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Testing for breaks in cointegrated panels

Francesca Di Iorio Stefano Fachin
University of Naples Federico I1 University of Rome ”La Sapienza”

Abstract

Stability tests for cointegrating coefficients are known to have very low
power with small to medium sample sizes. In this paper we propose to
solve this problem by extending the tests to dependent cointegrated pan-
els through the stationary bootstrap. Simulation evidence shows that the
proposed panel tests improve considerably on asymptotic tests applied to
individual series. As an empirical illustration we examined investment and
saving for a panel of 14 European countries over the 1960-2002 period. While
the individual stability tests, contrary to expectations and graphical evi-
dence, in almost all cases do not reject the null of stability, the bootstrap
panel tests lead to the more plausible conclusion that the long-run relation-
ship between these two variables is likely to have undergone a break.

Keywords: Panel cointegration, stationary bootstrap, parameter stabil-
ity tests, FM-OLS.
JEL codes: C23, C15
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1 Introduction!

The analysis of cointegration in non-stationary panels has been recently
rapidly expanding in two main directions. The first, urged by the nature of
the data actually used in empirical applications, is the effort to generalise
the tests to the case of dependent units, either by modelling the dependence
(inter alia, Gengenbach, Palm, Urbain, 2005) or reproducing it through
the bootstrap (Fachin, 2006, Westerlund and Edgerton, 2006). The second
direction follows steps already taken by the cointegration literature in the
early '90’s, tackling the issues of testing (i) cointegration allowing for breaks
and (i7) the stability of a cointegrating relationship. In this stream of the
literature, the first problem seems to have received more attention (e.g.,
Banerjee and Carrion-i-Silvestre, 2004 and 2006, Gutierrez, 2005, Wester-
lund, 2006) than the second (to the best of our knowledge, only Emerson
and Kao, 2001, 2005, for trend regressions, Kao and Chiang, 2000, for ho-
mogenous panel regressions). This is somehow surprising, as stability tests
with unknown break points may have very low power with even medium
sample sizes. For instance, the rejection rates under H; simulated by Gre-
gory, Nason and Watt (1996) for 7' = 100 and medium speed of adjustment
are only marginally higher than Type I errors, and actually lower than the
significance level. Cointegration stability tests are thus natural candidates
for panel extensions hopefully able to grant power gains large enough to
make them empirically useful. A second surprising aspect of the current de-
bate is that so far the developments in the treatment of dependence across
units seems to have been largely ignored in the ”panel with breaks” liter-
ature?. The tests proposed should thus be regarded essentially as a first
step in the construction of empirically relevant procedures, very much like
the first generation panel cointegration tests. On the contrary, in this paper
we tackle the dependence issue from the outset, proposing a panel general-
isation of Hansen (1992) stability tests based on the stationary bootstrap

!Financial support from the Department of Statistics of the University of Naples Fed-
erico II, University of Rome ”La Sapienza” and MIUR is gratefully acknowledged. We are
grateful to Anindya Banerjee and Josep Carrion-i-Silvestre for kindly providing the invest-
ment and savings data set and to participants to the SIS Turin and Cambridge Panel Data
2006 conferences for suggestion and comments. Correspondence to: s.fachin@caspur.it,
fdiiorio@unina.it.

2Noticeable exceptions include the panel cointegration tests with breaks by Banerjee
and Carrion-i-Silvestre (2004, 2006) and Westerlund (2006), which however leave many
questions open. Westerlund applies simple resampling to data which, provided cointegra-
tion holds, are weakly dependent, while Banerjee and Carrion-i-Silvestre’s (2004) proce-
dure implies fitting an AR model to a MA process with a unit root under no cointegration
(the same remark applies to Westerlund and Edgerton, 2006). Finally, Banerjee and
Carrion-i-Silvestre (2006) test appears to have very good properties, but since it is based
on Bai and Ng’s (2004) PANIC procedure it unfortunately requires rather large sam-
ple sizes (the smallest ones reported in Banerjee and Carrion-i-Silvestre’s simulations are
T=50, N=40).



which is completely robust to cross-section dependence, and may thus be
helpful for actual empirical work.

We shall now (section 2) introduce the set-up and outline the testing
procedure, then present the design and results of a Monte Carlo experiment
(section 3) and an empirical illustration on the stability of the relation-
ship between the investment/GDP and savings/GDP ratios, the so-called
Feldstein-Horioka puzzle (section 4). Some conclusions and suggestions for
future research are finally discussed (section 5).

2 Testing parameter stability in cointegrated pan-
els

2.1 Set-up

Consider a (k 4+ 1)—dimensional I(1) random variable Z observed over N
units and 7' time periods (respectively indexed by i and t), naturally par-
titioned as Zj = [Yit X1t . - - Xgit]', with cointegration assumed to hold be-
tween Yj;; and Xét = [X14t ... Xgi). Then, as long as no long-run relation-
ships among the X's exist, we can estimate the N cointegrating vectors
(say, B; = [Bi10i2---Bik]) by applying some single-equation method (e.g.
FM-OLS) separately to each of the N time series. Hansen (1992) proposed
three tests for the hypothesis that the 3’s are stable over time when no
a priori information on the location of the possible breaks tg? is available:
(7) the maximum of the Chow tests computed at all possible break points
(SupF); (ii) their mean (MeanF); (iii) a Lagrange-Multiplier test of the
hypothesis that the coefficients follow a martingale process of zero variance
(Lc). The panel extension along the lines of Pedroni’s (1999) group mean
test is in principle trivial, as it involves simply taking the mean (or some
robust statistic such as the median or an a—trimmed mean) of the statistics
computed for the individual units. Similarly to the case of panel cointe-
gration tests, the bootstrap is a natural candidate for solving the problem
of inference under the general set-up of dependent units. To this end, we
need to design a resampling scheme delivering pseudodata obeying the null
hypothesis of coefficient stability and reproducing both the autocorrelation
and cross-correlation properties of the data. Denoting by S; the stability
statistic of interest for unit ¢, we propose to estimate the p—value of the
group stability statistic S by the following algorithm:

~0
1. Obtain estimates 3; of the cointegrating vectors under H : coefficient
stability;

2. Compute the individual stability statistics S; and estimate break lo-
n
t

cations t;;



3. Compute the group stability statistic §, e.g., S = Zfil §Z-/N, or Spe
= medz’an(g), where S = [gl, e ,§N} ;

4. Estimate models allowing for breaks at the periods %f and store the
residuals €, = [€1;...€eny¢]; the choice of the g’/ s, a key point of the
procedure, is discussed in some detail in Remark (i) below;

5. Since cointegration holds, in resampling the 7'x N matrix E = [6...er]
we only need to allow for short-run autocorrelation. Hence, we can ap-
ply the stationary bootstrap (Politis and Romano, 1994) and obtain
a matrix of pseudo-residuals E* = [e}...ek]" reproducing both the
short-run correlation over time and the cross-units correlation of the
estimated residuals;

6. Construct the pseudodata Y;; under Hy : coefficient stability by ap-
~0
pending €, to B; Xjy;

7. Compute the group stability statistic S* for the pseudo-data set [Y;;X},]" ,i =
1,...,Nt=1,....T;

8. Repeat steps (5)-(7) a large number (say, B) of times;
9. Compute the boostrap estimate of the p—value as p* = prop(S* > 5)

Three remarks are in order:

(1) As mentioned above, estimation of break points is a key point of the

procedure. An apparently appealing choice is 757; = arg max(SupkF;),
so that break location is allowed to vary across units. In fact, this is
a good choice when there is a break in the data (for instance, in the
simulation reported in Fig. 1 the mean estimation error is 0.73 and the
median error 1), but not so much so when Hy : no break holds. In these
circumstances in small time samples the break is often placed towards
either end of the sample (see Fig. 2), causing overfitting and spuriously
small estimated residuals. As a consequence of the latter, the boot-
strap pseudodata tend to exhibit spuriously high signal/noise ratios,
and the bootstrap stability tests to be severely oversized. Superior
results are obtained when the restriction of a common break located
at the median of the individual estimates of break periods is imposed
(i.e., 2 = median(t?), t* = [?{fg?j\,] , and © = arg max(SupF})
Vi).

(77) The hypothesis of partial (involving only some of the coefficients) sta-
bility is easily handled by modifying accordingly the equations esti-
mated in step (4) and the stability statistics adopted;



(7i7) Although exploratory simulations showed the results to be quite robust
to the choice of block length, in principle this is a critical point of the
algorithm. Here for computational convenience we applied a simple
rule-of-thumb, fixing it at 7'/10. In future work we plan to implement
Politis and White’s (2003) algorithm.
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Fig. 1. Distribution of the error in the estimation of the breakpoint
t — 1% where £ = arg max(SupFy) and 2 ~ Uniform[0.5T — 3,0.5T + 3]
with T' = 50. 25% trimming at each sample end, pooled results from 500
Montecarlo replications for 40 units.
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Fig. 2. Distribution of 8’ = arg max(Sup}?‘i), T = 50, 25% trimming at each
sample end, when there is no break in the cointegrating coefficients.
Pooled results from 500 Montecarlo replications for 40 units.

3 Monte Carlo Experiment

3.1 Design

The simulation experiment is based on the design adopted by Fachin (2006),
essentially a generalisation of the Engle and Granger (1987) classical Data
Generation Process (DGP) to the case of dependent panels (a similar design
in also employed by e.g. Kao, 1999). Considering for the sake of simplicity
the bivariate case Z; = [Yit X' the DGP can be summarised as follows.
Following Pesaran (2006), short-run dependence is induced by defining the
shocks driving Y and X (u’,j = z,y) as the sum of a idiosyncratic com-
ponent (¢/,j = x,y) and a single stationary common factor (f7,j = z,v);
long-run dependence is caused by an explanatory variable common across
units. Letting ¢, be the period in which the break takes place, we then have:

i = (1—a1) tarud, +uf (1)
Vit { fo; + Bowit +uly, t < 8 2)
¢ H1; + ,81.%'7;15 + U?t, t> ti-)

wherei =1,... ,N, x; = x; for some 4, j. As described above, the noises



are generated as:

{@omers. ®)
Uy =Y i + €y

The coefficients 'yg ,j = x,y, are the factor loadings and determine the
strength of the short-run cross-correlation across units; here 'yg ~ Uniform(—1,6)
Vi, j, so that the cross-correlation is substantial (about 0.65). The structure
of the idiosyncratic component is:

{ th = Z;:l(eftf]g'}—i_ 0) (4)

where ¢; ~ Uniform(0.2,0.4). Finally,

1T

) 2

{ e% ~ N(0,0? 5)

~— —

with U?j ~ Uniform(0.5,1.5), j = x,y, so to allow for some heterogene-
ity across units.

The DGP (1)-(5) is obviously quite complex. Rather than aiming at
the unfeasible task of a complete design® we will define as a base case an
empirically relevant set-up and then explore a few interesting variations.
Considering that the simple bivariate DGP often used in simulation exper-
iments is clearly unrealistic, but in single-equation cointegration modelling
the number of explanatory variables is usually limited, we generally set k = 2
in both the DGP and estimated model. With no loss of generality we set
both constant and slopes to 3 before the break (the same value chosen by
Banerjee and Carrion- i-Silvestre, 2004, for the slope); after the break all co-
efficients are halved. Finally, a; = 0, so that the X variables are exogenous.
Since Gregory, Nason and Watt (1996) report a tendency to overrjection of
the asymptotic test in models with 3 or 4 explanatory variables we also run
a separate experiment with k& = 4. Finally, a key point is that given the
rather short time series analysed in most experiments, in order to ensure
computational stability we fixed the trimming coefficient at 25%. The cases
considered are six altogether.

1. Base case: T = 50, N from 5 to 40; in the power simulations break
date Uniform over units in [0.57 £ 3] = [22,28]. Since recursive sta-
bility tests assume rather large sample sizes we chose to fix the time

3The number of loops to be executed in each experiments grows geometrically with the
number of units, breakpoints, Monte Carlo replications and bootstrap redrawings. For
instance, with N = 40, 20 possible breakpoints, 500 Monte Carlo replications and 1000
bootstrap redrawings we have a total of 400 million loops.



sample in all experiments except the following one to 50. This is ad-
mittedly a rather large sample in terms of annual data, but pretty
small if a quarterly frequency is assumed. It may thus be considered
relevant for actual empirical applications (note that it is much smaller
than those typically considered in simulation studies on stability tests,
where generally 7' > 100).

2. Large T: T = 100, N = 3,5; in the power simulations break date
Uniform over units in [0.57 % 3]. Since the aim of this experiment is
checking the time-asymptotic behaviour of the tests, for computational
convenience only very small cross-section sample sizes are examined.

3. Late break: T = 50, N from 5 to 40; break date Uniform over units
in [0.75T + 3|, that is [35,41]. Since 25% of the sample is trimmed at
each end, the estimation sample is [13, 38]: the break can thus fall very
close or even after the end of the estimation sample, a very demanding
set-up.

The bootstrap algorithm described above is based on residuals of coin-
tegrating regressions estimated for all units with a break at the median of
the individual estimated break points, which is intuitively acceptable if we
assume all units to be affected by breaks stemming from a common cause.
However, even assuming each unit to be affected by at most one break over
the period of interest, two rather different set-ups may arise: (i) the break
periods may be widely disperse over units, for instance because they stem
from different causes, each one relevant to only some units; (ii) some of the
units may be not affected by a break at all. The two following cases are
designed to investigate these two scenarios in turn:

4. Twin breaks: as Base case, but in half of the units the break date is
Uniform in [0.37 + 3], and in the other half in [0.67" £ 3].

5. Partial break: T = 50, N from 10 to 40, break date Uniform in
[0.57 4+ 3] over 0.7N units (the first seven in each block of ten), no
break in the remaining units. This case deserves some discussion. The
key question here is the following: what is the null hypothesis of the
panel stability test (say, HZ)? Let H{ be that of the i — th individual
test; then, one possibility is to take H = ﬂfv Hé, so that the panel
null hypothesis is ”stability in all units”. However, this appears far
too restrictive, especially in view of small sample applications where
outliers may have an heavy influence on individual cases. Following
Pedroni’s (2004) view of the meaning of panel cointegration tests, we
prefer the panel null H{ : ”stability in a large number of units” . In
other terms, the aim of the test is assessing if in the units examined



the cointegrating relationship is mostly, but not necessarily always,
stable. As in the set-up of this experiment the answer is negative (H
holds only in 30% of the units) we would like to have high rejection
rates. Note that since this view of the test clearly requires fairly large
cross-section sample sizes we set N > 10.

6. Larger model: T = 50, N from 5 to 40, k£ = 4; break date Uniform
over units in [0.57" £ 3]|. This case is designed exactly like the Base
case, except the number of explanatory variables in both the DGP
and estimated model.

To evaluate the improvements (in terms of both power gains and re-
duction in size bias) which could be expected by moving from a standard
time series to a panel set-up we also computed the average rejection rates
of the asymptotic tests based on Hansen (1992) asymptotic critical values
computed for all individual units involved in each experiment?. Note that
the comparison between the average performance of the asymptotic test on
individual series and that of the panel tests with a smaller number of units
(e.g., 5, 10 and 20 in the base case or 3 in the "Large T” case) should be
taken as merely suggestive of a pattern, as the units involved are not the
same.

Finally, after some experimentation with different options we decided to
fix the number of Monte Carlo replications at 500 and that of bootstrap
redrawings at 1000. Higher numbers of either would have delivered a small
increase in the precision of the results not worth the large increase of the
cost and time scale of the experiment (which, because of the recursive nature
of the statistics evaluated, is computationally very demanding).

3.2 Results

The results are reported in Tables 1A-6B below. In the Base case (T' = 50,
N from 5 to 40) the Type I errors (Table 1A) of the bootstrap panel tests
have some positive size bias for N = 5 but converge fairly closely to nominal
significance levels as IV increases. The asymptotic tests on individual series
deliver variable performances: the L. test is slightly oversized, while both
the MeanF and the SupF appear to be conservative (more the latter than
the former). The power gains offered by the panel tests are remarkable.
Consistently with a priori expectations, the asymptotic tests have negligible
power, while that of the panel tests is generally acceptable and definitely
good for & = 10% and N > 10 (e.g., 92% for N = 40, with Type I error 11%;
Table 1B). Hence, using the panel tests grants considerable improvements

4Except the ”Partial break” case, where they will simply be a weighted average of the
size and power of the test with weights respectively given by the fractions of non-breaking
and breaking units.



with respect to aggregate tests in terms of both reduction of size bias and
increase in power. In fact, with this time sample a panel approach seems
to be the only viable option. In comparative terms, we find the Type I
errors to be very similar for all the three tests, while the SupF test appears
to be somehow marginally less powerful than the L. and MeanF. The
results of the mean and median panel tests also appear very similar. Since
these findings hold approximately in all the cases examined the following
comments are mostly expressed in general terms, with no reference to the
specific tests.

Allowing for the different speed of adjustment of the DGP’s employed,
the "Large T” results (Tables 2A-2B) for the asymptotic tests are fully con-
sistent with Gregory, Nason and Watt (1996): as we can see, the size bias is
still noticeable, and power very poor. On the other hand, the Type I errors
of the bootstrap panel tests essentially converge to nominal significance lev-
els, and their power approaches 100% even with extremely small N. Hence,
even with a rather large time sample a panel approach seems preferable.

When T' = 50 and breaks around 3/4 of the time sample (Table 3) power
falls dramatically, rarely reaching 50% for the mean test; the performance
of the median test, although not brilliant, appear somehow more robust.
Since the upper extreme of the break interval (¢ = 41) falls after the end of
the actual estimation sample (¢ = 38) these findings are not surprising, and
make clear the great care necessary in using recursive stability tests.

The two experiments designed to check the robustness of the bootstrap
procedure with respect to the nature of the breaks deliver comforting results.
When the breaks come from two distributions, centred at the opposite ends
of the sample (but not so close to them as in the previous case) the power
loss caused by the misspecification of the cointegrating equation used to
estimate the residuals to be bootstrapped is very small (Table 4). On the
other hand, when 70% of the units are affected by the break it is interesting
to see (Table 5) that the rejection rates seem to fall approximately in the
same proportion (e.g., for N = 40 and o = 10% from 92.2% to 66.8%),
so that if Hy does not hold in the majority of the units it is likely to be
rejected by the panel test as well. Somehow contrary to our expectations,
in this set-up the mean and median tests deliver very similar results.

In a larger model with four explanatory variables (Tables 6A-B) we notice
that the performance of the asymptotic tests is even worst than in the Base
case. The Type I errors of the panel tests appear similar to the base case
with only two variables, but unfortunately their power somehow smaller,
possibly because the coefficient are estimated less precisely.

The overall conclusions to be drawn are now rather clear: consistently
with Gregory, Nason and Watt (1996) our experiments suggest that with a
small or moderately large sample size (7" < 100) Hansen (1992) asymptotic
test has power ranging from very low to close to zero. A fairly general
solution to this serious empirical shortcoming seems to be provided by a

10



panel approach based on the bootstrap: in out experiments the Type I
errors turned out to be generally close to nominal sizes and converging rather
rapidly over both over T"and N to nominal levels, and power from acceptable
to good with @ = 10% when the break is located around the middle of the
sample. Although tests power does not appear to be much affected by a
wide dispersion of the breaks across units and to be (correctly) roughly
proportional to the fraction of breaking units, it is important to keep in
mind that it can be disappointing if the breaks fall towards the end of the
sample (which is not surprising, since with a small time sample the marginal
information becomes very small).

Table 1A
Base Case: T'=50, N from 5 to 40 — Size
Rejection Ratesx100

N
1 5 10 20 40 5 10 20 40
« Asy Boot-Mean Boot-Median
A. L.
1.0 3.9 1.6 0.0 0.0 0.0 0.8 0.0 0.0 0.0

5.0 12.1 104 0.8 0.8 24 8.8 16 3.2 4.0
10.0 19.3 208 4.0 4.0 11.2 232 64 9.6 11.2

B. MeanF
1.0 0.5 0.8 0.0 0.0 0.0 24 0.0 0.0 0.0
5.0 3.1 104 16 0.8 3.2 13.6 24 08 1.6
10.0 6.2 16.0 48 6.4 9.6 248 7.2 8.0 15.2
C. SupF
1.0 0.0 24 00 08 0.0 24 0.0 0.0 0.0
5.0 0.2 11.2 1.6 24 24 136 1.6 0.0 1.6

10.0 0.5 208 72 56 8.8 240 56 64 128

DGP: No Break;

Hgy: No break;

Asy: average rejection rates of invidual tests over all 40 units,
Hansen (1992) asymptotic critical values;

Boot-mean/median: bootstrap test on the mean/median across
units of the stability statistics;

Bootstrap: 1000 redrawings, block size T'/10;

Montecarlo: 500 replications.
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Base Case: T'=50, N from 5 to 40 — Power
Rejection Ratesx100

Table 1B

N
1 5 10 20 40 5 10 20 40
Q Asy Boot-Mean Boot-Median
A. L.
1.0 3.5 6.6 56 64 52 74 106 11.6 10.0
5.0 11.5 36.4 39.8 55.0 59.4 41.0 44.4 55.0 58.6
10.0 19.3 57.0 732 876 92.2 62.0 70.2 77.6 84.8
B. MeanF
1.0 0.8 6.8 70 96 6.8 54 98 148 114
5.0 3.6 35.8 48.0 61.8 62.8 37.6 51.6 61.2 62.8
10.0 6.9 61.4 80.2 874 928 61.2 78.2 86.6 90.0
C. SupF
1.0 0.1 24 2.0 44 1.8 20 3.0 76 3.8
5.0 0.7 21.8 28.2 35.6 29.2 24.4 29.8 372 39.6
10.0 1.8 48.6 63.0 62.0 67.2 42.4 59.8 66.2 70.2

DGP: Break Uniform in [0.5T7 + 3] = [22, 28];
Hy: No break;
All abbreviations and definitions: see table 1A.
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Table 2A
Large T: T =100, N = 3, 5— Size
Rejection Ratesx100

N
1 3 5 3 5
Q Asy Boot-Mean Boot-Median
A L.
1.0 2.9 1.0 2.0 2.2 2.6
5.0 10.9 4.8 54 5.0 6.2
10.0 20.5 9.0 88 9.8 11.0
B. MeanF
1.0 0.4 1.4 1.6 1.4 2.4
5.0 3.8 4.6 44 5.4 5.6
10.0 8.8 80 8.6 8.8 10.4
C. SupF
1.0 0.3 14 1.2 1.4 1.6
5.0 2.3 50 4.8 6.0 5.2
10.0 3.9 10.8 104 10.2 10.8
DGP: No break;
Hg: No break.

Asy: average rejection rates of invidual tests over all
5 units, Hansen (1992) asymptotic critical values;
All other abbreviations and definitions: see table 1A.
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Table 2B
Large T: T =100, N = 3,5— Power
Rejection Ratesx100

N
1 3 5 3 5
Q Asy Boot-Mean Boot-Median
A L,

1.0 13.5 88.6 954 71.8 77.0
5.0 33.0 99.0 99.8 88.8 91.0
10.0 44.0 99.8 100.0 94.2 96.0

B. MeanF

1.0 7.9 96.2  99.6 86.8 90.6
5.0 24.2 99.8 100.0 96.6 98.8
10.0 33.9 100.0  100.0 98.8 99.8

C. SupF

1.0 3.1 95.2  98.8 90.2 93.4
5.0 10.6 99.6 100.0 98.6 99.6
10.0 17.9 99.8 100.0 99.2 100.0

DGP: Break Uniform in [0.57 + 3J;

Hg: No break.

Asy: average rejection rates of invidual tests over all
5 units, Hansen (1992) asymptotic critical values;
All other abbreviations and definitions: see table 1A.
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Table 3

Late break: T = 50, N from 5 to 40

Rejection Ratesx100

N
1 5 10 20 40 5 10 20 40
« Asy Boot-Mean Boot-Median
A L.
1.0 3.5 24 08 06 02 6.4 16 42 08
5.0 11.4 25.0 16.0 24.2 15.0 31.8 19.6 37.0 33.2
10.0 20.8 476 38.6 61.6 50.2 49.2 424 664 63.0
B. MeanF
1.0 0.8 24 04 06 0.2 6.4 10 34 18
5.0 3.6 23.8 13.2 20.8 18.6 31.6 174 37.8 404
10.0 6.9 45.8 38.4 56.4 58.2 49.6 46.4 67.8 75.6
C. SupF
1.0 0.1 22 08 10 0.6 30 06 20 1.0
5.0 0.7 18.6 12.2 19.0 20.0 20.8 154 27.8 30.2
10.0 1.8 374 354 45.8 55.0 394 422 544 62.2

DGP: Break Uniform in [0.757 + 3] = [35,41];
Hgy: No break;
All abbreviations and definitions: see table 1A.
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Table 4

Twin breaks: T = 50, N from 5 to 40
Rejection Ratesx100

N
5 10 20 40 5 10 20 40
« Boot-Mean Boot-Median
A L.
1.0 6.4 10.0 74 11.6 7.2 152 23.6 41.8
5.0 20.2 38.0 36.8 56.2 30.0 454 582 77.0
10.0 40.0 59.2 65.6 82.8 45.0 61.8 76.8 85.4
B. MeanF
1.0 5.0 104 6.0 7.6 7.8 174 196 35.2
5.0 21.2 374 32.2 46.2 30.4 43.8 56.4 73.8
10.0 40.0 554 63.0 77.0 44.2 584 73.2 86.2
C. SupF
1.0 5.6 104 86 7.0 5.2 13.6 14.4 23.0
5.0 22.8 34.2 314 34.8 23.8 41.0 444 60.6
10.0 38.6 53.6 54.2 65.0 394 55.0 63.2 77.6

DGP: Units 1,3,... ,N — 1 break Uniform in [0.37 £ 3],

Units 2,4, ..., N break Uniform in [0.67 =+ 3];

Hg: No break;

All abbreviations and definitions: see table 1A.

16



Partial break: T = 50, N from 10 to 40
Rejection Ratesx100

Table 5

N
10 20 40 10 20 40
« Boot-Mean Boot-Median
A L.
1.0 0.8 24 22 44 6.0 2.0
5.0 20.2 28.6 284 30.4 35.0 26.4
10.0 45.8 59.8 66.8 50.0 55.0 55.8
B. MeanF’
1.0 24 34 26 3.2 4.8 2.8
5.0 22.8 354 334 29.2  36.6 32.6
10.0 50.8 67.8 74.6 54.8 64.0 62.4
C. SupF
1.0 0.8 14 0.6 0.8 3.0 1.4
5.0 16.4 21.2 18.6 18.6 25.4 23.0
10.0 39.0 48.6 48.8 41.2 49.8 47.2

DGP: Break Uniform in [0.57 + 3] in

0.7N units (the first seven in each block of ten);

Hg: No break;

All other abbreviations and definitions: see table 1A.
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Larger model: T =50, N from 5 to 40— Size

Table 6A

Rejection Ratesx100

N
1 5 10 20 40 5 10 20 40
Q Asy Boot-Mean Boot-Median
A L,
1.0 1.3 1.0 02 02 04 0.6 0.2 0.0 0.0
5.0 8.9 50 1.4 1.8 2.0 6.2 08 32 18
10.0 17.2 11.2 46 7.0 5.6 11.8 44 80 5.2
B. MeanF
1.0 0.1 0.6 0.0 0.0 0.2 0.6 0.0 02 0.0
5.0 1.2 54 1.4 24 22 56 0.8 2.0 0.8
10.0 3.6 100 46 64 6.4 104 4.0 78 6.2
C. SupF
1.0 0.0 0.8 02 02 0.0 0.6 0.2 0.0 0.0
5.0 0.0 44 16 24 1.8 40 1.0 20 1.6
10.0 0.1 104 5.0 58 64 108 3.6 7.2 54

DGP: No break, four explanatory variables;

Hgy: No break;

All abbreviations and definitions: see table 1A.
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Table 6B
Larger model: T = 50, N from 5 to 40— Power
Rejection Ratesx100

N
1 5 10 20 40 5 10 20 40
Q Asy Boot-Mean Boot-Median
A L.

1.0 1.2 20 24 24 538 20 22 56 52

5.0 6.2 11.6 238 37.0 57.8 8.8 274 422 36.0

10.0 12.2 25.0 53.0 71.8 87.2 172 59.0 64.0 604
B. MeanF

1.0 0.1 40 28 6.2 9.0 4.0 26 74 7.2

5.0 1.4 226 31.6 48.0 66.8 15.6 28.6 40.0 40.6

10.0 3.2 32.6 624 80.4 93.6 274 57.8 65.8 64.8
C. SupF

1.0 0.0 1.0 04 04 04 0.8 0.8 1.2 1.8

5.0 0.1 72 6.8 86 188 8.0 11.2 138 14.2

10.0 0.4 154 19.6 29.6 49.2 15.8 26.4 29.6 30.8

DGP: Break Uniform in [0.57 + 3], k = 4;

Hy: No break;

All abbreviations and definitions: see table 1A.

4 Empirical illustration: the Feldstein-Horioka Puz-
zle

One the major empirical puzzles of contemporary macroeconomics (six alto-
gether according to Obstfeld and Rogoff, 2000) is with no doubt the evidence
supporting the existence of a long-run link between the investment (/) and
savings (S) to GDP (Y') ratios in advanced economies, where high capital
mobility may allow the current account to be unbalanced for long periods.
Banerjee and Carrion-i-Silvestre (2004) investigated the issue on a data set
including 14 European economies (Austria, Belgium, Denmark, Finland,
France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Swe-
den, UK) over the period 1960-2002 using panel cointegration tests allowing
for a single break in the cointegrating coefficients (either level only and both
level and slope, which in the literature is referred to as "retention ratio”).
From the plots reported in Fig. 3A-B the existence of a long-run relation-
ship with coefficients shifts appears plausible; indeed, although Banerjee and
Carrion-i-Silvestre are not able to reach a clear conclusion, their findings are
on the whole rather favourable to the cointegration-with-break hypothesis.
Both tests adopted reject cointegration if a level break is allowed for, and
one does if the model is extended to include a slope break as well. The tests

19



developed in this paper may help answering the next question, which is if a
break actually took place. As a first step we computed ADF tests to check
the properties of the series, choosing the order of the autoregression on the
basis of the significance of the last lag (maximum four). The results, re-
ported in Table 7, suggest that the Savings/GDP ratio may be stationary in
Finland and Portugal. Since FM-OLS estimation assume non-stationarity
we excluded these two countries and proceed to compute the individual and
panel stability statistics. Recalling that the choice of the trimming coeffi-
cient may affect considerably the results we computed all tests with both
25% and 12.5% trimming, obtaining always very similar results. Examining
the individual statistics (Table 8; to save space we report only the results
for 12.5% trimming) we find extremely strong evidence of instability in Bel-
gium, while most of the remaining statistics are not significant. The failure
of the asymptotic tests to reject the hypothesis of stability for the individual
countries is puzzling in view of the the graphical evidence, and the natural
suspicion is that it may be merely due to the extremely low power to be
expected from the tests with such a small sample size. In fact, moving to
the panel tests we can see (Table 9) that the means of all statistics suggest
strong rejection of the null hypothesis of stability, with p-values smaller than
5% (actually zero for the MeanF and SupF statistics). Since this outcome
may be due to the strong evidence for instability in Belgium it is important
to look also at the medians. Here the evidence for rejection is weaker, with
p-values between 10% and 15% for the L. and MeanF. However, recalling
(cf. Table 1B) that with a panel of 12 units power must be expected to be
rather low, such p-values should nevertheless be regarded as small enough
to grant rejection. We can thus appreciate how applying the panel proce-
dure does grant a power gain with respect to the individual tests, allowing
to reach the more plausible conclusion that in this group of countries in-
vestment and savings do seem to be linked by a long-run relationship, but
this is likely to have changed over time at least once. The next natural
step is to estimate models allowing for coefficient breaks at the estimated
breakpoints ﬂ’ = arg max(SupE). Given the small time sample available
these estimates should clearly be taken with great care. This is especially
true when the break falls near the extremes of the sample, although for ro-
bustness sake break estimates under 25% trimming have been used (hence,
the break estimates are constrained to fall in the interval 1971-1992). The
results (reported in table 10) are indeed of some interest. In seven countries
(Austria, Belgium, Germany, France, Ireland and Sweden, thus including
two of the largest continental European economies), the retention ratio falls
significantly after the break, consistently with the expectations of a pro-
gressive weakening of the long-run link between investments and savings in
the advanced economies. In the case of the United Kingdom the results are
peculiar, as the retention ratio is negative before 1977 and turns positive
afterwards. However, neither estimates are significant, suggesting that in

20



S

this case there may not be an actual causal link of any relevance running
from domestic savings to investment. Finally, in the four remaining cases
(Italy, Spain, Greece, Denmark), contrary to expectations, the retention
ratio seems to increase. However, two remarks are in order: first, the asso-
ciated coefficient is never significant (nor the individual stability statistics,
with the exception of Greece); second, in two cases (Italy and Spain) the
estimated break points falls at the extremes of the interval in which they are
constrained to lie (respectively, 1970 and 1991). From Fig. 2 we know that
this is typical of cases when no break actually took place. Unfortunately,
with the available sample size no reliable conclusions for individual cases
can be reached, so it is impossible to shed more light on the issue. Clearly,
the great care invoked above is fully necessary.

Fig. 3A. Savings (S) and Investments (/) to GDP (Y') ratios dynamics,

1960-2002. Top to bottom: Austria, Belgium, Denmark, Finland, France,

Germany, Greece. Left Column: S/Y (solid line) and I/Y (dotted line).

Right Column: Current Account/GDP = (S — I)/Y (solid line) and zero
(dotted line).
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Fig. 3B. Savings (S) and Investments (1) to GDP (Y') ratios dynamics,
1960-2002. Top to bottom: Ireland, Italy, Netherlands, Portugal, Spain,
Sweden, UK.Left Column: S/Y (solid line) and I/Y (dotted line). Right
Column: Current Account/GDP = (S —I)/Y (solid line) and zero (dotted
line).
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Table 7
Investment and Savings to GDP ratios: ADF Unit Root Tests

Austria Belgium  Denmark Finland France Germany Greece

I -131 —1.57 —1.42 —2.16 —1.26 —2.00 —-2.13
S —0.62 —1.46 —2.03 —3.34" —1.49 —1.66 —1.11

Ireland Italy Netherlands Portugal Spain  Sweden UK

I =234 —1.32 —1.11 —3.42 —2.93 —1.54 —2.16
—1.85 —1.29 —1.94 —4.87* —2.42 —2.06 —-0.79

*(|

: significant at 5%; **: 1%.

Table 8
Individual stability tests of the investment-savings
long-run relationship, 1960-2002

Austria  Belgium Denmark  France Germany Greece
L. 0.27 1.28*** 0.12 0.08 0.26 0.35
MeanF  2.19 45.15%** 0.75 0.53 2.48 5.12**
SupF 4.07  163.34*** 1.65 1.18 10.94 27.52%**

Ireland Italy Netherlands Spain ~ Sweden UK
L, 0.25 0.19 0.22 0.17 0.17 0.05
MeanF  3.17 1.23 1.86 1.51 4.90 0.75
SupF 14.57** 6.80 3.19 5.63 12.50 12.36

trimming: 12.5%;
*: significant at 10%; **: 5%;***: 1%.

Table 9
Panel tests of stability of the investment-savings
long-run relationship, 1960-2002
p-values x100

mean median
Trimming L. MeanF SupF L. MeanF SupF
25% 3.1 0.0 0.0 14.4 12.1 44.7
12.5% 3.4 0.0 0.0 16.7 14.9 0.2

panel: Austria, Belgium, Denmark, France, Germany, Greece,
Ireland, Italy, Netherlands, Spain, Sweden, UK
bootstrap: 1000 redrawings.

23



Table 10
The investment-savings long-run relationship, 1960-2002
FM-OLS estimates

Bo I to 01 break

Austria 093 —-1.07 0.45 3.18 1991
[0.10] [0.49]  [0.55] [1.58]

Belgium 0.71 -0.75 0.94 2.21 1989
[0.15] [1.15]  [0.47] [3.70]

Denmark 0.67 0.19 1.09 -0.76 1974
[0.05] [0.20] [0.14]  [0.60]

France 0.59 —-0.23 1.32 0.58 1975
[0.05] [0.18]  [0.15] [0.55]

Germany 092 -0.72 0.17 2.26 1972
[0.36] [0.39]  [1.19] [1.28]

Greece 0.72 0.11 0.79 -0.21 1989
[0.15] [0.20]  [0.48] [0.64]

Ireland 1.03 —-0.83 0.04 2.44 1970
[1.51] [1.54] [4.33] [4.42]

Italy 0.80 045 0.74 —-1.53 1970
[0.52] [0.56] [1.63] [1.75]

Netherlands 0.89 —-1.07 0.45 3.18 1985
[0.18] [0.49]  [0.55] [1.58]

Spain 0.67 0.27 1.08 —-0.84 1991
[0.24] [0.31]  [0.74] [0.96]

Sweden 0.75 —1.66 0.83 4.82 1974
[1.85] [1.89] [5.84] [5.97]

UK —-0.25 —-0.47 3.72 -—-1.49 1977
[0.48] [0.57] [1.44] [1.68]

model: In(I/Y); = Boln(S/Y ) + 81In(S/Y)eDs + 09 + 01Dy + €,
Dy =1if t > break,0 else;
standard errors in brackets.

5 Conclusions

Our overall conclusion is that the proposed panel stability tests may grant
considerable advantages. With time sample sizes rather common in macroe-
conomic datasets (e.g., 50 observations) the asymptotic tests appear to be
essentially of no use, while the proposed panel bootstrap tests have Type I
errors close to nominal sizes and acceptable power. An empirical illustration
on the Feldstein-Horioka puzzle for a panel of 12 economies over the period
1960-2002 shows how the bootstrap panel stability tests lead to a more plau-
sible conclusion (cointegration with at least one break) than the asymptotic
tests applied to each individual country (which, with a few exceptions, do
not reject stability). Among the points on our research agenda we can men-
tion generalising our procedures to tests of the hypothesis of breaks limited
to only some of the variables, implementing some block-length selection al-
gorithm, and exploring the use of the Bewley (1979) transform.
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