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Abstract 

Power sharing is modeled as a duel over some prize.  Each of two players may 

either share the prize in some ratio or fire at the other player—either in sequence or 

simultaneously—and eliminate it with a specified probability.  If one player eliminates 

the other without being eliminated itself, it captures the entire prize, but the prize is 

damaged over time when there is shooting. 

Simultaneous shooting, which is more damaging than sequential shooting, tends to 

induce the players to share the prize and expand their opportunities for sharing it.  It was 

effectively implemented by the superpowers with the doctrine of “launch on warning” 

during the Cold War, and it was strengthened by the development of second-strike 

capability.  Deterring terrorism has proved a different matter, because terrorists are 

difficult to detect and present few targets that can be damaged.  
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Stabilizing Power Sharing1 

1. Introduction 

Power sharing has been problematic from time immemorial.  Children have 

difficulty sharing toys and desserts.  Couples have difficulty dividing responsibilities. 

In the corporate world, it is rare for two CEOs to share power without crossing 

swords.  After a merger, quarrels between the CEOs of the merged companies are 

common; sometimes they become so fierce that one CEO is forced out.  Such a power 

struggle is almost always detrimental to the new company, occasionally leading to its 

collapse. 

At the national level, no country in the world officially has two presidents or two 

prime ministers.  When two party leaders agree to share the prime ministership, then one 

typically holds this position for one period followed by the other’s taking the reins for 

another period.2   

When there is power sharing among political parties in parliamentary democracies 

because no party wins a majority of seats in the parliament, it is most often of cabinet 

ministries.  Usually the largest party is awarded the prime ministership, and there is no 

simultaneous sharing of this prize. 

At the international level, it is quite common for countries to rotate offices in an 

international organization.  A new secretary-general of the United Nations never comes 

from the same country and almost never from the same region of the world as his or her 

                                                 
1 We thank Eric S. Dickson for valuable comments on an earlier version of this paper. 
2 This happened, for example, when a national-unity government, comprising the two largest parties in 
Israel, assumed power over the 4-year period from 1983 to 1986. Itzhak Shamir of the Likud Party was 
prime minister for the first two years, and Shimon Peres of the Labor Party for the next two years. 
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predecessor, just as the presidency of the Council of Ministers of the European Union 

rotates every six months among its 27 members.  Still, the largest countries in these 

organizations often exercise veto power—de facto or de jure—and sharing is anything 

but equal among the members of these organizations.   

We focus in this paper on two-party power-sharing agreements and ask which 

factors make them stable.  In a previous paper (Brams and Kilgour, 2007), we developed 

game-theoretic models in which players could agree to share power or engage in a duel.  

Each player had an unlimited number of bullets to expend, round by round.   

By firing at an opponent and, with a specified probability, eliminating it, a player 

could capture all the assets.  But because we assumed that the players were not perfect 

shots, shooting was not a surefire strategy to acquire these assets.  

Ominously, we found that power sharing was almost never rational, however the 

assets were divided and however they were discounted in repeated play.  Because the 

players almost always had an incentive to shoot, there was a “race to preempt.”   

The only way we found to slow down this race was to postulate that shooting 

would cause damage in each period that it occurred.  But even this damage was often 

insufficient to deter the players from shooting, because they still received benefits in each 

period they survived.   

If only one player survived, it benefited the most, because it received all the 

remaining assets.  Because these assets were discounted or damaged more heavily the 

longer play continued, a player did best by eliminating its opponent early, which was 

abetted by its being a good shot.  
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In this paper, we assume that the game the duelists play is different from the ones 

we analyzed earlier.  While repeated, it does not bestow payoffs on the players in each 

period that shooting occurs and neither is eliminated.  Instead, there is a single prize, 

awarded at the end of play, which goes to 

• both players if they agree to share it; or 

• one or neither player if they refuse to share it and instead fire at each other until    

  one or both is eliminated.  

We consider two possibilities for shooting—that it may occur either sequentially or 

simultaneously.  Although power sharing can occur for each possibility, the power-

sharing region is considerably enlarged when shooting is simultaneous.  Simultaneity also 

makes more sharing arrangements stable, so players have greater opportunity to design an 

agreement without fear that it will be abrogated.   

2.  Notation and Assumptions 

Assume there are two players, P and Q.  Power is a prize that both players may 

share at any time and has an initial value of 1.3  If P and Q decide to share the prize, they 

do so in the ratio of a : (1 – a), which is a ratio that we assume was set before play 

commenced.  If the value of the prize when the players agree to share it is v, then P 

receives a payoff of av, and Q a payoff of (1 – a)v. 

Alternatively, P and Q may attempt to eliminate one another.  If P fires at Q, Q is 

eliminated with probability p; if Q fires at P, P is eliminated with probability q.  When a 

                                                 
3 Power is often conceptualized as a relationship between players, not a good they may share.  Because it is 
not apparent what sharing means in a power relationship, we posit a divisible good (prize) that the players 
agree to share or, by shooting, try to capture entirely. 
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player is eliminated, its payoff is 0.  The survivor, if any, wins the entire prize. We 

assume that there is no disgrace or other penalty incurred from firing and missing an 

opponent.  

Once started, firing proceeds in rounds as long as both players survive. If one or 

both players are eliminated, the game terminates, and the survivor, if any, receives the 

prize at that time.   

In any round, both players have one opportunity to eliminate their opponent.  A 

round of shooting in which neither player is eliminated reduces the value of the prize by a 

factor of 1 – s, which reflects the damage caused by firing.  Consequently, the prize is 

worth 1 in the first round, s in the second round, s2 in the third round, and so on.  If there 

are n rounds of fighting in which neither player is eliminated, and if the prize is then won 

during the (n + 1)st round, then it is worth sn.   

The payoff to a player is the expected value of the prize it receives.  The players 

value nothing else, and firing has no cost.4 

To avoid trivial cases, we usually assume that 0 < a < 1, 0 < s < 1, 0 < p < 1, and 0 

< q < 1, and their values are common knowledge.  While a may be related to the other 

parameters, including p, q, or s, we assume no specific relationship in our models.  

Instead, we identify the values of a (in terms of p, q, and s) that make sharing the prize—

as opposed to fighting for it—a rational choice of the players. 

Unlike our earlier models (Brams and Kilgour, 2007), we assume there are no 

interim rewards—in particular, there is no accumulation of payoffs, round by round, as 

                                                 
4 This no-cost assumption differs from that in most economic models, in which players use up resources 
when they attack one another.  We do not develop such a model here in order to focus on the conditions 
that discourage fighting when it is not costly.  But cost considerations come into play indirectly—fighting 
makes the prize less valuable.  
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long as the players survive.5  In particular, neither player receives anything until (i) each 

agrees to share the prize (once and for all), or (ii) at least one player is eliminated.   

While time plays no direct role in our models, the players know that play cannot 

continue indefinitely (see note 4).  The damage parameter, s, is effectively a discount 

parameter, whereby the prize shrinks in value as fighting continues.  Consequently, even 

winning all of it in some later round will be less advantageous than sharing it at the start 

of play.  

We turn next to assessing the effects of sequential versus simultaneous shooting.  

As we will show, simultaneous shooting is more likely to deter the players from firing, 

because it is more fearsome: It may cause more damage early; and it may eliminate both 

players on any round, which sequential shooting can never do. 

3.  Sequential Interaction 

We assume the players act in sequence: Either the players agree at the outset to 

share the prize, or one of them fires at its opponent.  If, say, P eliminates Q, P receives 

the prize, which has value 1.  If P fails, Q responds by firing at P.  If Q eliminates P, Q 

receives the prize, still worth 1.  But if Q also fails, the players are in the same position as 

at the start, except that the value of the prize has been reduced from 1 to s.   

We search for Nash equilibria in stationary strategies, which means that a player’s 

strategy depends only on its strategic possibilities at the moment and not on the history of 

the players’ interaction.  Thus, a stationary strategy that calls for a player to try to 

                                                 
5 If anything, costs rather than rewards accumulate as play continues.  Firing uses up ammunition and other 
resources, which are not in reality unlimited.  The models we develop probably apply best to situations in 
which P and Q have more or less equal resources, so a war of attrition does not favor either player.  While 
fighting always ends in a finite number of rounds because p and q are positive, one cannot say exactly 
when it will end, except in probabilistic terms.  
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eliminate its opponent in the first round must, if both players survive the first round, call 

for the player to try to eliminate its opponent on the second round, and so on in future 

rounds.6   

To determine whether sharing or firing is better for P, we calculate P’s expected 

reward, VP, if P fires at Q, noting that if Q survives, Q will fire back at P in the same 

round (Q has nothing to lose and possibly something to gain if it eliminates P).  Because 

both players survive with probability (1 – p)(1 – q), we have 

VP = p(1) + [(1 – p)q](0) + [(1 – p)(1 – q)](sV) = p + [(1 – p)(1 – q)](sV), 

where the sV factor on the right side of the equation reflects the continuation of the game 

to a second round in which V is reduced to sV.  If follows that  

! 

VP =
p

1" [(1" p)(1" q)]s
.               (1) 

P is rationally deterred from initiating the firing if and only if (iff) VP ≤ a, which is 

equivalent to   

! 

p "
a # as(1# q)

1# as(1# q)
.                       (2) 

                                                 
6 Why is this plausible?  Because the only feature that has changed in the second and subsequent rounds is 
the value of the prize, which has decreased, so the strategic incentives remain the same because there is 
nothing in our model that relates the size of the prize to these incentives.  To illustrate a nonstationary 
strategy, assume that after one round of firing, P chooses not to fire to try to induce its opponent to share 
the prize.  Because P‘s behavior changes in the course of play, history matters, rendering its strategy 
nonstationary. 
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The fraction on the right side of (2) is the threshold value of p for deterrence to occur—

that is, for P to prefer its share of the prize, a, to what it obtains, on average, from 

fighting. 

Note that the numerator of the right side of (2) is a[1 – s(1 – q)].  Since  

[1 – s(1 – q)] < [1 – as(1 – q)]  

because a  < 1, it follows that, independent of the values of s and q, if P is rationally 

deterred, then p < a.  If p ≥  a, (2) implies that a rational P will never be deterred from 

initiating the firing.  

Similarly, Q will be rationally deterred iff its expected value, VQ, is not greater 

than 1 – a, the value it receives from sharing.  Analogous to (2), the condition for 

deterrence of Q is 

! 

q "
1# a # s(1# a)(1# p)

1# s(1# a)(1# p)
.                                                                                        (3)  

Just as P is rationally deterred when the right side of (2) is less than a, Q is rationally 

deterred when the right side of (3) is less than 1 – a.  In particular, if q ≥ 1 – a, a rational 

Q will never be deterred from initiating the firing.  

Rewriting (3) as a condition on p and combining it with (2) shows that (2) and (3) 

both hold iff p satisfies 

! 

a " (1" q) + s(1" a)(1" q)

s(1" a)(1" q)
# p #

a " as(1" q)

1" as(1" q)
                                                          (4) 

and, of course, 0 < p < 1.  The points (q, p) defined by these conditions are shown as the 

shaded region in Figure 1 for three cases: s approaches 0; 0 < s < 1; and s approaches 1.  
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Figure 1 about here 

Inequality (4) provides both lower and upper bounds on p.  The upper bound on p 

always lies between 0 and a, and it is strictly decreasing in s and increasing in q.  It 

approaches a as s approaches 0 or as q approaches 1, and it approaches 0 as s approaches 

1 and q approaches 0.   

The lower bound for p given by (4) is nonpositive when 

! 

q "
(1# s)(1# a)

1# s(1# a)
, 

which explains why the additional condition, p > 0, may come into play.  When 

! 

(1" s)(1" a)

1" s(1" a)
< q <1" a,   

this lower bound is positive, increasing in q and decreasing in s.   

As q approaches 1, the numerator on the right side of (4) approaches a, and when q 

= 1 – a, the numerator on the left side of (4) equals 1.  Thus, for example, as q 

approaches 0, P is rationally deterred from firing iff  

! 

0 < p "
a # as

1# as
. 

As Figure 1 shows, for any fixed (positive) value of s, deterrence is possible if p 

and q are sufficiently small.  Deterrence is maximal when damage is nearly total (i.e., s is 

near 0), which occurs when p < a and q < 1 – a.  The rectangular area defined by these 
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inequalities is greatest when a = 1 – a = 1/2, rendering the deterrence region a square.  

Thus, players that share the prize equally are most likely to be deterred from firing. 

Deterrence is impossible if, when the players fire, no damage is inflicted because s 

= 1.  For the players to be deterred from shooting, therefore, they must incur some 

damage from firing, and their probabilities of eliminating their opponents must not be too 

high. 

In the special case when a = 1/2 and the players share the prize equally, the 

deterrence region—the set of (q, p) values where both players are rationally deterred from 

firing— is symmetric (it becomes a square as s approaches 0).  The corner point of the 

deterrence region opposite the origin (0, 0) is (x, x), where  

! 

x =
s"1+ s" s

2

s
. 

Note that x is a decreasing function of s, which approaches 0 as s approaches 1; it 

approaches 1/2 as s approaches 0.  When a = ½  and s approaches 0, the area of the 

deterrence region is maximal at 1/4 of the (q, p) unit square.  Thus, even in the best case 

of total damage and equal sharing, both players’ shooting accuracies cannot exceed 1/2 

for deterrence to occur.  

4.  Simultaneous Interaction 

We now assume that the players act simultaneously (or that if one player fires first, 

its opponent can return fire, regardless of whether the first shot hits its mark).  Thus, 

either the players agree at the outset to share the prize, or they fire at each other.  In the 
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latter case, it is possible for both shots to be successful, eliminating both players in any 

round, so each would receive a payoff of 0. 

If the first shot is successful and a player is therefore eliminated, it would appear 

inconsistent to allow the eliminated player to return fire.  However, there are instances of 

people who are fatally shot but, while taking their dying breath, manage to kill an 

assailant.  At the international level, a “doomsday machine” also works in this manner, 

enabling state A to destroy B even as A itself is destroyed.  By contrast, instantaneous 

reciprocation cannot happen in the sequential-interaction model, because an eliminated 

player cannot subsequently eliminate its opponent. 

As in the sequential-interaction model, the value of the prize in the simultaneous-

interaction model is reduced by the factor of 1 – s on each round if both players fire and 

neither is eliminated.  Also as before, we restrict our analysis to stationary strategies. 

To determine whether sharing or firing is better for P, we calculate P’s expected 

payoff, WP, if P fires at Q.  P will receive a positive payoff if P’s shot succeeds and Q’s 

(simultaneous) shot fails, whereas P will receive a payoff of 0 if Q’s shot succeeds.  If 

neither player’s shot hits the mark, which will occur with probability (1 – p)(1 – q), both 

players will survive and the game will continue to a new round: 

WP = [p(1 – q)](1) + q(0) + [(1 – p)(1 – q)]sW = p(1 – q) + [(1 -  p)(1 – q)]sW.  

This equation can be rewritten as  

! 

WP =
p(1" p)

1" [(1" p)(1" q)]s
.              (5) 

P is rationally deterred from initiating the firing iff WP ≤ a, which is equivalent to  
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! 

p "
a # as(1# q)

(1# q) # as(1# q)
.                                                                                             (6)  

The fraction on the right side of (6) is the threshold value of p for deterrence.  This 

threshold is always positive; it is less than 1 iff a – as(1 – q) < (1 – q) – as(1 – q), which 

reduces to q < 1 – a.  Hence, if q ≥ 1 – a, P is rationally deterred from firing no matter 

what the value of p is.  

Analogous to (6), Q is rationally deterred from firing iff  

! 

q "
1# a # s(1# a)(1# p)

(1# p) # s(1# a)(1# p)
.                                                                                     (7) 

The threshold value of q, given by the right side of (7), is always positive, and it is less 

than 1 iff p < a.  Hence, if p ≥ a, Q is rationally deterred from firing no matter what the 

value of q is.  

It is rational for P and Q to share the prize iff both (6) and (7) hold.  Rewriting (7) 

as a lower bound on p (rather than an upper bound on q) shows that power sharing in the 

ratio a : (1 – a) is rational for both players iff  

! 

a " (1" q) + s(1" a)(1" q)

q + s(1" a)(1" q)
# p #

a " as(1" q)

(1" a) " as(1" q)
,                                                 (8) 

and, of course, 0 < p < 1.  The deterrence region, which are the points of the (q, p) unit 

square defined by (8), is shaded in Figure 2 for three cases: s approaches 0, 0 < s < 1, and 

s approaches 1.  
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Figure 2 about here 

Note that for any value of a, there are always some (q, p) values for which both 

players prefer to share the prize in the ratio a : (1 – a) rather than fight.  The deterrence 

region includes all points where p ≥ a and q ≥ 1 – a; in particular, it includes points where 

the values of p and q are both near 1.  Unlike the sequential-interaction model, both 

players benefit from sharing when they have high probabilities of eliminating each other.  

The deterrence region also includes points where the values of q and p are near 0, 

but those points are much more confined, as Figure 2 makes clear.  But as s falls, the 

damage caused by firing increases, and the deterrence region near (q, p) = (0, 0) grows 

larger.   

Figure 2 also shows that as s approaches 0, the deterrence region includes the 

rectangle with opposite corners (0, 0) and (1 – a, a), and the rectangle with opposite 

corners (1 – a, a) and (1, 1).  In other words, in a broad band around the 45o line from (0, 

0) to (1, 1), both players will be deterred. 

Note that for any fixed s with 0 < s < 1 (the middle case of both Figure 1 and 

Figure 2), the intersections of the curved lines in Figures 1 and 2 with the q- and p-axes 

are identical.  This shows that at any (q, p) where deterrence is rational in the sequential-

interaction model (Figure 1), it is also rational in the simultaneous-interaction model 

(Figure 2).   

5. How Should Power Be Shared to Induce Stability? 

We now take a different approach to power sharing, asking a design question: 

When power is to be shared in the ratio a : (1 – a), what values of a render power sharing 
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stable?  More specifically, given p and q, what are the stabilizable values of a, if any, and 

for each of these, what values of s support power sharing?  As we will see, the answers 

to these questions depend fundamentally on whether the interaction is sequential or 

simultaneous. 

Sequential Interaction 

Suppose that P and Q are interacting sequentially (SQ).  Then P will rationally be 

deterred from initiating the firing iff VP ≤ a.  From (1),  

! 

VP = fSQ (p,q,s) =
p

1" (1" p)(1" q)s
# a .            (7) 

Analogously, Q will rationally be deterred from initiating the firing iff 

! 

VQ =
q

1" (1" p)(1" q)s
#1" a .                     (8) 

Inequality (8) is equivalent to  

! 

a " gSQ (p,q,s) =
1# q # (1# p)(1# q)s

1# (1# p)(1# q)s
.              (9) 

Combining (7) and (9), power sharing in the ratio a : (1 – a) is stable—neither P nor Q 

will initiate the firing—for all values of a that satisfy the double inequality, 

! 

fSQ (p,q,s) " a " gSQ (p,q,s).            (10)  

Now suppose that p > 0 and q > 0 are fixed and consider the behavior of the 

functions, 

! 

fSQ (p,q,s) and gSQ (p,q,s), as s increases from 0 to 1.  It is easy to verify that 
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P’s expected reward is bracketed by a lower bound of p and an upper bound that is a 

function of p and q, 

! 

fSQ (p,q,0) = p " fSQ (p,q,s) "
p

p + q # pq
= fSQ (p,q,1),         (11) 

for any value of s satisfying 0 ≤ s ≤ 1.  Furthermore, from (7),

! 

fSQ (p,q,s) is strictly 

increasing in s.  From (8), 

! 

gSQ (p,q,s) is strictly decreasing in s, and, analogous to (11),  

! 

gSQ (p,q,0) =1" q # gSQ (p,q,s) #
p " pq

p + q " pq
= gSQ (p,q,1)         (12) 

for any value of s satisfying 0 ≤ s ≤ 1. 

Comparing the two right-hand expressions in (11) and (12), we find 

! 

gSQ (p,q,1) = p " pq < p = fSQ (p,q,1) ,           (13) 

because of our assumptions that p > 0 and q > 0.  Inequality (13) contradicts inequality 

(10), so (10) cannot be true when s = 1.   

Thus, when there is no damage, there is no possibility of power sharing when 

interaction is sequential.  One player will initiate the shooting, which will continue until 

one player is eliminated and the other player obtains all the (undamaged) value.  

Note that the difference, 

! 

gSQ (p,q,s) " fSQ (p,q,s) , is a strictly decreasing function of 

s, because both 

! 

gSQ  and 

! 

" fSQ  are strictly decreasing functions of s.  From (10) it follows 

that power sharing is possible if and only if this strictly decreasing difference is 

nonnegative, allowing for values of a that would stabilize power sharing.  This implies 
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that if power sharing is possible for some specific value of s, say s = s0, then it is also 

possible for all s < s0, and in particular for s = 0.   

But from (11) and (12) we know that 

! 

gSQ (p,q,0) " fSQ (p,q,0)≥ 0 iff (1 – q) – p ≥ 0, 

or, equivalently, p + q ≤ 1.  Therefore, there is no possibility for power sharing (with 

sequential interaction) when p + q > 1.  In other words, if the sum of the elimination 

probabilities is too high, each player will have an incentive to get in the first shot.    

Next suppose that p and q satisfy p + q = 1.  Then 

! 

gSQ (p,q,0) " fSQ (p,q,0) =1" q " p = 0 ,  

which implies that power sharing is possible, but only for s = 0.  In addition, because a 

must satisfy (10), power can be shared only in the ratio a : (1  – a) = p : q.  In conclusion, 

power can be shared if p + q = 1, but only if damage is total (s = 0) and the power-sharing 

agreement exactly reflects the elimination-probability ratio (p : q).  

The case p + q < 1 is all that remains.  By (10), power-sharing can be stabilized for 

any value of s that satisfies fSQ(p, q, s) ≤ gSQ(p, q, s), which is equivalent to 

).,(
)1)(1(

1
max qps

qp

qp
s =

!!

!!
"  

If s = 0, power can be shared in the ratio a : (1 – a) iff a satisfies the inequality p ≤ a ≤ 1 

– q.  But, as can be verified directly, if s = smax(p, q), power must be shared in the ratio a0 

: (1 – a0), where 
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! 

a
0

= a
0
(p,q) =

p

p + q
, 

which is the limiting case discussed in the previous paragraph. 

The possibilities for power sharing are illustrated in Figure 3.  Note that all values 

of a such that p ≤ a ≤ 1 – q induce stability if s = 0, but the  

Figure 3 about here 

interval of stabilizable values of a (shaded area in Figure 3) diminishes in length as s 

increases.  When s reaches smax(p, q), the interval contains only the single point a0(p, q), 

and it vanishes entirely as s increases further. In fact, it can be shown that the length of 

this interval decreases at an increasing rate as s increases. 

We conclude that sequential interaction offers relatively few opportunities to 

stabilize power sharing.  First, players will not be deterred from shooting unless their 

combined probabilities of eliminating their opponents on any round are relatively low; 

otherwise, each player will find it advantageous to try to eliminate its opponent at the 

start.  Second, even when this condition is met, the ratio of their power shares, a : (1 – a), 

must more or less reflect the ratio of their elimination probabilities, p : q, for the players 

to be deterred from firing; in fact, only this ratio stabilizes power sharing if s = smax(p, q),     

Finally, the damage caused by firing on any round must be substantial.  Indeed, if 

the value of the prize that the players seek is relatively undiminished on each round they 

shoot (i.e., if s is high), power sharing may be impossible, even when all other conditions 

for stability are met.  
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Simultaneous Interaction 

Now suppose that P and Q are interacting simultaneously.  Then P will be 

rationally deterred from initiating the firing if WP ≤ a.  From (5), 

! 

WP = fSM (p,q,s) =
p(1" q)

1" (1" p)(1" q)s
# a 

and, analogously for Q,  

! 

WQ = fSM (p,q,s) =
q(1" p)

1" (1" p)(1" q)s
#1" a. 

The latter inequality is equivalent to 

! 

a " gSM (p,q,s) =
1# (1# p)q # (1# p)(1# q)s

1# (1# p)(1# q)s
. 

Therefore, power sharing in the ratio a : (1 – a) is stable for all values of a that satisfy the 

double inequality, 

! 

fSM (p,q,s) " a " gSM (p,q,s).            (14) 

Now suppose that p > 0 and q > 0 are fixed, and consider the behavior of the 

functions,

! 

fSM (p,q,s) and gSM (p,q,s), as s increases from 0 to 1.  As in the case of 

sequential interaction, it is easy to verify that 

! 

fSM (p,q,0) = p " pq # fSM (p,q,s) #
p " pq

p + q " pq
= fSM (p,q,1) 
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for any value of s satisfying 0 ≤ s ≤ 1, and that 

! 

fSM (p,q,s) is strictly increasing in s.  

Similarly, 

! 

gSM (p,q,s)is strictly decreasing in s, and 

! 

gSM (p,q,0) =1" q + pq # gSM (p,q,s) #
p

p + q " pq
= gSM (p,q,1) , 

for any value of s satisfying 0 ≤ s ≤ 1. 

Observe that 

! 

gSM (p,q,1) > fSM (p,q,1) , which implies that inequality (14) is true 

(for appropriate values of a) when s = 1.  Moreover, 

! 

gSM (p,q,s) " fSM (p,q,s)  is a strictly 

decreasing function of s.  Therefore, for any values of p and q, power sharing (with 

simultaneous interaction) is possible for every value of s—that is, power sharing in some 

ratio is feasible, whatever the level of damage shooting causes.  

As in the sequential-interaction case, the length of the interval of stabilizable values 

of a diminishes, at an increasing rate, as s increases.  This is shown in Figure 4 for the 

same values of p and q that were used in Figure 3. 

Figure 4 about here 

The values of s and a that make sequential stabilization possible (darker shade in 

Figure 4) can be shown to be a subset of those that make simultaneous stabilization 

possible (lighter shade).  Note in Figure 4 that  

.)1,,()1,,( and )1,,()1,,( qpgqpfqpgqpf SQSQSMSM ==  

However, the interval between these points stabilizes power sharing in the case of 
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simultaneous interaction but not in the case of sequential interaction.    

 Clearly, simultaneous interaction is much more potent a tool than sequential 

interaction for stabilizing power sharing.  More specifically,  

• simultaneous stabilization is possible for any values of p and q, whereas 

  sequential stabilization is possible only if p + q ≤ 1; 

• if p + q ≤ 1, simultaneous stabilization is possible for every value of s, whereas  

   sequential stabilization is possible only if s ≤ smax(p, q); 

• if p + q ≤ 1 and s ≤ smax(p, q), simultaneous stabilization produces a wider interval  

   of values of a than does sequential stabilization. 

The superior ability of simultaneous interaction to stabilize power sharing is made 

even more evident in Figure 5, which fixes p = 1/2 and asks how the stabilizable power  

sharing ratios depend on q.  The figure includes three cases, s = 0 (total damage), s = 1/2, 

and s = 1 (no damage).   

Figure 5 about here 

Observe that as q increases from 0, the stabilizable values of a decrease.  For 

example, when s = 0 and stabilization is simultaneous, values of a from 1/2 to 1 can be 

stabilized if q = 0, but at q = 1 the stabilizable values of a run from 0 to1/2.  If interaction 

is sequential, the situation is bleaker: There are no stabilizable values of a when q exceeds 

1/2.   Thus, it is apparent that simultaneous interaction is far more efficacious at 

stabilizing power sharing than sequential interaction, especially when the elimination 
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probability of a player increases.   

Increasing s (i.e., decreasing damage) diminishes the possibility of stabilization in 

both the simultaneous and sequential cases.  As suggested by the three cases in Figure 5, 

if a particular point (q, a) is stabilizable (for either sequential or simultaneous interaction) 

for any particular value of s, then it is also stabilizable for any smaller value of s.  For 

instance, any point, (q, a), that is shaded (either light or dark) when s = 1/2 is also shaded 

when s = 0. Thus, the more the damage caused by shooting, the more players will try to 

avoid it.     

6.  Conclusions 

Why are the incentives to share power in the simultaneous-interaction case greater 

than in the sequential-interaction case?  The former allows for the possibility that both 

players will be eliminated and, consequently, receive none of the prize, whereas the latter 

model allows for at most one player to be eliminated.  This makes the prospect of 

fighting more unsavory if interaction is simultaneous, raising the value to the players of 

sharing the prize.7  

To deter players from firing and encourage power sharing, therefore, it helps if the 

players can respond rapidly, if not immediately, to firing by an opponent and so, 

potentially, wreak more damage.  A hair trigger, despite the risks of accidental firing, 

therefore strengthens deterrence.  So does the doctrine of “launch on warning,” given 

                                                 
7 The demise of dueling in the early 20th century seems to have been largely a function of the moral 
repugnance that came to be associated with it.  But it also may have been due to the greater possibility that 
both players would be killed or wounded as pistols became more accurate.  For a review of recent books on 
dueling, see Krystal (2007).  
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good intelligence and surveillance, because it enables the attacked player to retaliate 

before it is hit. 

The near-simultaneity of possible retaliation by the superpowers during the Cold 

War arguably benefited deterrence, Wohlstetter’s (1959) warning of the “delicate balance 

of terror” notwithstanding.  Of course, mutual assured destruction (MAD) was never 

entirely assured, because the doomsday machines the superpowers put in place were not 

certain to work.   

Failures of either command and control or political will were a constant concern, 

making the doomsday machines at best probabilistic (Brams, 1985, p. 36; Brams and 

Kilgour, 1988, pp. 50-52).  However, as each side developed second-strike capability—

primarily through its submarine-launched nuclear missiles, which could not be destroyed 

in a first strike despite the increased accuracy of ICBMs—MAD became more secure 

and, perhaps, less mad.  Each side could ride out a first strike and still wreak destruction 

on the other side. 

The simultaneous-interaction model mirrors this second-strike capability.  

Although firing may not literally be simultaneous, a player can respond to an attack, even 

if devastated by it, so a successful shot in simultaneous interaction does not “eliminate” 

an opponent entirely.  

Put differently, even when great damage is inflicted on a player, it may be able to 

respond.  What makes power sharing a rational strategy in this situation is the damage 

that both sides incur if both are eliminated at once (e.g., possibly a “nuclear winter” in the 

case of a nuclear exchange). 
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Unlike nuclear warfare, the damage caused by terrorist acts tends not to be highly 

destructive, except over long periods of time.  Thus low damage, as well as sequentiality, 

may make terrorists reluctant to share power; instead, they do better by slowly wearing 

down the government.  Indeed, the government may hasten its own demise if it fights 

back heavy-handedly, alienating the populace and, ultimately, losing its support if it is 

unable to detect and destroy many terrorist targets.  

To increase the damage factor for terrorists, the best counterstrategy would seem to 

be to dry up their sources of support, especially financial, that derive from the populace.  

This, of course, is easier said than done.  But we emphasize that the main lesson of our 

models is that the s factor—specifically, diminishing the value of the prize by making 

shooting (attacks) as damaging as possible—is the key to making power sharing 

attractive to both sides. 

Can our models be extended to n-person power-sharing games, starting with truels, 

or 3-person extensions of duels (Kilgour and Brams, 1997; Bossert, Brams, and Kilgour, 

2002)?  The combinatorial possibilities of shooting rapidly multiply as the players 

increase, but so do the potential benefits of not shooting, so we think this question is well 

worth exploring in today’s multipolar world.  
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Figure 2. Simultaneous-Interaction Model
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Figure 3. Sequential Stabilization (Shaded Area)
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Figure 4. Comparison of Simultaneous Stabilization
(Light Shading) with Sequential Stabilization

(Dark Shading)
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Figure 5. Stabilizable Values of  a when  = 1⁄2

Simultaneous Stabilization: Light Shading
Sequential Stabilization: Dark Shading 
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