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Abstract

Recursive least squares learning is a central concept employed in selecting amongst

competing outcomes of dynamic stochastic economic models. In employing least squares

estimators, such learning relies on the assumption of a symmetric loss function defined

over estimation errors. Within a statistical decision making context, this loss function

can be understood as a second order approximation to a von-Neumann Morgenstern

utility function. This paper considers instead the implications for adaptive learning

of a third order approximation. The resulting asymmetry leads the estimator to put

more weight on avoiding mistakes in one direction as opposed to the other. As a pre-

caution against making a more costly mistake, a statistician biases his estimates in

the less costly direction by an amount proportional to the variance of the estimate.

We investigate how this precautionary bias will affect learning dynamics in a model of

inflationary biases. In particular we find that it is possible to maintain a lower long

run inflation rate than could be obtained in a time consistent rational expectations

equilibrium.
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1 Introduction

Dynamic stochastic macroeconomic models can produce multiple outcomes depending

on the equilibrium concept employed. For example, following Kydland and Prescott (1977)

and Barro and Gordon (1983), models in which a central bank sets monetary policy over time

when facing a public with rational expectations can deliver one of two outcomes. The Nash

equilibrium concept delivers a time-consistent high inflation outcome, while the Ramsey

equilibrium concept delivers a time-inconsistent low inflation outcome. Assuming that the

central bank learns the latent parameters of the structural Phillips curve by estimating

least squares regressions over the entire time series of data on a ‘perceived’ (and possibly

misspecified) Phillips curve in order to set monetary policy, it is possible to state a stability

condition whereby the Nash outcome is selected as the one that is ‘learnable’, and therefore

expected to arise in reality.1 On the other hand, if more weight is given to more recent data,

Sargent (1999) and Cho et al (2002) have shown that an economy may occasionally ‘escape’

for brief periods to the Ramsey outcome.

In this paper we ask whether information processing, modeled via statistical decision

making, can enhance the learning dynamics obtained in the constant gain case. In particular,

we model the information processing decision separately from the optimal policy-making

decision. This dichotomy allows us to incorporate alternate assumptions on information

processing. Consequently, any contributions to the dynamics of learning that alternative

assumptions provide can be explicitly identified. In order to motivate this approach it is

instructive to view the adaptive learning process through a statistical decision making lens,

as follows.

Adaptive learning begins from the assumption of least squares estimation. Least squares

estimation assumes, following Zellner (1971) and Berger (1985), that a statistical decision

maker minimizes a squared error loss function, faces an underlying data generating process

that is Gaussian in nature and employs Bayes’ rule to update parameter estimates as new

1See Evans and Honkapohja (1999, 2001).
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data arrives. Econometricians typically assume that the loss function is a primitive of this

statistical decision problem. However, as Berger (1985) demonstrates, the squared error loss

function can be derived from a second-order Taylor series approximation to a von Neumann-

Morgenstern utility function defined over ‘rewards’ to a statistical decision maker (SDM).

Within the context of a central bank that learns about the economy, a reward could be

in the form of a reputation for interpreting varied socioeconomic data ‘correctly’. Several

recent articles have examined the effects of allowing a central bank to have an asymmetric

loss function for policy-making (e.g. Ruge-Murcia (2003)). However, following Cukierman

(2002) who suggests examining sources of the degree of transparency of a central banks

models and objectives, we examine here the effects of asymmetry in how a central bank

might learn about underlying hazy fundamentals, while keeping the policy-making objective

function symmetric.

Suppose that the SDM views overestimation of the unknown parameters as more costly

than underestimation. A third-order approximation to the underlying utility function is

necessary for this assumption to affect the SDM’s actions. This paper first demonstrates

that such a SDM would have an asymmetric loss function, derived by taking a third-order

approximation to the underlying utility function. The asymmetry will then cause the SDM to

behave in a ‘precautionary’ manner. Indeed, the mathematics underlying this interpretation

of the asymmetry is essentially the same as in Leland’s (1968) study of precautionary saving.

Given an asymmetric loss function, this paper specifies the recursive form of the optimal

estimator chosen by a precautionary SDM. Finally, within the context of the Kydland and

Prescott (1977)-Barro and Gordon (1983) model, this paper discusses the dynamics of such

‘precautionary learning’ in terms of the stability of the Nash and Ramsey outcomes. Cho et

al (2002) have shown escape dynamics induced by the assumption of a constant gain in least

squares learning suggest that an economy may occasionally and briefly deviate to an outcome

that has not been defined to be stable. The simulation results in this paper suggest that

an economy may possess more complicated dynamics that enhance the likelihood of such
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escape. In particular, we find that the frequency of escape can be higher, or the economy

can fluctuate around a lower level of inflation than the Nash outcome, depending upon the

parameterized degree of asymmetry. For some parameter values, the economy can even settle

around the Ramsey outcome.

The paper is structured as follows. Section 2 briefly discusses existing statistical decision

theory, shows that a precautionary SDM employs an asymmetric loss function and provides

the recursive form of the resulting alternative estimator. In Section 3 a form of the Kydland

and Prescott (1977)-Barro and Gordon (1983) environment is specified. Section 4 provides

simulation results within this context and discusses which outcome may be selected under

the assumption of precautionary learning. Section 5 concludes with our finding and its’

underlying intuition.

2 Precautionary Motives in Statistical Decisions

2.1 The Standard Case

Following Berger (1985), a SDM faces the following problem when deciding upon the

loss function upon which to base estimation. Given a set of states of nature or parameterseθ ∈ Θ, the decision maker takes an action ea ∈ eA in order to maximize utility (g) which is

a function of the estimation error (eθ − ea). Assuming that g is strictly concave and thrice
continuously differentiable yields the following Taylor series approximation of g(eθ−ea) around
0:

g(eθ − ea) ' g(0) + (eθ − ea)g1(0) + (eθ − ea)2g11(0)
2

(1)

where g1 denotes the first derivative and so on. Next, define the following expectations:

K0 ≡ −E[g(0)], K1 ≡ −E[g1(0)], K2 ≡ −E
∙
g11(0)

2

¸
> 0. (2)
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Given this environment, Berger (1985) defines the loss function for estimation as,

L(eθ,ea) ' −E[g(eθ − ea)], (3)

which, given re-definition of the action space as eA∗ = {ea− c, c = K1

2K2
|ea ∈ eA} results in

L(eθ,ea) = (eθ − ea)2. (4)

Given this symmetric loss function, optimality of the least squares estimator is assured.

2.2 The Precautionary Case

If the SDM has a precautionary motive then a third-order approximation of the utility

function is required to account for this motive. We assume that the SDM seeks to maximize

utility E[g(λ(ea− eθ)] where λ is a scale parameter that measures how sensitive the decision
maker is to deviations of ea from eθ. Define the loss function to be

L(eθ,ea) = −E[g(λ(ea− eθ))]. (5)

Under the assumption that g is differentiable to the fourth degree with respect to ea − eθ, a
Taylor series approximation is

L(eθ,ea) ≈ −E[g(0)]− λ(ea− eθ)E[g1(0)]
−1
2
λ2(ea− eθ)2E[g11(0)]− 1

6
λ3(ea− eθ)3E[g111(0)]. (6)

We wish the optimal objective for the statistical decision-maker to be to choose ea = eθ, which
implies the conditions E[g1(0)] = 0 and E[g11(0)] < 0 so that ea = eθ is the local minimum of

the loss function. It can further be assumed that E[g(0)] = 0 since a constant can be added
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to the utility function without changing the underlying structure. Next, define

K2 = −E[g11(0)] (7)

K3 = −E[g111(0)], (8)

then the loss function simplifies to

L(eθ,ea) ≈ 1
2
K2λ

2(ea− eθ)2 + 1
6
K3λ

3(ea− eθ)3. (9)

Further, assuming as in the standard case, that the statistical decision-maker chooses ea to
minimize Eθ[L(

eθ,ea)] (given beliefs about the distribution of eθ), the first order condition
reduces to

K2(ea− μθ) +
λK3

2
[(ea− μθ)

2 + σ2
θ
] = 0 (10)

where

μθ = Eθ[
eθ] (11)

σ2
θ
= Eθ[(

eθ − μθ)
2]. (12)

Assuming that the optimal ea follows
ea = ea0 + λea1 + λ2ea2 + ..., (13)

then to the zero-th order in λ

ea0 = μθ (14)

and to first order in λ

K2(ea0 + λea1 − μθ) +
λK3

2
[(λea1)2 + σ2

θ
] = 0. (15)
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Dropping the second and higher order terms in λ one can compute

ea ≈ μθ −
λ

2

K3

K2
σ2
θ
. (16)

In particular, with respect to estimation problems, we assume that the loss function takes

the following LINEX form,

L(ea,eθ) = exp(b(eθ − ea))− b(eθ − ea)− 1 ≈ b2

2
(eθ − ea)2 + b3

6
(eθ − ea)3 (17)

Thus,

K2λ
2 = b2 (18)

K3λ
3 = −b3 (19)

and,

ea = μθ +
b

2
σ2
θ
. (20)

This discussion is applied to the adaptive least squares learning process described below.

3 The Economic Environment

Cho et al (2002) describe a model in which the monetary authority uses least squares

learning to determine its policy. The monetary authority’s beliefs are described by a vector

of regression coefficients eγ. It chooses a decision rule h(eγ) that causes the stochastic process
for the economy to be eξ(eγ). Given eξ(eγ) the best fitting regression will be Γ = T (eγ). A
self-confirming equilibrium is a fixed point of T .

Here we consider what happens if we separate the monetary authority into two entities:

a statistician and a policy maker. The statistician’s beliefs are described by a vector of

regression coefficients eγ. Based on those regression coefficients, the statistician estimates
6



bφ(eγ) where φ is the object of interest to the policy maker, which in turn summarizes the
beliefs of the policy maker about the economy. The policy maker then follows a decision

rule H(φ) that causes the stochastic process for the economy to be eξ(H). Finally, given eξ,
the best fitting regression by the statistician in the next period will be Γ(eξ). If we define
T (eγ) = Γ(eξ(H(bφ(eγ))) then a self confirming equilibrium is a fixed point of T .

Suppose that the statisticians goal is to minimize a loss function L(bφ − φ) and a is a

scalar that measures the degree of precaution in reporting estimates to the policy maker,

where a = 0 implies no such precautionary motive. Then the estimated function of interest

is bφ(γ|a) and will be a function of a. In the event that a = 0 the statistician and policy

maker coincide and there is no dichotomy.

3.1 The Basic Model

As an example of how the dichotomy between a policy maker and a loss averse statisti-

cian might interact, we consider the following model of inflation and unemployment adapted

from Kydland and Prescott (1977) and Cho et al (2002). Let Ut represent unemployment

and πt represent inflation. The monetary authority chooses its target inflation rate xt to

minimize the loss function

Lp(xt) = E[πt(xt)
2 + αUt(xt)

2], (21)

where Ut is governed by

Ut = u− θ(πt − bxt) + σ1W1t (22)

and

πt = xt + σ2W2t. (23)

where (σ1, σ2) > 0, and (W1t,W2t)
T are i.i.d. normally distributed shocks with zero means

and identity covariance matrices. In the Phillips curve above, bxt is the private sector’s
7



expectation of inflation at t, u > 0 is the natural rate of unemployment and θ > 0 is the

slope.

Let us suppose that the monetary authority takes bxt as given. Then, given the above
loss minimization problem,

xt =
αθ

1 + αθ2
(u+ θbxt) . (24)

is the optimal inflation target. Under rational expectations, xt = bxt, so the optimal policy
is x∗t = αθu. This corresponds to the time-consistent Nash equilibrium of Kydland and

Prescott (1977). Thus, in equilibrium, E[Ut] = u and E[πt] = αθu and

Lp(x
∗
t ) = α2θ2u2 + σ22 + αu2 + α

£
θ2σ22 + σ21

¤
= (1 + αθ2)(αu2 + σ22) + ασ21. (25)

On the other hand, if the monetary authority did not try to exploit the private sector’s

expectations and just assumed the private sector would know what it was doing, then the

enlightened policy maker’s loss function is

Le
p(xt) = x2t + σ22 + αu2 + α

£
θ2σ22 + σ21

¤
, (26)

where bxt is set equal to xt. Then clearly, the optimal policy is xt = 0, so E[Ut] = u and

E[πt] = 0. Then

Le
p(0) = σ22 + αu2 + α

£
θ2σ22 + σ21

¤
= αu2 + (1 + αθ2)σ22 + ασ21 < Lp(x

∗
t ). (27)

This corresponds to the time-inconsistent Ramsey policy of Kydland and Prescott (1977).

This is the optimal policy, but it is not supportable over time because the monetary authority

has an incentive to inflate to get a lower unemployment rate, so there is an inflationary bias.
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3.2 Least Squares Learning

Adaptive least squares learning begins by first assuming that the monetary authority

has a perceived law of motion (PLM)

Ut = u0 − ωπt + ηt, (28)

while the actual law of motion (ALM) is given by

Ut = u− θ(πt − xt) + σ1W1t, (29)

where we have assumed rational expectations on the part of the public and, as before,

πt = xt + σ2W2t. (30)

Suppose now that the policy maker determines policy by minimizing the loss function

Lp(xt) = Ep[πt(xt)
2 + αUt(xt)

2], (31)

where the expectation is determined by the PLM. Then

Lp(xt) = Ep

£
(xt + σ2W2t)

2 + α (u0 − ω(xt + σ2W2t) + ηt)
2¤

= x2t + α(u0 − ωxt)
2 +Ep[σ

2
2W

2
2t + α(ηt − ωσ2W2t)

2], (32)

which has the first-order condition

2xt − 2ωα(u0 − ωxt) = 0. (33)
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Thus, the monetary authority will follow the policy

xLSt =
αωu0
1 + αω2

. (34)

Plugging the monetary authority’s policy into the ALM, we get the system of equations

Ut = u− θ

µ
πt −

αωu0
1 + αω2

¶
+ σ1W1t (35)

πt =
αωu0
1 + αω2

+ σ2W2t (36)

In a self-confirming equilibrium, the policy will be chosen so the ALM (35) and the PLM

(28) are the same. Thus,

u0 = u+
αθωu0
1 + αω2

(37)

ω = θ. (38)

This system has the solution

u0 = u+
αθ2

1 + αθ2
u0 (39)

u =
u0

1 + αθ2
(40)

u0 = (1 + αθ2)u. (41)

Note that in the self-confirming equilibrium,

xLS = αθu, (42)

which is the same high-inflation but time-consistent policy pursued by the fully rational

monetary authority.

The idea is that if the ALM can be learned via least squares, the monetary authority

will converge to a high-inflation policy. The question of this paper is whether introducing
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precautionary motives into the learning process can affect the dynamics of reaching the

high-inflation policy.

3.3 Precautionary Learning

Suppose the policy maker is assumed to myopically set policy so as to minimize the

loss function specified above and the private sector has rational expectations so bxt = xt. As

before, the monetary authority models the economy with a linear Phillips curve such that

Ut is a linear projection on πt and the information available at t.

Let us assume that the statistician estimates the PLM

Ut = u0 − ωπt + ηt, (43)

where ω is a scalar, u0 is a constant, and ηt is a mean-zero, serially uncorrelated noise term.

Let us suppose the statistician is particularly interested in knowing ω and also suppose that

the statistician is more concerned about overestimating ω rather than underestimating it.

As a result, the statistician chooses its estimate bω so as to minimize the LINEX loss function
Lt
s(bωt) = Et

£
ea(ω−ωt) − a(ω − bωt)− 1

¤
. (44)

If the statistician believes at t that ω ∼ N(μtω, (σ
t
ω)
2), then

Lt
s(bωt) = exp

µ
a(μtω − bω) + a2(σtω)

2

2

¶
− a(μtω − bωt)− 1, (45)

so
dLs

dbωt
= −a exp

µ
a(μtω − bωt) +

a2(σtω)
2

2

¶
+ a = 0, (46)

and the optimal estimate will satisfy

a(μtω − bωt) +
a2(σtω)

2

2
= 0 (47)

11



or

bωt = μtω +
a

2
(σtω)

2. (48)

Thus, if a > 0, it is more costly for the statistician to underestimate ω than to over-

estimate ω, so he makes a higher, more conservative estimate than he would if he had a

quadratic loss function (corresponding to a = 0). The opposite is true if a < 0.

The statistician will use the Kalman filter to update his estimate of ω in the perceived

Phillips curve to bωt. Then the policy maker will choose xt so as to minimize

Lp(xt) = Ep[(xt + σ2W2t)
2 + α (−bωt (xt + σ2W2t) + u0 + ηt)

2]. (49)

This simplifies to

Lp(xt) = x2t + α
£
(−bωtxt + u0)

2 +Ep

£
σ2W

2
2t + (−bωtσ2W2t + ηt)

2
¤¤

(50)

since the policy maker believes that bothW2t and ηt are mean zero. The variance-covariance

matrix of W2t and ηt does not affect the policy makers decision since the last term is inde-

pendent of xt. The policy maker will choose xt to satisfy the first-order condition

2xt − 2αbωt (−bωtxt + u0) = 0. (51)

Thus, the optimal choice will be

x∗t =
αbωt

1 + αbω2t u0. (52)

Given the statistician’s underlying precautionary motives and his beliefs, this is

x∗t =
α
£
μtω +

a
2
(σtω)

2
¤

1 + α
£
μtω +

a
2
(σtω)

2
¤2u0. (53)

Using Evans and Honkapohja (2001)’s Ricatti equations, which do not involve the esti-
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mate of the error variance (but also require the inversion of a matrix), we have

bξLSt+1|t = bξLSt|t−1 + t−1R−1t xt
³
yt − xTt

bξLSt|t−1´ (54)

Rt = Rt−1 + t−1
¡
xtx

T
t −Rt−1

¢
, (55)

where in the present context yt = ut, xt = (1, πt)
T , ξ represents the recursive parameter

estimate (e.g. the slope of the Phillips curve). For constant gain learning, we replace t−1

by γ−1, where γ is a constant. Effectively, the learner will behave as though he is considers

only a moving window of the last γ observations.

The estimate of the variance-covariance matrix will then be

PLS
t+1|t = t−1R−1t bσ2t+1|t, (56)

where

bσ2t+1|t = bσ2t|t−1
+

1

t− r

½³
yt − xTt

bξt|t−1´2 £1− t−1xTt R
−1
t xt

¤
+ 2

t− 1
t
(bξTt|t−1Rt−1 − St−1)R

−1
t xt(yt − xTt

bξt|t−1)− bσ2t|t−1¾ . (57)

and

St =
1

t

tX
i=1

yix
T
i (58)

is a 1× r row vector that satisfies the Ricatti equation

St = St−1 + t−1(ytx
T
t − St−1).

Generalizing, we then get the precautionary learning equation

(bξt+1|t)i = ³bξLSt+1|t´
i
+

ai
2
(PLS

t+1|t)ii, (59)
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where i = 1, . . . , r and ξ consists as before of the regression parameters estimated by the

SDM and provided to the policy-maker. We now provide simulation results of the model to

evaluate whether the low inflation outcome is reachable.2 In the simulation results we let

γ−1 be the constant Kalman gain of the Ricatti equations as in Cho et al (2002) and vary

that as well.

4 Simulation Results

Our first objective in simulating the model economy is to verify whether or not we obtain

escape dynamics given a lack of precaution (in order to replicate the results, for instance, in

Cho et al (2002)). Next, allowing for a degree of precaution (a) on the estimated slope of

the Phillips curve (θ), we investigate whether the Ramsey outcome is attainable under the

following three scenarios. First, holding the degree of precaution and the Kalman gain (γ)

constant, we vary the value of the shocks hitting the simulated model economy (σ1 and σ2).

Second, we vary the Kalman gain as in Cho et al (2002) and finally we vary the degree of

precaution on the slope of the Phillips curve. The simulations are conducted under certain

fixed parameters as indicated in Table 1 and were conducted for 10000 periods. Given the

fixed parameter values, Nash inflation is 10% and Ramsey inflation is 0%. Next, Table 2

provides the values for the parameters that are varied and indicates the time series for the

targeted rate of inflation (xt) that arise given the varied model parameters. These time series

are then plotted in Figures 1-4.

2We are not aware of any stochastic approximation techniques that would allow us to derive differential
equations that would approximate the stochastic difference equations that result from the recursive form of
the asymmetric least squares estimator suggested here.
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Table 1: Fixed Parameters

Parameter Value

α 1

u 5

θ 2

Table 2: Varied Parameters

Parameter Value

Figure 1 Figure 2

X1 X2 X3 X4 X5 X6 X7 X8

γ−1 20 20 100 100 20 20 100 100

a 0 0 0 0 3 3 3 3

σ1 1 1.5 1 1.5 1 1.5 1 1.5

σ2 1 1.5 1 1.5 1 1.5 1 1.5

Figure 3 Figure 4

X9 X10 X11 X12 X13 X14 X15 X16

γ−1 20 20 100 100 20 20 100 100

a 6 6 6 6 9 9 9 9

σ1 1 1.5 1 1.5 1 1.5 1 1.5

σ2 1 1.5 1 1.5 1 1.5 1 1.5

Figure 1 below provides the plots for targeted inflation when there is no precaution in

learning. The plot demonstrates that as expected the time consistent high inflation Nash

outcome is achieved. However, also as expected, escapes from Nash to Ramsey levels do

occur for particular parameter configurations.
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Figure 1: No Precaution

Figure 2 below provides plots for targeted inflation under a ‘low’ level of precaution

(a = 3). The plots here indicate a much higher frequency of escape. Indeed for a higher gain

(γ−1 = 20) the plots indicate quite frequent departures from the Nash outcome. When the

gain is much smaller (γ−1 = 100) there actually seems to be overshooting behavior whence

targeted inflation actually rises above the Nash outcome only to fall to the Ramsey outcome

and then begin a relatively slow rise to the Nash level. That is, we see some dynamics in

between the two outcomes.
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Figure 2: Low Precaution

Next, Figure 3 below provides plots for targeted inflation under a ‘medium’ level of

precaution (a = 6). The plots here indicate stability at the Ramsey outcome regardless

of the value for the variance of the presumed shocks to the unemployment or inflation

equations provided that γ−1 = 20. For γ−1 = 100 there seems to be some overshooting

above the Nash outcome level with a fall to the Ramsey outcome and a relatively slow rise

to the Nash outcome. Once again, we see some dynamics at least in simulation given that

the SDM employs an asymmetric least squares estimator reflecting a degree of precaution in

the interpretation of data.
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Figure 3: Medium Precaution

Finally, Figure 4 below provides plots for targeted inflation under a ‘high’ level of pre-

caution (a = 9).
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Figure 4: High Precaution

The plots indicate that for γ−1 = 20, regardless of the variance of the shocks hitting the

unemployment and inflation equations, the targeted level of inflation is actually hovering

around a negative value. Furthermore, for γ−1 = 100 we again seem some dynamics with

only occasional overshooting.

Given these simulations for varying degrees of precaution, one might wish to ascertain

what is the optimal level of precaution for the statistician to exhibit. Table 3 provides the

average value of the loss function for each of the 16 simulations.

19



Table 3: Simulated Loss

Parameter Value

Figure 1 Figure 2

X1 X2 X3 X4 X5 X6 X7 X8

γ−1 20 20 100 100 20 20 100 100

a 0 0 0 0 3 3 3 3

σ1 1 1.5 1 1.5 1 1.5 1 1.5

σ2 1 1.5 1 1.5 1 1.5 1 1.5

Loss 117.40 134.12 124.32 133.17 49.54 73.25 161.32 235.55

Figure 3 Figure 4

X9 X10 X11 X12 X13 X14 X15 X16

γ−1 20 20 100 100 20 20 100 100

a 6 6 6 6 9 9 9 9

σ1 1 1.5 1 1.5 1 1.5 1 1.5

σ2 1 1.5 1 1.5 1 1.5 1 1.5

Loss 31.93 40.25 220.63 359.19 32.72 39.77 65.01 137.89

What is clear from Table 3 is that introduction of the precautionary parameter leads

to lower values of the loss function being optimized by the policy-maker, relative to the no

precaution case, when γ−1 = 20. For γ−1 = 100 this is not necessarily the case. Next, the

lowest level of the loss occurs for the targeted inflation series X9 which corresponds to the

a = 6 ‘medium’ level of the precautionary parameter. As per the first panel in Figure 3 this

is the case in which inflation fluctuates closely around the Ramsey outcome. In summary, it

is entirely feasible that for certain values of the precautionary parameter the loss experienced

by the monetary authority may be lower and the authority might still consistently target

inflation around the Ramsey outcome.
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5 Conclusion

The adaptive learning approach is a rich environment in which stability, perturbation,

and other issues can be analyzed with respect to models with multiple possible outcomes.

In this paper the approach has been to analyze learning dynamics in the event that a policy

maker is split into the usual economic decision maker and into a statistical decision maker

who exhibits a degree of precaution in forming estimates of the Phillips curve. In simulation

we can show that we do obtain learning dynamics that are rich enough to warrant further

analytical investigation. Unfortunately, we are not aware of any method by which stochastic

approximation can be conducted for the constant gain case under precaution, so we limit

our analysis to presenting the simulation results. These results suggest a possible tension

between the pull of time-consistency and the degree to which a statistical decision maker is

cautious about interpreting information (reflected in the estimator employed). We show that

in simulation it is possible that the targeted rate of inflation tends to the Ramsey outcome

and may stay there for some time.

References

[1] Barro, R. J. and Gordon, D. R. (1983), “A Positive Theory of Monetary Policy in a

Natural Rate Model”, Journal of Political Economy, v. 91.

[2] Berger, J. O. (1985), Statistical Decision Theory and Bayesian Analysis (2nd. ed.),

Springer.

[3] Cho, I-K., Sargent, T. J. and Williams, N. (2002), “Escaping Nash Inflation”, Review

of Economic Studies, v. 69.

[4] Cukierman, A. (2002), “Are Contemporary Central Banks Transparent about Economic

Models and Objectives and What Difference Does it Make?”, Federal Reserve Bank

of St. Louis Review, v. 84.

21



[5] Evans, G. and Honkapohja, S. (1999), “Learning Dynamics”, Handbook of Macroeco-

nomics (v. 1A), Elsevier.

[6] Evans, G. and Honkapohja, S. (2001), Learning and Expectations in Macroeconomics,

Princeton University Press.

[7] Kydland, F. and Prescott, E. C. (1977), “Rules Rather Than Discretion: The Inconsis-

tency of Optimal Plans”, Journal of Political Economy, v. 85.

[8] Leland, H. E. (1968), “Saving and Uncertainty: The Precautionary Demand for Saving”,

The Quarterly Journal of Economics, v. 82.

[9] Ruge-Murcia, F. J. (2003), “Inflation Targeting under Asymmetric Preferences”, Jour-

nal of Money, Credit and Banking, v. 35.

[10] Sargent, T. J. (1999), The Conquest of American Inflation, Princeton University

Press.

[11] Zellner, A. (1971), An Introduction to Bayesian Inference in Econometrics,Wiley.

[12] Zellner, A. (1976), “Bayesian Estimation and Prediction Using Asymmetric Loss Func-

tions”, Journal of the American Statistical Association, v. 81.

22


