  are identical. Thus the 

Bandyopadhyay and Das (2006) model is globally unidentifiable.  
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Proof of Theorem 4: 

The p.d.f. of y is given by  

                    ( )
' '1

;
y x y x

f y
β β

γ λ φ
σ σ σ

   − −   = Φ        
,                   y−∞< <∞        

where ( )' , ,γ β λ σ= .   

It can be checked that the first three central moments of y are respectively given by 

( ) '

1 y x bµ β δ= + , ( ) ( )2 2 2

2 1y bµ σ δ= −  and ( ) ( )3 2

3 2 1y b bµ δ= −  where 2b π= , and 

21δ λ λ= + . Replacing the population moments, ( )r yµ , by their sample counterparts 

( )rm y , we get the consistent estimates of β , λ  and σ as ( ) ( )
1

' 'ˆ ˆx x x y bβ δ
−

= − , 

( )( )
1/3

2

3
ˆ 2 1m b bδ = −  and ( )2 2 2

2
ˆˆ 1m bσ δ= − − 7

.  Therefore, by Result 1, the model is 

globally identified. 

Proof of Theorem 5: 

The log-likelihood function based on single observation of the model given in (3.2) is  

( ) ( ) ( )
2 '

2
'

2

1 1
log log log log

2

u u u
u

y x
l L y x

µ λ µ β µ
γ γ σ λ β µ

σλ σλ σ σ

   + − −  = =− − Φ + Φ + − − −       

Let the observed information matrix be 
2~ ( )

( )
i j

ln
I

γ
γ

γ γ

∂
=

∂ ∂
 where ( )

'
' , , ,uγ β µ σ λ=  and  

( )
( )

2 2
'

2' 2 2

1l
z x x

γ λ

β β σ σ

 ∂
 = Ψ −
 ∂ ∂  

     

( )
( ) { }

2

2

2 2 2

1 1
1

u

l
z x

γ
λ

β µ σ σ

 ∂
 = Ψ − −
 ∂ ∂  

   

( )
( ) ( )

2 2

1 1
2 22

1 2u
l

z h z x
γ µ λ ε ε

λ
β σ σ σ σ

 ∂ +  = −Ψ + −  ∂ ∂  
 

( )
( ) ( )

2

2 1 22 2

1 1
u

l
z h z x

γ λ
µ ε

β λ σ λ σ

  ∂    = Ψ + − 
  ∂ ∂    

 

( )
( ) ( )

2 2

1
1 22 2 2 2

1 1
1

u

l
z z

γ λ

µ σ λ λ

 ∂
 = Ψ −Ψ −
 ∂  
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( )
( ) ( ) ( ) ( )

2 2

1 1 1
1 1 2 1 22 2 2 2 3

1 2u
l

z h z z h z
γ µλ λ λ ε

ε
µ σ σ λ σλ σλ σ σ σ

  ∂
  = −Ψ + + Ψ + − −
  ∂ ∂    

( ) ( ) ( )
( )

( )2

1 1 2

2 12 2

1

1 1 u

u

l z h z h z
z

γ µ
ε

µ λ σλ λ λ σλ λ λ

    ∂ Ψ      = − + + Ψ − +     ∂ ∂      
 

( )
( ) ( )

( )
( )

2 2 2
211 1

1 1 1 1 22 2 3 3 4

1 1 3
2 2u u u

l z
z h z h z

γ µ λ µ µλ ε
ελ ελ

σ σ λσ λσ σ λ λ σ σ

      ∂ Ψ     =− − Ψ + + + + + −            ∂     

( )
( )

( ) ( )
( )

( )2

1 2 221
1 13 2 2 2 3

1

uu u
u

l h z z h z
z

γ µµ µ ε
µ ελ

σ λ λ σ λ λ λ σ σ σ λ σ

  ∂ Ψ  = Ψ − + + + −   ∂ ∂  
 

( )
( ) ( ) ( ) ( )

22

1 1 2 1 22 4 3 2 2 2 3

1 1 1

1 2 1 1
2u u u

l
z h z z h z

γ µ µ µ
ε

λ σλ λ λ λ λ σ λ σλ

    ∂        = Ψ − + −Ψ + +       ∂       
 

where  

( )
( )

( )

( )

( )

2

1 1 1

1 2

1 1

z z z
z

z z

φ φ 
 Ψ = + Φ Φ  

, ( )
( )

( )

( )

( )

2

2 2 2

2 2

2 2

z z z
z

z z

φ φ 
 Ψ = + Φ Φ  

,  1
1

uz
µ λ

σλ
= , 

1
2

uz
µ ε

λ
σλ σ

= + , 2

1 1λ λ= + , '

1 uy xε β µ= − − . Taking expectations of the above terms 

one gets the Fisher’s information matrix ( ), , ,uI β µ σ λ  from which it can be checked that  

( )

( )

( )

( )

1'

2 2 3

1

2 3

0
2

1

2 4

21 1
0

21
0

lim , , ,

31
0

0

u

E
x x x x

E

I

E
λ

ε

σ σ σ

ε

β µ σ λ σ σ

ε

σ σ

→

          =       +        

  

Therefore, as the variance of the noise increases infinitely vis-à-vis the variance of 

inefficiency i.e. as signal to noise ratio goes to zero, the determinant of the Fisher’s 

information matrix tends to zero and the normal-truncated-normal SFM becomes near-

identifiable.  

 

                                                                                                                                  
7 These estimates are consistent as they can be expressed as continuous functions of sample moments.   


