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Abstract

This  paper  exploits  the  fact  that  implied  volatilities  calculated  from  identical  call  and  put
options  have  often  been  empirically  found  to  differ,  although  they  should  be  equal  in
theory. We propose a new bivariate mixture multiplicative error model and show that it is a
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to the model: putside implied volatility helps forecast callside IV, and vice versa. Impulse
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1 Introduction

In theory, the implied volatilities derived from a call option and a put option with the
same underlying asset, strike price, and expiration date should be equal - both reflect the
market’s expectation of the volatility of the returns of the underlying asset during the
remaining life of the two options. However, it has been empirically observed that when
call and put implied volatilities (IV) are backed out of option prices using an option
pricing formula, they often deviate from each other.

The reason behind the inequality of put and call implied volatilities may lie in the
different demand structure for calls and puts. There is an inherent demand for put
options that does not exist for similar calls, as institutional investors buy puts regularly
for purposes of portfolio insurance. There are often no market participants looking to sell
the same options to offset this demand, meaning that prices may need to be bid up high
enough for market makers to be willing to become counterparties to the deals. With no
market imperfections such as transaction costs or other frictions present, option prices
should always be determined by no-arbitrage conditions, making implied volatilities of
identical call and put options the same. However, in real-world markets the presence
of imperfections may allow option prices to depart from no-arbitrage bounds if there is,
for example, an imbalance between supply and demand in the market. References to
existing literature and more details on this topic are provided in Section 2.

Despite the fact that call and put-side implied volatilities differ, they must be tightly
linked to one another at all times - after all, they both represent the same market
expectation, and the driving forces behind their values are common. Therefore, it can
be argued that there is potential value added in jointly modeling time series of implied
volatilities, one derived from call option prices and the other from put option prices.
Further, the interactions between the two variables can be studied with cross effects, i.e.
allowing call IV to depend on lagged values of put IV, and vice versa.

The modeling of IV provides a valuable addition to the extensive literature on volatil-
ity modeling. IV is truly a forward-looking measure: implied volatility is the market’s
expectation of the volatility in the returns of an option’s underlying asset during the
remaining life of the option in question. In contrast, other volatility estimates are based
on historical prices. Examples of IV modeling literature include Ahoniemi (2006), who
finds that there is some predictability in the direction of change of the VIX Volatility
Index, an index of the IV of S&P 500 index options. Dennis et al. (2006) find that
daily innovations in the VIX Volatility Index contain very reliable incremental informa-
tion about the future volatility of the S&P 100 index.1 Other studies that attempt to
forecast IV or utilize the information contained in IV to trade in option markets include
Harvey and Whaley (1992), Noh et al. (1994), and Poon and Pope (2000). Reliable
forecasts of implied volatility can benefit option traders, but many other market partic-
ipants as well: all investors with risk management concerns can benefit from accurate
forecasts of future volatility.

The implied volatility data used in this study are calculated separately from call and
put options on the Japanese Nikkei 225 index. Separate time series for call and put-side
IV offer a natural application for the bivariate multiplicative model presented below.
In their analysis of implied volatilities of options on the S&P 500 index, the FTSE 100

1The data set in Dennis et al. (2006) ends at the end of 1995, when options on the S&P 100 index
were used to calculate the value of the VIX. The Chicago Board Options Exchange has since switched
to S&P 500 options.
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index, and the Nikkei 225 index, Mo and Wu (2007) find that U.S. and UK implied
volatilities are more correlated with each other than with Japanese implied volatilities,
indicating that the Japanese market exhibits more country-specific movements. There-
fore, it is interesting to analyze the Japanese option market and its implied volatility
in this context, as investors may be presented with possibilities in the Japanese index
option market that are not available elsewhere. Mo and Wu (2007) also report that the
implied volatility skew is flatter in Japan than in the U.S. or UK markets. They con-
clude that in Japan, the risk premium for global return risks is smaller than in the other
two countries. The developments in the Japanese stock market during the late 1990s in
particular are very different from Western markets, with prices declining persistently in
Japan. This characteristic also makes the Japanese market unique. Mo and Wu (2007)
observe that out-of-the-money calls have relatively higher IVs in Japan, as investors
there expect a recovery after many years of economic downturn. Investors in Japan
seem to price more heavily against volatility increases than against market crashes.

In this paper, we introduce a new bivariate multiplicative error model (MEM). MEM
models have gained ground in recent years due to the increasing interest in modeling
non-negative time series in financial market research.2 The use of MEM models does not
require logarithms to be taken of the data, allowing for the direct modeling of variables
such as the duration between trades, the bid-ask spread, volume, and volatility. Recent
papers that successfully employ multiplicative error modeling in volatility applications
include Engle and Gallo (2006), Lanne (2006, 2007), and Ahoniemi (2007). Lanne (2006)
finds that the gamma distribution is well suited for the multiplicative modeling of the
realized volatility of two exchange rate series, and Ahoniemi (2007), using the same
data set as in the present study, finds that MEM models together with a gamma error
distribution are a good fit to data on Nikkei 225 index implied volatility. All the above-
mentioned MEM applications consider univariate models, but Cipollini et al. (2006)
build a multivariate multiplicative error model using copula functions instead of directly
employing a multivariate distribution. In our application, we use a bivariate gamma
distribution to model the residuals.

Our results show that it is indeed useful to jointly model call and put implied volatil-
ities. The chosen mixture bivariate model with a gamma error distribution is a good
fit to the data, as shown by coefficient significance and diagnostic checks. The addition
of lagged cross effects turns out to be important for one-step-ahead daily forecast per-
formance. Our model correctly forecasts the direction of change in IV on over 70% of
trading days in an out-of-sample analysis. Impulse response functions are also calcu-
lated, and they reveal that there is considerable persistence in the data: shocks do not
fully disappear until thirty trading days elapse. Also, put-side IV recovers more quickly
from shocks than call-side IV, indicating that the market for put options may price more
efficiently due to larger demand and trading volumes.

This paper proceeds as follows. Section 2 discusses the differences in the markets for
call and put options in more detail. Section 3 describes the bivariate mixture multiplica-
tive error model estimated in this paper. Section 4 presents the data, model estimation
results, and diagnostic checks of the chosen model specification. Impulse response func-
tions are discussed in Section 5, and forecasts are evaluated in Section 6. Section 7
concludes.

2A special case of multiplicative error models is the autoregressive conditional duration (ACD) model,
for which an abundant literature has emerged over the past ten years.
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2 The Markets for Call and Put Options

There is an abundance of literature investigating the differences in the markets for call
and put options. Bollen and Whaley (2004) have documented that put options account
for 55 % of trades in S&P 500 index options, and that the level of implied volatility
calculated from at-the-money (ATM) options on the S&P 500 index is largely driven
by the demand for ATM index puts. Buraschi and Jackwerth (2001), using an earlier
data set of S&P 500 index options, report that put volumes are around three times
higher than call volumes. There is also evidence that out-of-the-money (OTM) puts
in particular can be overpriced, at least part of the time (Bates (1991), Dumas et al.
(1998), Bollen and Whaley (2004)). Garleanu et al. (2006) document that end users
(non-market makers) of options have a net long position in S&P 500 index puts, and
that net demand for low-strike options (such as OTM puts) is higher than the demand
for high-strike options. The results of Chan et al. (2004) from Hang Seng Index options
in Hong Kong are similar to those of Bollen and Whaley (2004) in that net buying
pressure is more correlated with the change in implied volatility of OTM put options
than in-the-money put options. Also, trading in Hang Seng Index puts determines the
shape of the volatility smile to a greater degree than trading in calls. If OTM puts
are consistently overpriced, investors who write such options could earn excess returns
(empirical evidence in support of this is provided in e.g. Bollen and Whaley (2004)).
On the other hand, Jackwerth (2000) finds that it is more profitable to sell ATM puts
than OTM puts in the S&P 500 index option market. Fleming (1999) compares ATM
S&P 100 index calls and puts, and finds that selling puts is more profitable than selling
calls.

Further evidence on different market mechanisms for calls and puts is provided by
Rubinstein (1994), who notes that after the stock market crash of October 1987, prices
of OTM puts were driven upwards, changing the volatility smile into the now-observed
volatility skew. He hypothesizes that the crash led to OTM puts being more highly val-
ued in the eyes of investors. Fleming (1999) observes that institutional buying pressure
rose dramatically after the ’87 crash. Ederington and Guan (2002) also remark that the
volatility smile may be caused in part by hedging pressures which drive up the prices of
puts with low strike prices. They point out that this notion is supported by both trad-
ing volume evidence and the fact that in equity markets, implied volatilities calculated
from options with low strike prices have been found to be higher than actual volatilities.
Das and Uppal (2004) note that downside jumps in international equity markets tend to
occur at the same time. Mo and Wu (2007) also report that large downside moves are
more likely to be global rather than country-specific movements. As a consequence of
this, investors cannot avoid drops in portfolio value by diversifying internationally. This
then creates additional pressure to acquire portfolio insurance from put options, driving
up their prices.

Even if the demand for a put option causes its price (and implied volatility) to rise,
no-arbitrage conditions should ensure that the price of a call option with the same strike
price and maturity date yields an implied volatility that is equal to the one derived from
the put counterpart. But as Fleming (1999) writes,

..., transaction costs and other market imperfections can allow option prices
to deviate from their ”true” values without signaling arbitrage opportunities.

The possibility that option prices can depart from no-arbitrage bounds, thus allowing
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call and put IV to differ, has been documented numerous times in earlier work. Hentschel
(2003) points out that noise and errors in option prices stemming from fixed tick sizes,
bid-ask spreads, and non-synchronous trading can contribute to miscalculated implied
volatilities, and to the volatility smile. Garleanu et al. (2006) develop a model for op-
tion prices that allows for departures from no-arbitrage bounds. These arise from the
inability of market makers to perfectly hedge their positions at all times, which in turn
allows option demand to affect option prices. Empirical evidence lends support to this
theory: market makers require a premium for delivering index options. Even market
makers cannot fully hedge their exposures due to issues such as transaction costs, the
indivisibility of securities, and the impossibility of executing rebalancing trades contin-
uously (Figlewski (1989)), and capital requirements and sensitivity to risk (Shleifer and
Vishny (1997)). When market makers face unhedgeable risk, they must be compensated
through option prices for bearing this risk. In fact, Garleanu et al. (2006) find that
after periods of dealer losses, the prices of options are even more sensitive to demand.
Other impediments to arbitrage include the fact that a stock index portfolio is difficult
and costly to trade, but if an investor uses futures, she must bear basis and possibly
tracking risk (Fleming (1999)): spot and futures prices may not move hand-in-hand at
all times, and the underlying asset of the futures contracts may not be identical to the
asset being hedged. Liu and Longstaff (2004) demonstrate that it can often be optimal
to underinvest in arbitrage opportunities, as mark-to-market losses can be considerable
before the values of the assets involved in the trade converge to the values that eventu-
ally produce profits to the arbitrageur. When it is suboptimal to fully take advantage of
an arbitrage opportunity, there is no reason why the arbitrage could not persist for even
a lengthy amount of time. Bollen and Whaley (2004), in their analysis of the S&P 500
option market, find support for the hypothesis that limits to arbitrage allow the demand
for options to affect implied volatility.

3 The Model

In this section, we present the bivariate mixture multiplicative error model (BVMEM)
that will be used to model the two time series of implied volatilities described in Section
4. Consider the following bivariate model

vt = µtεt, t = 1, 2, ..., T,

where the conditional mean

µt =
(

µ1t

µ2t

)
=

(
ω1 +

∑q1
i=1 α1iv1,t−i +

∑p1
j=1 β1jµ1,t−j

ω2 +
∑q2

i=1 α2iv2,t−i +
∑p2

j=1 β2jµ2,t−j

)

and εt is a stochastic positive-valued error term such that E (εt|Ft−1) = 1 with Ft−1 =
{vt−j , j ≥ 1}. In what follows, this specification will be called the BVMEM(p1, q1; p2, q2)
model. As the conditional mean equations of the model are essentially the same as the
conditional variance equations in the GARCH model in structure, the constraints on
parameter values that guarantee positivity in GARCH models also apply to each of the
equations of the BVMEM model. As outlined in Nelson and Cao (1992), the parameter
values in a first-order model must all be non-negative. In a higher-order model, positivity
of all parameters is not necessarily required. For example, in a model with pi = 1 and
qi = 2, i = 1, 2, the constraints are ωi ≥ 0, αi1 ≥ 0, 0 ≤ βi < 1, and β1αi1 + αi2 ≥ 0. It
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should be noted that this basic conditional mean specification must often be augmented
with elements such as cross effects between the variables and seasonality effects. In these
cases, one must ensure that positivity continues to be guaranteed. For example, if the
coefficients for lagged cross terms are positive, no problems in achieving positivity arise.

The multiplicative structure of the model was suggested for volatility modeling in
the univariate case by Engle (2002), who proposed using the exponential distribution.
However, the gamma distribution nests, among others, the exponential distribution, and
is therefore more general. Also, the findings of Lanne (2006, 2007) and Ahoniemi (2007)
lend support to the gamma distribution.

The error term εt is assumed to follow a bivariate gamma distribution, which is
a natural extension of the univariate gamma distribution used in previous literature
(Lanne (2006, 2007) and Ahoniemi (2007)). Of the numerous bivariate distributions
having gamma marginals, the specification suggested by Nagao and Kadoya (1970) is
considered (for a discussion on alternative bivariate gamma densities, see Yue et al.
(2001)). This particular specification is quite tractable and thus well suited for our
purposes. Collecting the parameters into vector θ = (τ1, τ2, λ, ρ), the density function
can be written as

fε1,ε2 (ε1t, ε2t; θ) =
(τ1τ2)

(λ+1)/2 (ε1tε2t)
(λ−1)/2 exp

{
− τ1ε1t+τ2ε2t

1−ρ

}

Γ (λ) (1− ρ) ρ
(λ−1)/2

Iλ−1

(
2
√

τ1τ2ρε1tε2t

1− ρ

)
,

where Γ (·) is the gamma function, ρ is the Pearson product-moment correlation coeffi-
cient, and Iλ−1 (·) is the modified Bessel function of the first kind. The marginal error
distributions have distinct scale parameters τ1 and τ2, but the shape parameter, λ, is
the same for both. However, since the error term needs to have mean unity, we impose
the restrictions that the shape parameters are the reciprocals of the scale parameters,
i.e., λ = 1/τ1 and λ = 1/τ2, indicating that τ1 = τ2 = 1/λ. In other words, we will also
restrict the scale parameters to be equal. This is not likely to be very restrictive in our
application, as earlier evidence based on univariate models in Ahoniemi (2007) indicates
that the shape and scale parameters for the time series used in this study, the implied
volatilities of Nikkei 225 call and put options, are very similar.

Incorporating the restrictions discussed above and using the change of variable the-
orem, the conditional density function of vt = (v1t, v2t)′ is obtained as

ft−1 (v1t, v2t; θ) = fε1,ε2

(
v1tµ

−1
1t , v2tµ

−1
2t

)
µ−1

1t µ−1
2t (1)

=
λ(λ+1)

[
v1tv2tµ

−1
1t µ−1

2t

](λ−1)/2 exp
{
−λ(v1tµ

−1
1t +v2tµ

−1
2t )

1−ρ

}

Γ (λ) (1− ρ) ρ
(λ−1)/2

×

Iλ−1


2λ

√
ρv1tv2tµ

−1
1t µ−1

2t

1− ρ


µ−1

1t µ−1
2t .
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Consequently, the conditional log-likelihood function can be written as3

lT (θ) =
T∑

t=1

lt−1(θ) =
T∑

t=1

ln [ft−1 (v1t, v2t;θ)] ,

and the model can be estimated with the method of maximum likelihood (ML) in a
straightforward manner. Although the gamma distribution is quite flexible in describing
the dynamics of implied volatilities, in our empirical application it turned out to be
inadequate as such. In particular, it failed to capture the strong persistence in the
implied volatility time series. As an extension, we consider a mixture specification
that allows for the fact that financial markets experience different types of regimes,
alternating between calm and more volatile periods of time. Different parameter values
can be assumed to better describe periods of larger shocks compared with periods of
smaller shocks, and error terms are allowed to come from two gamma distributions
whose shape and scale parameters can differ. Earlier evidence from Lanne (2006) and
Ahoniemi (2007) indicates that the use of a mixture specification improves the fit of a
multiplicative model as well as the forecasts obtained from the models.

We will assume that the error term εt is a mixture of of ε
(1)
t and ε

(2)
t with mix-

ing probability π, and that ε
(1)
t and ε

(2)
t follow the bivariate gamma distribution with

parameter vectors θ1 and θ2, respectively. In other words, the error term is ε
(1)
t with

probability π and ε
(2)
t with probability 1 − π (0 < π < 1). The model based on this

assumption will subsequently be called the mixture-BVMEM model. The conditional
log-likelihood function becomes

lT (θ) =
T∑

t=1

lt−1 (θ) =
T∑

t=1

ln
[
πf

(1)
t−1 (v1t, v2t; θ1) + (1− π) f

(2)
t−1 (v1t, v2t;θ2)

]
,

where f
(1)
t−1 (v1t, v2t;θ1) and f

(2)
t−1 (v1t, v2t;θ2) are given by (1) with θ replaced by θ1 and

θ2, respectively.
Assuming that vt is stationary and ergodic, it is reasonable to apply standard asymp-

totic results in statistical inference. In particular, approximate standard errors can be

obtained from the diagonal elements of the matrix −
[
∂2lT (θ̂)/∂θ∂θ′

]−1
, where θ̂ de-

notes the ML estimate of θ. Similarly, Wald and likelihood ratio (LR) tests for general
hypotheses will have the conventional asymptotic χ2 null distributions. Note, however,
that hypotheses restricting the number of mixture components do not have the usual
χ2 distributions due to the problem of unidentified parameters (see e.g. Davies (1977)).
We will not attempt such tests, but assume throughout that there are two mixture
components. The adequacy of the assumption will be verified by means of diagnostic
procedures (see Section 4.3).

3Specifically, for observation t,

lt−1 (θ) = (λ + 1) ln (λ) +
1

2
(λ− 1) [ln (v1t) + ln (v2t)− ln (µ1t)− ln (µ2t)]

−λ
(
v1tµ

−1
1t + v2tµ

−1
2t

)

1− ρ
− ln [Γ (λ)]− ln (1− ρ)− 1

2
(λ− 1) ln (ρ)

+ ln


Iλ−1


2λ

√
ρv1tv2tµ

−1
1t µ−1

2t

1− ρ





− ln (µ1t)− ln (µ2t) .
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4 Estimation Results

4.1 Data

The data set in this study covers 3,194 daily closing observations from the period 1.1.1992
- 31.12.2004, and was obtained from Bloomberg Professional Service (see Figure 1). The
first eleven years of the full sample, or 1.1.1992 - 31.12.2002, comprise the in-sample of
2,708 observations. The final two years, 2003 and 2004, are left as the 486-day out-of-
sample to be used for forecast evaluation.

The call-side (put-side) implied volatility time series is calculated as an unweighted
average of Black-Scholes implied volatilities from two nearest-to-the-money call (put)
options from the nearest maturity date. Rollover to the next maturity occurs two cal-
endar weeks prior to expiration in order to avoid possibly erratic behavior in IV close
to option expiration. ATM options are typically used to estimate the market’s expected
volatility for the remainder of the option’s maturity, as trading volumes are usually high
for ATM options. Also, ATM options have the highest sensitivity to volatility.

10
20

30
40

50
60

70

1992 1994 1996 1998 2000 2002 2004

10
20

30
40

50
60

70

1992 1994 1996 1998 2000 2002 2004

Figure 1: Nikkei 225 index call implied volatility (upper panel) and put implied volatility (lower panel)

1.1.1992 - 31.12.2004.

Table 1 provides descriptive statistics on both the call-side IVs (NIKC) and put-side
IVs (NIKP). The average level of put-side implied volatility is higher in the sample of this
study, a phenomenon which has also been documented in the U.S. markets by Harvey
and Whaley (1992).
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NIKC NIKP
Maximum 70.84 74.87
Minimum 9.26 8.80

Mean 24.68 24.82
Median 23.42 23.84

Standard deviation 7.07 7.41
Skewness 1.10 0.94

Excess kurtosis 2.42 1.79

Table 1: Descriptive statistics for NIKC and NIKP for the full sample of 1.1.1992 - 31.12.2004.

4.2 Model Estimation

Given the clear linkages between the implied volatilities of call and put options on the
same underlying asset outlined above, call-side (put-side) IV can be expected to be a
significant predictor of future put-side (call-side) IV. Therefore, the model presented
in Section 3 is augmented with lagged cross terms, so that call (put) implied volatility
depends on its own history as well as on the history of put (call) implied volatility. Bollen
and Whaley (2004) find that in the U.S. market, the demand for ATM index puts drives
both the changes in ATM put implied volatility and the changes in ATM call implied
volatility. Therefore, we expect that for our Japanese implied volatility data, lagged put
IV will be more significant in explaining call IV than lagged call IV will be in explaining
put IV.

Dummy variables for Friday effects of put-side IV are also added due to the im-
provement in diagnostics achieved after the addition (see Section 4.3 for more details on
diagnostic checks). The level of IV is lowest on Fridays for both call and put options,4

but trading volumes are highest on Fridays. An analysis of trading volumes of close-
to-the-money, near-term maturity call and put options on the Nikkei 225 index reveals
that during the two-year out-of-sample period used in this study, put options account
for 52.0 % of trading volume (measured with number of contracts traded). The share of
puts is lowest on Mondays (50.4%) and largest on Fridays (53.6%).

Findings similar to ours concerning weekly seasonality have been reported in previous
studies. Peña et al. (1999) find that in the Spanish stock index market, the curvature
of the volatility smile at the beginning of the week is statistically significantly different
from the smile at the end of the week. Lehmann and Modest (1994) report that trading
volumes on the Tokyo Stock Exchange are substantially lower on Mondays than on other
days of the week. They hypothesize that this is due to reduced demand by liquidity
traders due to the risk of increased information asymmetry after the weekend. Also,
bid-ask spreads are largest on Mondays, making transaction costs highest at the start
of the week. The significance of trading volumes is highlighted by Mayhew and Stivers
(2003), who find that implied volatility performs well when forecasting individual stock
return volatility, but only for those stocks whose options have relatively high trading
volumes.

In order to take cross effects and the observed seasonal variation into account, we
need to modify the basic model presented in Section 3. Let µmt denote the conditional
mean of mixture component m (m = 1, 2), and µmt = (µC

mt, µ
P
mt)

′, where µC
mt and µP

mt

4The level of IV is highest on Mondays. However, dummies for Monday effects were not statistically
significant.

8



are the conditional means of the call and put implied volatilities, respectively.
The specifications of the conditional means are

µC
mt = ωC

m +
qC∑

i=1

αC
mivC,t−i +

rC∑

i=1

ψC
mivP,t−i +

sC∑

i=1

δCP
mi DivP,t−i +

pC∑

j=1

βC
mjµ

C
m,t−j

and

µP
mt = ωP

m +
qP∑

i=1

αP
mivP,t−i +

rP∑

i=1

ψP
mivC,t−i +

sP∑

i=1

δPP
mi DivP,t−i +

pP∑

j=1

βP
mjµ

P
m,t−j

where the ψ’s are the coefficients for lagged cross terms, and Di receives the value of 1
on Fridays, and zero otherwise. As mentioned above, the dummy variable in both the
call and put mean equations is for put-side Friday effects (coefficients δCP

mi and δPP
mi ).

This specification is later referred to as the unrestricted model.
In order to fully understand the value of including cross effects between NIKC and

NIKP in the model, an alternative specification with no cross terms was also estimated.
In this model, dummies for Friday effects are also included, but due to the elimination
of cross effects, the dummy in the equation for NIKC captures the Friday effect of call-
side, not put-side, implied volatility. In the second model specification, or the restricted
model,

µC
mt = ωC

m +
qC∑

i=1

αC
mivC,t−i +

sC∑

i=1

δCC
mi DivC,t−i +

pC∑

j=1

βC
mjµ

C
m,t−j

and

µP
mt = ωP

m +
qP∑

i=1

αP
mivP,t−i +

sP∑

i=1

δPP
mi DivP,t−i +

pP∑

j=1

βP
mjµ

P
m,t−j .

The estimation results for both the unrestricted and the restricted model are pre-
sented in Table 2. The parameter values for all ω’s, α’s and β’s meet the Nelson and
Cao (1992) constraints discussed in Section 3. Also, the coefficients of cross terms (ψ’s)
and dummies (δ’s) are positive, so positivity is guaranteed in the model. Compared with
the full version of the unrestricted model, βC

11, ωP
1 , and αP

12 are constrained to be equal
to zero, which is validated by a likelihood ratio test with p-value 0.273.5

The probability parameter π is quite high for the unrestricted model, close to 0.92.
Therefore, the second regime, which displays larger shocks, occurs on only some eight
percent of the trading days in the in-sample. The estimated shape (and scale) parameters
of the error distribution differ considerably between the two regimes, with residuals more
dispersed in the second regime. Figure 2 shows the joint error density of the unrestricted
model with the parameters estimated for the first regime, while the error density for the
second regime is depicted in Figure 3. It should be noted that the scale of the z-axis
is different in the two figures. The errors are much more tightly concentrated around
unity in the first, more commonly observed, regime, whereas the tail area is emphasized
in the second regime.

5The model originally included six dummies: both first-regime equations had Friday-effect dummies
for the intercept, own lagged value, and the lagged value of the other variable. Only the put-side Friday
effects were statistically significant, and p-values from likelihood ratio tests validated the constraining
of the other dummies to zero.
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Unrestricted Model Restricted Model
Log likelihood -12370.0 -12653.4

π 0.919** (0.012) 0.883** (0.018)

λ1 126.594** (3.745) 127.3036** (4.614)

ρ1 0.094** (0.027) 0.019 (0.033)

ωC
1 1.264** (0.164) 0.298** (0.085)

αC
11 0.514** (0.020) 0.617** (0.025)

αC
12 0.104** (0.019) -0.223** (0.048)

ψC
11 0.321** (0.017) -

δCC
11 - 0.043** (0.006)

δCP
11 0.045** (0.005) -

βC
11 - 0.584** (0.046)

ωP
1 - 0.254** (0.077)

αP
11 0.529** (0.020) 0.611** (0.023)

αP
12 - -0.215** (0.053)

ψP
11 0.247** (0.018) -

δPP
11 0.043** (0.005) 0.046** (0.006)

βP
11 0.210** (0.026) 0.581** (0.048)

λ2 20.043** (2.003) 23.413** (2.288)

ρ2 0.360** (0.063) 0.378** (0.058)

ωC
2 1.401 (0.772) 0.718 (0.368)

αC
21 0.185** (0.070) 0.216** (0.044)

ψC
21 0.150 (0.101) -

βC
21 0.627** (0.108) 0.769** (0.048)

ωP
2 0.835 (0.688) 0.933* (0.403)

αP
21 0.244** (0.087) 0.270** (0.050)

ψP
21 0.146 (0.090) -

βP
21 0.612** (0.111) 0.717** (0.053)

Table 2: Estimation results for the BVMEM model. Standard errors calculated from the final Hessian

matrix are given in parentheses. (**) indicates statistical significance at the one-percent level, and (*)

at the five-percent level.
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Figure 2: Density of residuals in the first regime of the unrestricted model.

Figure 3: Density of residuals in the second regime of the unrestricted model.
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The correlation of errors, or ρ, is higher in the second regime, making changes in
call and put IV more correlated when volatility is high. This is also clearly visible in
Figures 2 and 3. The coefficients of cross terms ψ are significant at the one-percent level
in the first, more common regime, and jointly significant in the second regime (p-value
from LR test equal to 0.007). The coefficients of the cross terms are higher in the first
regime, making the cross effects more pronounced. In other words, the cross effects are
smaller when volatility is high. For both regimes, the effect put-side IV has on call-side
IV is larger than the effect call IV has on put IV, although the difference in coefficients
is quite small in the second regime. Friday dummies for the first lag of put IV are
also significant and positive, indicating that the effect of the lagged put IV is larger
on Fridays, when trading volumes are highest. Values of intercepts are higher in the
second regime, consistent with the notion that this regime occurs on days when shocks
are larger. The clearly greater β’s in the second regime indicate higher persistence in
that regime. This can be interpreted as a sign that once the second regime is entered,
it is likely that large shocks persist, i.e. there is volatility clustering present.

As we are interested in seeing the relevance of cross terms for forecast performance,
we also present the results for the restricted model without these cross effects. It should
be noted that the null hypothesis of all coefficients of cross terms equal to zero is rejected
by an LR test at all reasonable significance levels. In the restricted model, the estimate
of π is smaller than in the unrestricted model, but the first regime remains clearly more
prevalent. The parameters of the error distribution are very similar, but the correlation
of the residuals is lower in the first regime than it was with the unrestricted model.
One notable difference to the parameter values of the unrestricted model is that the
coefficients of the second lags are both significant in the first regime, and have a negative
sign. This suggests that the exclusion of cross effects results in biased estimates of these
parameters. The dummies for Friday effects are significant, indicating that the data
behaves somewhat differently when the trading volume is at its highest. As the shape
(and scale) parameters of the error distribution that are estimated for the restricted
model are very close in value to those for the unrestricted model, the graphs for error
densities are qualitatively similar as those in Figures 2 and 3 and are therefore not
displayed.

4.3 Diagnostics

Most standard diagnostic tests are based on a normal error distribution, which renders
these tests unfeasible for our purposes due to the use of the gamma distribution. Also, as
our model specification has two mixture components and switching between the regimes
is random, there is no straightforward way to obtain residuals.

In order to investigate the goodness-of-fit of our model, diagnostic evaluations can
nevertheless be conducted by means of so-called probability integral transforms of the
data. This method was suggested by Diebold et al. (1998) and extended to the multivari-
ate case by Diebold et al. (1999). The probability integral transform in the univariate
case (for one IV series) is obtained as

zt =
∫ yt

0
ft−1(u)du (2)

where ft−1(·) is the conditional density of the implied volatility with the chosen model
specification. The transforms are independently and identically uniformly distributed
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in the range [0,1] if the model is correctly specified. Although commonly employed in
the evaluation of density forecasts, this method is also applicable to the evaluation of
in-sample fit. In the bivariate case, Diebold et al. (1999) recommend evaluating four
sets of transforms: zC

t , zP
t , z

C|P
t , and z

P |C
t . The transforms zC

t and zP
t are based on the

marginal densities of the call and put implied volatilities, respectively. Similarly, z
C|P
t

is based on the density of call IV conditional on put IV, and vice versa for z
P |C
t .

Graphical analyses of the probability integral transforms are commonplace. These
involve both a histogram of the transforms, that allows for determining uniformity, as
well as autocorrelation functions of demeaned probability integral transforms and their
squares. The graphical approach allows for easily identifying where a possible model
misspecification arises. Figure 4 presents the 25-bin histogram and autocorrelations for
z

C|P
t , and Figure 5 for z

P |C
t for the unrestricted model. Figures 6 and 7 present the

equivalent graphs for zC
t and zP

t , respectively.
Most columns of the histograms fall within the 95 % confidence interval, which is

based on Pearson’s goodness-of-fit test. Although there are some departures from the
confidence bounds (between zero and four, depending on the case), there is no indication
that the model would not be able to capture the tails of the conditional distribution
properly. It must be noted that Pearson’s test statistics and confidence interval are not
exactly valid, as their calculation does not take estimation error into account. However,
this omission most likely leads to rejecting too frequently.

The autocorrelations of the demeaned probability integral transforms also provide
encouraging evidence, although some rejections do occur at the five percent (but not at
the ten percent) level.6 There clearly seems to be some remaining autocorrelation in the
squares of the demeaned probability integral transforms. This same finding has been
made previously with univariate models for volatility data (see Ahoniemi (2007) and
Lanne (2006, 2007)). A potential explanation is that the model is not quite sufficient in
capturing the time-varying volatility of implied volatility.

The removal of dummy variables from the unrestricted model results in a clear de-
terioration in the autocorrelation diagnostics, and consequently, we have deemed the
inclusion of weekly seasonality effects relevant for our model. The diagnostics for the
restricted model, or the model without cross effects, are somewhat better than those
for the unrestricted model, especially where autocorrelations are concerned.7 The im-
provement in diagnostics due to the removal of cross effects is surprising, as the cross
terms are statistically significant and improve forecasts (see Section 6 for discussion on
forecasts).

In order to verify that our unrestricted model takes the high persistence in the data
into account, we compare the autocorrelation functions (ACF) estimated from the call
and put IV data to those calculated from data simulated with our model. Figure 8
depicts the autocorrelation functions of NIKC and NIKP, as well as the autocorrelation
functions generated by the unrestricted mixture-BVMEM model after simulating 100,000
data points. A 95% confidence band is drawn around the estimated autocorrelation
functions. The band is obtained by simulating 10,000 series of 3,194 data points (equal
to the full sample size), and forming a band that encompasses 95% of the autocorrelations

6The confidence bands of the autocorrelations are also calculated without estimation error accounted
for.

7To save space, the diagnostic graphs for the unrestricted model without dummy variables and for
the restricted model are not presented in the paper, but are available from the authors upon request.
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Figure 4: Diagnostic evaluation of z
C|P
t : NIKC conditional on NIKP. Histograms of probability integral

transforms in the upper panel, and autocorrelation functions of demeaned probability integral transforms

(middle panel) and their squares (lower panel). The dotted lines depict the boundaries of the 95%

confidence interval.

Figure 5: Diagnostic evaluation of z
P |C
t : NIKP conditional on NIKC. Histograms of probability integral

transforms in the upper panel, and autocorrelation functions of demeaned probability integral transforms

(middle panel) and their squares (lower panel). The dotted lines depict the boundaries of the 95%

confidence interval.
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Figure 6: Diagnostic evaluation of zC
t : Marginal NIKC. Histograms of probability integral transforms

in the upper panel, and autocorrelation functions of demeaned probability integral transforms (middle

panel) and their squares (lower panel). The dotted lines depict the boundaries of the 95% confidence

interval.

Figure 7: Diagnostic evaluation of zP
t : Marginal NIKP. Histograms of probability integral transforms

in the upper panel, and autocorrelation functions of demeaned probability integral transforms (middle

panel) and their squares (lower panel). The dotted lines depict the boundaries of the 95% confidence

interval.
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pointwise at each lag. As the ACFs generated by our model fall within the band at each
lag, it can be concluded that the observed ACFs could have been generated by our
mixture-BVMEM model.

Figure 8: NIKC (upper panel) and NIKP (lower panel) autocorrelation functions. The solid lines depict

the ACFs estimated from the full sample of the data, the lines with long dashes are the ACFs implied by

the mixture-BVMEM model with 100,000 simulated data points, and the lines with short dashes draw

95% confidence bands around the ACFs.

The diagnostics underscore the necessity for using a mixture model in this case. We
also estimated a BVMEM model with only one regime, and the diagnostic checks clearly
reveal its inadequacy. In particular, the four histograms for that model show that this
specification fails to account for the tails of the conditional distribution, giving too little
weight to values close to zero and unity and too much weight to the mid-range of the
distribution.8 However, the imbalance in the histograms is not as severe as with the
univariate models in Ahoniemi (2007), thus indicating that even for models without a
mixture structure, joint modeling improves the fit to the Nikkei 225 IV data somewhat.

5 Impulse Response Analysis

The bivariate nature of our model allows for a further analysis of how the variables
adjust dynamically to shocks. In order to investigate this issue, impulse responses of
various types are calculated with both model specifications presented above. This anal-
ysis should also uncover more evidence pertaining to the persistence of the data. The
more interesting specification for this purpose is naturally the unrestricted model, which
includes lagged cross terms in the first regime. Also, as the coefficients of the cross
terms are significant, the unrestricted model specification is favored over the restricted

8The estimation results and diagnostic evaluation for the no-mixture model are available from the
authors upon request.
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We generate the impulse responses by simulating data according to the conditional
mean profiles method proposed by Gallant et al. (1993). It turns out that after approx-
imately 40 periods, the effects of all considered shocks go to zero. Therefore, we present
impulse responses up to 40 periods (trading days) ahead. The calculation of the impulse
response functions proceeds as follows: we generate 1,000 series of 40 random error terms
from gamma distributions with the shape and scale parameters estimated above. Also,
we generate 1,000 series of 40 random numbers that are uniformly distributed on the
interval [0,1]. These series are used in each period to determine which regime the model
is in: if the value of the random number exceeds the value of π, the mean equation
for the second regime is used. To get initial values, a starting point in the data set is
chosen, and then 1,000 paths, forty days ahead into the future, are simulated from that
point onwards with the random error terms, random regime indicators, and estimated
parameter values. Another set of 1,000 paths are also simulated, this time with a shock
added to the values of NIKC, NIKP, or both in time period 0. The baseline value and the
value affected by the shock are calculated simultaneously, so that the same random error
terms and regime indicators are used for both. The averages of the 1,000 realizations are
taken for each of the forty days, and the impulse response function is then obtained as
the difference between the series affected by the shocks and the baseline series without
the shocks.

In order to select a realistic magnitude for the shocks, we follow Gallant et al. (1993)
and study a scatter plot of demeaned NIKC and NIKP. The scatter plot, shown in Figure
9, helps to identify perturbations to NIKC and NIKP that are consistent with the actual
data. As expected, the scatter plot reveals a strong correlation in the two time series.
On the basis of the graphical analysis, six different plausible shock combinations are
selected: (10,10), (10,0), (0,10), (-10,-10), (-10,0) and (0,-10). In other words, the shock
is introduced directly into the value of NIKC or NIKP (or both), rather than into the
error terms of the model.

The impulse responses for the first three shock combinations are presented in Figures
10, 11, and 12, respectively. The starting point in the data was July 11, 1996, a time
when both NIKC and NIKP were historically quite low. Four noteworthy conclusions can
be drawn from the analysis. Most importantly, put-side IV recovers from shocks more
rapidly than call-side IV, which is evident in all three figures - even when the shock
affects only put-side IV (Figure 12). This result could be based on the phenomenon
documented by Bollen and Whaley (2004): the demand for ATM index puts drives the
level of ATM implied volatility (in U.S. markets). Also, trading volumes for puts are
higher (measured with number of contracts). Therefore, the pricing of puts may be
somewhat more efficient, allowing shocks to persist for shorter periods of time than in a
less efficient market.

Second, the effects of shocks take a relatively long time to disappear entirely: some
thirty trading days, or six weeks, seem to elapse before the effect of a shock is completely
wiped out. This finding gives further support to the existence of considerable persistence
in the data.

Third, the impulse responses are similar regardless of the starting point that is se-
lected from the data. Four different starting points were in fact considered: a moment

9Dummy variables are removed from the mean equations in the impulse response analysis. The
removal of weekly seasonality does not affect the general shape of the impulse response functions, but
makes results more easily readable from graphs.
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Figure 9: Scatter plot of demeaned NIKC (x-axis) and demeaned NIKP (y-axis) for in-sample period

(1.1.1992 - 31.12.2002).

when both IVs were low, a moment when both were high, a moment when NIKC was
considerably higher than NIKP, and a moment when NIKP was considerably higher than
NIKC. This third result is to be expected as the nonlinearity in the mixture-BVMEM
model arises primarily through the mixture of two regimes, with the selection of the mix-
ture component being random rather than dependent on the past values of the implied
volatilities. The fourth and final observation is that our model does not allow positive
and negative shocks to have effects of differing magnitude. Therefore, only the impulse
responses to positive shocks are presented.

Without the evidence on historical values provided by the scatter plot, it could be
argued that a shock of the type (10,0), or any shock with a clearly different magnitude
for call and put IVs, is not realistic. As outlined above, both IVs represent the market’s
expectation of future volatility, and should thus be equal. However, empirical analyses
again lend support to the fact that call and put IV can differ even considerably at
times, due to market imperfections and demand shocks. As an example, the difference
between NIKP and NIKC is greatest on Sept. 12, 2001, or immediately after the 9/11
terrorist attacks, when the demand for put options was extremely high. On that day,
the difference between the put and call implied volatilities was 33.6.

With the restricted model, or the model without cross effects, the impulse responses
look very different. The effect of a shock lasts for less than ten days, or less than two
weeks. As there are no lagged cross terms in this model specification, if a shock affects
only one variable, the other is (naturally) entirely unaffected and the impulse response
is flat.

6 Forecasts

In this section, we turn our attention to the forecasting ability of the two models outlined
in Section 4.2. Forecast evaluation is based on two separate criteria: the direction of
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Figure 10: Impulse response function for a shock of (10,10) with the unrestricted model.

Figure 11: Impulse response function for a shock of (10,0) with the unrestricted model.

Figure 12: Impulse response function for a shock of (0,10) with the unrestricted model.
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change in IV as well as the traditional forecast accuracy measure mean squared error
(MSE). It is of particular interest whether the inclusion of cross effects between the two
time series can improve the earlier forecast performance of univariate models for NIKC
and NIKP investigated by Ahoniemi (2007).

Both daily (one-step-ahead) and five-step-ahead forecasts were calculated with the
mixture-BVMEM model specifications outlined above for the 486-day out-of-sample pe-
riod of 1.1.2003 - 31.12.2004. Days when public holidays fall on weekdays and the
observed value of implied volatility does not change were omitted from the data set.
Parameter values are treated in two ways: they are either estimated once using the data
from the in-sample period and then kept fixed, or re-estimated each day. If parameter
values are not stable over time, there can be added value in updating them before cal-
culating each new forecast. When parameter values are updated daily, the forecasts are
calculated from rolling samples. In other words, the first observation is dropped and a
new one added each day, in order to include information that is as relevant as possible.

The one-step-ahead forecasts are evaluated in terms of both directional accuracy
and MSE. Although an accurate forecast of the future level of IV can be valuable to all
market participants with risk management concerns, a correct forecast of the direction
of change in implied volatility can be useful for option traders. Various option spreads,
such as the straddle, can yield profits for the trader if the view on direction of change
(up or down) is correct, ceteris paribus.

The forecast results are summarized in Table 3. The directional accuracy of the
bivariate model in the two-year out-of-sample is superior to the performance of univariate
models. The BVMEM model predicts the direction of change correctly on 348 days out
of 486 for NIKC, and on 351 days for NIKP. This is in contrast to the results in Ahoniemi
(2007), where the best figures from multiplicative models were 336 and 321 for NIKC and
NIKP, respectively. There would appear to be some value to updating parameter values
each day. This improves directional accuracy for NIKC clearly, and yields a lower mean
squared error for both series of forecasts. However, the direction of change is predicted
correctly for NIKP on one day more when daily updating is not employed. Both the
unrestricted and the restricted model make more upward mistakes for NIKC, i.e. the
models make a prediction of an upward move too often. When predicting the direction
of change of NIKP, the unrestricted model forecasts a move downwards too often, but
the restricted model a move upwards too often.

A useful statistical test of the sign forecasting ability of the BVMEM models is the
test statistic presented in Pesaran & Timmermann (1992). This market timing test can
help confirm that the percentage of correct sign forecasts is statistically significant. The
p-values from the test are below 0.00001 for all the series of forecasts in Table 3, so the
null hypothesis of predictive failure can be rejected at the one-percent level for all four
forecast series.

The values for MSE in Table 3 indicate that more accurate forecasts can be obtained
for NIKC. Mean squared errors are lower than with the univariate models in Ahoniemi
(2007), even with the restricted model. The Diebold-Mariano (1995) test (henceforth
the DM test) confirms that the improvement upon the equivalent univariate models
is statistically significant for the unrestricted model, with the null hypothesis of equal
predictive accuracy rejected at the five-percent level for NIKC and the one-percent level
for NIKP. Again, this lends support to the joint modeling of the time series, and the
inclusion of cross effects. The forecast accuracy of NIKC with updating coefficients is
significantly better than that with fixed coefficients. For NIKP, the difference between
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the two alternative treatments of parameter values is not statistically significant.10

NIKC NIKP
Correct sign % MSE Correct sign % MSE

Unrest., updating 348 71.6% 4.21 350 72.0% 5.24
Unrest., fixed 341 70.2% 4.31 351 72.2% 5.26

Rest., updating 332 68.3% 4.34 336 69.1% 5.49
Rest., fixed 332 68.3% 4.39 332 68.3% 5.55

Table 3: Correct sign predictions (out of 486 trading days) and mean squared errors for forecasts from

the BVMEM model with both updating and fixed parameter values. The best values within each column

are in boldface.

Overall, the results obtained for the Nikkei 225 index option market are superior to
those obtained for e.g. the U.S. market. Ahoniemi (2006) finds that ARIMA models can
predict the correct direction of change in the VIX index on 62 percent of trading days at
best with an identical out-of-sample period. Brooks and Oozeer (2002) model the implied
volatility of options on Long Gilt Futures that are traded in London. Their model has
a directional accuracy of 52.5 %. Pesaran and Timmermann (1995) predict the sign of
excess returns in the U.S. stock market, with results falling within the range of 58% to
60.5%. Gençay (1998) uses a technical trading strategy for the Dow Jones Industrial
Average and achieves the correct directional forecast on 57-61 percent of trading days.
Our earlier discussion on the effects of limits to arbitrage could perhaps explain why
Japanese IV is more predictable in sign than the IV in other markets. If arbitrage is
more difficult to carry out in Japan, option prices can depart from their true values to
a greater degree, making the market more forecastable.

Table 4 presents the MSEs for the 482 five-step-ahead forecasts that could be cal-
culated within the chosen out-of-sample. The unrestricted model continues to be the
better forecaster for NIKP, but surprisingly, the simpler model, or the specification with-
out cross effects, yields lower MSEs for NIKC. The Diebold-Mariano test also rejects the
null of equal forecast accuracy at the ten-percent level when comparing the restricted
and unrestricted models with updating coefficients for NIKC, but not at the five-percent
level. For the corresponding NIKP values (8.79 and 9.36), the null is not rejected. The
results for NIKP are better than in Ahoniemi (2007), but for NIKC, the univariate
models provide lower mean squared errors. The DM test does not reject the null when
the best MSEs from univariate and bivariate models are compared (this applies to both
NIKC and NIKP). Therefore, no conclusive evidence is provided regarding the best fore-
cast model for a five-day horizon, but in statistical terms, the BVMEM model is at least
as good as univariate models.

10A bivariate model specification without cross effects and dummy terms is not a better forecaster
than univariate models, regardless of whether directional accuracy or MSE is used as the measure of
forecast performance. For example, the directional accuracy of this model is 332 out of 486 at best for
NIKC, and 318 for NIKP. The detailed results for this third model specification are available from the
authors.
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NIKC NIKP
Unrestricted Model, updating 7.21 8.79

Unrestricted Model, fixed 7.65 8.78
Restricted Model, updating 6.48 9.36

Restricted Model, fixed 6.60 9.43

Table 4: Mean squared errors for 482 five-step-ahead forecasts from the BVMEM model with both

updating and fixed parameter values. The best values within each column are in boldface.

7 Conclusions

It has often been empirically observed that implied volatilities calculated from otherwise
identical call and put options are not equal. Market imperfections and demand pressures
can make this phenomenon allowable, and this paper seeks to answer the question of
whether call and put IVs can be jointly modeled, and whether joint modeling has any
value for forecasters.

We show that the implied volatilities of Nikkei 225 index call and put options can be
successfully jointly modeled with a mixture bivariate multiplicative error model, using a
bivariate gamma error distribution. Diagnostics show that the joint model specification
is a good fit to the data, and coefficients are statistically significant. Two mixture
components are necessary to fully capture the characteristics of the data set, so that
days of large and small shocks are modeled separately. There are clear linkages between
the implied volatilities calculated from call and put option prices, as lagged cross terms
are statistically significant. The IV derived from put options is a more important driving
factor in our model than the IV from calls, as dummy variables for Friday effects of put-
side IV are revealed to be significant and to improve the diagnostics of the joint model.

Impulse response analysis indicates that put-side IV recovers more quickly from
shocks than call-side IV. Shocks persist for a relatively lengthy period of time (thirty
trading days), which is consistent with good forecastability. Also, as the nonlinear
feature of our model is primarily the random switching between regimes, the point of
time in which a shock is introduced does not affect the behavior of the impulse response
functions.

The BVMEM model provides better one-step-ahead forecasts than its univariate
counterparts. Both directional accuracy and mean squared errors improve when jointly
modeling call and put implied volatility. The direction of change in implied volatility is
correctly forecast on over 70% of the trading days in our two-year out-of-sample period.
When forecasting five trading days ahead, the BVMEM model is at least as good as
univariate models in statistical terms. Based on the combined evidence from all forecast
evaluations, we conclude that joint modeling and the inclusion of cross effects improves
the forecastability of Nikkei 225 index option implied volatility, and can provide added
value to all investors interested in forecasting future Japanese market volatility.
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