
MPRA
Munich Personal RePEc Archive

On the Dynamic Programming approach
to economic models governed by DDE’s

Fabbri, Giorgio; Faggian, Silvia and Gozzi, Fausto

2006

Online at http://mpra.ub.uni-muenchen.de/2825/

MPRA Paper No. 2825, posted 07. November 2007 / 02:45

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7299409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/2825/


On the Dynamic Programming approach to economic models

governed by DDE's

Giorgio Fabbri∗, Silvia Faggian†, Fausto Gozzi‡

Abstract

In this paper a family of optimal control problems for economic models is considered,
whose state variables are driven by Delay Di�erential Equations (DDE's). Two main ex-
amples are illustrated: an AK model with vintage capital and an advertising model with
delay e�ect. These problems are very di�cult to treat for three main reasons: the presence
of the DDE's, that makes them in�nite dimensional; the presence of state constraints; the
presence of delay in the control. The purpose here is to develop, at a �rst stage, the Dynamic
Programming approach for this family of problems. The Dynamic Programming approach
has been already used for similar problems in cases when it is possible to write explicitly the
value function V (Fabbri and Gozzi, 2006). The cases when the explicit form of V cannot be
found, as most often occurs, are those treated here. The basic setting is carefully described
and some �rst results on the solution of the Hamilton-Jacobi-Bellman (HJB) equation are
given, regarding them as a �rst step to �nd optimal strategies in closed loop form.

1 Introduction

In this paper we want to develop the Dynamic Programming approach for a family of optimal
control problems related to economic models governed by Delay Di�erential Equations (DDE's).

The presence of DDE's makes the problem di�cult to treat. One possible way of dealing with
DDE's - the one we choose - is rewriting the problem as an optimal control problem governed by
ODE's in a suitable Hilbert space. Although such in�nite dimensional optimal control problems
have already been studied, the present literature does not cover our case, as it does not include
the following features:

• the presence of unbounded operators coming from the DDE which is not analytic and does
not satisfy smoothing assumptions;

• the presence of state/control constraints (which is indeed peculiar of economic models);

• the fact that the delay appears in the state and in the control (causing the control operator
to be possibly unbounded).

We stress the fact that these di�culties are the rule in economic models governed by DDE's.
Here we consider problems with linear DDE's and concave objective functional: concavity will

play a key role in the paper. When concavity lacks, one can still apply Dynamic Programming in
the framework of viscosity solutions - which we avoid here. Nevertheless, we address the reader
to the Crandall et al. (1985) for a standard reference on viscosity solutions.
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We remark that this is a �rst step in treating such kind of problems. We already studied
thoroughly in Fabbri and Gozzi (2006) a case where explicit solution of the associated Hamilton-
Jacobi-Bellman (HJB) equation can be found (in such case the problem is much easier to treat).
Here we want to develop the Dynamic Programming approach in those cases when explicit
solutions of the associated HJB equation are not available. We here develop the �nite horizon
case. The in�nite horizon case can be treated with our method using a limiting procedure when
the horizon goes to +∞ but we leave it for future work1.

The main result of the paper is that the value function of the problem is a solution, in a
suitable weak sense, of the HJB equation. This a �rst step towards the so-called Veri�cation
Theorem which is a powerful tool to study the optimal paths of the problem and which is the
subject of our current research.

We concentrate on two main examples: an AK model with vintage capital, taken from
Boucekkine et al. (2005) (we refer the reader also to Boucekkine et al., 2004; Fabbri and Gozzi,
2006) and an advertising model with delay e�ects (Gozzi and Marinelli, 2004; Gozzi et al., 2006)
that are exposed in Section 2.

The plan of the paper is the following. In Section 2 we present the applied examples. In
Section 3 we recall the basic steps of the Dynamic Programming approach and we give an
overview of the current literature on the Dynamic Programming for in�nite dimensional optimal
control problems. In Section 4 we rewrite the state equation of such problems as an ODE in
a suitable Hilbert space, concentrating on the �rst example, as the second can be rephrased
similarly. In Section 5 we write the resulting in�nite dimensional optimal control problem and
its HJB equation. Section 6 we show our main result: the existence of an ultraweak solution of
the HJB equation. The Appendix 7 contains some de�nition and proof that may be useful for
the reader.

2 Two examples

We present the two applied problems motivating this paper.

2.1 An AK model with vintage capital

We consider here an optimal control problem related to a generalization of the model introduced
by Boucekkine et al. (2005). Indeed, we assume that the system is ruled by the same evolution law
as the one studied by Boucekkine et al. (2005), that is, an AK growth model with a strati�cation
on the capital. Besides, we consider the �nite horizon problem with a (more) general concave
target functional, as speci�ed later. The analysis of such a model proves interesting in the study
of short run �uctuations and of transitional dynamics: the reader is referred to Boucekkine et al.
(2005) for a deep discussion upon this and other related matters. The model by Boucekkine et al.
(2005) is an in�nite horizon model, while here we consider the �nite horizon case. As mentioned
in the introduction, this is a �rst step towards the in�nite horizon case.

The AK-growth model with vintage capital is based on the following accumulation law for
capital goods

k(s) =
∫ s

s−R
i(σ)dσ

where i(σ) is the investment at time σ. That is, capital goods are accumulated for the length
of time R (scrapping time) and then dismissed. It is to note that such an approach introduces
a di�erentiation in investments that depends on their age. If we assume a linear production
function, that is

y(s) = ak(s)
1In this respect we can say that the �nite horizon case is as a �rst step towards the in�nite horizon one.
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where y(s) is the output at time s ("AK" reminds of the linear dependence of the dynamic from
the trajectory - a constant A multiplied by K; such constant A is a in our case), and we assume
also the accounting relation

y(s) = c(s) + i(s),

meaning that at every time the social planner chooses how to split the production into consump-
tion c(s) and investment i(s), then the state equation may be written into in�nitesimal terms as
follows

k̇(s) = ak(s)− ak(s−R)− c(s) + c(s−R), s ∈ [t, T ]

that is, as a DDE. The time variable s varies in [t, T ], with t the initial time and T the (�nite)
horizon of the problem. Indeed, the social planner has to maximize the following functional∫ T

t
e−ρsh0(c(s))ds + φ0(k(T )) (1)

where h0 and φ0 are concave u.s.c. utility functions. We recall that in the work by Boucekkine
et al. (2005) the horizon is in�nite and φ0 = 0. Moreover the instantaneous utility is CRRA

(which stands for, Costant Relative Risk Aversion), that is the function h0 is of type h0(c) = c1−σ

1−σ ,
which satis�es our assumptions as a subcase.

Observe that we take the starting time t to be variable to apply the �nite horizon dynamic
programming.

We assume that the capital at time s (and consequently the production) and the consumption
at time s cannot be negative:

k(s) ≥ 0, c(s) ≥ 0, ∀s ∈ [t, T ] (2)

These constraints are di�erent from the more restrictive and more natural ones used by
Boucekkine et al. (2005), where also the investment path i(·) was assumed positive.

The main reason for such a choice is technical: we cannot apply the strong solution approach
that we use in this work with mixed constraints such as those in Boucekkine et al. (2005). The
treatment of mixed constraints is also left for future work. We mention indeed that the optimal
solutions for the problem without mixed constraints may satisfy in some cases the positivity of
investments, yielding the solution also for the problem with mixed constraints.

In order to take the constraints into account, we assume that the consumption (that is, the
control variable of the system) lies in the following admissible set

A def
= {c(·) ∈ L2([t, T ], R) : c(·) ≥ 0 and k(·) ≥ 0 a.e. in [t, T ]}.

2.2 An advertising model with delay e�ects

Another example of optimal control problems driven by DDE's is the following a dynamic adver-
tising model presented in the stochastic case by Gozzi et al. (2006) and by Gozzi and Marinelli
(2004), and, in deterministic one, by Faggian and Gozzi (2004) (and also Feichtinger et al. (1994)
and the references therein for related models)2.

Let t ≥ 0 be an initial time, and T > t a terminal time (T < +∞ here). Moreover let γ(s),
with 0 ≤ t ≤ s ≤ T , represent the stock of advertising goodwill of the product to be launched.
Then the general model for the dynamics is given by the following controlled Delay Di�erential
Equation (DDE) with delay R > 0 where z models the intensity of advertising spending: γ̇(s) = a0γ(s) +

∫ 0
−R γ(s + ξ)da1(ξ) + b0z(s) +

∫ 0
−R z(s + ξ)db1(ξ) s ∈ [t, T ]

γ(t) = x; γ(ξ) = θ(ξ), z(ξ) = δ(ξ) ∀ξ ∈ [t−R, t],
(3)

with the following assumptions:

2We observe that also other models of delay type arising in economic theory can be treated with our tools
(Boucekkine et al., 2004).
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• a0 is a constant factor of image deterioration in absence of advertising, a0 ≤ 0;

• a1(·) is the distribution of the forgetting time, a1(·) ∈ L2([−R, 0]; R);

• b0 is a constant advertising e�ectiveness factor, b0 ≥ 0;

• b1(·) is the density function of the time lag between the advertising expenditure z and the
corresponding e�ect on the goodwill level, b1(·) ∈ L2([−R, 0]; R+);

• x is the level of goodwill at the beginning of the advertising campaign, x ≥ 0;

• θ(·) and δ(·) are respectively the goodwill and the spending rate before the beginning,
θ(·) ≥ 0, with θ(0) = x, and δ(·) ≥ 0.

It is to note that when a1(·), b1(·) are identically zero, equation (3) reduces to the classical
model contained in the paper by Nerlove and Arrow (1962). We assume that the goodwill and
the investment in advertising at each time s cannot be negative:

γ(s) ≥ 0, z(s) ≥ 0, ∀s ∈ [t, T ]. (4)

Finally, we de�ne the objective functional as

J(t, x; z(·)) = ϕ0(γ(T ))−
∫ T

t
h0(z(s)) ds, (5)

where ϕ0 is a concave utility function, h0 is a convex cost function, and the dynamic of γ is
determined by (3). The functional J has to be maximized over some set of admissible controls
U , for instance L2([t, T ]; R+), the space of square integrable nonnegative functions.

3 The dynamic programming approach

The Dynamic Programming (DP) approach to optimal control problems can be summarized in
four main steps (as done for instance in the book by Fleming and Rishel (1975) for the DP in the
�nite dimensional case and the book by Li and Yong (1995) for the DP in the in�nite dimensional
case):

(i) letting the initial data vary, calling value function the supremum of the objective functional
and writing an equation whose candidate solution is the value function: the so-called
DP Principle, together with its in�nitesimal version, the Hamilton-Jacobi-Bellman (HJB)
equation;

(ii) solving (whenever possible) the HJB equation to �nd the value function;

(iii) proving that the present value of the optimal control strategy can be expressed as a function
of the present value of the optimal state trajectory: a so-called closed loop (or feedback)
relation for the optimal control;

(iv) solving, if possible, the Closed Loop Equation (CLE), that is, the state equation where the
control is replaced by the closed loop relation: the solution is the optimal state trajectory
and the optimal control strategy is consequently derived from the closed loop relation.

Such method, when applicable, allows one to give a powerful description of the optimal paths
of an optimal control problem.

First of all we clarify that the two models above are not easy to manage with the DP approach
as they presents two special di�culties.
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• The state equation is a Delay Di�erential Equation while the DP approach is generally
formulated for controlled Ordinary Di�erential Equation (ODE). One way to approach the
issue (for a di�erent one, the reader is referred to Kolmanovski�� and Sha��khet, 1996) is to
rewrite the DDE as an ODE in an in�nite dimensional space, which plays the role of the
state space. We use in the sequel the techniques developed by Delfour, Vinter and Kwong
(we refer the reder to Section 4 below for explanation and Subsection 3.1 for references).
It must be noted that the resulting in�nite dimensional control problem is harder than the
ones usually treated in the literature (Li and Yong, 1995) due to the unboundedness of
the control operator and the non-analyticity of the semigroup involved (we refer the reader
again to Subsection 4).

• Both problem feature pointwise constraints on the state variable, by (2), (4). Their presence
makes the problem much more di�cult, and only a few results in special cases (di�erent
from the one treated here) are available in the literature. Indeed for such problems in
in�nite dimension there is no well established theory. This fact is at the basis of the
theoretical problem contained in the paper by Boucekkine et al. (2005) and mentioned by
Fabbri and Gozzi (2006) point (II) in the introduction: show that the candidate optimal
trajectory satis�es the pointwise constraints (2).

To overcome such di�culties in Fabbri and Gozzi (2006) we show that for our special problem we
can exhibit an explicit solution of HJB equation. This is the key result that allows to complete
the DP approach used by Fabbri and Gozzi (2006).

Here, since we do not want to write the utility functions in a �xed explicit form (like the
CRRA used in Boucekkine et al., 2005; Fabbri and Gozzi, 2006), we cannot obtain an an explicit
solution of HJB equation. Hence we would like (here and in the future) to perform the following
steps: proving existence (and possibly, uniqueness) for the HJB equation, then some theoretical
results of type (iii) and (iv) above, and hopefully some subsequent numerical approximation.
This is a wide and di�cult program. In this paper we take just a �rst step towards the scope:
existence results for the HJB equation.

3.1 The literature on Delay Di�erential Equations and on Dynamic Program-

ming in in�nite dimensions

For Delay Di�erential Equations a recent, interesting and accurate reference is the book by
Diekmann et al. (1995).

The idea of writing delay system using a Hilbert space setting was �rst due to Delfour
and Mitter (1972, 1975). Variants and improvements were proposed by Delfour (1986, 1980,
1984), Vinter and Kwong (1981), Delfour and Manitius (1977), Ichikawa (1977) (for the precise
systematization of the argument the reader is referred also to chapter 4 of Bensoussan et al.,
1992).

The optimal control problem in the (linear) quadratic case is studied by Vinter and Kwong
(1981), Ichikawa (1982), Delfour et al. (1975). In that case the Hamilton-Jacobi-Bellman reduces
to the Riccati equation.

The study of Hamilton-Jacobi-Bellman equation in Hilbert spaces, started with the papers by
Barbu and Da Prato (1983, 1985); Barbu et al. (1983), is a large and diversi�ed research �eld. We
recall that the best one may achieve is a �classical� solution of HJB equations (that is, solutions
that are di�erentiable in time and state) since this allows to get a more handleable closed loop
form of the optimal strategy. Since classical solutions are not always available, there is a second
stream in the literature that studies the existence of �weak� solutions (that is, solutions that are
not di�erentiable)3. In this paper we investigate existence of a weak-type solution (that we call

3The most general concept of weak solution is the one of viscosity solution, introduced by Crandall and Lions
in the �nite dimensional case and then applied to in�nite dimension by the same authors, as in the work by
Crandall et al. (1985) for an introduction to the topic and further references.
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ultraweak, in Section 6) that are limits of classical solutions. Up to now, to our knowledge, the
existence of such solutions for the HJB equation in cases where the state equation is a Delay
Di�erential Equation has not been studied in the literature (apart from the linear quadratic
case). In the economic literature the study of in�nite dimensional optimal control problems
that deals with vintage/heterogeneous capital or advertising models is a quite recent tool but of
growing interest: the reader is referred for instance to the works by Barucci and Gozzi (1999),
Feichtinger et al. (2006), Faggian (2005), Gozzi and Marinelli (2004) and Gozzi et al. (2006).

4 The state equation in an in�nite dimensional setting.

In this section we show how to rewrite the state equations of our examples as controlled ODE's
in a suitable Hilbert space. We do it thoroughly for the �rst example, as the second is similar
and simpler.

4.1 Notation and preliminary results

In this section we recall some general results on delay di�erential equations (DDE) and on the
related Hilbert space approach, as applied to our case. The reader is referred to the book
by Bensoussan et al. (1992) for details. We consider from now on �xed R > 0, and a > 0.
With notation similar to that used by Bensoussan et al. (1992), given T > t ≥ 0 and z ∈
L2([t − R, T ], R) (or z ∈ L2

loc([t − R,+∞), R)), for every s ∈ [t, T ] (or s ∈ [t, +∞)) we call
zs ∈ L2([−R, 0]; R) the function {

zs : [−R, 0] → R
zs(σ)

def
= z(s + σ)

Given a control c ∈ A we consider the the following delay di�erential equation:{
k̇(s) = ak(s)− ak(s−R)− c(s) + c(s−R) for s ∈ [t, T ]
(k(t), kt, ct) = (φ0, φ1, ω) ∈ R× L2([−R, 0]; R)× L2([−R, 0]; R)

(6)

where kt and ct are interpreted by means of the de�nition above. Observe that in the delay
setting the initial data are a triple, whose �rst component is the state, the second and third are
respectively the history of the state and the history of the control up to time t (more precisely,
on the interval [t− R, t]). The equation does not make sense pointwise, but has to be regarded
in integral sense. We give now a more precise existence result and an estimate on the solution:

Theorem 4.1. Given an initial condition (φ0, φ1, ω) ∈ R× L2([−R, 0]; R)× L2([−R, 0]; R) and
a control c ∈ L2([t, T ], R) there exists a unique solution k(·) of (6) in W 1,2([t, T ], R). Moreover

there exists a positive constant C(T − t) such that

|k|W 1,2([t,T ],R) ≤ C(T − t)
(
|φ0|+ |φ1|L2([−R,0];R) + |ω|L2([−R,0];R) + |c|L2([t,T ],R)

)
(7)

Proof. Theorem 3.3, page 217 in Bensoussan et al. (1992) applies for the �rst part and Theorem
3.3 page 217, Theorem 4.1 page 222 and page 255 for the second statement.

In view of the continuous embedding W 1,2([t, T ], R) ↪→ C0([t, T ], R) we have also:

Corollary 4.2. There exists a positive constant (possibly di�erent from the one above) C(T − t)
such that

|k|C0([t,T ],R) ≤ C(T − t)
(
|φ0|+ |φ1|L2([−R,0];R) + |ω|L2([−R,0];R) + |c|L2([t,T ],R)

)
(8)
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We consider now the continuous linear application L with norm ‖L‖

L : C([−R, 0], R) → R
L : ϕ 7→ ϕ(0)− ϕ(−R)

and then de�ne Lt as follows

Lt : Cc([t−R, T ], R) → L2([t, T ], R)
where Lt(φ) : s 7→ L(φs) for s ∈ [t, T ]

(9)

where Cc(t− R, T ; R) is the set of real continuous functions having compact support contained
in (t−R, T )

Theorem 4.3. The linear operator Lt : Cc([t−R, T ], R) → L2([t, T ], R) has a continuous exten-

sion Lt : L2([t−R, T ], R) → L2([t, T ], R) with norm ≤ ‖L‖ .

Proof. We refer the reader to Bensoussan et al. (1992) Theorem 3.3, page 217.

Using the �L� notation we can rewrite (6) as{
k̇(s) = aL(ks)− L(cs) for s ∈ [t, T ]
(k(t), kt, ct) = (φ0, φ1, ω) ∈ R× L2([−R, 0]; R)× L2([−R, 0]; R)

and using the �Lt� notation we can rewrite (6) as{
k̇(s) = a(Ltk)(s)− (Ltc)(s) for s ∈ [t, T ]
(k(t), kt, ct) = (φ0, φ1, ω) ∈ R× L2([−R, 0]; R)× L2([−R, 0]; R)

(10)

There follows another step towards the setting in in�nite dimension that we intend to use. So
far, the history of the control and of the trajectory were kept separated. Indeed one may observe
that the delay system depends jointly on those data. Such joint dependence is exploited in the
sequel to reduce the dimension of the state space. We then need to add some more notation to
make this more explicit.

• Given u ∈ L2([t−R, T ], R) we de�ne the function et
+u ∈ L2([t−R, T ], R) as follows

et
+u : [t−R, T ] → R, et

+u(s) =
{

u(s) s ∈ [t, T ]
0 s ∈ [t−R, t)

• Given u ∈ L2([−R, 0]; R) we de�ne the function e0
−u ∈ L2([t−R, T ], R) as follows

e0
−u : [t−R, T ] → R, e0

−u(s) =
{

0 s ∈ [t, T ]
u(s− t) s ∈ [t−R, t)

• Given a function u ∈ L2([−R, 0]; R) and s ∈ [t, T ] we de�ne the function η(s)u ∈
L2([−R, 0]; R) as follows

η(s)u : [−R, 0] → R, (η(s)u)(θ) =
{

u(−s + t + θ) θ ≥ −R + s− t
0 θ < −R + s− t

As k = et
+k + e0

−φ1, and c = et
+c + e0

−ω, then we can separate the solution k(s), s ≥ t and
the control c(s), s ≥ t from initial data φ1 and ω:{

k̇ = aLtet
+k − Ltet

+c + aLte0
−φ1 − Lte0

−ω
k(t) = φ0 ∈ R (11)
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Observe that system (11) does not directly use the initial function φ1 and ω but only the sum
of their images aLte0

+φ1−Lte0
−ω. We need a last step before we can write the delay equation in

Hilbert space. We introduce the operator{
L : L2([−R, 0]; R) → L2([−R, 0]; R)

(Lφ1)(α)
def
= L(est(φ1)−α)) α ∈ (−R, 0)

(12)

where est(φ1) is the function R → R that achieves value 0 out of (−R, 0) and that is equal to
φ1 in (−R, 0) (the same for ω).

Observe that the operator L is continuous (Bensoussan et al., 1992, page 235), moreover

aLte0
−φ1(s)− Lte0

−ω(s) = (η(s)(aLφ1 − Lω))(0) for s ≥ t.

Hence if we set
x1 def

= (aLφ1 − Lω), x0 def
= φ0, (13)

then we can rewrite (11) and consequently (6) as{
k̇(s) = (aLtet

+k)(s)− (Ltet
+c)(s) + (η(s)x1)(0) for s ≥ t

k(t) = x0 ∈ R (14)

where R × L2([−R, 0]; R) 3 x
def
= (x0, x1), c ∈ A. Observe that (14) is meaningful for all

x ∈ R× L2([−R, 0]; R), also when x1 is not of the form (13). So we have embedded the original
system (6) in a family of systems of the form (14).

4.2 The state equation of the AK model in the Hilbert setting

We now work on the following Hilbert space

M2 def
= R× L2([−R, 0]; R)

where the scalar product between two elements φ = (φ0, φ1) and ξ = (ξ0, ξ1) is given by

〈φ, ξ〉M2

def
=

〈
φ1, ξ1

〉
L2 + φ0ξ0.

Next we consider the homogeneous system{
ż(s) = (aL0z)(s)
(z(0), z0) = φ ∈ M2

and de�ne the family of continuous linear transformations on M2{
S(s) : M2 → M2

φ 7→ S(s)φ
def
= (z(s), zs).

Then {S(s)}s≥0 is a C0 semigroup on M2 whose generator is{
D(G) =

{
(φ0, φ1) ∈ M2 : φ1 ∈ W 1,2(−R, 0) and φ0 = φ1(0)

}
G(φ0, φ1) = (aLφ1, Dφ1)

where Dφ1 is the �rst derivative of φ1. A proof of this assertion can be found in Bensoussan
et al. (1992), Chapter 4.

Observe that the second component φ1 of the elements of D(G) is in C([−R, 0], R) so, with
a slight abuse of notation, we can re-de�ne L on D(G) in the following way{

L : D(G) → R
L(φ0, φ1) = Lφ1

8



Moreover, if D(G) is endowed with the graph norm, we denote with j the continuous inclusion
D(G) ↪→ M2. Hence the operators G, and j are continuous from D(G) into M2 and L is
continuous from D(G) into R. We call G∗, j∗ and L∗ their adjoints, and identify M2 and R with
their dual spaces, so that

G∗ : M2 → D(G)′

j∗ : M2 → D(G)′

L∗ : R → D(G)′

are linear continuous.

De�nition 4.4. The structural state x(s) at time t ≥ 0 is de�ned by

y(s)
def
= (y0(s), y1(s))

def
= (k(s), aL(et

+k)s − L(et
+c)s + η(s)x1) (15)

In the sequel we use y0 and y1 to indicate respectively the �rst and the second component of

the structural state. We can give also a di�erent, more explicit, de�nition: if we call
←
k s,
←
c s∈

L2([−R, 0]; R) the applications
←
k s : θ 7→ −k(s−R− θ)
←
c s : θ 7→ −c(s−R− θ)

the structural state can be written as

y(s)
def
= (k(s), a

←
k s −

←
c s +η(s)x1). (16)

Eventually, we write the delay equation in the Hilbert space M2 by means of the following
theorem.

Theorem 4.5. Let y0(s) be the solution of system (14) for x ∈ M2, c ∈ A and let y(t) be the

structural de�ned in (15). Then for each T > 0, the state y is the unique solution in{
f ∈ C([t, T ],M2) :

d
ds

j∗f ∈ L2([t, T ], D(G)′)
}

to the following equation 
d
ds

y(s) = G∗y(s) + L∗c(s)

y(t) = x.
(17)

Proof. The reader is referred to Bensoussan et al. (1992) Theorem 5.1 Chapter 4.

4.3 The state equation of the advertising model in the Hilbert setting

Similar arguments can be used for the advertising model. We write here only the results. We
call N , B the continuous linear functionals given by

N : C([−R, 0]) → R
N : ϕ 7→ a0ϕ(0) +

∫ 0
−r ϕ(ξ)da1(ξ)

B : C([−R, 0]) → R
B : ϕ 7→ b0ϕ(0) +

∫ 0
−r ϕ(ξ)db1(ξ)

Let G be the generator of C0-semigroup de�ned as:{
D(G) =

{
(φ0, φ1) ∈ M2 : φ1 ∈ W 1,2(−R, 0) and φ0 = φ1(0)

}
G(φ0, φ1) = (Nφ1, Dφ1)

We de�ne N and B in the same way we de�ned L in equation (12). So we can write the
advertising model in in�nite dimensional form. We obtain:
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• The structural state in the advertising model will have the following expression:

y(t) = (y0(s), y1(s))
def
= (γ(s), N(e0

+γ)s −B(e0
+z)s + η(s)x1)

where x1 = N(θ)−B(δ).

• The state equation becomes 
d
ds

y(s) = G∗y(s) + B∗z(s)

y(t) = x.

5 The target functional and the HJB equation

We now rewrite the pro�t functional for the �rst example in abstract terms, noting that a similar
reformulation holds for the target functional of the second example. We consider a control system
governed by the linear equation described in Theorem 4.5. We assume that the set of admissible
controls is de�ned by

A def
= {c(·) ∈ L2([t, T ], R) : c(·) ≥ 0 and y0(·) ≥ 0}

As usual, the trajectory y(·) (and then y0(·)) depends on the choice of the control c(·), and of
initial time and state, that is, y(·) = y(·; t, x, c(·)), but we write it explicitly only when needed.

In order to apply the results obtained by Faggian (2006) and recalled in the Appendix, we
reformulate the maximization problem as a minimization problem. At the same time we take
the constraints into account by modifying the target functional as follows. If h0 and φ0 are the
concave u.s.c. functions appearing in (1), then we de�ne

h : R → R

h(c) =
{
−h0(c) if c ≥ 0
+∞ if c < 0

φ : R → R

φ(r) =
{
−φ0(r) if r ≥ 0
+∞ if r < 0

Moreover we set
g : R → R

g(r) =
{

0 if r ≥ 0
+∞ if r < 0

Both h, φ and g are convex l.s.c. functions on R. Then we de�ne the target functional as

J(t, x, c(·)) =
∫ T

t
e−ρs[h(c(s)) + g(y0(s))]ds + φ(y0(T ))

with c varying in the set of admissible controls L2([t, T ], R). It is easy to check that the problem
of maximizing (1) in the class A is equivalent to that of minimizing J on the whole space
L2([t, T ], R). Then the original maximization problem for the AK-model has been reformulated
as the following abstract minimization problem:

inf{J(t, x, c(·)) : c ∈ L2([t, T ], R), and y satis�es (17)}, (18)

Moreover, HJB equation is naturally associated to such minimization problem by DP, and it is
given by {

∂tv(t, x) + 〈∇v(t, x), G∗x〉 − F (t,∇v(t, x)) + e−ρtg(x) = 0
v(T, x) = φ0(x)

(HJB)

10



with F de�ned as follows{
F : [0, T ]×D(G) → R
F (t, p)

def
= supc≥0

{
−L(p)c− e−ρth0(c)

}
= e−ρth∗(−eρtL(p))

where h∗ is the Legendre transform of the convex function h. We refer to F as to the Hamiltonian

of the system4.
The abstract framework is then set, and we are ready to perform Dynamic Programming.

6 The value function as ultraweak solution of HJB

We de�ne the value function of the optimal control problem described in the previous sections
as

W (t, x)
def
= inf

c(·)∈L2([t,T ];R)
J(t, x, c(·)).

Our objective here is to provide a suitable concept of solution of HJB, so that the value function
V is a solution, in such sense.

We recall that in Faggian (2006) it is shown that, if the data satisfy certain assumptions
(involving convexity, semicontinuity, and coercivity of h), then the value function of an optimal
control problem with state constraints of type (18) is indeed the unique weak solution to a
HJB equation of type (HJB), as there proved and here recalled in the Appendix, Theorem 7.11.
Observe that some coercivity for the function h is indeed lacking in our case, as the prototype
of h0 is c1−σ

1−σ as mentioned before, which is sublinear on the positive real axis. This causes the
Hamiltonian of the problem - that is related to the Legendre transform of h0 - to be possibly
nonregular, so that all previous de�nition of solutions do not apply. (Note indeed that, as more
precisely stated in the Appendix, a weak solution is limit of strong solutions of approximating
equations, while a strong solution is itself limit of classical solutions of approximating equations.
All of these notions require the Hamiltonian to be di�erentiable with respect to the co-state
variable p.)

Here we are about to de�ne a ultraweak solution as limit of weak solutions to (HJB). Observe
that the concept of solution is indeed generalized, although not in the same direction as before,
due to the presence of possibly nonregular Hamiltonians.

According to the notation used by Faggian (2005), if X and Y are Banach spaces, we set

Lip(X;Y ) = {f : X → Y : [f ]L := sup
x,y∈X, x6=y

|f(x)− f(y)|Y
|x− y|X

< +∞}

C1
Lip(X) := {f ∈ C1(X) : [f ′]L < +∞}

Cp(X, Y ) := {f : X → R : |f |Cp := sup
x∈X

|f(x)|Y
1 + |x|pX

< +∞}, Cp(X) := Cp(X, R).

Moreover we set
Σ0(X) := {w ∈ C2(X) : w is convex, w ∈ C1

Lip(X)}

Y([0, T ]×X) = {w : [0, T ]×X → R : w ∈ C([0, T ],C2(X)),
w(t, ·) ∈Σ0(X), ∇w ∈ C([0, T ], C1(X, X ′))}.

De�nition 6.1. We say that a function V is a ultraweak solution to{
∂tv(t, x) + 〈∇v(t, x), G∗x〉 − F (t,∇v(t, x)) + e−ρtg(x) = 0
v(T, x) = φ0(x)

4Observe that, following the usual de�nition, the Hamiltonian should be indeed 〈p, G∗x〉 − F (t, p) + e−ρtg(x).
Here, for commodity of notation, we put aside of the Hamiltonian the terms which are linear or constant in p.
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if there exists a sequence {Fn}n of functions in the space Y([0, T ] × D(G)), such that Fn ↑ F
pointwise, and

V (t, x) = lim
n→+∞

Vn(t, x) = inf
n≥0

Vn(t, x)

with Vn the unique weak solutions to{
∂tv(t, x) + 〈∇v(t, x), G∗x〉 − Fn(t,∇v(t, x)) + e−ρtg(x) = 0
v(T, x) = φ0(x)

Observe that any weak solution V is convex in the state variable x, but not necessarily l .s.c
in (t, x). We are able to prove an existence result for equation (HJB) by proving that the value
function of the control problem set in the previous section is an ultraweak solution.

Theorem 6.2. The value function W of the optimal control problem (18) is an ultraweak solution

of (HJB).

Proof. First of all we need to construct a sequence of Hamiltonians Fn having the properties
required by the de�nition above. We choose

Fn(t, p) := e−ρth∗n(−eρtL(p))

with

hn(c) = h(c) +
1
2n
|c|2, n ∈ N.

Indeed if we denote with Snf(x) = infy∈R
{
f(y) + n

2 |x− y|2
}
the Yosida approximation of a

function f , then it is easy to check that [Snf ]∗(x) = f∗(x) + 1
2n |x|

2, so that

h∗n(c) = Sn(h∗)(c).

Being h∗n the Yosida approximations of a l.s.c. convex function, they result to be Frechét dif-
ferentiable with Lipschitz gradient, with Lipschitz constant [(h∗n)′]L ≤ n. Moreover, as hn is a
decreasing sequence, Fn is then increasing, as required by De�niton 6.1. Hence the assumptions
in Theorem 7.11 are satis�ed for the problem of minimizing the functional

Jn(t, x, c) = J(t, x, c) +
1
2n

∫ T

t
e−ρs|c(s)|2ds

in L2([t, T ], R), and we easily derive as a consequence the following result.

Lemma 6.3. Let

Wn(t, x)
def
= inf

c∈L2([t,T ],R)
Jn(t, x, c),

be the value functions of the approximating optimal control problem. Then Wn is convex in x
and l.s.c. in x and t, and it is the unique weak solution of{

∂tv(t, x) + 〈∇v(t, x), G∗x〉 − Fn(t,∇v(t, x)) + e−ρtg(x) = 0
v(T, x) = φ(x)

Moreover there exists c∗n ∈ L2([t, T ], R) optimal for the approximating problems, that is

Wn(t, x) = Jn(t, x, c∗n).

To complete the proof we need to show that Wn(t, x) ↓ W (t, x).

Lemma 6.4. The value function of (18) is given by

W (t, x) = lim
n→∞

Wn(t, x) = inf
n

Wn(t, x).

12



Proof. By de�nition of Jn, for all t, x and n we have Jn(t, x, c) ≥ Jn+1(t, x, c) for all admissible
controls c, so that

Wn(t, x) ≥ Wn+1(t, x),

and {Wn(t, x)}n is a decreasing sequence. As a consequence, an ultraweak solution V of HJB
exists, and it is given by

V (t, x)
def
= lim

n→∞
Wn(t, x) = inf

n∈N
Wn(t, x).

Next we show that a solution V built this way necessarily coincides with W . Observe that

J(t, x, c) ≤ Jn(t, x, c), ∀c ∈ L2([t, T ], R),

so that by taking the in�mum and then passing to limits, we obtain

W (t, x) ≤ V (t, x). (19)

We then prove the reverse inequality. Let ε > 0 be arbitrarily �xed, and cε be an ε-optimal
control for the problem, that is W (t, x) + ε > J(t, x, cε). Observe that, by passing to limits as
n → +∞ in

V (t, x) ≤ Wn(t, x) ≤ Jn(t, x, cε)

one obtains
V (t, x) ≤ J(t, x, cε) < W (t, x) + ε,

which implies, together with (19), the thesis.
Doing so we proved the lemma and Theorem 6.2.

Remark 6.5. Observe that we do not derive any uniqueness result for ultraweak solutions. If

for instance one tries to get uniqueness by showing that any ultraweak solution of HJB is the

value function of a certain control problem, some di�culties arise, due to the fact that, although

h∗n ↑ H if and only if there exists some h such that hn ↓ h, in general H∗ 6= h unless some

minimax condition is satis�ed, such as

h = inf
n

sup
r
{cr − h∗n(r)} = sup

r
inf
n
{cr − h∗n(r)} = H∗,

which is false in general.

7 Appendix

In this section we recall the abstract framework and the main results obtained by Faggian (2005,
2006), regarding strong and weak solutions of HJB.

In Faggian (2005, 2006) we worked in an abstract setting on some state space denoted with
V ′. In that setting, if H is a separable Hilbert space, A0 is the generator of a strongly continuous
semigroup of operators on H, and V is the Hilbert space D(A∗0) endowed with the scalar product
(v|w)V := (v|w)H+(A∗0v|A∗0w)H , then we set V ′ equal to its dual space endowed with the operator
norm. The semigroup generated by A0 can be extended in a standard way to a semigroup
{eAs}s≥0 on the space V ′, with generator A, a proper extension of A0.

Then we assume the state equation in V ′ is given by{
y′(s) = Ay(s) + Bc(s), s ∈ [t, T ]
y(t) = x ∈ V ′

(20)

with control operator B ∈ L(U, V ′) (although B 6∈ L(U,H)), where U is the control space and
c ∈ L2([t, T ], U) the control. Such equation may be readily expressed in mild form as

y(s) = eA(s−t)x +
∫ s

t
eA(s−σ)Bc(σ)dσ. (21)
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Remark 7.1. The role of V ′ in the case of the delay equation here presented is played by the

space D(G)′, and the role of A0 by the operator G∗.

Besides, we consider a target functional J0, associated to the state equation, of type

J(t, x, c) =
∫ T

t
[g (s, y(s)) + h (s, c(s))] ds + ϕ(y(τ)) (22)

with h(t, ·) real, convex, l.s.c., coercive, and g(t, ·) and ν real, convex, and C1(V ′) (respectively,
l.s.c. in V ′) in the x variable, as more precisely stated in the next sections. The problem is that
of minimizing J(t, x, ·) over the set of admissible controls L2([t, T ];U).

Remark 7.2. Indeed, in the applications, the target functional is rather of type

J0(t, x, c) =
∫ T

t
[ξ (s, y(s)) + η (s, c(s))] ds + ν(y(T ))

with η(t, ·) real, convex, l.s.c., coercive, and ξ(t, ·) and ν real, convex, and C1(H) (respectively,

l.s.c. in H) in the x variable, de�ned on H, but not necessarily on V ′. Then we need to assume
that ξ and ν allow C1 (respectively, l.s.c.) extensions g(t, ·) and φ on the space V ′. The existence
of such extensions is of course a strong assumption, as speci�ed and commented in Faggian (2005)

with detail.

Moreover, the value function is de�ned as

W (t, x) = inf
c∈L2([t,T ];U)

J(t, x, c), (23)

Finally, we considered the following (backward) HJB equation associated to the problem set in
[0, T ]× V ′ {

vt(t, x)−H(t, B∗∇v(t, x)) + 〈Ax|∇v(t, x)〉+ g(t, x) = 0,

v(T, x) = ϕ(x),
(24)

for all t in [0, T ] and x in D(A) (indeed for all x in V ′), where

H(t, c) = [h(t, ·)]∗(−c).

Notice that H is well de�ned only for p in V , that is a proper subspace of H, to which ∇v(t, x)
(the spatial gradient of v) belongs.

With such a problem in mind, we then investigate existence and uniqueness for the following
forward HJB equation{

φt(t, x) + F (t,∇φ(t, x))− 〈Ax,∇φ(t, x)〉 = g(T − t, x), (t, x) ∈ [0, T ]× V ′

φ(0, x) = ϕ(x).
(25)

Note in fact that such a HJB is the forward version of (24) if we set

F (t, p) := H(t, B∗p) = sup
c∈U

{
(
−Bc|p

)
U
− h(t, c)}.

7.1 Regular data and strong solutions of HJB equations.

We �rst treat the case of regular data, from which the notion of strong solution originates.

Assumptions 7.3. 1. A : D(A) ⊂ V ′ → V ′ is the in�nitesimal generator of a strongly

continuous semigroup {esA}s≥0 on V ′;

2. B ∈ L(U, V ′);
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3. there exists ω > 0 such that |eτAx|
V ′ ≤ Meωτ |x|

V ′ , ∀τ ≥ 0;

4. F ∈ Y([0, T ]× V ), F (t, 0) = 0, supt∈[0,T ][Fp(t, ·)]L < +∞;

5. g ∈ Y([0, T ]× V ′), t 7→ [gx(t, ·)]L ∈ L1(0, T )

6. ϕ ∈ Σ0(V ′);

7. h(t, ·) is convex, lower semi�continuous, ∂ch(t, ·) is injective for all t ∈ [0, T ].

8. H ∈ Y([0, T ]× U), H(t, 0) = 0, and supt∈[0,T ][Hc(t, ·)]L < +∞.

De�nition 7.4. Let Assumptions 7.3 be satis�ed. We say that φ ∈ C([0, T ], C2(V ′)) is a strong
solution of (25) if there exists a family {φε}ε ⊂ C([0, T ], C2(V ′)) such that:

(i) φε(t, ·) ∈ C1
Lip(V

′) and φε(t, ·) is convex for all t ∈ [0, T ]; φε(0, x) = ϕ(x) for all x ∈ V ′.
(ii) there exist constants Γ1,Γ2 > 0 such that

sup
t∈[0,T ]

[∇φε(t)]L ≤ Γ1, sup
t∈[0,T ]

|∇φε(t, 0)|V ≤ Γ2, ∀ε > 0;

(iii) for all x ∈ D(A), t 7→ φε(t, x) is continuously di�erentiable;

(iv) φε → φ, as ε → 0+, in C([0, T ], C2(V ′));
(v) there exists gε ∈ C([0, T ];C2(V ′)) such that, for all t ∈ [0, T ] and x ∈ D(A),

φε
t (t, x)− F (t,∇φε(t, x)) + 〈Ax,∇φε(t, x)〉V ′ = gε(T − t, x)

with gε(t, x) → g0(t, x), and
∫ T
0 |gε(s)− g0(s)|C2ds → 0, as ε → 0 + .

The main result contained in the work by Faggian (2005) is the following.

Theorem 7.5. Let Assumptions 7.3 be satis�ed. There exists a unique strong solution φ of (25)
in the class C([0, T ], C2(V ′)) with the following properties:

(i) for all x ∈ D(A), φ(·, x) is Lipschitz continuous;
(ii) φ(t, ·) ∈ Σ0(V ′), for all t ∈ [0, T ].

Regarding applications to the optimal control problem, in Faggian (2000) we were able to
prove what follows.

Theorem 7.6. Let Assumptions 7.3 be satis�ed, with F (t, p) := H(t, B∗p). Let W be the value

function of the control problem, and let φ be the strong solution of (25) described in Theorem 7.5.

Then

W (t, x) = φ(T − t, x), ∀t ∈ [0, T ], ∀x ∈ V ′,

that is, the value function W of the optimal control problem is the unique strong solution of the

backward HJB equation (24).

7.2 Semicontinuous data and weak solutions of HJB equations.

We then treat the case of merely semicontinuous data, from which the notion of weak solution
originates.

Assumptions 7.7. If K is a convex closed subset of V ′, we de�ne

ΣK ≡ ΣK(V ′) := {φ : V ′ → (−∞,+∞] : φ is convex and l.s.c., K ⊂ D(φ)}

where D(φ) = {x ∈ V ′ : φ(x) < +∞}, and assume:
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1. C : D(C) ⊂ V ′ → V ′ is the in�nitesimal generator of a strongly continuous semigroup

{esA}s≥0 on V ′;

2. B ∈ L(U, V ′);

3. there exists ω > 0 such that |esCx|
V ′ ≤ eωs|x|

V ′ , ∀s ≥ 0;

4. F ∈ Y([0, T ]× V ), F (t, 0) = 0, supt∈[0,T ][Fp(t, ·)]L < +∞;

5. g(t, ·) ∈ ΣK(V ′), for all t ∈ [0, T ]; g(·, x) l.s.c. and L1(0, T ) for all x ∈ V ′;

6. ϕ ∈ ΣK(V ′);

7. h(t, ·) is convex, lower semi�continuous, ∂ch(t, ·) is injective for all t ∈ [0, T ]; moreover

h(t, c) ≥ a(t)|c|2U + b(t), with a(t) ≥ A(T ) > 0, b ∈ L1(0, T ; R);

8. H ∈ Y([0, T ]× U), H(t, 0) = 0, and supt∈[0,T ][Hc(t, ·)]L < +∞.

De�nition 7.8. Let K ⊂ V ′ be a closed convex set, and let ϕ ∈ ΣK and g(t, ·) ∈ ΣK for all t in
[0, T ]. Then φ : [0, T ]× V ′ → (−∞,+∞] is a weak solution of (HJB) if:

(i) φ(t, ·) ∈ ΣK , ∀t ∈ [0, T ];
(ii) there exist sequences {ϕn}n ⊂ Σ0, and {gn} ⊂ Y([0, T ]× V ′), such that

ϕn(x) ↑ ϕ(x), gn(t, x) ↑ g(t, x), ∀x ∈ V ′, ∀t ∈ [0, T ], as n → +∞,

and moreover, if φn is the unique strong solution of{
φt(t, x) + F (t,∇φ(t, x))− 〈Ax,∇φ(t, x)〉V ′ = gn(t, x) (t, x) ∈ [0, T ]× V ′

φ(0, x) = ϕn(x)

in C([0, T ], C2(V ′)), then

φn(t, x) ↑ φ(t, x), ∀(t, x) ∈ [0, T ]× V ′.

Remark 7.9. Since strong solution were proved in Faggian (2005) to be Lipschitz with respect

to the time variable and C1 with respect to the space variable, and the weak solution φ is a sup�

envelop of strong solutions φn, then φ is lower semi-continuous in [0, T ] × V ′. For the same

reason φn convex in the x variable implies that φ is convex in x as well.

Remark 7.10. Notice that the role of the convex set K is played in the �rst example by the set

K
def
= clV ′({(x0, x1) : x0 ≥ 0})

Theorem 7.11. Let Assumptions 7.7 be satis�ed. Let also g and h be of the following type

g(t, x) = e−ρtg0(x), h(t, c) = e−ρth0(x).

Then the following properties are equivalent:

(i) there exists a unique weak solution of (25);

(ii) At each (t, x) ∈ [0, T ]×K there exists an admissible control.

Moreover if (i) or (ii) holds, there exists an optimal pair (c∗, y∗) and

φ(T − t, x) = J(t, x, c∗).
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