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Abstract

I analyse congestion costs in the Vickrey bottleneck model of a

congestible facility with a peak load in demand. The shape of the

peak is endogenous, being the sum of individual scheduling decisions.

Capacity and demand are random, which introduces uncertainty into

the individual scheduling choices. These are essential features of ac-

tual peak loads. Based on work by Arnott, de Palma and Lindsey, I

derive the expected marginal and total congestion costs and compare

to the case with �xed capacity and demand. Using stylised values for

scheduling costs relative to the value of time, I �nd that randomness

of capacity and demand increases congestions cost by up to 50 per-

cent relative to the deterministic case. The bound is general for any

distribution of random capacity and demand.
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1 Introduction

Tra�c congestion imposes signi�cant costs on societies and understand-

ing the phenomenon is important in order to devise appropriate policy

responses. Congestion as a large component of travel cost is also an im-

portant determinant of urban sprawl (e.g. Anas and Rhee, 2007). Tra�c

congestion is an extremely complicated phenomenon. Not only do travel

times increase as tra�c volumes increase towards capacity, travel times

also become increasingly random and unpredictable due to the chaotic be-

haviour of tra�c at the micro level. Day-to-day variation in the number of

travellers are hard to predict and causes further variation in travel times.

Finally, scheduling decisions by travellers add to the complexity. For exam-

ple in the morning peak, commuters may decide to depart earlier or later

in order to avoid the high mean and standard deviation of travel time in

the middle of the peak. Then the shape of the peak is endogenous, being

an aggregate of individual scheduling decisions.

This paper analyses the simplest structural model for congestion, the

bottleneck model, allowing for the endogeneity of scheduling choices. The

bottleneck model was proposed by Vickrey (1969) and analysed in detail by

Arnott et al. (1993). The model describes an isolated free access facility,

where capacity is governed by a bottleneck with some maximum service
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rate or capacity. The model is presented for the case of a congested road.

It could also be taken to describe other facilities such as many public recre-

ational facilities, and computer systems. Roads are arguably the best and

most practically important example (Arnott et al., 1999).

A queue builds up whenever the rate of arrivals at the bottleneck is

greater than the service rate and diminishes again when the rate of arrivals

is less than the service rate. Users choose departure time in order to min-

imise travel costs and scheduling costs, where the scheduling costs depend

on whether the user is early or late relative to some preferred arrival time.

In equilibrium, no user can reduce costs by changing departure time, which

means the user cost is the same for all users. It turns out the marginal ex-

ternal congestion cost, the cost to everybody else of adding one user, is

exactly equal to the user cost of one user.

Arnott et al. (1999) present an analysis of the bottleneck model where

capacity and demand are allowed to be random, as is the case on actual

congested roads. They concentrate on the value of providing information

to travellers and do not consider marginal costs. The main di�culty here

is that they do not describe the equilibrium explicitly, they are only able

to derive some features of the equilibrium.

The contribution of the current paper is to provide explicit expres-

sions for the expected costs in this model. This has not previously been
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achieved under random capacity, but as will be shown, it is possible to make

the derivation without explicitly �nding the departure rate in the random

bottleneck model. These results are employed to �nd the contribution of

randomness to total and marginal external congestion costs. A bound is

provided for the additional costs due to random capacity and demand, this

bound holds for any distribution of random capacity and demand.

Daniel (1995) applied the bottleneck model with random arrivals and

�xed capacity to analyse congestion pricing at a large hub airport. The

scheduling cost function was used by Small (1982), who considered the in-

dividual timing of trips, when the travel time depends on the departure

time. This paper did not consider equilibrium and did not consider ran-

dom travel times. Noland and Small (1995) introduced random travel times

into the scheduling model. They were able to derive the value of reliability

for some special cases, taking the travel time distribution as exogenous and

without considering equilibrium. Fosgerau and Karlstrom (2007) solved the

general case to show that the user cost is linear in the mean and the stan-

dard deviation of random travel time, assuming the simplest formulation of

scheduling costs and any exogenous, possibly time-dependent, distribution

of travel times. Fosgerau and Karlstrom still take the individual perspective

and do not take account of the endogeneity of the distribution of random

travel time. In applications, this endogeneity must be handled through an
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additional model for tra�c ow. This issue does not arise with the present

analysis that takes both randomness and equilibrium into account.

The paper is organised as follows. Section 2 the deterministic and the

random bottleneck model. Section 3 derives expressions for congestion

costs for the random bottleneck model and compares to the deterministic

case. Section 4 concludes with some perspectives for further research.

2 Review of the bottleneck model

2.1 The deterministic bottleneck model

The model presented here is from Arnott et al. (1993) and is an extension

of the Vickrey (1969) deterministic bottleneck queuing model. It describes

an isolated free access facility, where capacity is governed by a bottleneck

with a maximum service rate or capacity of 1/φ vehicles per time unit,

where φ is the serve time. Service within capacity is instantaneous.1 A

queue builds up whenever the rate of arrivals at the bottleneck is greater

than the service rate. There are N individuals, treated as a continuum.

They arrive at the bottleneck at the rate ρ(t), starting at some time t0 and

ending at time tL. The cumulative number of arrivals at time t is denoted

1A �xed travel time on a section of road can be added at no loss of generality.
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by R(t) =
∫t
t0
ρ(t)dt and the length of the queue at time t is

Q(t) =

(
R(t) −

t− t0

φ

)+

,

when R is concave, φρ(t0) > 1 and where x+ is the positive part of x.2 The

queuing time is then

q(t, φ) = Q(t)φ = (t0 + φR(t) − t)+

and individuals departing at time t are served at time t+ q(t, φ).

Individuals all have time 0 as their preferred arrival time. When they

arrive earlier or later than this time they incur a schedule delay cost, de�ned

as a function of the deviation between the serve time and the preferred

arrival time. Take the schedule delay cost to be piecewise linear according

to

D(t) = βt− + γt+.

The user cost is de�ned as

C(t) = D(t+q(t, φ))+αq(t, ψ) = D (t+ (t0 + φR(t) − t)+)+α(t0+φR(t)−t)+,

where α is the marginal disutility of travel time per se (DeSerpa, 1971).

2More precisely, x+ = x if x > 0 and x+ = 0 otherwise. x− is de�ned by x = x+ − x−.
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Assume an equilibrium where t0, tL and R(t) are such that C(t) is con-

stant for t ∈ [t0 : tL]. Note that there is always queue inside this interval,

since otherwise travellers could change their departure time towards the

preferred arrival time and reduce costs. In order to �nd the equilibrium we

may therefore di�erentiate the user cost with respect to time t and set the

derivative to zero. Let t∗ de�ned implicitly by φR(t∗) + t0 = 0 be the time

where travellers change from being early to being late. Then

C ′(t) = φρ(t)
(
γ− (γ+ β)1{t<t∗}

)
+ α(φρ(t) − 1) = 0.

Solve for ρ(t) to �nd

ρ(t) =
α

φ(α+ γ− (γ+ β)1{t<t∗})
,

such that the departure rate ρ is constant on both sides of t∗. We may now

�nd that

R(t0) = 0

R(t∗) = (t∗ − t0)
α

φ(α− β)

R(tL) = N = R(t∗) + (tL − t∗)
α

φ(α+ γ)

We also know that the queue is exactly gone at time tL, since otherwise the
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last traveller could delay departure to save travel time without changing

the arrival time. That is,

φN = tL − t0.

Combining this information we �nd that

t∗ =
β

α
t0

t0 = −φN
γ

β+ γ

tL = φN
β

β+ γ

The user costs of all travellers are equal, so we �nd for example the user

cost of the �rst traveller to be

C(t0) = −βt0 = φN
βγ

β+ γ
. (1)

The total user cost for all users is then TC = NC(t0) and the marginal

cost is

dTC

dN
= 2φN

βγ

β+ γ
, (2)

where half of this is internal cost to the additional traveller and the other

half is the marginal external congestion cost, denoted by MECd and the

subscript d denotes that this is the deterministic case.
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2.2 The stochastic bottleneck model

I use the results of Arnott et al. (1999) as a starting point for the present

analysis. A brief summary of their �ndings follows. I use the piecewise lin-

ear schedule delay cost function, although Arnott et al. (1999) use a more

general formulation. The di�erence relative to the deterministic bottleneck

model above is that now the serve time φ is taken as random with cumu-

lative distribution J and density j. Assume that φ is bounded above by

φ+. Normalise at no loss of generality to let N = R(tL) = 1. We assume an

equilibrium that equalises the expected costs EC(t) for all travellers. The

expected cost for a traveller departing at time t is

EC(t) = D(t)J

(
t− t0

R(t)

)
+

∫φ+

φQ(t)

[D(t+ q(t, φ)) + αq(t, φ)]j(φ)dφ,

where φQ(t) is the minimal serve time φ at which queue occurs at time t.

Arnott et al. (1999) then present the following �ndings.

� The cumulative departure rate R(t) is concave in t.

� The �rst traveller departs earlier than the preferred arrival time and

the last traveller departs later: t0 < 0 < tL.

� The minimal serve time at which queue occurs at time t is φQ(t) =

t−t0
R(t)

. In particular, qQ(tL) = tL−t0. Queue occurs at time t whenever
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φ > φQ(t).

� The expected cost at the �rst departure time is EC(t0) = −βt0.

� This is equal to the expected cost at the last departure, which is

EC(tL) = γtLJ(tL−t0)+γ

∫φ+

tL−t0

(t0+φ)j(φ)dφ+α

∫φ+

tL−t0

(φ−tL+t0)j(φ)dφ.

� The time between the �rst and last departures is given by

tL − t0 = J−1
(

α

α+ γ

)
.

3 Congestion costs

In this section I extend the results of Arnott et al. (1999) by deriving

expressions for the expected total, internal and marginal external cost.

Expected costs are equal at all departure times and hence it su�ces to

�nd the marginal cost at t0. In doing this we may utilise that the times

where travel starts and ends, t0 and tL are given by EC(t0) = EC(tL) and

tL − t0 = J−1
(

α
α+γ

)
. It is particularly useful that the cost for the �rst

traveller is not random, since she never experiences a queue but only the

delays cost associated with being early.

Elaborate the model slightly by letting the random number of travellers
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be NνN, where E(NνN) = N. Similarly, the random serve time is ψνψ,

where E(ψνψ) = ψ. Now let φ = NνNψνψ, σ = Nψ and ν = νNνψ

such that J(φ) = H(ν) and h(ν)dν = j(φ)dφ. We may then rewrite the

equations governing the start and end times as follows.

EC(t0) = C(t0) = −βt0 (3)

EC(tL) = tL
αγ

α+ γ
+ γ

∫ν+

H−1( α
α+γ)

(t0 + σν)h(ν)dν

+ ασ

∫ν+

H−1( α
α+γ)

(
ν−H−1

(
α

α+ γ

))
h(ν)dν (4)

tL − t0 = σH−1

(
α

α+ γ

)
(5)

We are then ready to �nd the marginal value of changes to σ.

Proposition 1 The marginal cost of changes in σ is constant and given

by

dEC(t0)

dσ
= β

α+ γ

γ+ β

∫ 1
α

α+γ

H−1(x)dx.

Proof Di�erentiate (5) with respect to σ to �nd that

dtL

dσ
−
dt0

dσ
= H−1

(
α

α+ γ

)
. (6)
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Di�erentiate also the expected costs at times t0 and tL.

dEC(t0)

dσ
= −β

dt0

dσ

dEC(tL)

dσ
=

dtL

dσ

αγ

α+ γ
+ γ

∫ν+

H−1( α
α+γ)

(
dt0

dσ
+ ν

)
h(ν)dν

+ α

∫ν+

H−1( α
α+γ)

(
ν−H−1

(
α

α+ γ

))
h(ν)dν

=

(
H−1

(
α

α+ γ

)
+
dt0

dσ

)
αγ

α+ γ
+
dt0

dσ

γ2

α+ γ

+ (α+ γ)Γ

(
α

α+ γ

)
− αH−1

(
α

α+ γ

)
γ

α+ γ

=
dt0

dσ

αγ

α+ γ
+
dt0

dσ

γ2

α+ γ
+ (α+ γ)Γ

(
α

α+ γ

)

where

Γ (x) =

∫ν+

H−1(x)

νh(ν)dν =

∫ 1
x

H−1 (x)dx

Now solve to �nd that dt0
dσ

= −α+γ
γ+β

Γ
(

α
α+γ

)
such that we may use (3) to

�nd that dEC(t0)
dσ

= βα+γ
γ+β

∫1
α

α+γ
H−1(x)dx.

This proposition is all that we require to establish explicit expressions

for user costs in the model. The following proposition states the results.

Proposition 2 The total expected cost for all travellers in equilibrium
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is

E(TC) = N2β
α+ γ

γ+ β
ψ

∫ 1
α

α+γ

H−1(x)dx.

Hence the marginal expected cost per user is

2Nβ
α+ γ

γ+ β
ψ

∫ 1
α

α+γ

H−1(x)dx,

of which half is the internal expected cost and half is the marginal

expected external cost, MECr.

Proof The marginal total expected cost of increasing the number of trav-

ellers is

dE(TC)

dN
=

dE(NνNC(t0))

dN
=
dNC(t0)E(νN)

dN

=
dNC(t0)

dN
= C(t0) +N

dC(t0)

dN
.

Proposition 1 shows that

dC(t0)

dN
= β

α+ γ

γ+ β
ψ

∫ 1
α

α+γ

H−1(x)dx.

This, in turn, leads to

dE(TC)

dN
= −βt0 +Nβ

α+ γ

β+ γ
ψ

∫ 1
α

α+γ

H−1(x)dx,
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where−βt0 is the internal expected cost andMECr = Nβα+γ
γ+β

ψ
∫1

α
α+γ

H−1(x)dx

is the marginal expected external cost. The expected cost for one traveller

is

EC = C(t0) =

∫N
0

dC(t0)

dN
dN = Nβ

α+ γ

γ+ β
ψ

∫ 1
α

α+γ

H−1(x)dx.

Now the total expected cost is NE(C).

It is informative to compare the di�erence in the marginal external

cost of a change in the mean number of travellers between the random

and deterministic bottleneck cases. We take the �xed serve time φ in the

deterministic case to be ψ
∫1
0
H−1(x)dx.

∆MEC = Nβ
α+ γ

β+ γ
ψ

∫ 1
α

α+γ

H−1(x)dx−N
βγ

β+ γ
ψ

∫ 1
0

H−1(x)dx

= N
β

β+ γ
ψ

[
α

∫ 1
α

α+γ

H−1(x)dx− γ

∫ α
α+γ

0

H−1(x)dx

]
(7)

Note that the di�erence is zero whenever one of α,β, γ or N is zero. The

di�erence tends to zero as the distribution of ν collapses on its mean. Using

that H−1 is increasing, it is easy to show that the di�erence is positive.

∆MEC > N
β

β+ γ
ψ

[
α

(
1−

α

α+ γ

)
H−1

(
α

α+ γ

)
− γ

(
α

α+ γ
− 0

)
H−1

(
α

α+ γ

)]
= 0

It is also possible to �nd an upper bound for the di�erence, using that

14



H−1(x) > 0. From (7),

∆MEC < N
αβ

β+ γ
ψ

∫ 1
0

H−1(x)dx

= N
αβ

β+ γ
ψE(ν)

=
α

γ
MECd.

This bound cannot be improved in general, since the distribution H may

have arbitrarily much of the mass below the α
α+γ

-quantile located at zero.

We collect these insights into a proposition.

Proposition 3 The marginal external congestion cost in the case with

uncertain capacity and demand increases by a factor between 1 and

1+ α
γ
relative to the deterministic case. The di�erence is zero whenever

α = 0,γ = 0 or β = 0. The di�erence increases in the value of time α

and in the cost of earliness β.

The same results hold for total costs and internal costs.

Stylised values of α = 2, β = 1 and γ = 4 are often used. With these

values we �nd that the di�erence is at most a factor 1.5.
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4 Perspectives

Given the cost of capacity provision, the results in this paper may be ap-

plied directly to �nd the optimal capacity. It is also easy to equip the

average demand with an elasticity like in Arnott et al. (1999) in order to

determine the optimal time-invariant toll.

Arnott et al. (1993) determine the optimal time-varying toll for the

deterministic case such that the average cost excluding the toll is minimal.

A main outstanding question is to determine an optimal time-varying toll

for the case of random capacity and demand. Here it seems to be hard

to make progress without being able to �nd the endogenous arrival rate

ρ. Moreover, concavity of the cumulative arrival rate is crucial for the

model. It is not obvious that concavity holds in the presence of an optimal

time-varying toll.
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