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Abstract
This paper studies the Pareto-optimality of the consensual optimum estab-

lished in "Allais-anonymity as an alternative to the discounted-sum criterion I:
consensual optimality" ([Mabrouk 2006a]). For that, a Pareto-optimality crite-
rion is set up by the application of the generalized Karush, Kuhn and Tucker
theorem and thanks to the decomposition of lp∗∞ . That makes it possible to find
sufficient conditions so that a bequest-rule path is Pareto-optimal. Through
an example, it is then shown that the golden rule must be checked to achieve
Allais-anonymous optimality.
The introduction of an additive altruism makes it possible to highlight the

intergenerational-preference rate compatible with Allais-anonymous optimal-
ity. In this approach, it is not any more the optimality which depends on the
intergenerational-preference rate, but the optimal intergenerational-preference
rate which rises from Allais-anonymous optimality.

JEL classification: D90; C61; D71;D63; O41; O30.

Keywords: Intergenerational anonymity; Allais-anonymity; Intergenerational
equity; Optimal growth; Technical change; Time-preference; Discounted-sum
criterion; Consensual criterion; Pareto-optimality; OG economy.
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1 Introduction

1.1 Motivation

This paper pursues two goals. First, we seek to set up a criterion of Pareto-
optimality applicable to a situation with exogenous technical change, overlap-
ping generations, bequests and infinite horizon (sections 2, 3 and 4), with an aim
of judging efficiency of the consensual optimum (with a Allais-anonymous con-
sensual criterion) partly characterized in the article "Allais-anonymity as an al-
ternative to the discounted-sum criterion I: consensual optimality" [Mabrouk 2006a]
and of which this article constitutes the prolongation.
The criterion of Pareto-optimality is obtained thanks to the direct applica-

tion of the generalized theorem of Karush, Kuhn and Tucker and also thanks
to the decomposition of lp∗∞ (see [Mabrouk 2006a]) which enables to calculate
the adjoint variable of the program defining Pareto-optimality. Using a suitable
adaptation of the variables, one realizes that this criterion is in fact nothing but
a particular case of the Pareto-optimality criterion of [Cass 1972] or the Pareto-
optimality criterion of [Balasko-Shell 1980], although the method implemented
here differs by the fact that it has recourse to the tools of the theory of optimiza-
tion. It appears indeed that the criterion used here is equivalent to these criteria
in the case of regular bequests plans. On the other hand, it does not constitute
a necessary condition of Pareto-optimality in the case of nonregular bequests
plans, whereas it is the case for Cass and Balasko-Shell criteria. But the am-
bition here is not to establish a complete characterization of Pareto-optimality
following the example of [Cass 1972] or [Balasko-Shell 1980]. However, although
incomplete, the criterion suggested here does not require a condition of minimal
curvature on the indifference curves and can be thus extended to the case of
unbounded capital without involving differentiability problems for the sequence
of utility functions (section 2).
Section 2 establishes the criterion of Pareto-optimality. Section 3 considers

the case where the growth rate of the capital is not the maximum rate, case not
taken into account by section 2, the optimum being then non-interior.
In absence of a general result on the Pareto-optimality of a consensual op-

timum, whereas there was such a result in the case without technical change
[Mabrouk 2005], section 4 gives some sufficient conditions for a consensual op-
timum to be Pareto-optimal. That will make it possible in certain cases, as in
the example of section 5, to partly characterize the optimal growth path which
satisfies at the same time consensual optimality and Pareto-optimality.
The second goal is to highlight certain properties of the optimal growth

path to draw some economic interpretations from them. Will be successively ap-
proached the comparison between golden-rule states (that are shown to coincide
asymptotically with optima) with and without technical change in a discrete-
time case (subsection 6.1), the analysis of the stability of the optimal path with
introduction of an additive altruism (subsection 6.2) and finally, the comparison
between Allais-anonymous and discounted-sum criteria (subsection 6.3).
All proofs are gathered in section 7 except those relating to the discrete-time
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example (section 5) which can be found in appendix A.
The model used in this paper is exactly that of [Mabrouk 2006a]. We start

by recalling its essential features, assumptions and the principal results. To have
more details on the model, it is preferable to consult [Mabrouk 2006a].

1.2 Model, assumptions and results on consensual opti-
mality

The economy is constituted by a succession of generations g1, g2, g3..., each gen-
eration being made up of only one individual who is at the same time consumer
and producer. At the beginning of its active life, a given generation gi inherits a
quantity bi−1 of that good. Its only acts during its life are: to consume, produce,
invest in order to increase its future consumption and, at the end of the active
lifetime, to bequeath bi to the descent. In doing so, generation gi achieves a
level of life-utility Ui(bi−1, bi). Each utility function Ui is defined from Di ⊂ R2+
to R. Di is strictly included in R2+, closed and with a non-empty interior; Ui
is concave and of class C2 on Di; U 0ih Â 0 (U 0ih and U 0il are respectively the
derivatives of Ui with respect to its first and second variable).
For r ≥ 0, denote lr∞ =

©
B = (b1, b2, ...)/bi ∈ R and supi≥1 |bi| e−ri ≺ +∞

ª
the Banach space normed by kBkr = supi≥1 |bi| e−ri.
The set D = {K = (k1, k2, · · · ) / for all i ≥ 1 : (ki−1, ki) ∈ Di} is assumed

to be strictly geometric of reason p ≥ 0 (see [Mabrouk 2006a] section 5 for the
definition of strict geometricity) and G (D) strictly geometric of reason p1 ≥ 0,
G being the mapping that associates to K ∈ D, G(K) = (Ui(ki−1, ki))i≥1.

Denote
◦
D the interior ofD in lp∞ with respect to the norm kBkp = supi≥1 |bi| e−pi.

It has been proved in [Mabrouk 2006a], section 6, that if G is linear at infinity

at K ∈
◦
D for the reasons (p, p1) then G is Frechet-differentiable at K.

Consider a consensual criterion represented by a real valued, Frechet-differentiable
functional Ψ on lp1∞. The consensual value of a state K ∈ D is given by
Ψ (G (K)). Suppose also that Ψ is Allais-anonymous and sensitive to long run
interest (definitions in [Mabrouk 2006a], section 7).
It has been proved in [Mabrouk 2006a], section 7, theorem 18, that if a

steady state1 K in
◦
D is a consensual optimum for the criterion Ψ then

u0he
−p + u0l = 0 (1)

where u0h = limU 0nh(kn−1, kn)e
−(p1−p)n and u0l = limU 0nl(kn−1, kn)e

−(p1−p)n.
Equation (1) is the bequest-rule and characterizes consensual optimality.

1definition 12 in [Mabrouk 2006a]
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2 Pareto optimality

2.1 Introduction

The criterion Ψ not being strictly increasing, it is not sure that any solution of
the first order condition (1) is Pareto optimal. That’s why an efficiency criterion
is needed. It is the objective of the present section.
Define Dl = {B ∈ D/ for all i ≥ 1, U 0il(bi−1, bi) ≤ 0}. Observe that a be-

quests plan which is not in Dl is not of interest since it cannot be Pareto optimal
. We will henceforth look for solutions in Dl.
Suppose 2

◦
D ∩Dl 6= ∅ (A1)

Let
K ∈

◦
D ∩Dl (A2)

Suppose
(Ui)i≥1 linear at infinity at K (A3)

We will first consider the case where

U 0nl(kn−1, kn) ≺ 0 for all n ≥ 1 (A4)

The latter assumption will be used to set regularity and then dropped.
Let B ∈ D. For i ≥ 1, let Ti be the transformation which suppresses the ith

component of an element of lp∞, replaces it by the next one and shifts all the
following components backward. Let ei be the sequence of lp∞ which components
are all 0 except the ith equal to 1.
Denote Hi(B) = Ti(G(B)−G(K)).
Under the above assumptions, G is Frechet-differentiable at K. This implies

that Hi and Ui are also Frechet-differentiable at K and we have

δHi(K) = Ti(δG(K))

and
δUi(K) = ei | δG(K)

where δ preceding a transformation means its Frechet-differential.
The program Pi (K) which gives Pareto optimality, can be written

max
B∈D

ei | G(B)
subject to : Hi(B) ≥ 0

2
◦
D∩Dl = ∅ would mean that in the interior of D, U 0il ≥ 0. Thus, the optimum would not

be interior to D. For example if U 0il is everywhere positive, there would not be a real conflict
of interest between a generation and the following generations. The optimum would consist
in always bequeathing the maximum.
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2.2 Regularity of K for the inequality Hi(B) ≥ 0
To apply the Karush-Kuhn-Tucker theorem to Pi (K), we have to make sure that
K is a regular point of the inequality Hi(B) ≥ 0. This means that Hi(K) ≥ 0
and that there is X ∈ lp∞ such that Hi(K)+ δHi(K) ·X Â 0 (which means that
all components are strictly positive and that the sequence is strictly of reason
p1).
Denote henceforth u0hn = U 0nh (kn−1, kn) and u0ln = U 0nl (kn−1, kn).
Define R and R as follows

R = lim sup
u0hn
−u0ln

, R = lim inf
u0hn
−u0ln

According to proposition 10 of [Mabrouk 2006a], the sequences (u0hn)n≥1and
(u0ln)n≥1are in lp1−p∞ . We need to assume that either (u0hn)n≥1or (u

0
ln)n≥1are in

sp1−p∞ to set regularity.

Proposition 1 Under assumptions (A1, A2, A3 and A4), K is regular if
either (u0hn)n≥1or (u

0
ln)n≥1is in sp1−p∞ and if either R ≺ ep or R Â ep.

Remark 2 If p1 was not the strict reason of G(D), there would be p01 ≺ p1

such that (u0hn)n≥1and (u
0
ln)n≥1are in l

p01−p∞ which is contrary to (u0hn)n≥1or
(u0ln)n≥1 ∈ sp1−p∞ . Thus, we would not have regular points. Hence, the assump-
tion of strict geometricity of G(D) is crucial for the necessity of the Pareto-
optimality criterion given by proposition 3. The strict geometricity of D, as for
it, is crucial for both necessity and sufficiency as far as we need definition sets
with non empty interiors to use optimization theorems.

Denote

L+ =

(
K ∈ D/ lim sup

u0hn
−u0ln ≺ epand

either (u0hn)n≥1 or (u
0
ln)n≥1 is in sp1−p∞

)

and

L− =

(
K ∈ D/ lim inf

u0hn
−u0ln Â ep and

either (u0hn)n≥1 or (u
0
ln)n≥1 is in sp1−p∞

)
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2.3 Necessity

Suppose
◦
D ∩Dl ∩ (L− ∪ L+) 6= ∅ (A’1)

Proposition 3 Under the assumptions (A’1), K ∈
◦
D ∩ (L− ∪ L+) and (A3),

if K is a Pareto-optimal bequests plan then, for all i ≥ 1, we have:
+∞X
n=0

nY
j=0

¯̄̄̄
¯u0li+jep1u0hi+j+1

¯̄̄̄
¯ ≺ +∞

2.4 Sufficiency

Proposition 4 Under assumptions (A1) , (A2) and (A3), let i such that if
i Â 1 we have: Qi−1

j=1 u
0
lj 6= 0.

If
+∞X
n=0

nY
j=0

¯̄̄̄
¯u0li+jep1u0hi+j+1

¯̄̄̄
¯ ≺ +∞

then K is solution of Pi(K).

If K is such that for all i ≥ 1 we have D2Ui(ki−1, ki) ≺ 0, then we have:⎛⎝+∞X
n=0

nY
j=0

¯̄̄̄
¯u0l1+jep1u0h2+j

¯̄̄̄
¯ ≺ +∞

⎞⎠ =⇒
⎛⎝+∞X
n=0

nY
j=0

¯̄̄̄
¯u0li+jep1u0hi+j+1

¯̄̄̄
¯ ≺ +∞

⎞⎠ for all i ≥ 1

If K is a solution of Pi(K) for all i ≥ 1, then K is a Pareto-optimal bequests
plan. Thus, we can state:

Proposition 5 Under the assumptions (A1) , (A2), (A3) and (A4), if

+∞X
n=0

nY
j=0

¯̄̄̄
¯u0l1+jep1u0h2+j

¯̄̄̄
¯ ≺ +∞

then K is a Pareto-optimal bequests plan.

Remark 6 (a)The condition K ∈
◦
D is needed only to ensure G’s differentia-

bility at K. If, besides, we are sure that G is differentiable at K, we don’t need
anymore this interiority condition. (b)In propositions 4 and 5, one could omit
the assumption of strict geometricity of G(D).
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From proposition 3 and proposition 5, we deduce the following theorem:

Theorem 7 Under the assumptions (A’1), K ∈
◦
D ∩ (L− ∪ L+), (A3), and

(A4), K is a Pareto-optimal bequests plan if and only if

+∞X
n=0

nY
j=0

¯̄̄̄
¯u0l1+jep1u0h2+j

¯̄̄̄
¯ ≺ +∞

This condition implies that, for ”most” generations we have:

−U 0nl(kn−1, kn)ep1 ≺ U 0n+1h(kn, kn+1)

which means that if generation gn decreases its bequest by one unit, it
wins ep1 times less than what is lost by generation gn+1. That suggests
that the agents can be all the more selfish as p1 is large, because the reduction
of heritage by a generation, without damage for all the line, is all the more high
as p1 is large. This idea will be specified in section 6.

3 If K has not the maximum growth rate

3.1 Introduction

We supposed above that K ∈
◦
D. But since

◦
D ⊂ sp∞++, lim inf |kn| e−pn Â 0

and kn grows at the maximum rate ep. We then need another method to test
Pareto optimality for a bequests plan K which doesn’t grow at the maximum
rate.

Definition 8 Let π ∈ [0, p] , Dπ = D∩ lπ∞ and π1 =reason of G(Dπ). For K ∈
◦
Dπ, define linearity at infinity in lπ∞ exactly as in definition 8 of [Mabrouk 2006a]
after having replaced p and p1respectively by π and π1.

In this section, the condition of linearity at infinity refers to linearity at
infinity in lπ∞ for the reasons (π, π1).
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3.2 Necessity:

Proposition 9 If a bequests plan is in Dπ where π ∈ [0, p[, all bequests plans
that Pareto-dominate it are also in lπ∞.

Consequently, if a bequests plan K in Dπ is Pareto-optimal in Dπ, it is also
Pareto-optimal in D.

Suppose
◦
Dπ 6= ∅ (using the appropriate norm k.kπ) and G (Dπ) strictly

geometric of reason π1. Let K ∈
◦
Dπ. Since

◦
Dπ ⊂ sπ∞++this implies that

K ∈ sπ∞++ . Observe that the growth rate of K is now eπ ≺ ep. Denote

Lπ+ =

(
K ∈ D/ lim sup

u0hn
−u0ln ≺ eπand

either (u0hn)n≥1 or (u
0
ln)n≥1 is in sπ1−π∞

)
and

Lπ− =

(
K ∈ D/ lim inf

u0hn
−u0ln Â eπ and

either (u0hn)n≥1 or (u
0
ln)n≥1 is in sπ1−π∞

)
Now change p by π in the proposition 3,
It then gives:

Proposition 10 Under the assumptions (A’1), K ∈
◦
Dπ ∩ (Lπ− ∪ Lπ+) and

(A3)3 , if K is a Pareto-optimal bequests plan in D then for all i ≥ 1 we have:
+∞X
n=0

nY
j=0

¯̄̄̄
¯u0li+jeπ1u0hi+j+1

¯̄̄̄
¯ ≺ +∞

3.3 Sufficiency

Let π ∈ [0, p] and K ∈
◦
Dπ such that G is linear at infinity at K in lπ∞. Denote

π1 the reason of G(Dπ). As we have done above, change p by π and p1 by π1
in proposition 5, theorem 7 and in assumptions (A’1, A3, and A4).
It then gives:

Proposition 11 If
+∞X
n=0

nY
j=0

¯̄̄̄
¯u0l1+jeπ1u0h2+j

¯̄̄̄
¯ ≺ +∞

then K is a Pareto-optimal bequests plan.

3For (A’1) and (A3), use (π, π1) instead of (p, p1) .
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Remark 12 As in proposition 5, one could omit the assumption of strict ge-
ometricity of G(Dπ).

Theorem 13 Let K ∈
◦
Dπ∩ (Lπ−∪Lπ+). K is a Pareto-optimal bequests plan

if and only if
+∞X
n=0

nY
j=0

¯̄̄̄
¯u0l1+jeπ1u0h2+j

¯̄̄̄
¯ ≺ +∞

Remark: For a bequests plan K which has not a strict reason, we cannot
apply the propositions and theorem of this section since there is not π such that

K ∈
◦
Dπ.

4 Is a consensus-optimal plan Pareto-optimal?
An optimal growth path has to be at the same time consensus-optimal and
Pareto-optimal. We have then to select from the set of consensus-optima those
which are Pareto-optimal.
There is not here a general result on the Pareto optimality of consensual

optima or on the Pareto-optimality of bequest-rule plans as in the case without
technical change [Mabrouk 2005].
Indeed, in the case of an Allais-anonymous consensual criterion (which is, I

think, the more interesting case), it is not certain that there exists a consensual
optimum that is Pareto-optimal or a bequest-rule plan that is Pareto-optimal.
Nevertheless, the following propositions should help answer the question of

Pareto-optimality of a bequest-rule plan in some practical cases. They give
sufficient conditions for Pareto-optimality.

Proposition 14 Let K be a bequest-rule plan. Take ∆k1 Â 0. For n ≥ 1define
the sequence (∆kn) as follows:

Un+1(kn −∆kn, kn+1 −∆kn+1) = Un+1(kn, kn+1)

If for all ∆k1 Â 0 the sequence (∆kn+1∆kn
) is increasing, then K is Pareto-

optimal.

Remark 15 If we had only for every ∆k1 Â 0 an ε Â 0 such that ∆kn+1∆kn
Â

ep + ε , this would be anyway a proof of the Pareto-optimality of K.
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Proposition 16 Let α be a real, m a positive integer and (rn) a sequence of
reals such that α Â 1, lim rn = 0 and

X
rn ≺ +∞. If there is a real π in [0, p]

and a steady state K in
◦
Dπ such that G is linear at infinity at K in lπ∞ and

such that: −U 0nl(K)
U 0nh(K)

ep = 1− α

n+ 1
+ rn+1 for all n ≥ m (2)

then K is a Pareto-optimal bequest-rule plan.

5 A discrete-time example

5.1 Introduction

Consider the labor-saving technical change case with a unique period. The
agent gets born in the beginning of the period, immediately inherits a capital
h and begins to produce with this capital. At the end of the period, the agent
consumes c, the capital is depreciated of ah, the agent bequeaths l and dies.
Consumption of generation gi is c = F (Li−1, h) − ah − (l − h) where F is

the production function and L is the exogenous labor-saving technical change
factor (L Â 1).
The satisfaction level achieved by the generation gi is then

Ui(h, l) = u (c) = u
¡
F (Li−1, h)− ah− (l − h)

¢
(3)

with the constraint c ∈ £0, F (Li−1, h)¤.
Suppose that, on top of meeting standard assumptions of respectively pro-

duction and utility functions, u and F are strictly concave, increasing, continu-
ous and twice derivable on their definition domains. Then, we check easily that
all needed assumptions on (Ui)i≥1are fulfilled.
Suppose F homogenous (F (λX, λY ) = λF (X,Y ) ), F (1, 0) ≥ 0, u(0) ≥ 0

and limy→0D2F (1, y) Â a+ L− 1.
There is not much lost of generality in the two latter assumptions since we

don’t change the problem when we add a constant to u and if limy→0D2F (1, y) ≤
a + L− 1, we will see further that the productivity of capital would be so low
that it will not be interesting any more to accumulate.
Also without loss of generality, suppose, to simplify, that the start-up capital

k0 is strictly positive.
Suppose that a ∈ ]0, 1[. It means that capital does depreciate, but it can

never disappear completely from the only fact of its depreciation.
Lastly, suppose limy→+∞D2F (1, y) ≺ a . As we shall see, this guarantees

the geometricity of bequests. It means that for the first generation, from a
given level of accumulation, marginal productivity falls under the rate of capital
depreciation. Consequently, at this level, it would not be worth accumulating
any more.
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Denote f(k) = F (1, k). Then

Ui(h, l) = u

µ
Li−1f(

h

Li−1
)− ah− (l − h)

¶
and the definition domain of Ui is

Di =

½
(h, l) /Li−1f(

h

Li−1
)− ah− (l − h) ≥ 0

¾
For subsections 5.3 and 5.4, we will adopt the following assumptions:

G(D) is strictly geometric of reason p1 (4)

G is linear at infinity on
◦
D for the reasons (LogL, p1) (5)

where Log denotes the Napierian logarithm.
The proofs of this section are in appendix A.

5.2 Geometricity

Proposition 17 Under the assumptions of subsection 5.1 on u and F , D is
strictly geometric of reason L.

Proposition 18 Under the assumptions of subsection5.1 on u and F , G(D) ⊂
lLogL∞ .

The above proposition indicates that if G(D) admits a strict reason, it is
lower than LogL. But it doesn’t give the exact reason of G(D). For this, it is
necessary to specify u, what I do in subsection 5.5.

5.3 Consensual optimality

Denote
w∗ = f 0−1(a+ L− 1)

Proposition 19 Under assumptions of subsection 5.1, there is i ≥ 1 and
(k∗1 , k

∗
2 , ..., k

∗
i )

such that the plan K∗ =
¡
k∗1 , k

∗
2 , ..., k

∗
i , L

i+1w∗, Li+2w∗, ...
¢
is interior to D.
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Let χ Â 0 such that S (K∗, χ) ⊂ D. Let K be a plan such that

K ∈
◦

S (K∗, χ) (6)

and that

lim
kn
Ln

= w∗ (7)

then:

Proposition 20 For a consensual criterion meeting the assumptions of subsec-
tion 1.2 and under the assumptions of subsection 5.1 on u and F and assump-
tions (4), (5), (6) and (7), K is an interior bequest-rule plan.

5.4 Pareto-optimality

Let ξ be a real and (rn) a sequence of reals such that ξ Â 1, lim rn = 0 andX
rn ≺ +∞. Denote

xn = a+
1³

1− ξ
n+1 − rn+1

´L− 1
We have limxn = a + L − 1. Therefore, we can define a bequests plan

K∗∗ such that (6) is checked and that, from a given index, we have:
k∗∗n−1
Ln−1 =

f 0−1 (xn) . K∗∗ is built of kind to meet the assumptions of propositions 20 and
16.

Proposition 21 Under the same assumptions that proposition 20, K∗∗is an
interior Pareto-optimal bequest-rule path.

5.5 Checking of assumptions (4) and (5) for two particular
utility functions

Assumptions (4) and (5) doesn’t necessarily hold for all functions u and f . For
example, (4) doesn’t hold for u (c) = Logc.4

I have studied the case of an hyperbolic function of utility : u (c) = αc +
1 − 1

c+1 with α Â 0 and the case u(c) = c1−θ with θ in ]0, 1[. In the first case,
except for assumptions (4) and (5), it is easy to see that all the other desired

4 It is probable that these questions are primarily of a mathematical nature. With bet-
ter mathematics, it should be possible, I believe, to extend the results to these cases.
For example, for the case u (c) = Logc, we could plunge G(D) in the space lp1∞ (n) =n
B = (b1, b2, ...)/ bi ∈ R and supi≥1

|bi|
ep1ii

≺ +∞
o
and use the norm kBk = supi≥1

|bi|
ep1ii

.

We have also to change the criterion Ψ.
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assumptions hold. But in the case u(c) = c1−θ , Ui is not differentiable at 0.
However, one can check that for a bequests plan K which is "candidate" to be
an optimal growth path, it is possible to find a strictly positive real ε such that

inf
i≥1

B∈S(K,ε)

ci Â 0

Thus, assumptions of subsection 1.2 are fulfilled on S (K, ε), which is enough
for the validity of the results.
In appendix A, I give four propositions that prove that conditions (4) and

(5) are checked, respectively for the case u (c) = αc+ 1− 1
c+1 (propositions 26

and 27) and u(c) = c1−θ (propositions 28 and 29).

5.6 The neutral case

Consider now the same discrete-time example, but with neutral technical change
(see [Solow 1956]), and with a Cobb-Douglas production function5. The utility
of generation gi is in this case : Ui(h, l) = u

¡
N i−1fhη − ah− (l − h)

¢
, where η

is the share of the income of the capital in the total production and N is the
exogenous neutral technical change factor (N Â 1).
Although this case is not presented in detail here (because of the length of

the calculus), it is interesting to quote the following results:

• As in the LS case, asymptotically, the bequest-rule path doesn’t depend
on the utility function, as long as the needed assumptions hold.

• Capital and production grow at the rate N
1

1−η , faster than technical
change, whereas growth rate is the same for capital, production and tech-
nical change in the LS case.

6 Some implications of the bequest rule

6.1 Golden rule

The following analysis is based on the example of section 5.
The equation (7) indicates that the marginal productivity of capital mpc =

D2F (L
n, kn) = Lnf 0

¡
kn
Ln

¢
tends to a+ L− 1. The equation mpc∗ = a+ L− 1

replaces the golden rule mpc0 = a characterizing the optimal path without
technical change ([Mabrouk 2005]). This means that the optimal level of capital
with technical change is always lower than the one without technical change,

5Contrary to the LS case, marginal productivity has to tend to 0 for infinite capital,
which is the case for the Cobb-Douglas function. Otherwise, economy would grow faster than
geometrically.
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more precisely, the level of capital which would be optimal if technical progress
had suddenly stopped.
Why isn’t it optimal to reach the level that guarantees mpc0 = a, despite

that, at the level mpc∗ = a+L− 1, an increase of capital by one unit implies a
net increase of production?
The answer is that it would be too expensive for a father to bequeath a

capital meeting the golden rule of his son. Indeed, with technical change, the
golden-rule level of capital "flees". The source of non-optimality in trying to
catch up with it, is that the effort made by a generation to enhance the satisfac-
tion of its heir, hurts its own satisfaction more than what this generation gains
from a similar effort by its predecessor.
In the neutral case, like in the LS case, the optimal marginal productivity

of capital (mpc∗) is equal to a + N − 1, where N denotes the rate of neutral
technical change.
In addition, asymptotically, the optimal growth path doesn’t depend on the

choice of utility function, as long as the needed assumptions hold.

6.2 Welfare analysis

I try here to assess to what extent a behavior led by personal incentives is
coherent with the optimal growth path. The observation that bequest consti-
tutes ultimately the current shape of transmission of capital from generation
to generation, led me to give to bequests a crucial role in the model. Al-
though other bequest-motives exist and other kinds of altruism can be used
(see [Saez-Marti-Weibull 2005, Lakshmi 2002, Barro 1974]), the proposed wel-
fare analysis is limited to the introduction of a father-son altruism, additively
separable from selfish utility and supposed to justify bequests.
Let’s call "spontaneous equilibrium" the state of the economy achieved when

agents behave according to their personal incentives. I do not use the name
"competitive equilibrium" because it refers to the general equilibrium approach
and to the assumptions which are attached to it, in particular the assumption of
competition and price-taker behavior. The latter assumption is not adapted to
a model which disregards the space dimension of the economy and where each
agent is alone and cannot thus consider that the prices are imposed to him.
The question then amounts to find out what must be the intensity of the

father-son altruism so that the spontaneous equilibrium it achieves coincides
with the optimal growth path.
As in [Mabrouk 2005], personal incentives are modeled by a utility function

of the form:
Vn (h, l) = Un (h, l) +An (l)

where Un is the selfish component of generation gn’s utility and An is the al-
truistic component. An represents the feelings of generation gn for its heir and
is supposed to be increasing with respect to l, C1 and strictly concave. Conse-
quently, the altruism expressed by An is limited to the agent’s family. That’s
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why it was called "familial altruism" in [Mabrouk 2005]. Hence, despite the
presence of this familial altruism component, Vn can still be considered as an
expression of personal incentives.
Let K be an interior steady-state optimal growth path and suppose that

U 0nl (kn−1, lmaxn (kn−1)) +A0n (lmaxn (kn−1)) ≤ 0 (8)

and that
U 0nl (kn−1, lminn (kn−1)) +A0n (lminn (kn−1)) ≥ 0 (9)

Assumptions (8) and (9) make sure that each of Un and An is operative
when gn is to behave according to its personal incentives.

Proposition 22 Under assumptions (8), (9) and assumptions of subsection
1.2, if the interior steady-state optimal growth path K coincide with a sponta-
neous equilibrium then:

u0h = a0ep (10)

where ep is the maximum growth rate of capital, u0h = limu0hne
−(p1−p)n, u0l =

limu0lne
−(p1−p)n, a0 = limA0ne−(p1−p)n and ep1 the maximum growth rate of

utility.

The left hand-side of equation (10) is the increase of selfish utility resulting
from an increase of heritage by one unit. The right hand-side is ep times the
increase of altruistic utility resulting from an increase of bequest by one unit.
To interpret this, observe that the ratio

s =
u0h
a0

(11)

measures selfishness with respect to the heir. Indeed, if one was to choose
between an increase of his own heritage by one unit and the increase of his
heir’s heritage by one unit, one should assess the selfishness ratio s. If s ≥ 1,
the increase of own heritage is better and conversely if s ≤ 1.
Thus, we can write (10) in another way:

s = ep (12)

what tells that one can be all the more selfish as technical progress, or more pre-
cisely, maximum capital growth rate, is significant. Much more, it is imperative
to be more selfish if technical progress increases.
If s Â ep, agents being too selfish, we can expect accumulation to be insuf-

ficient.
If s ≺ ep, agents are not selfish enough but it is not certain wether the

economy would go over-accumulated, which means that marginal productivity
is lower than the capital depreciation ratio a. As said above (subsection 6.1)
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the source of non-optimality could be that agents damage themselves in trying
to catch up with the level of capital meeting the golden rule of next generation.
The consequence is that everybody is worse off!
To some extent, relation (12) indicates that technical progress compensates

for selfishness.

6.3 Comparison between discounted-sum andAllais-anonymous
criteria

In this subsection, we place ourselves under the assumptions of subsection 1.2
and the assumption (A3).
Another way to present the relation between selfishness and technical change

is to define the altruistic component of utility as next generation utility dis-
counted by an own-generation-preference rate ρ ([Groth 2003, Heidjra-van der Poeg 2002,
Barro 1974]):

An =
1

ρ
Vn+1 =

1

ρ
(Un+1 +An+1) (13)

Define as myopic spontaneous equilibrium the state of the economy achieved
when each generation gn maximizes Un +

1
ρ (Un+1 +An+1) considering that

(kn+1, kn+2, ...) don’t depend on its control variable: kn, and define as rational-
expectations spontaneous equilibrium the state of the economy achieved when
each generation takes fully into account the changes of behavior of all posterior
generations, induced by the variation of its own control variable.

Proposition 23 Let Km be an interior steady-state myopic spontaneous equi-
librium. Then, on the path Km:

u0hn+1 + ρu0ln = 0 (14)

Moreover, the asymptotic selfishness ratio and the asymptotic marginal rate of
substitution between heritage and bequest are both equal to:

ρ

ep1
ep

The interpretation of equation (12) is then that the "optimal own-generation-
preference rate" is ep1 , the maximum growth rate of utility.
Consider now the discounted-sum criterion:

Φ (G (K)) =
+∞X
1

Un (kn−1, kn)
ρn

So that the definition domain of Φ contains lp1∞, it is necessary to have
ρ Â ep1 .

17



Proposition 24 Let Kd be an interior steady-state consensual optimum for
the criterion Φ. Then, the path Kd checks equation (14) and the asymptotic
marginal rate of substitution between heritage and bequest is the same than that
of Km.

Proposition 25 LetKr be a rational-expectations spontaneous equilibrium with
ρ as own-generation-preference rate. Then equation (14) is checked on the path
Kr.

Proposition 25 shows that, using the same own-generation-preference rate ρ,
equation (14) characterizes also rational-expectations equilibria.
Consequently, since equation (14) characterizes at the same time rational-

expectations equilibria, discounted-sum optima and myopic equilibria, the three
concepts are equivalent (It is not worth being rational!). Thus, since ep1 is the
optimal own-generation-preference rate, the condition ρ Â ep1 shows that the
optimality defined with a discounted-sum criterion will never coincide
with that defined with an Allais-anonymous criterion.
Economic intuition suggests that the discounted-sum criterion constitutes a

short-run criterion compared to the Allais-anonymous criterion, supporting the
close generations compared to those remote. I have not a general formal proof
for that but, nevertheless, it is easy to check in the discrete-time example of
section 5. Indeed, the discounted-sum optimum Kd checks

kdn
Ln
−→ w

where w is such that f 0 (w) = a + ρ
ep1 e

p − 1. But ρ
ep1 e

p Â ep implies that
w ≺ w∗ (w∗ is defined in subsection 5.3). As a result, for n large enough,
Un
¡
kdn−1, kdn

¢ ≺ Un
¡
k∗∗n−1, k∗∗n

¢
, where K∗∗ is the bequest-rule path defined in

subsection 5.4. Moreover, the form of Φ implies, in an obvious way, that Kd

is Pareto-optimal. We can thus deduce that close generations are necessarily
better off in the discounted-sum optimum Kd while distant generations are
better off in the Allais-anonymous optimum K∗∗.

7 Proofs

7.1 Proofs for section 2

Proof of proposition 1: Observe that Hi(K) = 0. Therefore, the question
amounts to find X ∈ lp∞ such that δHi(K) ·X Â 0.
According to lemma 22 [Mabrouk 2006a], sp1∞++ =

◦
lp1∞+. As a result, δHi(K)·

X Â 0⇔ δHi(K) ·X ∈ sp1∞++. If we take, for convenience, x0 = 0, we can write
for n ∈ [1, i− 1] :

(δHi(K) ·X)n = u0hnxn−1 + u0lnxn
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and for n ≥ i:
(δHi(K) ·X)n = u0hn+1xn + u0ln+1xn+1

also, we have : (u0hn)n≥1 ∈ sp1−p∞ ⇔ lim inf |u0hn| e−(p1−p)n Â 0, similarly for
(u0ln)n≥1.

If R ≺ ep:
There is ε Â 0 such that

ep

R + ε
− 1 Â 0

and N integer such that n ≥ N =⇒
u0hn
−u0ln

≺ R + ε

This gives
ep

u0hn
−u0ln

− 1 Â ep

R + ε
− 1 Â 0

Take x1 ≺ 0 and xi ≺ 0. For n ∈ [2, i− 1]∪ [i+ 1, N ] choose xn ≺ 0 such
that

xn ≺ u0hn
−u0ln

xn−1

Thus, u0hnxn−1 + u0lnxn Â 0 for n ∈ [1, i− 1]∪ [i+ 1,N ] (with x0 = 0).
Take xn = xNe

(n−N)p for n ≥ N . Thus, (δHi(K) ·X)n−1 =

u0hnxn−1 + u0lnxn = u0hn

µ
xn−1 +

u0ln
u0hn

xn

¶
= −xNu0hne(n−1)p

µ−u0ln
u0hn

ep − 1
¶
Â 0

and, if we suppose that (u0hn)n≥1 ∈ sp1−p∞

lim inf [u0hnxn−1 + u0lnxn] e
−(n−1)p1

≥ −xNep1−p lim inf u0hnen(p−p1)
µ

ep

R + ε
− 1
¶
Â 0

We have then found X in lp∞ such that δHi(K) ·X Â 0. If we suppose, instead
of (u0hn)n≥1 ∈ sp1−p∞ , that (u0ln)n≥1 ∈ sp1−p∞ , we have the same result.

If R Â ep

There is ε Â 0 such that

1− ep

R − ε
Â 0
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and N integer such that n ≥ N =⇒
u0hn
−u0ln

Â R − ε

This gives

1− ep

u0hn
−u0ln

Â 1− ep

R − ε
Â 0

Take x1 ≺ 0 and for n ∈ [2, i− 1] choose xnsuch that

xn ≺ u0hn
−u0ln

xn−1

Take xi Â 0. For n ∈ [i+ 1, N ] choose xn Â 0 such that

xn ≺ u0hn
−u0ln

xn−1

Thus, u0hnxn−1 + u0lnxn Â 0 for n ∈ [1, i− 1]∪ [i+ 1,N ] (with x0 = 0).
Take xn = xNe

(n−N)p for n ≥ N . Thus, (δHi(K) ·X)n−1 =

u0hnxn−1 + u0lnxn = u0hn

µ
xn−1 +

u0ln
u0hn

xn

¶
= xNu

0
hne

(n−1)p
µ
1− −u

0
ln

u0hn
ep
¶
Â 0

and, if we suppose that (u0hn)n≥1 ∈ sp1−p∞

lim inf [u0hnxn−1 + u0hlxn] e
−(n−1)p1

≥ xNe
p1−p lim inf u0hne

n(p−p1)
µ
1− er

R − ε

¶
Â 0

We have δHi(K) ·X Â 0. Similarly if (u0ln)n≥1 ∈ sp1−p∞ ¥

Proof of proposition 3: Suppose that (A’1) holds. Let K ∈
◦
D ∩ Dl ∩

(L− ∪ L+) such that (A3) and (A4) hold. According to the Karush-Kuhn-
Tucker theorem, if K is a solution of Pi(K) then there is λ

∗ ∈ lp1∗∞ such that, for
all ∆K in lp∞

δUi (K) ·∆K + hλ∗ | δHi (K) ·∆Ki = 0 (15)

with λ∗ ≥ 0.
Now apply lemma 2 of [Mabrouk 2006a]:

λ∗ = λ+ β

where λ = (λn)n≥1 ∈ lp11 and β is such that its restriction to cp1 is proportional
to δp1∞.
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Let ∆K be in cp0. We see that δUi (K) ·∆K is in cp10 , and since the sequences
(u0hn)n≥1and (u

0
ln)n≥1are in lp1−p∞ (see proposition 10 of [Mabrouk 2006a]),

lim
n→+∞ |u

0
hn∆kn−1 + u0ln∆kn| e−np1 ≤ lim

n→+∞ |u
0
hn∆kn−1| e−np1 +

|u0ln∆kn| e−np1
= lim

n→+∞ |u
0
hn| e−n(p1−p) |∆kn−1| e−np +

¯̄̄
u0lne

−n(p1−p)
¯̄̄
e−n(p1−p) |∆kn| e−np

≤ lim
n→+∞

h
kU 0hkp1−p∆kn−1e−np + kU 0lkp1−p∆kne−np

i
= 0

thus, δHi (K) ·∆K is also in cp10 . It implies that hβ | δUi (K) · ∆Ki = 0 and
hβ | δHi (K) ·∆Ki = 0.
Replace λ∗ by λ+ β in (15):

δUi (K) ·∆K + hλ | δHi (K) ·∆Ki = 0

for all ∆K in cp0. By development and identification, we obtain:

λi−n = (−1)n u0hi...u
0
hi−n+1

u0li−1...u
0
li−n

for n ∈ [1, i− 1] (16)

λi+n = (−1)n+1 u0li...u
0
li+n

u0hi+1...u
0
hi+n+1

for n ∈ [0,+∞[

Since λ is in lp11 we have
P+∞

n=1 |λn| ep1n ≺ +∞. Replace (λj) by its value in
(16):

+∞X
n=0

nY
j=0

¯̄̄̄
¯u0li+jep1u0hi+j+1

¯̄̄̄
¯ ≺ +∞ (17)

If K is Pareto-optimal, the inequality (17) holds for all i ≥ 1.
Now drop the assumption (A4). We show the same way than in [Mabrouk 2005]

that (17) is still a necessary condition for Pareto-optimality:
Let J = {j/U 0nl(kj−1, kj) = 0}. If J is up-bounded, let q = maxJ .
If K is Pareto-optimal, the bequests plan extracted fromK and beginning at

the generation gq+1 : (kq+1, kq+2, · · · ) is also necessarily Pareto-optimal when
we take (k0, k1, · · · kq) as fixed parameters. If K is in

◦
D ∩ (L− ∪ L+), the

extracted plan is also in
◦
Dkq ∩ (L− ∪ L+) and (kq, kq+1) ∈

◦
Dq+1

6. SinceQ+∞
j=q+1 U

0
nl(kj−1, kj) 6= 0, it verifies necessarily the condition (17), but with

gq+1 as first generation. This gives, for all i ≥ 1:
+∞X
n=0

nY
j=0

¯̄̄̄
¯u0lq+i+jep1u0hq+i+1+j

¯̄̄̄
¯ ≺ +∞

6Dkq is the set
n
B = (bq+1, bq+2, · · · ) ∈ lp∞+/ ∀i ≥ 1 : (bq+i−1, bq+i) ∈ Dq+i

o
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Multiply the above inequality with

q−1Y
j=0

¯̄̄̄
¯u0li+jep1u0hi+1+j

¯̄̄̄
¯

we find again the inequality (17).
If J is not up-bounded, there is episodically a q such that U 0nl(kq−1, kq) =

0. Consequently, in the sum
P+∞

p=0

Qp
n=0

¯̄̄
u0li+ne

p1

u0hi+1+n

¯̄̄
there is a finite number of

nonzero terms. Thus, for all i ≥ 1 the sum converges¥

Proof of proposition 4: The first step is to show the stationarity of the

Lagrangian. For K ∈
◦
D and i ≥ 1 define the Lagrangian Li from D × lp11 to

R as follows Li(B,µ) = Ui(B) + hµ | Hi(B)i 7 , and suppose, if i Â 1, thatQi−1
j=1 u

0
lj 6= 0. The system (16) defines a sequence λ.

If
+∞X
n=0

nY
j=0

¯̄̄̄
¯u0li+jep1u0hi+j+1

¯̄̄̄
¯ ≺ +∞

then we can see that λ ∈ lp11 . Like Ui and Hi, Li is differentiable with respect
to B at B = K. Its differential, computed at µ = λ and B = K is δLi(K,λ) =
δUi(K) + hλ | δHi(K)i. Since λ ∈ lp11 , for ∆K ∈ lp∞ we have

δLi(K,λ) ·∆K = δUi(K) | ∆K + λ | hδHi(K) ·∆Ki
= δUi(K) | ∆K + lim

n−→+∞(λ1, λ2, · · · , λn) | hδHi(K) ·∆Ki

Replace (λj) by their values in (16), we obtain

δUi(K) | ∆K + (λ1, λ2, · · · , λn) | hδHi(K) ·∆Ki = λnu
0
ln+1∆kn+1

which tends to 0 when n tends to infinity.
Thus δLi(K,λ) = 0. In other words, the Lagrangian Li is stationary at

(K,λ).

The second step is to deduce optimality from stationarity.
Let i be such that if i Â 1 we have: Qi−1

j=1 u
0
lj 6= 0. From the system (16), we

deduce that λj ≥ 0 for all j ≥ 1. Thus, Li is concave with respect to B. As a
result, for all B ∈ D and α ∈ ]0, 1[ we have:

Li((1− α)K + αB, λ) ≥ (1− α)Li(K,λ) + αLi(B,λ)

then
Li(K + α(B −K), λ)− Li(B, λ)

α
≥ Li(B,λ)− Li(K,λ)

7This is possible since lp11 ⊂ lp1∗∞ and Hi(B) ∈ lp1∞ .
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Since Li is Frechet-differentiable at K, when α tends to 0 we obtain:

δLi(K,λ) | (B −K) ≥ Li(B, λ)− Li(K,λ) (18)

We know that if
+∞X
n=0

nY
j=0

¯̄̄̄
¯u0li+jep1u0hi+j+1

¯̄̄̄
¯ ≺ +∞

we have δLi(K,λ) = 0.
We then deduce from (18) that for all B ∈ D:

Li(B, λ)− Li(K,λ) ≤ 0 (19)

We now show that K solves Pi(K). Suppose there is B in D such that
Ui(B) Â Ui(K) and Hi(B) ≥ 0. We have Hi(K) = 0 so Hi(B) ≥ Hi(K). Since
λ ≥ 0 we have λ | Hi(B) ≥ λ | Hi(K). Finally Ui(B)+λ | Hi(B) Â Ui(K)+λ |
Hi(K). This contradicts (19)¥

7.2 Proofs for section 3

Proof of proposition 9: If we show that if a plan B Pareto-dominates a plan
K, then bn ≤ kn for all n ≥ 1, this will prove the proposition. Suppose there
is n ≥ 1 such that bn+1 Â kn+1. According to the assumptions on U , it is easy
to show that we then have bn Â kn. Hence, by induction, b1 Â k1 and the first
generation g1 is better off in K, which contradicts that B Pareto-dominates K¥

7.3 Proofs for section4

Proof of proposition 14: Observe that, because of the concavity of Un, we
have

∆kn+1
∆kn

Â D1Un+1(K)

D2Un+1(K)
= ep

∆kn is the decrease of bequest generation gn would have to carry out to
maintain its utility level if g1 lowers its bequest by a quantity ∆k1. Suppose
that the sequence (∆kn) is defined for all n ≥ 1. (∆kn+1∆kn

) would then converge
to l Â ep, which means that (∆kn) goes out of lp∞. This contradicts D ⊂ lp∞.
Thus, for all decrease of first generation’s bequest ∆k1, there is a generation

gn which cannot maintain its utility level. We can make the same reasoning for
the decrease of any generation’s bequest. Thus K is Pareto-optimal.¥

Proof of proposition 16: We see clearly that K is a bequest-rule plan.
Equation (2) shows that for n large enough we have D2Un(kn−1, kn) ≺ 0. When
K is Pareto-optimal starting from a given index, it is also Pareto-optimal start-
ing from n = 1 (see [Mabrouk 2005]). For this reason, we will suppose without
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loss of generality that the inequality D2Un(kn−1, kn) ≺ 0 holds starting from
n = 1. Let π1 be the reason of G(Dπ). According to proposition 11 ( section
3), if

+∞X
n=0

nY
j=0

¯̄̄̄
¯u0l1+jeπ1u0h2+j

¯̄̄̄
¯ ≺ +∞

then K is Pareto-optimal.
Suppose first that p = p1.For n ≥ 1, we have:

nY
j=0

¯̄̄̄
¯u0l1+jep1u0h2+j

¯̄̄̄
¯ = −u0l1epu0h2+n

n+1Y
j=2

−u0ljep
u0hj

For n ≥ 1 denote
Πn =

n+1Y
j=2

−u0lj
u0hj

ep

and take Π0 = 1. Observe that the equation (2) implies that the series
P+∞

n=0Πn
fulfills Rabee-Duhamel criterion since

Πn
Πn−1

=
−u0ln+1
u0hn+1

ep

Thus, it converges.
But

+∞X
n=0

nY
j=0

¯̄̄̄
¯u0l1+jep1u0h2+j

¯̄̄̄
¯ =

+∞X
n=0

−u0l1ep
u0h2+n

Πn

Since K is steady state, we can write u0h = limu0hne
−(p1−p)n = limu0hn. As

a result, since
P+∞

n=0Πn converges, the series

+∞X
n=0

nY
j=0

¯̄̄̄
¯u0l1+jep1u0h2+j

¯̄̄̄
¯

also converges8. Since π1 ≤ p1 the series

+∞X
n=0

nY
j=0

¯̄̄̄
¯u0l1+jeπ1u0h2+j

¯̄̄̄
¯

converges and K is Pareto-optimal.
If p 6= p1, multiply Un by e(p−p1)n. Again D and G(D) have the same reason.

Apply then the above proof to see that K is still Pareto-optimal.¥

8 It is enough to consider the remainder of Cauchy to prove it.
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7.4 Proofs for section 6

Proof of proposition 22: Generation gn solves

max
l

Vn (kn−1, l)

which is characterized by the equation

u0ln + a0n = 0

Since the spontaneous equilibrium and the interior steady-state optimal
growth path coincide, a0 = lim a0ne

−(p1−p)n exists and is equal to −u0l. It remains
only to use the bequest rule (1) to see that u0h = a0ep¥

Proof of proposition 23 ; Generation gn maximizes

Un
¡
kmn−1, k

m
n

¢
+
1

ρ

£
Un
¡
kmn , k

m
n+1

¢
+An+1

¡
kmn+1, k

m
n+2, ...

¢¤
with respect to kmn , what gives equation (14). For a steady state, lim

u0hn
u0hn+1

=

ep−p1 . Then, since a0ln =
1
ρu

0
hn+1, the selfishness ratio is sn =

u0hn
a0ln

= ρ
u0hn
u0hn+1

(equation (11)) and s = lim sn = ρep−p1 . The marginal rate of substitution
between heritage and bequest is rn =

u0hn
−u0ln =

u0hn
u0hn+1

u0hn+1
−u0ln . Thanks to equation

(14), this gives rn =
u0hn
u0hn+1

ρ −→ ρep−p1¥

Proof of proposition 24 ; Interior consensual optima for the criterion Φ
check the relation:

δΦ (G (K)) = 0 (20)

With the help of proposition 14 of [Mabrouk 2006a] and noting that ∂Φ
∂p1∞ =

0, (20) gives equation (14). The proof for the asymptotic marginal rate of
substitution between heritage and bequest is similar to that of the myopic case¥

Proof of proposition 25: Equation (13) implies An+1 = ρAn −Un+1. By
induction

An+1

ρn+1
=

A1
ρ
−

n+1X
j=2

Uj
ρj

For each value of A1 there is a sequence (An)n≥1that fulfills equation (13).
We have to choose the value of A1 that fits best our economic question. That

is why it is necessary to choose A1 such that A1

ρ −
+∞X
j=2

Uj
ρj = 0. Otherwise,

the sequence (An)n≥1 would grow at the rate ρ which is larger than ep1 , the
maximum growth rate of (Un)n≥1. This would imply that the selfish part of the
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utility Un
Vn
tends to zero, which contradicts the idea of own-generation-preference.

We then have A1 =
+∞X
j=2

Uj
ρj−1 and, by induction

Vn = Un +An =
+∞X
j=0

Un+j
ρj

Denote Φn (G (K)) =
+∞X
j=0

Un+j(K)
ρj . Generation gn will choose the capital to

bequeath to gn+1anticipating the behavior of gn+1, gn+2...Denote Kn+1 (h) =¡
knn+1 (h) , k

n
n+2 (h) , k

n
n+3 (h) ...

¢
the awaited response of the posterior genera-

tions, to a bequest kn = h by gn. Denote
¡
h, knn+1 (h) , k

n
n+2 (h) , k

n
n+3 (h) ...

¢
by¡

h,Kn+1 (h)
¢

and (Un (kn−1, h) , Un+1 (h, kn+1) , Un+2 (kn+1, kn+2) ...)
by Gn

¡
kn−1, h,Kn+1 (h)

¢
.

gn solves
max
h
Φn
¡
Gn

¡
kn−1, h,Kn+1 (h)

¢¢
The first order condition gives (rigorously, we should prove that knn+j (h),

the expectation functions consistent with rational-expectations equilibria, are
derivable):

u0ln +
1

ρ
u0hn+1 +

k0nn+1
ρ

µ
u0ln+1 +

1

ρ
u0hn+2

¶
+

k0nn+2
ρ2

µ
u0ln+2 +

1

ρ
u0hn+3

¶
+ ... = 0

(21)
Inheriting h,
gn+1 bequeaths h1 on the basis of its anticipations k

n+1
n+2 (h1) , k

n+1
n+3 (h1) ....

Rational expectations imply knn+1 (h) = h1. We can then write knn+2 (h) =
kn+1n+2

¡
knn+1 (h)

¢
, knn+3 (h) = kn+1n+3

¡
knn+1 (h)

¢
...Thus, k0nn+2 = k0n+1n+2 k

0n
n+1, k

0n
n+3 =

k0n+1n+3 k
0n
n+1...and (21) gives

u0ln+
1

ρ
u0hn+1+

k0nn+1
ρ

⎡⎢⎣
³
u0ln+1 +

1
ρu

0
hn+2

´
+

k0n+1n+2

ρ

∙³
u0ln+2 +

1
ρu

0
hn+3

´
+

k0n+1n+3

ρ

³
u0ln+3 +

1
ρu

0
hn+4

´
...

¸ ⎤⎥⎦ = 0
(22)

But, since gn+1 solves

max
h1
Φn+1

¡
Gn+1

¡
kn, h1,K

n+2 (h1)
¢¢

we can replace n by n+ 1 in (21):µ
u0ln+1 +

1

ρ
u0hn+2

¶
+
k0n+1n+2

ρ

"µ
u0ln+2 +

1

ρ
u0hn+3

¶
+

k0n+1n+3

ρ

µ
u0ln+3 +

1

ρ
u0hn+4

¶
...

#
= 0

(23)
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(22) and (23) imply

u0ln +
1

ρ
u0hn+1 = 0

¥

A Proofs for the discrete-time example
Proof of proposition 17:

Ui(h, l) = u

µ
Li−1f(

h

Li−1
)− ah− (l − h)

¶
= u

∙
Li−1

µ
f(

h

Li−1
)− a

h

Li−1
−
µ

l

Li−1
− h

Li−1

¶¶¸
We see that

Ui(h, l) = (UL
i−1)1(

h

Li−1
,

l

Li−1
)

where (ULi−1)1 is the function obtained by replacing u by uLi−1 in the equation
(3) defining U1.
This implies that

(h, l) ∈ Di ⇐⇒ (
h

Li−1
,

l

Li−1
) ∈ D1 (24)

therefore
Di = Li−1(D1)

where Li−1(.) denotes the homothety with center O and factor Li−1.
Denote ∂Di the upper frontier of Di. ∂Di = {(h, l)/l = lmax i(h)} where

lmax i(h) = sup {l/(h, l) ∈ Di}.
The concavity of f implies that Di is convex and ∂Di concave. Since ∂Di =

Li−1(∂D1), ∂Di and ∂D1 have the same asymptotic directions. This asymptotic
direction is lim f(h)+(1−a)h

h = 1 + limy→+∞D2F (1, y)− a ≺ 1.
Denote ∆L the straight line {l = L.h}.
L Â 1 , lmax i(0) Â 0, ∂Di concave and its asymptotic direction is strictly

smaller than 1 implies ∆L cuts ∂Di one time for each i ≥ 1. Let Mi be the
intersection point between ∆L and ∂Di and (wi−1, xi−1) the coordinates of Mi.
We have

L(∆L) = ∆L and L(∂Di) = ∂Di+1

then

L(Mi) = L(∆L ∩ ∂Di) = L(∆L) ∩ L(∂Di) = ∆L ∩ ∂Di+1 =Mi+1

which implies
wi = Lwi−1and xi = Lxi−1
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But Mi ∈ ∆L =⇒ xi−1 = Lwi−1 hence xi−1 = wi and the coordinates of Mi

are (wi−1, wi) = Li−1w0.(1, L).
Now let K ∈ D. Suppose there is i ≥ 1 such that ki−1 ≤ wi−1.
Since Mi ∈ ∂Di, with an heritage wi−1, generation gi could not bequeath

more than wi. It follows that with an heritage ki−1smaller than wi−1, generation
gi could not bequeath more than wi. So, ki ≤ wi.
Consequently, for all j ≥ i we have kj ≤ wj = Ljw0. Hence sup kje−jLogL ≺

+∞ and K ∈ lLogL∞ .
Suppose now that for all i ≥ 1 we have ki−1 Â wi−1. Since the line ∆L

comes out of Di at the point Mi = (wi−1, wi), the point (ki−1, Lki−1), which
belongs to ∆L, is out of Di. Thus gi with an heritage ki−1 cannot bequeath as
much as Lki−1 . Then, ki ≺ Lki−1. This implies ki ≺ Lik0 for all i ≥ 1 and we
have also K ∈ lLogL∞ .
This proves that D ⊂ lLogL∞ .
We show now that the interior of D in lLogL∞ is not empty, which also implies

that LogL = inf {α/D ⊂ lα∞}. Take ξ Â 0 and k1 such that

{k0} × [k1 − ξ, k1 + ξ] ⊂ D1and [k1 − ξ, k1 + ξ]× [Lk1 − Lξ, Lk1 + Lξ] ⊂ D2

Denote K =
¡
k1, Lk1, L

2k1, ...
¢
.

According to (24),
for all i ≥ 0, Li−1 [k1 − ξ, k1 + ξ] ⊂ Di and
×+∞i=1Li−1 [k1 − ξ, k1 + ξ] = S (K, ξ). This shows that S (K, ξ) ⊂ D. Thus,

K is interior to D and
◦
D is not empty¥

Proof of proposition 18: As seen in the proof of proposition 17, Ui(h, l) =
(ULi−1)1( h

Li−1 ,
l

Li−1 ).
Moreover, u concave =⇒ u(λx+(1−λ)y) ≥ λu(x)+ (1−λ)u(y) for all x, y

in [0,+∞[ and λ in [0, 1]. Take y = 0 and λ = 1
L , then u( xL) ≥ 1

Lu(x). Denote
c = x

L . Thus, L u(c) ≥ u(Lc) for all c in [0,+∞[.
For i ≥ 2, this implies

Ui(h, l) = (ULi−1)1(
h

Li−1
,

l

Li−1
) ≤ L(ULi−2)1(

h

Li−1
,

l

Li−1
)

= LUi−2(
h

L
,
l

L
)

We then easily prove that G(D) ⊂ lLogL∞ ¥

Proof of proposition19: Observe that f strictly concave, f (0) ≥ 0,
limy→+∞ f 0(y) ≺ a and f 0(w∗) = a+L− 1 imply that f (w∗) Â (a+ L− 1)w∗.
Moreover if we denote x the solution of f (x) = (a+ L− 1)x, we have w∗ ≺ x.

f (w∗) Â (a+ L− 1)w∗ implies that there is ξ Â 0 such that for all (y, z)
in [w∗ − ξ, w∗ + ξ]2, f (x)− ax− (Ly − x) Â 0. Hence, if (kj−1, kj) is such that³
kj−1
Lj−1 ,

kj
Lj

´
∈ [w∗ − ξ, w∗ + ξ]2, (kj−1, kj) ∈ Dj . Thus£

Lj−1(w∗ − ξ), Lj−1(w∗ + ξ)
¤× £Lj(w∗ − ξ), Lj(w∗ + ξ)

¤ ⊂ Dj (25)
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Denote K the maximum bequests plan (obtained with zero consumption).

We easily prove that kj
Lj → x. Thus, the inequality w∗ ≺ x shows that asymp-

totically, the plan
¡
Ljw∗

¢
is below K. Starting from k0, one can then reach

the plan
¡
Ljw∗

¢
by bequeathing a little less than the maximum bequest to be

interior to the definition domain. Suppose that generation gi+1 is the one that
reaches the plan

¡
Ljw∗

¢
and that the path is (k∗1 , k∗2 , ..., k∗i ). Then, with (25),

we deduce that the plan
¡
k∗1 , k∗2 , ..., k∗i , L

i+1w∗, Li+2w∗, ...
¢
is interior to D¥

Proof of proposition 20: According to theorem 18 of [Mabrouk 2006a], a

steady state K in
◦
D is a consensual optimum if and only if

u0h
L
+ u0l = 0

Thus, if an interior steady state K checks

lim
u0hn
−u0ln

= L

it is a consensual optimum.
But

u0hn
−u0ln

= f 0(
kn−1
Ln−1

)− a+ 1

and (7) =⇒ lim f 0( kn−1Ln−1 ) = a+ L− 1.
Then

u0hn
−u0ln

−→ L

Consequently, the interiority of K being warranted by (6), K is an interior
steady state consensual optimum. ¥

Proof of proposition 21: Since lim f 0−1 (xn) = w∗, (7) is also checked
and K∗∗ is a consensual optimum.
We have

−u0ln
u0hn

L =
L

f 0
³
k∗∗n−1
Ln−1

´
− a+ 1

= 1− ξ

n+ 1
+ rn+1

We can then apply proposition 16 and conclude that K∗∗is also Pareto-
optimal¥

The following propositions set conditions (4) and (5) respectively for the case
u (c) = αc+ 1− 1

c+1 (propositions 26 and 27) and u(c) = c1−θ (propositions 28
and 29).
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Proposition 26 In the case u (c) = αc + 1 − 1
c+1 , assumption (4) is checked

with p1 = LogL.

Proof : We have

Ui(bi−1, bi) = u

∙
Li−1

µ
f(

bi−1
Li−1

)− a
bi−1
Li−1

−
µ

bi
Li−1

− bi−1
Li−1

¶¶¸
Let ci = Li−1

³
f( bi−1Li−1 )− a bi−1

Li−1 −
³

bi
Li−1 − bi−1

Li−1

´´
. Since

¯̄̄
bi−1
Li−1

¯̄̄
≤ kBkand¯̄

bi
Li−1

¯̄ ≤ L kBk, ci
Li is bounded. We see easily that Ui(bi−1, bi) = u (ci) is

also in lLogL∞ . Then G(D) ⊂ lLogL∞ . Let (kLn) be a sequence in D. Let

c = 1
L [f(k)− ak − (Lk − k)]. Since

◦
D 6= ∅,

we can choose k such that [f(k)− ak − (Lk − k)] Â 0. Then
ci =

£
Li−1 (f(k)− ak − (Lk − k))

¤
= Lic

u (ci)

Li
= αc+

1

Li
− 1

Li (cLi + 1)

−→ αc when i −→ +∞
and the sequenceG ((kLn)) = (u (ci)) is convergent and strictly of reason LogL¥

Proposition 27 In the case u (c) = αc+ 1− 1
c+1 , assumption (5) holds.

Proof: Let’s start with two preliminary remarks. First, since f 0 is positive
and decreasing, f 0(x) −→ f 0∞ ≥ 0 when x −→ +∞ . According to Taylor’s
formula, for x,y ≥ h0, there is z in [x, y] such that

f 00(z) =
f 0(x)− f 0(y)

x− y

Make x −→ +∞. It comes that
lim

z−→+∞ f 00(z) = 0

Secondly, since maximum consumption is the production Li−1f
¡

h
Li−1

¢
, min-

imum bequest is l = (1− a)h. Hence, with a start-up capital k0 Â 0, bn is
strictly positive for all B ∈ D and n ≥ 1.
In addition, u0 (c) = α+ 1

(1+c)2
, u00 (c) = −2

(1+c)3
and:

U 00ih2(bi−1, bi) = u00 (ci)
∙
f 0
µ

h

Li−1

¶
− a+ 1

¸2
+ u0 (ci)

f 00
¡

h
Li−1

¢
Li−1

(26)

U 00ihl(bi−1, bi) = −u00 (ci)
∙
f 0
µ

h

Li−1

¶
− a+ 1

¸
U 00il2(bi−1, bi) = u00 (ci)
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K∗∗ ∈
◦
D =⇒there is β0 Â 0 such that S

¡
K∗∗, β0

¢ ⊂ ◦
D. Since

◦
D ⊂ sp∞++

([Mabrouk 2006a], proposition 5), K∗∗ ∈
◦
D =⇒ lim inf

k∗∗n
Ln Â 0. Then inf k

∗∗
n

Ln Â
0. Take β00 = 1

2 inf
k∗∗n
Ln . For all B in S

¡
K∗∗, β00

¢
, inf bn

Ln ≥ β00
2 . Let β =

inf
¡
β0, β00

¢
. Then for all B in S (K∗∗, β) , B ∈

◦
D and inf bn

Ln ≥ β
2 Â 0. We then

see that
¯̄
f 0
¡
bn
Ln

¢¯̄
and

¯̄
f 00
¡
bn
Ln

¢¯̄
are bounded when B ∈ S (K∗∗, β). Let M 0 be

an upper bound.
Because of the concavity of f , f 0 (y) Â a + L − 1 implies that f (w∗) −

(a+ L− 1)w∗ Â 0. Since f is continuous, there is γ Â 0 such that
inf

x∈[w∗−γ,w∗+γ]
{f (x)− (a+ L− 1)x} Â 3Lγ

and since lim k∗∗n
Ln = w∗ there is N such that

n ≥ N =⇒
∙
k∗∗n
Ln
− γ

2
,
k∗∗n
Ln
− γ

2

¸
⊂ [w∗ − γ,w∗ + γ]

For B ∈ S
¡
K∗∗, γ2

¢
and n ≥ N + 1, we then haveµ
bn−1
Ln−1

,
bn
Ln

¶
∈ [w∗ − γ,w∗ + γ]2

thus
1

L

∙
f

µ
bn−1
Ln−1

¶
− (a+ L− 1) bn−1

Ln−1

¸
Â 3γ (27)

and

− bn
Ln

+
bn−1
Ln−1

≥ −2γ (28)

(27) + (28)=⇒
1

L

∙
f

µ
bn−1
Ln−1

¶
− (a− 1) bn−1

Ln−1
− bn

Ln−1

¸
Â γ

The left hand-side is cn
Ln . We then have, for all B ∈ S

¡
K∗∗, γ2

¢
and n ≥ N+1:

cn
Ln

Â γ Â 0

Let ε = inf
¡
β, γ2

¢
. With the help of equations (26), we obtain for all B ∈

S (K∗∗, ε) and n ≥ N + 1:

|U 00nh2(bn−1, bn)| ≤
2 (M 0 + a+ 1)

2

(1 + γLn)3
+
(1 + α)M 0

Ln−1
,

|U 00nhl(bn−1, bn)| ≤
2 (M 0 + a+ 1)

(1 + γLn)
3 and

|U 00nl2(bn−1, bn)| ≤
2

(1 + γLn)
3
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These inequalities show that we can find 3 reals M1, M2 and M3 such that

Ln−2 |U 00nh2(bn−1, bn)| ≤ M1 ,

2Ln−1 |U 00nhl(bn−1, bn)| ≤ M2 and

Ln |U 00nl2(bn−1, bn)| ≤ M3

Thus

sup
n≥N+1

∙
L2(n−1)

¯̄
U 00nh2(bn−1, bn)

¯̄
+ 2L2n−1 |U 00nlh(bn−1, bn)|+

L2n
¯̄
U 00nl2(bn−1, bn)

¯̄ ¸
L−n

≤ M1 +M2 +M3

For n in [1, N ], we can use the inequalities : |u00 (c)| ≤ 2 and |u0 (c)| ≤ 1+α
for all c ≥ 0. In this way, we find easily a real M 00 such that, for n in [1, N ]:∙

L2(n−1)
¯̄
U 00nh2(bn−1, bn)

¯̄
+ 2L2n−1 |U 00nlh(bn−1, bn)|+

L2n
¯̄
U 00nl2(bn−1, bn)

¯̄ ¸
L−n ≤M 00

For B ∈ S (K∗∗, ε) and X ∈ lLogL∞ such that kXk ≤ 1, we can write
kΘ(B,X)kLogL =

sup
n≥1

∙¯̄̄̄
x2n−1U

00
nh2(bn−1, bn) + 2xn−1xnU

00
nlh(bn−1, bn)+

x2nU
00
nl2(bn−1, bn)

¯̄̄̄
L−n

¸
≤ sup

n≥1

∙
L2(n−1)

¯̄
U 00nh2(bn−1, bn)

¯̄
+ 2L2n−1 |U 00nlh(bn−1, bn)|+

L2n
¯̄
U 00nl2(bn−1, bn)

¯̄ ¸
L−n

≤ sup (M 00,M1 +M2 +M3) =M

Thus, linearity at infinity holds¥

Proposition 28 In the case u(c) = c1−θ, assumption (4) is checked with p1 =
LogL(1−θ).

Proof: We have seen above that the sequence (cn)n≥1 is in lLogL∞ . Thus,

u
³
(cn)n≥1

´
is in lLogL

(1−θ)
∞ and G(D) ⊂ lLogL

(1−θ)
∞ . When (cn)n≥1 is strictly of

reason LogL, u
³
(cn)n≥1

´
is strictly of reason LogL(1−θ). Hence, (4) holds with

p1 = LogL(1−θ)¥

Proposition 29 In the case u(c) = c1−θ, assumption (5) holds.

Proof: u0 (c) = (1− θ) c−θ , u00 (c) = −θ(1−θ)
c1+θ

. As in the case u (c) = αc +

1 − 1
c+1 , we build a sphere S (K

∗∗, ε) such that there is β Â 0, γ Â 0 and N
integer such that:

ε Â 0, S (K∗∗, ε) ⊂
◦
D
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and

inf
B∈S(K∗∗,ε), n≥1

bn
Ln

Â β

2
Â 0 (29)

and such that for all B ∈ S (K∗∗, ε) and n ≥ N + 1:

cn
Ln

Â γ Â 0 (30)

Moreover, S (K∗∗, ε) ⊂
◦
D =⇒for all B ∈ S (K∗∗, ε) and n ≥ 1 we have

cn Â 0. But

cn =

∙
f

µ
bn−1
Ln−1

¶
− (a− 1) bn−1

Ln−1
− L

bn
Ln

¸
Ln−1

Thus

mn = min
(x,y)∈

∙
k∗∗
n−1

Ln−1−ε,
k∗∗
n−1

Ln−1+ε
¸
×
h
k∗∗n
Ln −ε,

k∗∗n
Ln +ε

i [f (x)− (a− 1)x− Ly]Ln−1 Â 0

Denote
m = min

1≤n≤N
mn

m is strictly positive and, for all B ∈ S (K∗∗, ε) and 1 ≤ n ≤ N we have

cn ≥ m (31)

Thanks to inequalities (29), (31) and to equations (26), we see that we can
find M 00 such that, for all B ∈ S (K∗∗, ε) and X ∈ lLogL∞ such that kXk ≤ 1:

sup
1≤n≤N

∙¯̄̄̄
x2n−1U 00nh2(bn−1, bn) + 2xn−1xnU

00
nlh(bn−1, bn)+

x2nU
00
nl2(bn−1, bn)

¯̄̄̄
L−n(1−θ)

¸
≤M 00

Thanks to (29) and (30), we have also, for all B ∈ S (K∗∗, ε) and n ≥ N +1:

|U 00nh2(bn−1, bn)| ≤
θ (1− θ)

γθLn(1+θ)
(M 0 + a+ 1)

2
+
(1− θ)M 0

γθLnθLn−1
,

|U 00nhl(bn−1, bn)| ≤
θ (1− θ)

γθLn(1+θ)
(M 0 + a+ 1) and

|U 00nl2(bn−1, bn)| ≤
θ (1− θ)

γθLn(1+θ)

We can write this in another way:

|U 00nh2(bn−1, bn)| ≤
M1

L(1+θ)n
,

2 |U 00nhl(bn−1, bn)| ≤
M2

L(1+θ)n
and

|U 00nl2(bn−1, bn)| ≤
M3

L(1+θ)n

33



Thus, for all B ∈ S (K∗∗, ε) and X ∈ lLogL∞ such that kXk ≤ 1:

sup
n≥N+1

∙¯̄̄̄
x2n−1U

00
nh2(bn−1, bn) + 2xn−1xnU

00
nlh(bn−1, bn)+

x2nU
00
nl2(bn−1, bn)

¯̄̄̄
L−n(1−θ)

¸
≤ M1 +M2 +M3

As a result, for all B ∈ S (K∗∗, ε) and X ∈ lLogL∞ such that kXk ≤ 1,
kΘ(B,X)kLogL =

sup
n≥1

∙¯̄̄̄
x2n−1U 00nh2(bn−1, bn) + 2xn−1xnU

00
nlh(bn−1, bn)+

x2nU
00
nl2(bn−1, bn)

¯̄̄̄
L−n(1−θ)

¸
≤ sup (M 00,M1 +M2 +M3) =M

and linearity at infinity holds¥
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