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TIPS OPTIONS IN THE JARROW-YILDIRIM MODEL

MARC HENRARD

Abstract. An explicit pricing formula for inflation bond options is proposed in the Jarrow-

Yildirim model. The formula resembles that for coupon bond options in the HJM model.

1. Introduction

Jarrow and Yildirim (2003) introduce a model for Treasury Inflation-Protected Securities (TIPS)
and inflation derivatives based on the Heath-Jarrow-Morton (HJM) model. The Jarrow-Yildirim
model describes the behavior of the nominal and real yield curves and the inflation index. Jarrow
and Yildirim (2003) also propose a formula for inflation index options. Their results are extended
by Mercurio (2005) to zero-coupon inflation-indexed swap, year-on-year inflation-indexed swap
and year-on-year inflation index cap. Mercurio (2005) also studies a market model for inflation.
Independently, Belgrade et al. (2004) also propose a market model approach to zero-coupon and
year-on-year swaps.

In this brief note, using techniques similar to those used to price coupon bond options in Henrard
(2003), the price of options on capital-indexed inflation bonds is derived. The formula obtained is
explicit up to a parameter that is computed as the unique solution of a one-dimensional equation.
In particular the results can be applied to TIPS options.

The description of capital-indexed inflation bonds can be found in (Deacon et al., 2004, Sec-
tion 2.2.1). The real amounts paid at dates ti (1 ≤ i ≤ n) are ci, or in nominal terms the amount are
Iti

ci
1. The amounts ci include the specific convention and frequeny of the bond and the principal

at final date.
The discount factor linked to the real rates is denoted P2(t0, T ). It is the discount factor viewed

from t0 for a payment in T . The nominal value in t0 of the bond described above is

(1) It0

n∑
i=1

ciP2(t0, ti).

2. Model and preliminary lemmas

The Jarrow-Yildirim model describes the behaviour of the instantaneous forward nominal (f1)
and real (f2) interest rate. The forward rates viewed from t for the maturity T are denoted fi(t, T )
(1 ≤ i ≤ 2). Throughout this paper the index 1 is related to the nominal rates, the index 2 to the
real rates and the index 3 to the inflation. The (nominal and real) short-term rate are denoted
ri
t = fi(t, t). The cash accounts linked to the nominal and real rates are

N i
v = exp

(∫ v

0

ri
sds

)
.

The rate volatilities σi are deterministic. The bond volatilities are νi(t, u) =
∫ u

t
σi(t, s)ds. In

the risk neutral world with numeraire N1
s the equations of the model are given by the equation
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(11)–(13) in Proposition 2 of Jarrow and Yildirim (2003) which are written below

df1(t, T ) = σ1(t, T )ν1(t, T )dt + σ1(t, T )dW 1
t(2)

df2(t, T ) = σ2(t, T ) (ν2(t, T )− ρ13σ3(t)) dt + σ2(t, T )dW 2
t(3)

dI(t) = (r1
t − rr

t )Itdt + σ3(t)ItdW 3
t .(4)

The covariation between the different Brownian motions are [W i
t ,W

j
t ] = ρi,jt (1 ≤ i, j ≤ 3).

To obtain an explicit formula for the options on bonds, an extra condition on the real rate
volatility is used. This is a separability condition which is satisfied by the extended Vasicek or
Hull and White (1990) model and can be found in Henrard (2003) for options on coupon-bonds.

(H): the function σ2 satisfies σ2(t, u) = g(t)h(u) for some positive functions g and h.
The following technical lemma on the cash accounts and bond prices will be useful. The formulas

are equivalent to those for the HJM model obtained in Henrard (2006).

Lemma 1. Let 0 ≤ t ≤ u ≤ v. In the Jarrow-Yildirim model, the real rate cash account and price
of the zero-coupon bond can be written respectively as

(5) N2
u(N2

v )−1 = P2(u, v) exp
(
−
∫ v

u

ν2(s, v)dW 2
s −

∫ v

u

ν2(s, v)(ν2(s, v)/2− ρ23σ3(s))ds

)
and

P2(u, v) =
P2(t, v)
P2(t, u)

exp
(
−1

2

∫ u

t

ν2
2(s, v)− ν2

2(s, u)ds(6)

+
∫ u

t

(ν2(s, v)− ν2(s, u))ρ23σ3(s)ds−
∫ u

t

ν2(s, v)− ν2(s, u)dW 2
s

)
3. Option on inflation bond

The following result is obtained for a European call. The put value can be deduced by the
(inflation) put/call parity.

The option expiry is t0 and its real strike is K. In t0 the call owner can receive the bond in
exchange of the payment KIt0 . Using the notation c0 = −K, the value of the option at expiry is
then

max

(
It0

n∑
i=0

ciP2(t0, ti), 0

)
.

Theorem 1. In the Jarrow-Yildirim model with the real rate volatility satisfying the condition (H)
the value in 0 of a European call with real strike K and expiry t0 is

(7) V0 = I0

n∑
i=0

ciP2(0, ti)N
(

κ
√

τ11
− τ12√

τ11
+ g(ti)

√
τ11

)
.

where κ is the unique solution of

(8)
n∑

i=0

ciP2(0, ti) exp
(
−1

2
g2(ti)τ11 + g(ti)τ12 − g(ti)κ

)
= 0

and

T = (τi,j) =

( ∫ t0
0

h2(s)ds ρ23

∫ t0
0

h(s)σ3(s)ds

ρ23

∫ t0
0

h(s)σ3(s)ds
∫ t0
0

σ2
3(s)ds

)
.

Proof. Let X1 =
∫ t0
0

h(s)dW 2
s and X2 =

∫ t0
0

σ3(s)dW 3
s . The random variable X is normally

distributed (Nielsen, 1999, Theorem 3.1) with mean 0 and variance T .
The generic value of the option obtained by Jarrow and Yildirim (2003) is

V0 = E

(
max

(
It0

n∑
i=0

ciP2(t0, ti), 0

)
(N1

t0)
−1

)
.
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The different building blocks of the problem are:

(9) P2(t0, ti) =
P2(0, ti)
P2(0, t0)

exp
(
−1

2
(g2(ti)− g2(t0))τ11 + (g(ti)− g(t0))τ12 − (g(ti)− g(t0))X1

)
.

(10) It0 = N1
t0I0P2(0, t0) exp

(
−1

2
g2(t0)τ11 + g(t0)τ12 −

1
2
τ22 − g(t0)X1 + X2

)
.

Note that we are able to split the random variable X1 from the dependency of the coupons g(ti)
thanks to the hypothesis (H). This is the only place where the separability condition is used.

The option is exercised when
n∑

i=0

ciP2(0, ti) exp
(
−1

2
g2(ti)τ11 + g(ti)τ12 − g(ti)X1

)
> 0,

or equivalently when X1 < κ. Equation (8) has a unique and non-degenerate solution, as proved
in Henrard (2003).

The expectation can be computed explicitely

V0 = E

(
11(X1>κ)I0

n∑
i=0

ciP2(0, ti) exp
(
−1

2
g2(ti)τ11 + g(ti)τ12 −

1
2
τ22 − g(ti)X1 + X2

))

= I0

n∑
i=0

ciP2(0, ti) exp
(
−1

2
g2(ti)τ11 + g(ti)τ12 −

1
2
τ22

)
1√
2π

1√
|Σ|

∫ κ

−∞
exp(−g(ti)x1)

1√
2π

∫
R

exp(x2 −
1
2
xΣ−1x)dx2 dx1

As noted in Henrard (2004), the inside integral is

1√
2π

∫
R

exp(x2 −
1
2
xΣ−1x)dx2 =

√
|T |

√
τ11

exp
(
−1

2
1

τ11
(x2

1 − 2τ12x1 − |T |)
)

.

The result is obtained through a straightforward (but slightly tedious) computation. �

Acknowledgement: The author wishes to thank his colleagues for their valuable comments
on this note.

References

Belgrade, N., Benhamou, E., and Koehler, E. (2004). A market model for inflation. Technical
report, CDS Ixis-CM.

Deacon, M., Derry, A., and Mirfendereski, D. (2004). Inflation-indexed securities: Bonds, Swaps
and Other Derivatives. Finance Series. Wiley.

Henrard, M. (2003). Explicit bond option and swaption formula in Heath-Jarrow-Morton one-factor
model. International Journal of Theoretical and Applied Finance, 6(1):57–72.

Henrard, M. (2004). Overnight indexed swaps and floored compounded instrument in HJM one-
factor model. Ewp-fin 0402008, Economics Working Paper Archive.

Henrard, M. (2006). A semi-explicit approach to Canary swaptions in HJM one-factor model.
Applied Mathematical Finance. To appear, March 2006.

Hull, J. and White, A. (1990). Pricing interest rate derivatives securities. The Review of Financial
Studies, 3:573–592.

Jarrow, R. and Yildirim, Y. (2003). Pricing Treasury Inflation Protected Securities and related
derivatives using an hjm model. Journal of Financial and Quantitative Analysis, 38(2):337–359.

Mercurio, F. (2005). Pricing inflation-indexed securities. Quantitative Finance, 5(3):289–302.
Nielsen, L. T. (1999). Pricing and hedging of derivative securities. Oxford University Press.

Head of Quantitative Research, Banking Department, Bank for International Settlements, CH-4002

Basel (Switzerland)
E-mail address: Marc.Henrard@bis.org


