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Abstract

We study the Diamond-Dybvig [3] model as developed in Green and Lin [5] and
Peck and Shell [7]. We dispense with the notion of a bank as a coalition of depositors.
Instead, our bank is a self-interested agent with a technological advantage in record-
keeping. We examine the implications of the resulting agency problem for the design
of bank contracts and the possibility of bank-run equilibria. For a special case, we
discover that the agency problem may or may not simplify the qualitative structure
of bank liabilities. We also �nd that the uniqueness result in [5] is robust to our form
of agency, but that the non-uniqueness result in [7] is not.

JEL codes: D82, G21

Keywords: self-interested banker, private record keeping, bank contracts, bank
runs
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1 Introduction

A distinguishing characteristic of banks is their propensity to issue demandable liabil-
ities. While the option to redeem debt presumably serves an economic purpose (Dia-
mond and Dybvig [3], Calomaris and Kahn [2]), it is commonly asserted this liability
structure opens the door to welfare-reducing bank-runs driven by non-fundamental
factors. That is, depositors without any pressing need to redeem their liabilities, may
nevertheless choose to do so if they believe� for whatever reason� that others will
behave similarly.

Diamond and Dybvig [3] were the �rst to formalize the concept of an equilib-
rium bank-run as a coordination failure. It appears, however, that their conclusion
relies more on an ad hoc restriction on the set of admissible contracts, than on any
fundamental property of the environment they study. In particular, Green and Lin
[5], building on the work of Wallace [8], demonstrate that when the bank is mod-
eled as an optimal allocation mechanism, the prospect of bank-run equilibria in the
Diamond-Dybvig environment disappear entirely. Andolfatto, Nosal, and Wallace
[1] demonstrate that this latter result generalizes considerably. On the other hand,
Peck and Shell [7] demonstrate� using a preference speci�cation that slightly di¤er-
ent than [5]� that it is possible to generate a bank-run equilibrium when one employs
a di¤erent sort of mechanism.

A common approach adopted in this literature ([1], [5], [7]) is to interpret a bank
as a coalition of depositors (or, equivalently, as a benevolent social planner). While
this approach has some merit, it abstracts from potentially relevant agency problems
that are likely to exist between bankers and depositors. In the present context, we
think this may be important for two reasons.

First, the optimal bank contract that emerges in (say) the Green-Lin [7] envi-
ronment bears little resemblance to any empirical counterpart. In particular, the
returns on early redemptions must vary in a complicated manner on the history of
depositor-types arriving at the bank. But as individual depositors are not privy to
these histories, this outcome relies heavily on the assumption that the bank faithfully
conditions allocations on true information as it unfolds over time. In contrast, a
self-interested banker might be tempted to fabricate the historical record for personal
gain. One question we ask is how the problem of aligning bank incentives with those
of depositors restricts the set of incentive-compatible allocations. Does the resulting
bank contract, for example, look any less complicated?

Second, it seems natural to explore how bank-run phenomena might be related
to any agency problems existing between bankers and depositors. Green and Lin
[7] themselves o¤er a conjecture that the likelihood of a bank-run may increase when
depositors must worry about how banks might exploit their private information. They
also suggest that these same agency problems may be one explanation for why the
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banking contract in their model is not observed.1 Our paper constitutes an attempt
to formalize these related ideas.

To do so, we consider the environment as speci�ed by [5] and modify it by intro-
ducing a self-interested banker; we assume that the banker�s objective is to maximize
own-wealth, rather than depositor utility. The banker�s comparative advantage lies in
the fact that he possesses a superior record-keeping technology. For simplicity, we take
an extreme view by assuming that the banker has a perfect memory, while depositors
have no memory at all. Any implementable allocation must therefore rely entirely
on the banker�s version of recorded history. As a self-interested banker may have
an incentive to falsify records, additional incentive-compatiblity restrictions must be
placed on the allocation� the implications of which constitute the focus of our study.

Even in the context of this relatively simple environment, the analysis becomes
increasingly complicated as the number of depositors becomes large. To keep the
analysis tractable, we ultimately resort to a special case involving only two depos-
itors. We �nd that the agency problem studied here may or may not simplify the
qualitative structure of the optimal bank contract. Evidently, there is a trade-o¤
between �complicated�contracts, that render relatively good risk-sharing properties,
and �simple�contracts, that economize on the ine¢ cient use of resources needed to
align bank incentives. Not surprisingly, this trade-o¤ depends on parameters; but we
�nd that simple contracts prevail under a wide range of empirically plausible parame-
ter values. We also �nd that the agency problem highlighted here in no way increases
the likelihood of a bank-run. Indeed, we �nd this to be the case even when we alter
our environment and mechanism in the manner suggested by [7].

The paper is organized as follows. In section 2, we describe the environment. We
temporarily depart from the standard assumption that depositors possess private in-
formation; a simpli�cation that allows us to focus on the private information problem
associated with the banker�s record-keeping advantage. We describe mechanisms in
section 3. Section 4 demonstrates that the ��rst-best�allocation derived in [5] is not
implementable in our environment and section 5 characterizes the optimal incentive-
feasible allocation. Private information over depositor types is introduced in section
6 and the implications for bank-runs are examined. The paper concludes with section
7.

1Calomiris and Kahn [2] also stress the role of bank incentives in contract design. Their analysis
di¤ers from the standard Diamond-Dybvig [3] set-up along several dimensions. First, demandability
is not desired as a form of consumption insurance; rather, it serves as a mechanism to discipline
potentially fraudulant behavior. Second, their sequential service constraint emerges endogenously
for the same purpose. Finally, a �bank-run�in their model corresponds to bank liquidation based on
a set of fundamental shocks (information pertaining to the quality of the bank�s assets). Others have
also stressed agency problems in relation to determining a bank�s capital structure (see Diamond [4]
and Krasa and Villamil [6], among others) but do not examine the implications for bank-runs.

4



2 The Environment

The economy is populated by one banker and N depositors, where N � 2 is a �nite
integer. There are two dates� date-1 and date-2� and one good per date. All agents
have access to a constant returns to scale storage technology. Date-1 goods are
invested in the technology at the beginning of date-1; a unit of invested date-1 goods
can be converted into a unit of date-1 goods during date-1 and into R > 1 units of
date-2 goods. Each depositor is endowed with 0 < y < 1 units of the date-1 good;
the banker has no endowment of goods.

A depositor�s utility is denoted U (c; c0; !), where c is date-1 consumption, c0 is
date-2 consumption, and ! is the depositor�s type. Assume that ! 2 fp; ig � 
;
where p denotes �patient�and i denotes �impatient.�Following [5], preferences are
restricted to be:

U (c; c0; !) =

�
u(c+ c0) if ! = p;
u(c) if ! = i;

(1)

where u (x) = (1 � �)�1x1�� and � > 1. That is, a patient depositor views date-1
and date-2 consumption as perfect substitutes, while an impatient depositor only
values date-1 consumption. The banker has linear preferences de�ned over his date-2
consumption, which we denote as b0.

Depositor types are generated by an exogenous i.i.d. process, where realiza-
tions occur at date-1 and 0 < � < 1 denotes the probability that any given de-
positor is patient. Hence, the probability that k patient depositors are patient is�
N
k

�
�k (1� �)N�k, for k 2 f0; 1; 2; :::; Ng � N: There is a second exogenous stochastic

process that determines a depositor�s place-in-line n 2 f1; 2; :::; Ng at date-1. As-
sume that any given place-in-line is equally likely for all depositors. Together, these
processes determine a date-1 queue !N = (!1; !2; :::; !N); where !n 2 
 denotes
the type of a depositor with place-in-line n = 1; 2; :::; N: We will at times refer to
!N 2 
N as a state.
The timing of events and the structure of information is as follows. Depositors

do not know their type ex ante; at this stage, they may choose to enter a risk-
sharing arrangement by giving their date-1 endowment to the banker, who invests
it in the storage technology. Nature then selects a state !N 2 
N according to the
stochastic processes described above. Depositors then interact with the banker at
date-1 sequentially according to their realized place-in-line. To highlight the role
played by bank incentives, we begin by assuming that depositor types are not private
information; this assumption is subsequently relaxed. At meeting n; the banker
knows !n�1 = f!1; !2; :::; !n�1g 2 
n�1 and the depositor knows !n 2 
; note that
the depositor does not know n. Each depositor may communicate with the bank,
but depositors cannot communicate with each other at date-1. The date-1 payouts
to depositors are subject to a sequential service constraint ; i.e., the date-1 payout
to depositor !n can only depend upon the realizations !n�1 and cannot depend on
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subsequent type realizations !j for j > n: After these N sequential meetings, any
remaining investment endowment is augment by a factor of R in date-2.

The banker then interacts with all depositors at date-2, with terminal payouts
made at this date. At date-2, the banker knows the true state !N ; but depositors are
assumed to know less than this. There are several ways one might choose to model
the asymmetry in information between depositors and the banker. One might, for
example, assume that depositors cannot communicate with each other at date-2, but
can recall their private communications with the banker. Alternatively, one might
restrict the memory of depositors regarding their private date-1 communications with
the banker but allow for date-2 communication among depositors (this implies that
the depositors will know the number of patient and impatient depositors as depositor
type is publicly observable). For either of these information structures, the banker
could tell all depositors at date-1 that they are the last. Whether or not the banker
can actually get away making such reports depends upon how announcements and
payo¤s are resolved in date-2, and this depends on the details of the information
structure. In what follows, we choose the latter approach for two reasons: �rst,
it is simpler to work with; and second, the qualitative aspects of our main results
remain robust across these two information structures.2 To this end, we assume that
depositors do not have a record keeping device and, as a result, cannot �remember�
anything, i.e., they cannot remember their date-1 communications with the bank or
their date-1 consumption. However, as a by-product of their date-2 communication
with each other, they can observe k(!N) �

�
#(p) 2 !N

	
, i.e., the number of patient

depositors realized in state !N :

3 Mechanisms

We consider mechanisms in which the banker�s strategy is to make a sequence of
N reports at date-1� one for each depositor� and one report at date-2. At date-1,
associated with each depositor n > 1 there is a true history of types !n�1 2 
n�1. For
depositor n = 1, it will be convenient to denote the �null�history as !0 � ? 2 
0.
The banker sends a report of this history for each depositor. Since the banker is

the only agent in the economy that has access to a record keeping device and as this
history constitutes private information for the banker, the banker�s report associated
with depositor n may be an element of any conceivable history �
 � [N�1j=0 


j. The
banker also makes a date-2 report, which will be described shortly.

The mechanism requires that the banker�s date-1 report associated with depositor
n be made before the banker observes the depositor�s type. The report is made after
depositor n� 1 departs and before depositor n arrives.3 Thus, a date-1 strategy for

2We discuss the implications of the former information structure in appendix B.
3If the mechanism has the banker making his date-1 report after he observes the depositor�s type,
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the banker is a set of functions:

mn : 

n�1 ! �
 for n = 1; 2; :::; N:

A date-1 allocation or outcome function for depositors is a recommendation Cn(�)
made by the mechanism. The allocation is made contingent on the banker�s date-1
reports and each depositor�s type; i.e.,

Cn : �
� 
n ! R+ for n = 1; 2; :::; N;

where 
n = fi; pg. Note that the mechanism�s date-1 recommendation is made con-
tingent on the depositor�s true type, which is observable by the mechanism, together
with the banker�s version of the historical record.

The banker�s date-2 reporting strategy is a functionm0 : 
N ! 
N , where the do-
main represents the set of true histories. At date-2, all depositors reconvene. Since de-
positors have no record-keeping device, they are unable to communicate the banker�s
date-1 report, mn, or the amount that they consumed at date-1. Depositors can,
however, report any pertinent contemporaneous information at this stage. This in-
formation is summarized by the function k : 
N ! N, where k(!N) reveals the
number of patient depositors at date-2. (Recall that depositors� types are observ-
able.) A date-2 allocation or outcome function for depositors is a recommendation
C 0n(�) made contingent on the banker�s date-2 report and k(!N); i.e.,

C 0n : 

N � N! R+ for all n = 1; 2; :::N:

LetC � fCn; C 0ng
N
n=1 represent an allocation (for depositors) and letm � fmn;m

0gNn=1
represent a strategy pro�le for the banker.

In what follows, we restrict the banker�s date-2 report to be consistent with what
the mechanism and depositors can observe at date-2, i.e., k(!N); since, otherwise,
the banker would be making a report that would be known to be false.

De�nition 1 The date-2 strategy m0 is said to be consistent if k(m0(!N)) = k(!N)
for all !N 2 
N :

Note that consistency does not imply truth-telling. If consistency is imposed,
then we can reduce notation by making the date-2 allocation solely a function of
the banker�s consistent date-2 report. Through a slight abuse of notation, we now
let C 0n : 


N ! R+ for all n = 1; 2; :::N; where the domain of this function is now
understood to be the set of consistent date-2 reports.

then it can be easily shown that risk-sharing possibilities are destroyed and autarky will be the only
outcome. Such a mechanism cannot be optimal.
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Now �x an allocation C and a consistent strategy m: Then, conditional on a
realization !N 2 
N , the ex post payo¤ or outcome function for the banker is given
by:

B0(C;m) � R
"
Ny �

NX
n=1

Cn(mn(!
n�1); !n)

#
�

NX
n=1

C 0n(m
0(!N)): (2)

A mechanism (
;C) is a collection of strategy sets, 
, and an outcome function,
C. The collection of strategy sets is 
 =

�
�
;
N ;
1; :::;
N

�
, where �
 and 
N

represents the banker�s date-1 and date-2 strategy sets, respectively; and 
n, n =
1; :::; N represent the depositors�type set.

De�nition 2 The strategy pro�le m for mechanism (
;C) is said to be feasible if:

B0(C;m) � 0 (3)

for all !N 2 
N :

Let M (
;C) denote the set of feasible and consistent strategy pro�les that
are available to the banker for mechanism (
;C). We are e¤ectively imposing a
form of commitment on the banker by requiring him to choose his strategy pro�le
m 2 M (
;C). Since the horizon is �nite, some degree of commitment is required;
otherwise, there is nothing that prevents the banker from, for example, giving out
zero payo¤s in date-1 and consuming RNy at date-2. We assume that the banker
can commit to make payouts consistent with his announcements; this implies that
m 2M (
;C).

De�nition 3 The strategy pro�le m� 2M (
;C) constitutes an equilibrium if:

E!N2
N [B
0(C;m�)] � E!N2
N [B0(C;m)] (4)

for all m 2M (
;C).

Note that our de�nition of equilibrium satis�es the notion of sequential rationality
for the banker even though the banker�s expected payo¤ in (4) is calculated in an
ex ante sense. To see this, suppose the proposed equilibrium strategy pro�le for the
banker m� satis�es (4). Now, consider some history !̂n 2 
n and suppose that the
banker can increase his expected payo¤relative to the proposed equilibrium by playing
the feasible and consistent continuation strategy m̂n for the remainder of the game.
De�ne a new strategy m that is identical to m� for all histories, except following
history !̂n, where the continuation strategy m̂n is played instead. Clearly then, m�

cannot be an equilibrium strategy since the constructed strategy m 2 M (
;C)
violates inequality (4).
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If strategy m 2 M (
;C) is an equilibrium, then associated with each state
!N 2 
N are payo¤ functions to depositors c = fcn; c0ng

N
n=1, where cn (!

n) �
Cn (mn (!

n�1) ; !n) and c0n(!
N) = C 0n(m

0 �!N�), together with a banker payo¤ func-
tion b0(c; !N), where b0(c; !N) � B0(C;m(!N)). Hence, we can construct an alterna-
tive mechanism (
; c) such that if m 2 M (
;C) is an equilibrium for mechanism
(
;C), then t 2M (
; c) is an equilibrium for mechanism (
; c), where t is de�ned
as the truth-telling strategy tn(!n�1) � !n�1 for all n = 1; 2; ::; N and t0(!N) � !N .

De�nition 4 An allocation c is said to be truthfully implementable as an equilibrium
for mechanism (
; c) if t 2 M (
; c) is a truth-telling strategy and

E!N2
N
�
b0(c; !N)

�
� E!N2
N

�
b0(c;m(!N))

�
(5)

for all m 2M (
; c).

In what follows, we can, without loss of generality, restrict attention to allocations
that are truthfully implementable.

Under a truth-telling strategy t for mechanism (
; c), the ex ante utility payo¤
for depositors is given by:

W (c) =
X

!N2
N
Pr(!N)

"
NX
n=1

U
�
cn
�
!n�1; !n

�
; c0n
�
!N
�
; !n

�#
: (6)

De�nition 5 An optimal allocation c maximizes W (c) subject to: [1] b0(c; !N) � 0
for all !N 2 
N [feasibility]; and [2]E!N2
N

�
b0(c; !N)

�
� E!N2
N

�
b0(c;m(!N))

�
for all m 2M (
; c) [equilibrium].

4 Is the First-Best Allocation Implementable?

In this section, we consider the benchmark allocation that would result if depositors
have access to a public record-keeping device. The resulting allocation, which we
refer to as the �rst-best allocation, corresponds to that derived in [5]. In what fol-
lows, we ask whether the �rst-best allocation can be implemented under our assumed
information structure; i.e., when the banker has a �monopoly on memory.�

When depositors have access to a record-keeping technology, the banker is re-
dundant. Hence, the �rst-best allocation maximizes W (c) subject to feasibility,
b0(c; !N) � 0 for all !N 2 
N .
Owing to the speci�cation of a depositor�s utility function (1), a number of prop-

erties associated with the �rst-best allocation immediately emerge. First, since im-
patient depositors do not value date-2 consumption, they do not receive any date-2
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consumption in the �rst-best allocation, i.e., c0n(!
N) = 0 if !n = i for all !N 2 
N .

Second, since patient depositors view date-1 and date-2 consumption as perfect sub-
stitutes, but one unit of date-1 consumption can be converted into R > 1 units of
date-2 consumption, patient depositors do not receive any date-1 consumption in the
�rst-best contract, i.e., cn(!n�1; !n) = 0 if !n = p for all !n�1 2 
n�1, n = 1; : : : ; N .
And �nally, since depositor types are observable and since they are risk-averse, op-
timal risk-sharing implies that patient depositors receive the same levels of date-2
consumption, independent of their place in line, i.e., c0n(!

N) = c0j
�
!N
�
> 0 for all

n; j whenever !n = !j = p. To better understand other aspects associated with
risk-sharing, we solve the above maximization problem explicitly. For this purpose,
it will be su¢ cient to consider the case where N = 2.

Feasibility implies c02(i; p) = R [2y � c1(i)] ; c01(p; i) = R [2y � c2(p; i)] and c2(i; i) =
2y�c1(i): Substituting these conditions into (6) results in the following maximization
problem for N = 2,

max
c1(i);c2(p;i)

�22u (Ry) + (1� �)�fu (c1(i)) + u(R[2y � c1(i))]g

+� (1� �) fu (c2(p; i)) + u (R[2y � c2(p; i)])g+
(1� �)2 fu (c1(i)) + u (2y � c1(i))g:

It is straightforward to establish that the solution to this problem has the following
properties:

0 < c2(i; i) < y < c1(i) < c2(p; i)

y < c01(p; i) < c
0
2(i; p) < Ry = c

0
1(p; p) = c

0
2 (p; p) :

The inequalities above describe the nature of optimal risk-sharing in this environ-
ment. In particular, note that in the event that there is only one impatient depositor,
this agent receives a date-1 consumption that exceeds the autarkic level y; this is
evidence of risk-sharing between impatient and patient depositors. Note further that
an impatient depositor receives a larger payo¤ if he is second in line and follows a
patient depositor; i.e., c2(p; i) > c1(i): Intuitively, if the �rst depositor is patient,
the planner is better able to share risks with a subsequent impatient depositor and
the patient depositor, than if the �rst depositor is impatient, i.e., in the former case,
no payment is made, leaving the banker with greater resources. Although the �rst
impatient depositor receives an amount in excess of y, if the second depositor turns
out to be impatient, he will receive a date-1 payo¤ that falls below the autarkic level.

We now demonstrate that the �rst-best allocation cannot be implemented as a
truthtelling equilibrium when memory resides solely with the banker.

Proposition 1 The �rst-best allocation is not implementable when the banker has a
monopoly on memory.
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Proof Observe that the truth-telling strategy (t1; t2) = (?; !1) and t0 = !2 delivers
a zero payo¤ to the banker under every realization !2. Consider the following
deviation: the banker tells the truth everywhere except if !1 = p, in which
case he reports m2 = ? (a lie) to the second depositor and m0 = t0 (the
truth) at date 2. If the state turns out to be !2 = (p; p), then the date-1
payo¤ to the second depositor associated with the report m2 = ? is c1 (p) =
c2 (p; p) = 0. Consistency requires that the banker report m0 = (p; p) at date
2; the date 2 payo¤s c01 (p; p) = c02 (p; p) = Ry are feasible since the banker
did not make any payments at date-1. If, however, the state turns out to
be !2 = (p; i), then the payo¤ to the second depositor associated the report
m2 = ? is c1 (i) < c2 (p; i). Now, consistency requires that m0 2 f(p; i) ; (i; p)g.
If m0 = (p; i), then after paying c02 (p; i) to the patient depositor, there will
be [c2 (p; i)� c1 (i)]R > 0 resources left over, which the banker can consume.
Since the banker�s deviant strategy is feasible, consistent and provides a higher
expected payo¤ than the truth-telling strategy, the �rst-best allocation cannot
be an equilibrium outcome.

It is perhaps instructive to point out how the banker�s ability to get away with
a pro�table lie in the proof above relies heavily on the �rst depositor�s inability to
remember the past. Note that the banker actually reportsm0 = (p; i) at date-2, which
is the truth. If the second depositor had access to a record-keeping device, he would
recall that the banker told him that he was the �rst in line, whereas the date-2 report
reveals that he was, in fact, the second in line.

5 The Optimal Incentive-Feasible Allocation

The formal derivations involved in characterizing an optimal incentive-feasible allo-
cation are rather involved and so we relegate them to an appendix. In this section,
we present the main results and o¤er some explanation for the logic that underlies
them.

Our �rst result is that is possible to implement allocations with the following
properties: c2(p; i) = c1(i) > c2(i; i) or c2(p; i) > c1(i) > c2(i; i): We call the former
allocation a partial risk-sharing allocation and the latter a full risk-sharing alloca-
tion. We describe the partial risk-sharing allocation as �simple�because the date-1
payment to impatient depositors depends only on the number of impatient depositors
who have made withdrawals, and not on the history of patient depositors who may
have arrived earlier. Our second result is that either the partial or full risk-sharing
allocation may be optimal, depending on model parameters.

To develop some intuition, recall that the proof to proposition 1 shows that if
c2(p; i) > c1(i), then the banker has an incentive to lie to the second depositor if
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!1 = p; in state !2 = (p; i) the banker can obtain a payo¤ of R [c2(p; i)� c1(i)] > 0
if he tells the second depositor that he is the �rst in line. One obvious way to
prevent the banker from behaving in this manner is to restrict the allocation so that
c2(p; i) = c1(i). Of course, while this has the bene�t of better aligning bank incentives,
it comes at the cost of reducing the risk-sharing properties of the allocation.

The restriction c2(p; i) = c1(i), however, only prevents lying along one dimension.
When date-1 payo¤s to patient depositors are zero, if c1(i) > c2(i; i), then the banker
can get away with a pro�table lie by reportingm1 = i to the �rst depositor and telling
the truth everywhere else. To see this, suppose that the actual state turns out to be
!2 2 f(p; p); (p; i)g: As the �rst depositor is patient, the bank pays out c2(i; p) = 0:
Since no resources are withdrawn and since the banker subsequently tells the truth,
the banker has enough resources to make good on his date-1 and date-2 payouts. On
the other hand, suppose that the state turns out to be !2 2 f(i; p); (i; i)g. In this
case, the �rst depositor receives a payment c2(i; i) < c1(i) and the bank makes a
pro�t of R [c1(i)� c2(i; i)] > 0, while at the same time being able to make his date-2
payouts.

One way to prevent the banker from behaving in the manner described above is
to restrict the allocation further so that c1(i) = c2(i; i). Unfortunately, this would
have the e¤ect of eliminating all risk-sharing; the result would be autarky. There is,
however, another way to elicit truthful reporting when c1 (i) = c2 (p; i): by setting
c2(i; p) to an arbitrarily small but positive number. The e¤ect of this restriction is
to render the lie m1 = i infeasible. That is, forcing the bank to pay out something
to the patient depositor leaves the bank with insu¢ cient resources� by the amount
Rc2 (i; p)� to make good on its date-2 payouts in state (i; p).4

Under the partial risk-sharing allocation, it turns out that the banker makes
zero pro�ts in every state except for !2 = (p; i); where he earns a return equal to
Rc2(i; p): But as c2(i; p) can be made arbitrarily small, this ine¢ cient date-1 payment
to the patient depositor and the ine¢ cient payment to the banker can be made
arbitrarily small. Hence, the �rst-order welfare cost associated with the partial risk-
sharing allocation stems solely from the loss of risk-sharing associated with setting
c2(p; i) = c1(i):

The logic described above extends to the case of the full risk-sharing allocation.
That is, since c1(i) > c2(i; i); the allocation must have the property c2(i; p) > 0 in
order to prevent the lie m1 = i: The banker, however, may have an incentive to
misreport the truth since c2(p; i) > c1(i). In particular, the banker will have an
incentive to report the lie m2 = ? when the �rst depositor is patient (as described in
the proof to proposition 1). Recall from the proof, if !1 = p and the banker reports
m2 = ? in state !2 = (p; p), the banker pays out c1(p) = 0 to the second depositor,

4If the banker does not make good on its date-2 payouts� either by choice or because he has
insu¢ cient resources� the contract can specify that the banker can consume any of the remaining
deposits and receive a payo¤ of �Z, where Z can be made arbitrarily large.
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leaving the him with su¢ cient resources to meet his future payouts. Hence, in state
!2 = (p; i), the banker pays out c1(i) instead of c2(p; i) to the second depositor and
captures a positive payo¤. One way to elicit truth-telling here is by setting c1(p) to
an arbitrarily small but positive number. Again, the e¤ect of this ine¢ cient payo¤ is
to render the lie m2 = ? infeasible in state (p; i).
Under the full risk-sharing allocation, it turns out that the banker makes zero

pro�ts in every state. But to induce truth-telling, the allocation must be restricted
in the following manner

c2(i; p)� c1(p) = c2(p; i)� c1(i); (7)

where c1(p) can be made arbitrarily small.5 Hence, equation (7) tells us that in
the full risk-sharing allocation (with c1 (p) made arbitrarily small), the magnitude of
c2 (i; p) will depend positively on desired the degree of risk-sharing c2(p; i)� c1(i).
Here then, we see the trade-o¤s that are involved. A full risk-sharing allocation

can be implemented, but at the expense of allocating at a nontrivial date-1 payment
to patient depositors, c2 (p; i). A partial risk-sharing allocation e¤ectively eliminates
this nontrivial ine¢ cient payment, but only at the expense of reducing the risk-sharing
properties of the allocation.

Which of these two scenarios is optimal turns out to depend on model parameters.
Numerical examples suggest that a full risk-sharing allocation becomes more desirable
as � ! 0 and � ! 1: The intuition for this is straightforward. In particular, as
the probability of patient depositors decreases, the probability of making ine¢ cient
date-1 payments to patient depositors falls as well, so that risk-sharing objectives
can be met more cheaply. Likewise, as depositors become more risk-averse, they
are more willing to bear the cost of ine¢ cient payments that render full risk-sharing
incentive-compatible. We summarize the discussion in this section in the following
two propositions, with the proofs relegated to appendix A.

Proposition 2 If the optimal allocation is characterized by full risk-sharing� c2 (p; i) >
c1(i) > c2(i; i)� then truthtelling on the part of the banker will require date-
1 payments to patient depositors satisfy c2 (i; p) > c1 (p) = � > 0. As in
the �rst-best allocation, date-2 payments to impatient depositors are zero and
c2 (p; p) = 0. The banker makes zero pro�t in each state of the world.

Proposition 3 If the optimal allocation is characterized by partial risk sharing�
c2 (p; i) = c1(i) > c2(i; i)� then truthtelling on the part of the banker will require

5Since the optimal allocation delivers zero payo¤s to the banker in states (i; p) and (p; i), c1 (i)+
c2 (i; p) + c

0
2 (i; p) = c1 (p) + c2 (p; i) + c

0
1 (p; i). As well, the date-2 payo¤s to patient depositors

must be the same in states (i; p) and (p; i); otherwise, the banker will announce at date-2 that state
which gives the depositor the smallest payo¤. Since c02 (i; p) = c

0
1 (p; i), the above equation can be

rearranged to (7).
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date-1 payments to patient depositors satisfy c2 (i; p) = � > 0. As in the �rst-
best allocation, date-2 payments to impatient depositors are zero and c1 (p) =
c2 (p; p) = 0. The banker makes zero pro�t in all states of the world, except
state !2 = (p; i), where he makes an arbitrarily small pro�t, equal to R�.

6 Depositor Private Information and Bank-Runs

To address the issue of bank-run equilibria, we need to extend the model so depos-
itor types are private information. The basic structure of the environment requires
only some minor modi�cations to accommodate the private information assumption
regarding depositor types.

As in section 3, the banker makes a date-1 report to the mechanism mn after
depositor n � 1 departs and before depositor n arrives for each n = 1; 2; :::; N . In
addition, we now require that depositor n make a report an to the mechanism. Here,
we follow [7] by assuming that

an : 
n ! 
n for n = 1; 2; :::; N;

where the domain represents the depositor�s true type. This speci�cation implies
that the mechanism withholds information from the depositor (in particular, the
bank report mn). An important implication of this restriction is that the depositor
does not know his place-in-line when making his report. [7] stresses that this property
of the mechanism is essential for admitting the possibility of a bank-run equilibrium.

Since that banker is the only agent in the model with a record-keeping device, it
is optimal for the mechanism to inform the banker of an, n = 1; :::; N . The date-1
outcome function for depositor n, Cn(�), is contingent on the banker�s date-1 reports
and depositor reports; i.e.,

Cn : �
� 
n ! R+ for n = 1; 2; :::; N:

At date-2, the banker and all of the depositors (simultaneously) make a report to
the mechanism. As in section 3, the banker�s date-2 reporting strategy is the function
m0 : 
N ! 
N and each depositor reports

a0n : 
n ! 
n for n = 1; 2; :::; N:

Here we assume that the depositor is able to remember the announcement that he
made at date-1. Let k (a01; :::; a

0
N) 2 N denote the number of patient reports contained

in the vector (a01; :::; a
0
N). Again, we stress that the mechanism only knows k(�) and

not the speci�c con�guration of (a01; :::; a
0
N) : Hence, a date-2 allocation or outcome

function for depositors is a recommendation C 0n(�) made contingent on the banker�s
date-2 report and k(�); i.e.,

C 0n : 

N � N! R+ for all n = 1; 2; :::N:
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Let a = (an; a0n)
N
n=1represent a strategy pro�le for the N depositors.6

We restrict attention to allocations that are truthfully implementable. In keeping
with our earlier analysis, we focus on the case where N = 2. ([7] is able to generate
a bank run equilibrium for N = 2.) Note that when depositors reports their types
truthfully, all of the analysis� and the associated implications, i.e., propositions 2
and 3� in section 5 remain valid here.

Assuming that the banker reveals depositors�reports truthfully, the truth-telling
condition for an impatient depositor is,

(1� �)
2

fu (c1 (i)) + u (c2 (i; i))g+
�

2
fu (c1 (i)) + c2 (p; i)g

�
(1� �)
2

fu (c1 (p)) + u (c2 (i; p))g+
�

2
(1� �)u (c1 (p)) :

This condition is always satis�ed. First, note that c1 (p) is an arbitrarily small number
so that for our preferences u (c1 (p))! �1. Second, note that u (c1 (i))+u (c2 (i; i)) >
u (y) > u (c2 (i; p)) since c1 (i) + c2 (i; i) = y and c2 (i; p) < y.

The truth-telling condition for a patient depositor is,7

�u

�
Ry � R + 1

2
c1 (p)

�
+

(1� �)
2

fu (c2 (i; p) +R (2y � c2 (i; p)� c1 (i))) + u (c1 (p) +R (2y � c2 (p; i)))

� (8)
�

2
fu (c1 (i)) + u (c2 (p; i))g+

(1� �)
2

fu (c1 (i)) + u (c2 (i; i))g :

Allocation c for the mechanism (
; c) is said to be implementable as a truth-telling
equilibrium if conditions (5) and (8) hold.

Suppose that when depositor type is observable, the optimal allocation is char-
acterized by partial risk-sharing; i.e., c2 (p; i) = c1 (i) > c2 (i; i). In this case, it is
straightforward to demonstrate that condition (8) is always satis�ed with a strict
inequality for the preferences considered here. If, instead, the optimal allocation is
characterized by full risk-sharing; i.e., c2 (p; i) > c1 (i) > c2 (i; i), then we can demon-
strate (numerically) that condition (8) holds with strict inequality for a wide range

6What if the reports of the depositors are not consistent with the banker�s report? In this
situation, suppose that cn (a0n) = 0 for all n and b0 = R (Ny �

P
n cn) � Z, where Z is made

arbitrarily large. That is, if the reports are inconsistent, then the depositors receive a zero date-2
payo¤ and the banker gets to consume all of its deposits; and, in addition, receives a large, negative
payo¤ from the mechanism. This payo¤ scheme will ensure that all reports will be consistent.

7Since depositors do not know their place in line, it is optimal to deliver to depositors the same
utility payo¤ in state (p; p).
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of parameter values.8 This implies that the optimal allocation with observable de-
positor types can be implemented as a truth-telling equilibrium when depositor types
are private information. Hence, for the preferences considered here, having depositor
types private information in no way a¤ects our earlier analysis.

We now move to investigate the possibility of bank-run equilibria. To this end,
let c� represent the optimal allocation that can be implemented as a truth-telling
equilibrium. Given the mechanism (
; c�), does there exist another equilibrium in
which patient depositors misreport their type? In particular, does there exist an
equilibrium where the strategy of all depositors is to announce i and the banker
reveals the history of depositor announcements truthfully?

It is straightforward to demonstrate that there does not exist a bank-run equi-
librium of this form. To see this, suppose that all depositors play the bank-run
strategy. Then, the banker will announce mn = i for n = 1; 2 and m0 = (i; i). The
banker will announce m1 = i, instead of the truth m1 = ?, because this results in
a payment to the �rst depositor of c1 (i; i) < c1 (i) leaving the banker with payo¤
R[c1 (i)� c2 (i; i)] > 0, which is higher than the proposed equilibrium payo¤ of zero.
Hence, when depositors play bank-run strategies in the mechanism (
; c�), the banker
will depart from proposed equilibrium play. We conclude that the uniqueness result
reported in [5] appears robust to our form of agency.

Note that, as in [5], the depositor truth-telling constraint (8) does not bind. Inter-
estingly, [7] �nds no evidence of bank-runs even under the mechanism they consider
when the depositor truth-telling constraint is slack. They are, however, able to gen-
erate a bank-run equilibrium when they modify preferences so that the depositor
truth-telling constraint (8) binds. In particular, it turns out that (8) will bind for
preferences:

U (c; c0; !) =

�
u(c+ c0) if ! = p;
Au(c) if ! = i;

(9)

where u(x) = (1� �)�1x1��; � > 1 and A > 0 su¢ ciently large.
Suppose that we too modify preferences in the manner suggested in [7] and assume

that (8) binds. Since this is important for their result, we continue to follow [7] in
assuming that the mechanism does not provide depositors with any information re-
garding previous announcements or their place in line. Denote the optimal allocation
that can be implemented as a truth-telling equilibrium when condition (8) binds as �c.
As demonstrated in [7]� via an example for N = 2� when the depositor truth-telling
constraint binds, it is possible to generate a bank-run equilibrium for allocation �c;
that is, there exists an equilibrium where all depositors, independent of type, report
i at date-1.

It is, however, straightforward to demonstrate that this result does not extend to
our environment. The reason for this is lies, as before, in the fact that conditional

8In fact, we could not �nd parameter values where the condition is violated.
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on all depositors announcing that they are impatient, a self-interested banker is able
to pro�tably lie by reporting that every depositor is the last in line and that all
previous depositors reported i. Hence, we conclude here that the non-uniqueness
result reported in [7] appears not to be robust to our form of agency.

It is interesting to note that [7] is only able to generate a bank-run equilibrium
by assuming that their banker/mechanism faithfully conditions the allocation on the
true history of reports (even though the mechanism does not reveal any information
to depositors). In contrast, our self-interested banker has a strong motive to depart
from truth-telling if it is in his interest to so� as would be the case when depositors
take a �run� at the bank. Hence, while both [5] and [7] allude to the possibility
that bank incentive problems may expand the possibility of bank-run equilibria, our
analysis seems to indicate� at least, for the manner in which we have modeled the
banker agency problem� that this need not be the case.

7 Conclusion

Much of the recent literature on bank-runs, notably [5] and [7], adopts the view of
a bank as a coalition of depositors. The standard environment is in the tradition of
[3], extended to incorporate aggregate uncertainty and an explicit sequential service
constraint. In both [5] and [7], the optimal bank contract is an elaborate design. [5]
demonstrates that when depositor incentive-compatiblity constraints do not bind, the
�rst-best allocation is uniquely implementable, i.e., there is no bank-run equilibrium.
[7] demonstrates that when depositor incentive-compatibility constraints do bind� so
that the resulting allocation cannot be �rst-best� then a mechanism that withholds
some information from depositors admits the possibility of a bank-run equilibrium.

In contrast to [5] and [7], we chose to view a bank as a self-interested agent with
some technological advantage in record-keeping. We found �rst that the need to align
bank and depositor incentives precludes implementation of the �rst-best allocation
even when depositor incentive-compatibility constraints are slack. Second, we found
that the agency problem studied here may or may not simplify the structure of the
optimal bank contract. Indeed, in some cases, the resulting bank contract becomes
even more complicated than in [5] and [7], as positive date-1 payouts to patient
depositors are needed to implement allocations with a high degree of risk-sharing.
Third, we found that the agency problem studied here in no way a¤ects the conclusion
in [5] concerning the possibility of bank-runs. On the other hand, there appears to
be an interesting implication for the conclusion in [7]. In particular, the bank-run
equilibrium discovered in [7] appears to disappear when the bank is modeled as a
self-interested agent.
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9 Appendix A: Proof to Propositions 2 and 3

Here we sketch out the proof to the optimal allocation, as summarized in propositions
2 and 3. In order to determine the nature of the optimal allocation, we start the
analysis at date-2.

9.1 Date-2

At date-2, the true history !2 2 
2 is known to the banker. Regardless of what
happened historically, the banker at this point will submit a �nal report m0 that
minimizes depositor payouts. This �nal report must respect consistency. Hence, if
either !2 = (p; p) or !2 = (i; i); the banker is constrained to tell the truth. However,
if the state of the world is either !2 = (i; p) or !2 = (p; i), consistency requires only
that the banker�s �nal report satisfy k(i; p) = k(p; i) = 1; i.e., the banker�s report
must contain one i and one p (in either order). A truthful report in this case requires
that the date-2 payout to depositors is the same for either of these states; i.e.,

c01(p; i) + c
0
2(p; i) = c

0
1(i; p) + c

0
2(i; p): (10)

One can without loss of generality impose c01(i; i) = c02(i; i) = c01(i; p) = c02(p; i) =
0; as making date-2 payments to impatient depositors does nothing to align bank
incentives, serving only to waste resources. Consequently, condition (10) can be
reduced to:

c01(p; i) = c
0
2(i; p) � X: (11)

Let C � c01(p; p)+ c02(p; p): Then given condition (11), the banker�s ex post payo¤s
under truth-telling (assuming a feasible allocation c) are given by:

b0(p; p) = R[2y � c1 (p)� c2 (p; p)]� C � 0;
b0(p; i) = R[2y � c1 (p)� c2 (p; i)]�X � 0;
b0(i; p) = R[2y � c1 (i)� c2 (i; p)]�X � 0;
b0(i; i) = R [2y � c1(i)� c2 (i; i)] � 0:

(12)

In what follows, we conjecture that the optimal allocation can be made to deliver:

b0(p; p) = b0(i; i) = 0: (13)

Note that zero bank pro�ts can be achieved in any state of the world is not a foregone
conclusion when the banker has private information. Hence, this conjecture must
subsequently be checked for its validity.

19



9.2 Date 1 (Depositor 2)

Assume that the true history is !1 = i and that the banker told the truth in the
past; i.e., t1 = ?: A truthful report to the second depositors entails t2 = i; there are
two possible deviations to consider, m2 2 f?; pg. We assume throughout that date-1
payo¤s to impatient depositors follow c2 (p; i) � c1 (i) > c2 (i; i).

Lemma 1 If !1 = i, then the banker report m2 2 f?; pg is infeasible.

Proof Suppose that the true state turns out to be !2 = (i; i): Then the lie m2 = p
generates an ex post pro�t R [2y � c1(i)� c2(p; i)] ; which is strictly negative if
b0(i; i) = 0, since c2(p; i) > c2(i; i): Likewise, the lie m2 = ? generates an ex
post pro�t R [2y � c1(i)� c1(i)] ; which is strictly negative if b0(i; i) = 0, since
c1(i) > c2(i; i):

Lemma 1 tells us that if the �rst depositor is impatient, then the banker has
no incentive to misreport the truth to the second depositor� and in date 2� when
c2 (p; i) � c1 (i) > c2 (i; i) (and c01 (p; i) = c02 (i; p)).
Assume now that the true history is !1 = p and that the banker told the truth in

the past; i.e., t1 = ?: A truthful report to the second depositor is t2 = p; there are
two possible deviations to consider, m2 2 f?; ig.

Lemma 2 If !1 = p and c2 (i; p) = c2 (p; p) = 0, then the banker report m2 = i
represents a pro�table deviation from truthtelling.

Proof If !2 = (p; p), then the banker�s ex post payo¤s are the same whether m2 = i
or m2 = t2 = p, i.e., R [2y � c1 (p)� c2 (i; p)]� C = R [2y � c1 (p)� c2 (p; p)]�
C. If, however, !2 = (p; i), then the banker�s ex post payo¤ associated with
reportingm2 = i exceeds that of telling the truth, i.e., R [2y � c1 (p)� c2 (i; i)]�
X > R [2y � c1 (p)� c2 (p; i)]�X since c2 (p; i) > c2 (i; i).

Lemma 3 If !1 = p and c2(i; p) > c2(p; p) � 0, then the lie m2 = i is infeasible.

Proof If !2 = (p; p), then the banker�s report m2 = i generates an ex post pro�t
R [2y � c1(p)� c2(i; p)] � C; which is strictly negative if c2(i; p) > c2(p; p) and
b0(p; p) = 0.

Lemmas 2 and 3 imply that whether the allocation is characterized by partial
or full risk sharing, implementation requires that ine¢ cient payments be made to
patient depositors; in particular c2 (i; p) > c2(p; p) � 0.

Lemma 4 If !1 = p and the allocation is characterized by full risk sharing� c2 (p; i) >
c1 (i)� and c1 (p) = c2 (p; p) = 0, then the banker report m2 = ? represents a
pro�table deviation from truthtelling.
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Proof If !2 = (p; p), then the banker�s ex post payo¤s are the same whether m2 = ?
or m2 = t2 = p, i.e., R [2y � c1 (p)� c2 (p)] � C = R [2y � c1 (p)� c2 (p; p)] �
C. If, however, !2 = (p; i), then the banker�s ex post payo¤ associated with
reportingm2 = ? exceeds that of telling the truth, i.e., R [2y � c1 (p)� c1 (i)]�
X > R [2y � c1 (p)� c2 (p; i)]�X since c2 (p; i) > c1 (i).

Lemma 5 If !1 = p and c1(p) > c2(p; p) � 0, then the lie m2 = ? is infeasible.

Proof Suppose that the true state turns out to be !2 = (p; p):Then the lie m2 = ?
generates an ex post pro�t R [2y � c1(p)� c1(p)]�C; which is strictly negative
if c1(p) > c2(p; p) and b0(p; p) = 0.

Lemmas 4 and 5 imply that if the allocation is characterized by complete risk
sharing then additional ine¢ cient payments must be made; in particular c1 (p) >
c2(p; p) � 0. Note that if the allocation is characterized by partial risk sharing�
c2 (p; i) = c1 (i)� there is not a pro�table deviation for the banker when c1 (p) =
c2 (p; p) = 0 and !1 = p.

9.3 Date 1 (Depositor 1)

At this stage, the true history is !0 = ?. A truthful report now entails t1 = ? and
there are two possible deviations to consider, m1 2 fi; pg : In what follows, we assume
that the banker continues to tell the truth following any �one-shot�deviation (it can
be shown that this represents optimal behavior for the banker.) The �rst question
we ask is there a relationship between c2 (i; p) and c1 (p)?

Lemma 6 Suppose that c2 (i; p) = c1 (p). Then m1 = i is a pro�table deviation.

Proof If !2 = (p; p) or !2 = (p; i) then the banker�s ex post payo¤s are the same
whetherm1 = i orm1 = t1 = ?, i.e., for !2 = (p; p) R [2y � c1 (i; p)� c2 (p; p)]�
C = R [2y � c1 (p)� c2 (p; p)]�C; and similarly for !2 = (p; i) If, however, !2 =
(i; i) or !2 = (i; p), then the banker�s ex post payo¤ associated with reporting
m1 = i exceeds that of telling the truth, i.e., R [2y � c1 (i; i)� c1 (i; i)] � X >
R [2y � c1 (i)� c2 (i; i)]�X since c2 (i) > c1 (i; i); and similarly for !2 = (i; p)

Lemma 7 If c2(i; p) > c1(p); then the lie m1 = i is infeasible.

Proof Suppose that the true state turns out to be !2 = (p; p):Then the lie m1 =
i generates an ex post pro�t R [2y � c2(i; p)� c2(p; p)] � C; which is strictly
negative when c2(i; p) > c1(p) and b0(p; p) = 0:

Let us now focus on the full risk sharing allocation. Lemmas 6 and 7 imply
that any implementable allocation must be characterized by c2(i; p) > c1(p). Note
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also, that lemmas 2-5, together with lemmas 6 and 7, imply that if the allocation is
characterized by full risk sharing, implementation requires that

c2(i; p) > c1(p) > c2(p; p) � 0: (14)

When condition (14) holds, then the deviation m1 = p is not feasible when the
allocation is characterized by full risk sharing. To see this, suppose that the true
state turns out to be !2 = (i; i): Then the lie m1 = p generates an ex post pro�t
R [2y � c2(p; i)� c2(i; i)], which is strictly negative as c2(p; i) > c1(i) and b0(i; i) = 0.
As the goal is to maximize depositor welfare, optimality requires that the alloca-

tion minimizes ine¢ cient payments to depositors and bank pro�ts, subject to main-
taining incentive-compatibility. To begin, note that from (14), we can set c2(p; p) = 0
without altering bank incentives. This implies that we can set c1(p) to some arbitrar-
ily small (but positive) number � > 0: Ex post bank pro�ts are then given by:

b0(p; p) = R[2y � �]� C;
b0(p; i) = R[2y � � � c2 (p; i)]�X;
b0(i; p) = R[2y � c1 (i)� c2 (i; p)]�X;
b0(i; i) = R [2y � c1(i)� c2 (i; i)] ;

(15)

Observe that it remains incentive-feasible to restrict the allocation such that bank
pro�ts are driven to zero in every state of the world (this validates our previous
conjecture (13)). In this case, b0(p; i) = b0(i; p) implies that:

c2(i; p)� � = c2(p; i)� c1(i):

The condition shows clearly how greater risk-sharing (a larger c2(p; i) � c1(i)) can
only come at the expense of a larger (ine¢ cient) payment c2(i; p). We can summarize
the implications for an optimal full risk sharing allocation by

Proposition 2 If the optimal allocation is characterized by full risk-sharing� c2 (p; i) >
c1(i) > c2(i; i)� then truthtelling on the part of the banker will require date-
1 payments to patient depositors satisfy c2 (i; p) > c1 (p) = � > 0. As in
the �rst-best allocation, date-2 payments to impatient depositors are zero and
c2 (p; p) = 0. The banker makes zero pro�t in each state of the world.

Now let�s consider the partial risk-sharing allocation. Lemmas 2, 3, 6 and 7 imply
that implementation requires that

c2(i; p) > c1(p) = c2(p; p) � 0 (16)

When condition (16) holds, then it is straightforward to show that the deviation
m1 = p is not pro�table. Note that from (16), we can set c1(p) = c2(p; p) = 0 without
altering bank incentives. This, along with truthtelling conditions (16), implies that
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we are free to set c2(i; p) to some arbitrarily small (but positive) number � > 0: Ex
post bank pro�ts are then given by:

b0(p; p) = R[2y]� C;
b0(p; i) = R[2y � c1 (i)]�X;
b0(i; p) = R[2y � c1 (i)� �]�X;
b0(i; i) = R [2y � c1(i)� c2 (i; i)] :

(17)

Observe that it remains incentive-feasible to restrict the allocation such that bank
pro�ts are driven to zero in states !2 2 f(p; p); (i; i)g (this validates our previous
conjecture (13)). It is also possible to set b0(i; p) = 0: However, note that it is not
possible to do likewise with b0(p; i): Evidently, the bank must make a strictly positive
pro�t in state !2 = (p; i); i.e.,

b0(p; i) = R� > 0:

On the other hand, note that this pro�t becomes arbitrarily small as � ! 0. We can
summarize the implications for the optimal partial risk-sharing allocation by

Proposition 3 If the optimal allocation is characterized by partial risk sharing�
c2 (p; i) = c1(i) > c2(i; i)� then truthtelling on the part of the banker will require
date-1 payments to patient depositors satisfy c2 (i; p) = � > 0. As in the �rst-
best allocation, date-2 payments to impatient depositors are zero and c1 (p) =
c2 (p; p) = 0. The banker makes zero pro�t in all states of the world, except
state !2 = (p; i), where he makes an arbitrarily small pro�t, equal to R�.

9.4 Optimal Incentive-Feasible Allocations

Let W � max
�
W F ;W P

	
; where W j denotes the indirect utility function associated

with the j = F; P (full or partial) risk-sharing allocation. For the full risk-sharing
allocation, substitute the restrictions embedded in (15) into the objective function;
so that the problem can be stated as:

W F = max
c1(i);c2(p;i);c01(p;p)

�2fu (c01(p; p)) + u (R [2y � �]� c01(p; p))g (18)

+(1� �)�fu (c1(i)) + u(c2(p; i) + � � c1(i) +R [2y � c2(p; i)])g
+� (1� �) fu (c2(p; i)) + u (� +R[2y � c2(p; i)])g

+(1� �)2 fu (c1(i)) + u (2y � c1(i))g:

Keep in mind that the solution to the program above has economic content only over
ranges in which c2(p; i) > c1(i):
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For the partial risk-sharing allocation, substitute the restrictions embedded in
(17) into the objective function; so that the problem can be stated as:

W P = max
c1(i);c01(p;p)

�2fu (c01(p; p)) + u (2Ry � c01(p; p))g+ (19)

(1� �)�fu (c1(i)) + u(� +R[2y � c1(i)� �])]g+
� (1� �) fu (c1(i)) + u (R[2y � c1(i)� �])g+

(1� �)2 fu (c1(i)) + u (2y � c1(i))g:

Again, as reported in the text, which of these two scenarios is optimal turns out to
depend on parameters. Through the use of numerical examples, one can demonstrate
that W F > W P for low values of � and high values of �; and conversely, W F < W P

for high values of � and low values of �:
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10 Appendix B: Alternative Information Structure

One might reasonably wonder to what extent the results above are driven by our
particular information structure, i.e., depositors cannot recall anything that happened
at date-1 but can communicate with one another at date-2. An interesting alternative
information structure, suggested by a referee, is one where depositors can recall the
outcomes of their date-1 interactions with the banker� i.e., depositor n can remember
mn and cn (mn; !n)� but cannot communicate with one another at date-2.9 Under
this information structure, the banker deals with depositors on a one-on-one basis in
date-2, just as in date-1. This information structure has some appeal because the
banker can now be viewed as the �sole aggregator of information�; i.e., depositors
can communicate with the bank, but cannot communicate with each other.

In this formulation, one would require that the banker�s date-2 messages to de-
positor n be consistent with (mn; !n) for all n. However, note that since the banker
deals with depositors one-on-one at date-2, he can potentially send di¤erent date-
2 reports to di¤erent depositors; this was precluded under our original information
structure. Since di¤erent (consistent) reports can be sent to di¤erent depositors at
date-2, the analysis and characterization of the optimal contract turns out to be
relatively complicated

In this appendix we show that it is not possible to implement the �rst-best alloca-
tion with this alternative information structure and provide some additional remarks
on the nature of implementable contracts.

Assume that each depositor receives a document that embeds the report mn sent
by the banker at date-1. The document cannot be counterfeited nor altered in any
way. The banker�s informational advantage over the depositors is formally modeled
by assuming that in date-2, as in date-1, depositors meet sequentially and privately
with the banker. This implies that depositors are unable to observe each other�s
document or bankers reports in either date. As in the information structure in the
main text, we continue to assume that the mechanism has no record keeping device;
it�s role is to suggest payo¤s associated with reports provided by the banker and
documentation provided by depositors, as well as their types, at both dates. For
simplicity, assume that depositor type is observable.

The date-1 allocation or outcome function is a recommendation Cn (�) made con-
tingent on the banker�s date-1 report and each depositor�s type, i.e.,

Cn : �
� 
n ! R+ for n = 1; 2; : : : ; N:

(This is identical to the previous analysis.) At date-2, depositors meet sequentially
with the banker. The banker reports m0

n : 

N ! 
N in his meeting with depositor

9If depositor n can remember (mn; !n) and depositors can communicate with one another at
date-2, then the �rst-best allocation can be implemented.
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n, where the domain represents the set of true histories. Depositor n reports a0n :
�
 � 
n ! �
 � 
n, where the domain represents the documented date-1 banker
announcement and the depositor�s type. The date-2 allocation or outcome function
is a recommendation C 0n (�) made contingent on the banker�s report and depositor�s
document and type, i.e.,

C 0n : 

N � �
� 
n ! R+ for n = 1; 2; : : : ; N:

As in the main text, we will restrict the banker�s date-2 report to be consistent; but
now consistency relates to the depositor�s type and documentation.

De�nition 1 The date-2 strategy m0 is said to be consistent if m0
n = (mn; !n; ~m

0
n) 2


N , where mn 2 �
 is the banker�s date-1 message to depositor n, !n is depositor n�s
type and ~m0

n is the banker�s date-2 report of depositor types that followed depositor n.

Here, consistency requires that the banker�s date 2 announcement to depositor n
embed his date-1 announcement, as well as depositor n�s type, i.e., for each depositor,
the relevant part of the banker�s date-2 announcement must �agree�with his date-1
announcement. As in the previous information structure, consistency does not imply
truth-telling.

It is straightforward to demonstrate that with the information structure described
above, the �rst-best allocation cannot be implemented.

Proposition 2 The �rst-best allocation cannot be implemented.

Proof. Recall that the �rst-best allocation is characterized, in part, by c01 (p; i) <
c01 (p; p) = Ry. Suppose that the banker makes truthful reports in date-1 and likewise
in date-2 except in state (p; p). In state (p; p), suppose that the banker reports
m0
1 = (p; i) and m0

2 (p; p) to the �rst and second depositors, respectively, both of
which are consistent announcements. The second depositor will receive c02 (p; p) =
Ry, while the �rst depositor will receive c01 (i; p) < c01 (p; p). Since Ry � c02 (p; p) �
c01 (i; p) > 0, the banker will generate a positive payo¤ for himself at date-2, which
is a pro�table deviation from truth-telling. Therefore, the �rst-best allocation is not
incentive feasible.

The pro�table deviation described in the proof to the above proposition gives a
hint as to some of the (date-2) incentive compatibility constraints that are required.
In particular, it must be the case that c01 (p; p) = c01 (p; i); if his were not so, then
the banker would be able to generate a higher payo¤ than the truth-telling payo¤ by,
for example, reporting m0

1 (p; p) in state (p; i) if c
0
1 (p; p) < c01 (p; i) or by reporting

m0
1 (p; i) in state (p; p) if c

0
1 (p; p) > c

0
1 (p; i).

Just as in the information structure studied in the main text, it can be shown
that if the contract is characterized by c2 (p; i) > c1 (i), then a non-trival (ine¢ cient)
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payment must be made to a patient depositor in date-1. If the ine¢ cient payment is
not made, then incentive compatibility will require that c2 (p; i) = c1 (i).

For the information structure used in the text, (in)feasibility of banker payments
played a major role in disciplining bank reports. In the alternative information struc-
ture, since the banker can give di¤erent date-2 reports to di¤erent depositors, it turns
out that the one cannot rely solely on feasibility arguments to ensure truthful bank
reports and, instead, explicit truthtelling constraints must be satis�ed. Hence, the
actual characterization of optimal allocations will be complicated by the required sat-
isfaction of a number of truthtelling constraints (that do not appear� because they
are not required) in the maximization problems described in appendix A.

Under this alternative information structure, we are able to demonstrate that the
�rst-best is not implementable. The qualitative structure of the optimal incentive-
feasible allocation� whether partial or full risk-sharing� depends on parameters. We
further suspect, although we have not demonstrated formally, that there are no bank-
run equilibria under the mechanisms studied in [5] and [7].
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