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Abstract

We employ the Lévy sections theorem in the analysis of selected dollar exchange
rate time series. The theorem is an extension of the classical central limit theorem
and offers an alternative to the most usual analysis of the sum variable. We find
that the presence of fat tails can be related to the local volatility pattern of the
series.
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1 Introduction.

In the benchmark econophysics study of Mantegna and Stanley [1] the self-
similarity and fat tails observed in financial distributions were shown to be
responsible for a variety of behaviors and, in particular, the ultraslow conver-
gence to a Gaussian. They suggested a truncated Lévy flight [2] to explain the
departures from the central limit theorem as well as the presence of scaling
laws. A complementary approach can be built on the Lévy sections theorem
[5]. Paul Lévy employed his notion of “sections” to outline a proof for a variant
of the central limit theorem that considers the sums of correlated random vari-
ables [3]. Thus the theorem extends the central limit theorem to encompass
dependent variables.
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In this work we show how the theorem’s approach can be applied to time series
[5] with the help of analytical techniques taken from the study of from com-
plex systems. We analyze daily data from the dollar price of the British pound,
Indian rupee and Chinese yuan, as well as an intraday, high frequency series
of the Japanese yen-Deutschemark rate. The Lévy sections suggest an expla-
nation based on volatilities for the stylized fact of elevated kurtosis. Larger
than average kurtosis of the emerging market currency of China is explained
by the duration of its exchange rate pegs.

Section 2 presents the Lévy sections theorem and its extension to the analysis
of time series. Section 3 illustrates with data from exchange rate changes.
Section 4 concludes.

2 The Lévy sections theorem.

Let Xn be a chain of random variables. The conditional probability of a
given realization xn+1 of Xn is P (xn+1 |x1, . . . , xn). This is the probability
of xn+1 if the random variables X1, . . . , Xn follow a particular chain walk
x1, . . . , xn. The conditional mean and variance of xn are μn ≡ 〈Xn+1〉x1,...,xn

=∫
xn+1P (xn+1 |x1, . . . , xn−1) and m2

n =
〈
X2

n+1

〉
x1,...,xn

− 〈Xn+1〉2x1,...,xn
respec-

tively.

Consider the quantities λn =
∑n

i=1 m2
i . Given a real positive t such that

λn ≤ t ≤ λn+1 , the chain walk (x1, . . . , xn) is said to belong to “section” t .
Section is made up of all the chain walks obeying λn ≤ t ≤ λn+1. These chain
walks can have different numbers of elements. The sum of the elements in a
truncated sequence belonging to the section t is denoted by St = x1 + . . .+xn,
and its variance is M2

t . For the stochastic variable St the Lévy sections states
that [3]:

Theorem 1 For null conditional means μn = 0 and random variables Xn

satisfying the Lindeberg conditional condition (see [3] page 237), the probability
distribution of St√

t
is such that

lim
t→∞P

(
St√

t
< η

)
=

1√
2π

∫ η

−∞
exp−x2

2 dx

The Lévy sections theorem generalizes the central limit theorem in that it
also considers chains of dependent random variables. It states that the sum St

converges to a Gaussian even if the usual sum Sn ≡ x1 + . . .+xn does not (e.g.
due to the presence of correlations).Taking Lévy sections amounts basically
to employing the inverse of the predictable quadratic variation as a random
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time change to transform a given process into a Gaussian one (see [5] and the
references therein for further details).

To extend the theorem to time series we must first overcome some difficulties.
One major challenge is to assess the “local” volatilities m2

i since it is impossible
to get them from only one realization of the variable (the value of xi taken from
the data set). So we take the following steps. Let (xn)n=1,...,N be the elements
of a time series, where N is series size. For a positive integer q we then define
a new series as (yn)n=1,...,N−2q , where the initial q and the last q terms of
(xn)n=1,...,N are dropped. Assuming that this time series is a realization of a
single process, we can calculate approximately the local mean (given a “size”
q) through μn =

∑n+2q
i=n

xi

2q+1
m2

n. Then the local volatility is

m2
n =

1

2q + 1

n+2q∑
i=n

x2
i −

⎛
⎝ 1

2q + 1

n+2q∑
i=n

xi

⎞
⎠

2

, n = 1, . . . , N − 2q (1)

The set of all the sums St is yi + yi+1 + . . . + yni−1 + yni
, i ∈ {1, . . . , N − 2q}

such that the “section” t condition is fulfilled. The local volatility is a measure
of the conditional variance of a given chain of random variables.

3 Illustrating with exchange rate returns

We take historical daily dollar denominated price variations of the British
currency (8031 data points spanning from 4 January 1971 to 10 January 2003),
the Chinese currency (5471 data points spanning from 2 January 1981 to 10
January 2003), and the Indian currency (7525 data points spanning from 2
January 1973 to 10 January 2003), as in [5]. We also take a high frequency
series of the Japanese yen against the Deutschemark (158 973 data points
covering the time period from 01 October 1992 to 30 September 1993, obtained
from Olsen & Associates – Research Institute for Applied Economics).

Fig. 1 shows the yen-mark return rate’s kurtosis for different values of q . To
display the sections’ kurtosis behavior we take 6735 sections (for q = 2 ) and
let them vary by small steps Δt . The starting value of t is such that the section
matches the original series. The step Δt is chosen in such a way to make the
kurtosis curve smooth. Fig. 1 shows that the results are essentially the same
for q = 2, 5 and 10. The kurtosis quickly decays to zero, in accordance with
the Lévy sections theorem. We also present the behavior of the usual sum
Sn ≡ x1 + . . . + xn, which seems to slowly converge to the Gaussian, which is
typical of a truncated Lévy flight [2]. The Lévy sections filter the effects on the
local volatility so that the series present a near-Gaussian universal pattern.

3



To compare St and Sn, we considered the following (Fig. 1). Let us suppose a
single realization of a random process, which gives a time series of N elements
X ≡ (xi)i=1,...,N . For this time series the sum variable Sn = X1 + . . .Xn is

Sn

(
n∑

i=1

xi,
n∑

i=1

x1+i, . . .

)

We define a “variance time” as follows:

τn =
M2

n

ν2

where ν2 = 〈X2〉 − 〈X〉2. For IID variables, M2
n = nν2 ⇒ τn = n. For

Mandelbrot’s fractional Brownian motion Mn =∝ nH ⇒ τn = n2H , with H
the Hurst exponent. From the definition of St we have:

Sn

(
n1∑
i=1

yi,
n2∑
i=1

y1+i, . . .

)

Note that the number of terms in every sum belonging to the collection St

depends on the particular chain walk, therefore n1 
= n2 
= . . . in general.

For the time series, the variance of St is given by

M2
t ≡

〈
S2

t

〉
− 〈St〉2

and we can also define its variance time as τt =
M2

t

ν2 . We defined the variance
time to compare the time evolution of Sn and St. Note that St is not indexed
to “actual time” (as in the case of IID variables where τn = n). Nevertheless,
the variance time allows one to compare Sn and St. Clearly other scales can
be imagined, and in the one suggested here the variance of both Sn and St

is the same for every variance time. So we can assess the evolution of Sn

and St by considering not actual time, but how their respective variances
evolve. We assume that the time series is stationary when doing the above
sum procedures. Though the stationarity assumption for a chain of random
variables is not made in the Lévy sections theorem, our sum procedures to
obtain St for an empirical time series make sense only if the series is stationary.
So our sum procedure is to be blamed in the event of a possible failure of the
extension of the Lévy sections theorem to time series. See [5] for further details.

Another interesting feature is how the presence of fat tails can be related to
the local volatility pattern of the series. To see this, we compare the pound,
rupee and yuan with a Gaussian random generator of “reduced” variables
that are independent and identically distributed (IIDR), as defined in [6].
Essentially we consider gn, n = 1, . . . , N −2q numbers generated from a Gaus-
sian distribution and multiply them by the local volatilities mn (1) reckoned
from the empirical time series. Then we find the sequence zn = mngn, where
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n = 1, . . . , N − 4 (here we are using q = 2). The name IIDR comes from the
fact that, although zn is not Gaussian, the reduced variable zn

mn
is. Note that

if mn is constant the distribution of zn = mngn also collapses to a Gaussian.

The kurtosis of the IIRD variable for the pound, rupee and yuan are respec-
tively 6.76, 118.9 and 1547.7. They are in agreement with the kurtosis of the
original series of daily changes, at least for pound and rupee. For the pound,
rupee and yuan they are respectively 4.76, 118.3 and 3486.1.

The effect of local volatilities is clear. Since gn is Gaussian, the elevated kur-
tosis (bigger than a Gaussian’s kurtosis, which equals 3) should be explained
by the mn.

Due to exchange rate pegs, the dispersion of data is low provided an exchange
rate is fixed. In this way many observations fall out of the variance interval.
For example, the extra high kurtosis of China can be explained by too many
observations outside the variance interval (a symmetrical interval around the
mean and two standard deviations wide, with respect to original data). This
rationale is simpler than ones based on fat tails and autocorrelation.

Exchange rate time series are believed to be modeled by a Gaussian if govern-
ment intervention is absent. This is because with free float the market tends
to be efficient. Our results are consistent with the interpretation that foreign
exchange intervention provokes departures from the Gaussian through a bias
in the volatility evolution. So the greater the control is, the greater the kur-
tosis. This is so because the pegs tend to bring a series’ dispersion closer to
zero, thereby rendering many observations out of the distribution’s variance
interval. For further details, see [5].

4 Conclusions.

We employ the Lévy sections theorem [3,5] in the analysis of selected dollar
exchange rate time series. The theorem is an extension of the classical central
limit theorem and offers an alternative to the most usual analysis of the sum
variable. We find that the presence of fat tails can be related to the local
volatility pattern of the series. This occurs because in the sections, a time
series converges to a near-Gaussian distribution regardless of the presence of
correlations.
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Fig. 1. Kurtosis behavior of the yen-deutschemark, for both Sn and St
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