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Abstract

In this paper two kernel-based nonparametric estimators are proposed for estimating the components

of an additive quantile regression model. The first estimator is a computationally convenient approach

which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). With the aim

to reduce variance of the first estimator, a second estimator is defined via sequential fitting of univariate

local polynomial quantile smoothing for each additive component with the other additive components

replaced by the corresponding estimates from the first estimator. The second estimator achieves oracle

efficiency in the sense that each estimated additive component has the same variance as in the case when

all other additive components were known. Asymptotic properties are derived for both estimators under

dependent processes that are strictly stationary and absolutely regular. We also provide a demonstrative

empirical application of additive quantile models to ambulance travel times.
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1 Introduction

Suppose Y denotes a response variable that depends on the vector of stochastic covariates

X = (X1, . . . ,Xd)
T , d ≥ 2, where T denotes the transpose of a matrix or a vector. We consider

the case where the relationship between Y and X follows a quantile regression set-up,

Yi = Qα(Xi) + Eα,i, i = 1, . . . , n (1.1)

where Qα(·) is an unknown real-valued function and Eα is an unobserved random variable that

satisfies IP (Eα,i ≤ 0|X = x) = α for all x where 0 < α < 1 is the quantile of interest. In this

way, Qα(x) denotes the conditional quantile of Yi given Xi = x. Indeed, there is a large body

of literature on the estimation of Qα(x) and its asymptotic properties (see, e.g., Chaudhuri

1991; Fan, Hu, and Troung 1994). But it is well-known that for high-dimensional covariates

(moderate to large value of d) nonparametric methods suffer from the curse-of-dimensionality,

which does not allow precise estimation of conditional quantiles with reasonable sample sizes. For

this reason several authors have proposed dimension reduction techniques. For instance, Honda

(2004), Kim (2007) and Cai and Xu (2008) consider quantile regression with varying coefficients.

Alternatively, Lee (2003) studies conditional quantiles using a partially linear regression model.

In this paper, we assume Qα(·) to be additive of the following form,

Qα(x) = cα + qα,1(x1) + . . .+ qα,d(xd), (1.2)

where x = (x1, . . . , xd)
T , cα is a constant, and qα,u(xu) (u = 1, . . . , d) are smooth nonparametric

functions representing the α-th quantile function of Y related only to Xu. Additive models are

simple, easily interpretable, and sufficiently flexible for many practical applications.

Given observe data (X1, Y1), . . . , (Xn, Yn), our interest is to efficiently estimate each additive

components qα,u(xu) in (1.2). This nonparametric estimation problem is first considered by Fan

and Gijbels (1996, pp. 296-297) where they suggest a back-fitting procedure for estimating the

additive components. Yu and Lu (2004) later re-consider the back-fitting procedure. Although

the back-fitting algorithm is easy to implement, there is no guarantee for convergence and its

iterative structure makes it difficult to establish asymptotic results. Doksum and Koo (2000)

introduce an easily implementable direct spline method that does not require iterations. But

they do not provide asymptotic convergence results. De Gooijer and Zerom (2003) propose a

simple direct kernel estimator. Horowitz and Lee (2005) suggest a hybrid step-wise approach

where they use a series method in the first step and kernel smoothing in the second step. Both



De Gooijer and Zerom (2003), and Horowitz and Lee (2005) provide detailed asymptotic theory,

and show that their respective estimators achieve a univariate nonparametric rate of convergence

regardless of the dimension of X.

In this paper, we propose two kernel-based estimators for estimating the additive component

functions. Our first estimator extends the works of Kim, Linton and Hengartner (1999) and

Manzan and Zerom (2005) to the context of conditional quantiles. We show that the proposed

estimator is asymptotically normal and converges at the univariate nonparametric optimal rate.

This estimator is computationally more attractive than the average quantile estimator of De

Gooijer and Zerom (2003) as it reduces the computational requirement of the latter by the order

of the sample size O(n). In applications, this computational advantage can be very significant

when n is large and/or when implementing computer-intensive methods such as bootstrap or

cross-validation. For example, in the empirical analysis of ambulance travel times (see Section 5),

we have over 7000 observations. For n of this size, implementing the average quantile estimator

requires excessively large computational time. In addition to its computational inconvenience,

the average quantile estimator is also not robust to correlated covariates in the sense that its

efficiency deteriorates with an increase in the correlation among the covariates (X1, . . . ,Xd).

This is the result of the need to smooth at points that may not lie in the support of the

covariate space. On the other hand, our estimator is not affected by this problem.

Although our first estimator is practically appealing, its asymptotic variance has an undesirable

additional term. To mitigate this efficiency problem, we propose a second estimator that uses

further local averaging. The local averaging involves sequential fitting of univariate local poly-

nomial quantile smoothing for each additive components with the other additive components

replaced by the corresponding estimates from the first estimator. The second proposed estima-

tor is also shown to be asymptotically normal and converges at the univariate nonparametric

optimal rate. Further, we show that it achieves oracle efficiency where each estimated addi-

tive component has the same variance as in the case when all other additive components were

known. In terms of computer implementation, this efficient estimator only takes twice as many

computational operations as our estimator. Thus, efficiency is achieved without compromising

on computational simplicity. The estimator of Horowitz and Lee (2005) also shares the oracle

property.

The asymptotic properties of our two kernel estimators are derived for dependent data. On the

other hand, Horowitz and Lee (2005) establish the asymptotic properties of their estimator only
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for the case of independent data. Thus, our theoretical results are more general. We assume

that the sample (X1, Y1), . . . , (Xn, Yn) is a strictly stationary weakly dependent data from the

population {X,Y }. We focus on absolutely regular (or β-mixing) processes. For any a < b, let

Mb
a denote the sigma algebra generated by (Za, . . . , Zb) with Zi = (Xi, Yi). A process is called

absolutely regular, if, as m→ ∞,

π(m) = sup
s∈N

IE







sup
H∈M∞

s+m

[IP (H|Ms
−∞) − IP (H)]







→ 0.

For more details on β-mixing processes, see, for example, Yoshihara (1978) and Arcones (1998).

The paper is organized as follows. In Section 2 we provide a description of a modified average

quantile estimator together with its asymptotic properties. In Section 3, an oracle efficient

estimator is introduced and its asymptotic properties are also established. In Section 4, we

illustrate the numerical performance of the proposed estimators using simulated data. In Section

5, we provide a demonstrative empirical application of additive quantile modeling to ambulance

travel times using administrative data for the city of Calgary. Section 6 provides concluding

comments. Technical arguments and proofs are provided in two Appendices.

2 A modified average quantile estimator

Here, we introduce our first kernel estimator for the additive component function qα,u(xu) for

u = 1, . . . , d. In order to make the u-th component qα,u(xu) identifiable, it is assumed that

IE{qα,u(Xu)} = 0 for u = 1, . . . , d. For ease of exposition, we denote by Xu the u-th element of

X and Wu the set of all X variables excluding Xu, i.e. Wu = (X1, . . . ,Xu−1,Xu+1, . . . ,Xd)
T .

Note that X = (Xu,Wu). Also let fu(·), fw(·) and f(·) denote the density functions of Xu, Wu

and X, respectively. Following Kim, Linton and Hengartner (1999), we define the function

φ(xu, wu) =
fu(xu)fw(wu)

f(xu, wu)
.

It is easy to show that this function has two desirable properties:

IE{φ(Xu,Wu) |Xu = xu} = 1 and IE{φ(Xu,Wu)qα,k(Xk)|Xu = xu} = 0 for k 6= u.

Multiplying each side of equation (1.2) by φ(·, ·) and taking conditional expectations conditional

on Xu=xu, we obtain

IE{φ(Xu,Wu) Qα(X)|Xu = xu} ≡ q∗α,u(xu) = cα + qα,u(xu), (u = 1, . . . , d).
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Therefore, q∗α,u(xu) coincides, up to a constant, with the component qα,u(xu) of the additive

quantile model. Thus, we can estimate qα,u(xu) by the following estimator which we call the

modified average quantile estimator,

q̂α,u(xu) = q̂∗α,u(xu) − ĉα (2.1)

with the two estimators q̂∗α,u(xu) and ĉα given in (2.3) and (2.2), respectively. Because cα =

IEQα(X), we can estimate cα by

ĉα =
1

n

n
∑

i=1

Q̂α(Xi), (2.2)

where Q̂α(·) is a consistent estimator of Qα(·) which is defined in (2.4). To compute q̂∗α,u(xu),

we use an internalized kernel smoothing as follows,

q̂∗α,u(xu) =
1

nh1

n
∑

i=1

K

(

xu −Xi,u

h1

)

f̂w(Wi,u)

f̂(Xi)
Q̂α(Xi), (2.3)

where K(·) is a kernel function, h1 is a bandwidth (or smoothing parameter) and f̂w(·) and f̂(·)
are kernel smoothers of the corresponding densities. Note that, unlike the usual kernel-based

conditional expectation smoothers, (2.3) eliminates explicit estimation of the density fu(xu)

in the denominator and hence named an internalized smoother; see Jones, Davies and Park

(1994) for details on internalized smoothing. When compared to that of De Gooijer and Zerom

(2003), this internalization offers a significant practical advantage by reducing computational

cost by the order n (i.e., O(n)). To better see this advantage, we can re-define (2.3) in a more

computationally convenient way as follows. Say, the aim is to estimate q̂∗α,u(·) at all observation

points Xu,i for i = 1, . . . , n. First, define the following n× n smoother matrices,

Sx
u =

[

1

nh1
K

(

Xi,u −Xℓ,u

h1

)]

i,ℓ

, Sw
u =

[

1

nhd−1
2

L1

(

Wi,u −Wℓ,u

h2

)]

i,ℓ

,

S =

[

1

nhd
2

L2

(

Xi −Xℓ

h2

)]

i,ℓ

,

where L1(·) and L2(·) are two kernel functions, and h2 is the bandwidth. Then, we can estimate

the n× 1 vector of estimates (q̂∗α,u(Xu,1), . . . , q̂
∗
α,u(Xu,n))T , all at once, as follows

(q̂∗α,u(Xu,1), . . . , q̂
∗
α,u(Xu,n))T = Sx

u{Q̂α ⊙ (Sw
u e)./(S e)},

where ⊙ and ./ denote matrix Hadamard product and division, respectively, while e = (1, . . . , 1)T

and Q̂α=(Q̂α(X1), . . . , Q̂α(Xn))T . Further, unlike that of De Gooijer and Zerom (2003), the

computation of q̂∗α,u(xu) does not require smoothing at pairs (xu,Wu). This feature is important
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as (xu,Wu) may not lie in the support of (Xu,Wu). Unless the product of the marginal supports

is equal to the joint support, we may be estimating at points where the joint density is zero.

Many data sets have highly correlated design, which causes the finite support to violate the

above requirement. The estimator in (2.3) does not face this problem and hence is robust

against correlated design.

Now we define an estimator forQα(x). We assume that Qα(x) is p-times (p ≥ 2) continuously dif-

ferentiable in the neighborhood of x ∈ R
d. This will allow us to carry the well-known local poly-

nomial quantile smoothing; see Honda (2000). For non-negative integer vector λ = (λ1, . . . , λd),

let |λ| =
∑

i λi and xλ = Πxλi
i . Also let the vectors V1(

X−x
h ) and βx be constructed from the

elements h−|λ| (X − x)λ and h−|λ|∂λq(x)

x
λ1
1 ···xλd

d

, respectively, which are arranged in natural order with

respect to λ such that |λ| ≤ p− 1. As usual, we define Q̂α(x) by

Q̂α(x) = eT1 β̂x, (2.4)

where e1 is an p-dimensional unit vector with the first element 1 and all other elements 0 and

the vector β̂x minimizes

(nhd)−1
n
∑

i=1

ρα

(

Yi − βT
x V1

(

Xi − x

h

))

L

(

x−Xi

h

)

,

where ρα(·) is a check function that is defined as ρα(s)=|s|+(2α−1)s for 0 < α < 1 and L(·) is a

kernel function and h is the bandwidth. The above polynomial smoothing is easy to implement

in the major statistical softwares using a weighted linear quantile regression routine where the

weights are defined through the kernel L(·).

2.1 Asymptotic behavior

Here, We derive the asymptotic behavior of the modified average quantile estimator q̂α,u(xu)

(2.1) under β-mixing. In this paper, C < ∞ denotes a positive generic constant. We use the

following regularity conditions to derive the asymptotic properties.

C1. The additive function qα,u(xu) is p-times continuously differentiable in the neighborhood

of xu ∈ R. The full-dimensional conditional quantile Qα(x) is p-times continuously dif-

ferentiable in the neighborhood of x ∈ R
d. The probability density function f(x) of X is

bounded from above and has p̄th derivatives on their support set, where p̄ > pd
p+1 .
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C2. Let g(y|x) be the conditional probability density function of Eα given X = x. For any x in

the support set of X, it has the first continuous derivative with respect to the argument y

in the neighborhood of 0.

C3. K(·) is a p-th order kernel function that satisfies
∫

K(t1)dt1 = 1,
∫

tj1K(t1)dt1 = 0 for

j = 1, . . . , p − 1 and
∫

tp1K(t1)dt1 6= 0. For i = 1, 2, Li(·) is a p̄-th order kernel function

that satisfies
∫

Li(s)ds = 1,
∫

sjLi(s)ds = 0 for j = 1, . . . , p̄− 1 and
∫

sp̄Li(s)ds 6= 0 with

s in d− 1 or d dimensional spaces according to Li(·). L(t) is a second-order kernel which

has bounded and continuous partial derivatives of order 1.

C4. i). There exist two constants δ > 2 and γ > 0 such that δ > 2 + γ and the function

IE

{

∣

∣

∣

∣

fw (Wu)

f(X)
Qα(X)

∣

∣

∣

∣

δ
∣

∣

∣

∣

∣

Xu = x′u

}

is bounded in the neighbor of x′u = xu.

ii). The mixing coefficients π(i) = O
(

i−θ
)

with θ ≥ max
{

p+ 4
p + 6, 2(p+1)δ

δ−2 + 1
}

.

C5. i). It holds that n−γ/4h
(2+γ)/δ−1−γ/4
1 = O(1) and lim supn nh

2p+1
1 <∞.

ii). Assume that there exists a sequence of positive integers sn such that sn → ∞, sn =

o
(

(nh1)
1/2
)

, and (n/h1)
1/2π(sn) → 0, as n→ ∞.

iii). h = Cn−κ with constant κ satisfying 1
2p+1 < κ < 2p+3

3d(2p+1) and h/h1 → 0.

iv). For some sufficiently small constant ǫ > 0, it holds that h
θ(1− 2

δ
)

1 h
2
δ
−2 → 0, nhd

(

h1h
d
)

3
θ
+ǫ

→ ∞ and nh−1
1

(

h1h
d−1
2

)1+ 3
θ
+ǫ

→ ∞ with h2 = Cn
− 1

d+p̄ .

C6. For any j ≥ 1, the joint density functions (X1,Xj+1) are bounded from above.

Let κp=
∫

tp1K(t1)dt1 and ‖K‖2 =
∫

K2(t1)dt1. The following theorem summarizes the asymp-

totic distribution of q̂∗α,u(xu).

Theorem 2.1. When the conditions C1 to C6 are met,

√

nh1

(

q̂∗α,u(xu) − q∗α,u(xu) − q
(p)
α,u(xu)κp

p!
hp

1

)

→ N
(

0, σ2
)

(2.5)

in distribution with σ2 = σ2
1 + σ2

2 where

σ2
1 =

α(1 − α) ‖K‖2

fu(xu)
IE

(

φ2 (X)

g2(0|X)

∣

∣

∣

∣

Xu = xu

)

& σ2
2 =

‖K‖2

fu(xu)
IE
[

φ2 (X)Q2
α(X)

∣

∣Xu = xu

]

.
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Remark 1. To simplify our presentation, we assume that smoothness of Qα(x) and its uth

additive component is of the same order p. But, it is possible that the smoothness of these

functions can be different. For example, when Qα(x1, x2) = cα + x2
1 + sin(x2), Qα(x1, x2) has

derivatives of any order but x2
1 only has the second-order differentiability, i.e., p = ∞ and p1 = 2.

Following the same lines of the proofs and using lim supn nh
2p1+1
1 < ∞, Theorem 2.1 will still

hold where p is replaced by p1 in the asymptotic distribution expression.

Remark 2. From Theorem 2.1, the optimal bandwidth that minimizes the asymptotic mean

squared error (AMSE) is given by,

hopt
1 =

(

p!σ

q
(p)
α,u(xu)κp

) 2
2p+1

n
− 1

2p+1 .

Remark 3. Although the asymptotic variance σ2 can not be directly compared to the corre-

sponding variance of the estimator of De Gooijer and Zerom (2003), there is a visible additional

term (σ2
2) in the case of our estimator. A similar problem has also been shown by Kim, et al

(1999) for the conditional mean case. This motivates us to introduce our second estimator (see

Section 3) whose goal is to mitigate this efficiency problem without compromising on bias.

Proposition 2.2. Under the conditions of Theorem 2.1,

ĉα − cα = oIP

(

n−
p

2p+1

)

. (2.6)

Corollary 2.3. Under the conditions of Theorem 2.1, if we choose h1 = hopt
1 , then it holds that





p!σ
∣

∣

∣
q
(p)
α,u(xu)

∣

∣

∣
κp





1
2p+1

n
p

2p+1

(

q̂α,u(xu) − qα,u(xu) − q
(p)
α,u(xu)κp

p!
n
− p

2p+1

)

→ N
(

0, σ2
)

in distribution.

3 Oracle efficient estimator

In Section 2 we introduce a modified average quantile estimator and show that it estimates the

additive components at a one-dimensional nonparametric optimal rate regardless of the size of d.

However, a closer look at Theorem 2.1 indicate that the asymptotic variance includes a second

term (σ2
2) which inflates the value of the variance. To deal with this inefficiency, we extend
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the idea of Linton (1996) and Kim et al (1999) to the quantile context and suggest a second

estimator that involves sequential fitting of univariate local polynomial quantile smoothing for

each additive components with the other additive components replaced by the corresponding

estimates from the average quantile estimator. In fact, we will show in Section 3.1) that the

proposed estimator is oracle efficient in the sense that it is asymptotically distributed with same

mean and variance as it would have if the other additive components were known. Importantly,

this efficient estimator only takes twice as many computational operations as the modified av-

erage quantile estimator. Thus, efficiency is achieved without compromising on computational

simplicity.

We construct this estimator as follows. First, define

Q̂∗
α,−u(Wu) = q̂∗α,1(X1) + · · · + q̂∗α,u−1(Xu−1) + q̂∗α,u+1(Xu+1) + · · · + q̂∗α,d(Xd), (3.1)

where q̂∗α,j(·) (j 6= u) are the additive estimates from (2.3). For technical convenience, we

consider the one-leave-out versions of these first-stage estimates. Let

Y ∗
i = Yi + (d− 2)ĉα − Q̂∗

α,−u(Wi,u)

where ĉα is given by (2.2). Let the function V (t) denotes a p-dimensional vector where its jth

element given by tj−1. Then, using the local polynomial smoothing, we define the oracle efficient

estimator by

q̂e
α,u(xu) = eT1 β̂xu , (3.2)

where e1 is a p-dimensional unit vector with the first element 1 and all other elements 0 and the

vector β̂xu minimizes

(nhe)
−1

n
∑

i=1

ρα

(

Y ∗
i − βT

xu
V

(

xu −Xi,u

he

))

Ke

(

xu −Xi,u

he

)

, (3.3)

where Ke(·) is a kernel function and he is the bandwidth. The computer implementation of this

estimator is similar to that used to compute Q̂α(x) in Section 2.

3.1 Asymptotic behavior

We investigate asymptotic distribution of q̂e
α,u(xu) (3.2). To derive our results, we use the

following extra regularity conditions.
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C7. Ke(t1) is a second-order kernel which has bounded and continuous first order derivative.

C8. Let gu(t|xu) be the conditional probability density function of Eα given Xu = xu and

gu (t|xu) has bounded derivative in the neighborhood of t = 0.

C9. It holds that he = Cn
− 1

2p+1 and the bandwidth of the modified average quantile estimator

satisfies that h1 = hen
− ε0

2 with some constant ε0 > 0 which sufficiently small.

The oracle estimator

Before we provide the asymptotic distribution of q̂e
α,u(xu), we first present results for an oracle

estimator which we denote by q̂oracle
α,u (xu). We define q̂oracle

α,u (xu) in the same way as q̂e
α,u(xu)

except that the oracle estimator is based on true values of the other additive components. Thus,

q̂oracle
α,u (xu) is some desirable estimator while being infeasible in practice. Let

Qα,−u (wu) =
∑

1≤j 6=u≤d

qα,j(xj).

Suppose we know {cα, qα,j(xj), 1 ≤ j 6= u ≤ d}. But we do not know qα,u(xu). Note that

α = IP {Yi − cα −Qα,−u (Wi,u) ≤ qα,u(Xi,u)|Xi,u} and qα,u(xu) has pth derivative. Then, using

the local polynomial smoothing, we define q̂oracle
α,u (xu) by,

q̂oracle
α,u (xu) = eT1 β̂

oracle
xu

, (3.4)

where the vector β̂xu minimizes

(nhe)
−1

n
∑

i=1

ρα

(

Yi − cα −Qα,−u (Wi,u) − βT
xu
V

(

xu −Xi,u

he

))

Ke

(

xu −Xi,u

he

)

(3.5)

Using (A.18) and by a similar methods to the proofs of (A.5) and (A.2) (see Appendix A), it

can be obtained that

√

nhe

(

q̂oracle
α,u (xu) − qα,u(xu) − hp

e

q
(p)
α,u(xu)

p!
eT1 B

−1κe

)

→ N
(

0, σ2
0

)

, (3.6)

where κe =
∫

tp1V (t1)Ke(t1)dt1, B =
∫

V (t)V T (t)Ke(t)dt and

σ2
0 =

α(1 − α)

g2
u(0|xu)fu(xu)

eT1B
−1

∫

V (t)V T (t)K2
e (t)dtB−1e1. (3.7)

For more details on the local polynomial estimator for one dimensional conditional quantiles

refer to Chaudhuri (1991) and Honda (2000).
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The oracle efficient estimator

Now, we show that our estimator q̂e
α,u(xu) (3.2) behaves analogously to the oracle estimator

q̂oracle
α,u (xu) above. Let rn = n

ε0
2 /

√
nhe with ε0 being a sufficiently small positive constant.

For |ti,n| ≤ Crn, (i = 1, . . . , n), let tn = (t1,n, . . . , tn,n)T . Denote by Vu,i = V
(

Xi,u−xu

he

)

,

Ku,i = Ke

(

xu−Xi,u

he

)

and

β̂tn = arg min
a

1

nhe

n
∑

i=1

Ku,i

∣

∣Yi − cα −Qα,−u (Wi,u) − aTVu,i − ti,n
∣

∣ .

Proposition 3.1. Under the conditions C1 to C9, with probability one, it holds uniformly for

|ti,n| ≤ Crn, i = 1, 2, . . . , n, that

β̂tn − β̂oracle
xu

=
B−1

n IE (Ku,iVu,igu (0|Xi,u))

nhe

n
∑

i=1

ti,n +O

(

n−ε0

√
nhe

)

,

where β̂oracle
xu

is as defined in (3.5) and Bn = 1
he
IEKu,igu (0|Xi,u)Vu,iV

T
u,i.

Theorem 3.2. Under the conditions C1 to C9, it holds that

√

nhe

(

q̂e
α,u(xu) − q̂oracle

α,u (xu)
)

= oIP (1) . (3.8)

From Theorem 3.2, we see that q̂e
α,u(xu) is asymptotically normally distributed with same mean

and variance as q̂oracle
α,u (xu). Therefore, our proposed estimator q̂e

α,u(xu) is oracle efficient.

4 A simulated example

In this section, we provide the finite sample performance of our oracle efficient estimator (denoted

in this section by OEE) vis-à-vis two alternative kernel estimators: the estimator of De Gooijer

and Zerom(2003) (denoted as DGZ) and the back-fitting approach. We do not include the hybrid

estimator of Horowitz and Lee (2005) in our comparison. But we think that the estimator of

Horowitz and Lee (2005) will have a similar performance as ours at least for the i.i.d. data

case. We use the standard normal density for all kernel functions: K1(·), K2(·), K(·), and Ke(·).
These choices are consistent with the assumptions used to derive the asymptotic properties. As

in DGZ, we assume the following data generating process,

Yi = Qα(Xi,1,Xi,2) + 0.25Eα,i, (4.1)
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where the errors Eα,i are i.i.d. N(0, 1) and the covariates X1 and X2 are bivariate normal with

zero mean, unit variance, and correlation γ. We consider α = 0.5 (the case of conditional

median), correlations γ = 0.2 (low correlation between covariates), 0.8 (high correlation) and

sample sizes n = 100, 200, 400 and 800. The conditional median of Y is assumed to be additive,

Q0.5(x1, x2) = q0.5,1(x1) + q0.5,2(x2),

= 0.75x1 + 1.5 sin(0.5πx2).

We simulate model (4.1) 41 times and in each simulation the three approaches are used to

compute the additive median functions q0.5,1(·) and q0.5,2(·). To avoid the sensitivity of the

performance of the compared approaches on bandwidth selection, we use the bandwidth values

used in DGZ, although these values may not be optimal. To compute the oracle efficient median

estimates: q̂e
0.5,1(x1) and q̂e

0.5,2(x2) (see (3.2)), we need values for Q̂∗
α,−1 and Q̂∗

α,−2 (see 3.1). The

latter two in require q̂∗0.5,1(x1) and q̂∗0.5,2(x2) (see (2.3)), which in turn depend on Q̂0.5(x1, x2)

(see (2.4)). Thus, we need different bandwidth values at various stages. Instead of a single

value, we let h (used for Q̂0.5(x1, x2)) vary with the variability of the covariates in the following

way. For smoothing in the direction of X1, h = 3s1n
−1/5 and for smoothing in the direction of

X2, h = s2n
−1/5 where sk is the sample standard deviation of Xk (k = 1, 2). We also need to

choose h1 and h2. We use {h1 = 3s1n
−1/5, h2 = s2n

−1/5} for q̂∗0.5,1(x1) and {h1 = s2n
−1/5, h2 =

3s1n
−1/5} for q̂∗0.5,2(x2). Finally, we take he = h.

Table 1: The average absolute deviation errors (AADE) of the estimated additive components.

γ n q̃0.5,1(·) q̃0.5,2(·)

OEE DGZ Back-fitting OEE DGZ Back-fitting

0.2 100 0.0383 0.1374 0.0597 0.1124 0.1818 0.1425

200 0.0324 0.1066 0.0511 0.0883 0.1272 0.1120

400 0.0214 0.0734 0.0431 0.0678 0.0936 0.0889

800 0.0143 0.0625 0.0264 0.0546 0.0703 0.0704

0.8 100 0.0522 0.1365 0.1124 0.1491 0.4865 0.1783

200 0.0505 0.1093 0.1263 0.1232 0.4350 0.1767

400 0.0526 0.0985 0.0780 0.1027 0.4009 0.1467

800 0.0526 0.0882 0.0630 0.0928 0.3690 0.1124

We compare our median estimates q̂e
0.5,1(x1) and q̂e

0.5,2(x2) (OEE) with (DGZ) and the back-

fitting approach. The three approaches are compared based on the average absolute deviation
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error (AADE). First, the absolute deviation error (ADE) for each estimated function q̃0.5,k(·),
k = 1, 2 is computed at each replication j, i.e. ADEj(k) = Average{|q̃0.5,k(Xi,k)− q0.5,k(Xi,k)|}n

i

(j = 1, . . . , 41; k = 1, 2) where the average is only taken for Xk ∈ [−2, 2], to avoid data sparsity.

Then, the AADE is defined as the average of the ADE over the 41 replications. In Table 1, we

report the AADE values by changing γ and/or n.

When γ = 0.2 and n ≤ 200, the OEE is significantly more accurate than DGZ. While the

performance of the three estimators improves with increasing sample size, the OEE maintains

its superiority at all sample sizes. For γ = 0.8, the performance of the three estimators decreases

although the OEE still achieves a decent accuracy at all sample sizes especially for the estimation

of q0.5,1(·). The DGZ is highly inaccurate even at sample sizes as large as n = 800. Although

the back-fitting approach tends to converge a lot faster than DGZ, its accuracy is still worse

than OEE. From the above simulation experiment, we observe that the OEE is not only a

superior approach when compared to existing kernel approaches, it is also robust against highly

correlated covariates. For large sample sizes, the back-fitting approach tend to be competitive

against OEE. One advantage of the OEE is that it is computed in two easy and fast steps with

guaranteed convergence while the back-fitting is iterative and convergence is not assured.

5 Additive models for ambulance travel times

The most common performance measure of emergency medical service (EMS) operations is the

fraction of calls with a response time below one or more thresholds. For instance, reaching 90%

of urgent urban calls in 9 minutes is a common target in North America and the National Health

Service in the U.K. sets targets of 75% in 8 minutes and 95% in 14 minutes for urgent urban

calls (Budge, Ingolfsson and Zerom, 2008). Note that these performance targets correspond

to quantiles of the response time distribution. Budge et al. (2008) introduce the following

semi-parametric model to predict the travel time (travel time of an ambulance to the scene of

an emergency is typically the largest component of response time) distribution of high-priority

calls for the city of Calgary, Canada,

Yi = µ(X1,i,X2,i)e
(σ Eα,i), (i = 1, . . . , n), (5.1)

where i denotes a 911 call, Y denotes travel time and the two predictors X1 and X2 are network

distance and time-of-day, respectively. The error Eα,i follows a standard t-distribution with

τ degrees of freedom, i.e. Eα,i ∼ tτ (0, 1) and σ is a scaling parameter. Under this set-up,

12



the function µ(x1, x2) represents the conditional median of Y given (X1,X2) = (x1, x2). In

2003, Calgary EMS responded to n = 7457 high priority calls that involves heart problems,

breathing problems, traffic accident, building fire, unconsciousness, house fire, fall, convulsions

and seizures, hemorrhage and lacerations, traumatic injuries, and unknown problem.

Budge et al. (2008) assume that the conditional median of travel time to be additive,

µ(x1, x2) = µ0 + µ1(x1) + µ2(x2), (5.2)

where µ0 is a constant and no parametric form is imposed on the functions µ1(x1) and µ2(x2)

except that they should be arbitrary twice continuously-differentiable. With (5.2), the travel

time distribution can be fully characterized by conditional quantiles as follows,

Qα(X1,i,X2,i) = [µ0 + µ1(X1,i) + µ2(X2,i)]e
(σ Qα(τ)), (5.3)

where Qα(x1, x2) denotes the α-th conditional quantile of Y given (X1,X2) = (x1, x2) and Qα(τ)

is the α-th quantile of a tτ (0, 1)-distribution. Note that, under the above model set-up, the α-th

conditional quantile of travel time at all α is in fact additive, i.e.,

Qα(X1,i,X2,i) = cα + qα,1(X1) + qα,2(X2), (5.4)

where cα = µ0e
(σ Qα(τ)), qα,1(x1) = µ1(x1) e

(σ Qα(τ)) and qα,2(x2) = µ2(x2)e
(σ Qα(τ)).

Motivated by the additive conditional quantile set-up (5.4), our aim is to compare our oracle

efficient estimates of the additive quantiles and the corresponding estimates from the semi-

parametric approach. It should be noted that the paper of Budge et al. (2008) has a much

wider scope and our aim here is only illustrative. Although limited in scope, this example

serves two purposes. First, we illustrate how to implement our estimator in practice with

a novel data set. Second, we use our estimates to validate, albeit indirectly, the distributional

assumption of the semi-parametric model. Although both the semi-parametric approach and the

non-parametric approach rely on an underlying additive structure, the non-parametric estimator

does not impose an assumption on the distribution of the travel time and hence is more general.

We consider three quantile levels α = 0.25, 0.5 and 0.75. In the estimation of the additive median

components (µ1(·) and µ2(·)) for the semi-parametric model, we use cubic smoothing splines

with degrees of freedom chosen via minimization of Akaike’s information (AIC) criterion. All

unknown components of the semi-parametric model are estimated using the penalized maximum

likelihood algorithm of Rigby and Stasinopoulos (2005) which is readily available in the R library

GAMLSS.
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To implement our oracle efficient estimator, we need to select bandwidth values. As in Section 4,

we assume that the bandwidth values used to estimate q̂∗α,u are the same as those for estimating

q̂e
α,u But, at the same time, to allow varying level of smoothness for the two additive quantile

functions (corresponding to distance and time-of-day), we adopt separate bandwidth values. So,

for each quantile level α, we select two bandwidth values using a rule-of-thumb suggested by

Fan and Gijbels (1996) and also adopted by Horowitz and Lee (2005). As an alternative one

may also use the data-driven bandwidth selection method by Yu and Lu (2004). We obtain the

following bandwidth values for smoothing in the direction of X1 (distance): 0.58 (α = 0.5), 0.62

(α = 0.25), and 0.65 (α = 0.75). Similarly, for smoothing in the direction of X2 (time-of-day),

the selected bandwidth values are 1.13 (α = 0.5), 1.29 (α = 0.25), and 1.06 (α = 0.75). We use

the standard normal density for all kernel functions: K1(·), K2(·), K(·), and Ke(·).

In Figure 1 we plot the conditional median estimates for both our estimator and the semi-

parametric approach. Those in panel (a) and panel (c) correspond to our median estimates

corresponding to distance (X1) and time-of-day (X2), respectively. The confidence intervals (at

the 95% level) for both median estimates are based on the asymptotic variance given in equa-

tion 3.7 although we do not do any bias correction. The unknown components of the asymptotic

variance are calculated using kernel estimates. On the other hand, panel (b) and panel (d) show

the estimated median functions µ̂1(x1) and µ̂2(x2) from the semi-parametric method. Compar-

ing the corresponding median estimates from the two approaches, it is interesting to see that

both produce closely similar estimated functions. The only difference is that our estimates are

not as smooth. In Figure 2 we plot the estimated additive conditional quantile functions for

α = 0.25 (panels (a) and (b)) and for α = 0.75 (panels (c) and (d)). Solid lines correspond to

our estimates and dashed lines to the semi-parametric approach. Note that the general shape

of both quantile functions is similar to those of the median for both distance and time-of-day.

As in the case of median, the estimates from the proposed approach are less smooth. It is also

interesting to see that the estimated quantiles from both approaches are very close although

they seem to differ slightly in their estimated peaks. It should be noted that quantile estimates

of the semi-parametric approach are functions of the estimated medians µ̂1(·) and µ̂2(·) as well

as σ̂ and τ̂ . We find that σ̂ = 0.24 and kurtosis τ̂ = 3.35 where the latter estimate indicates

leptokurtosis in travel times due to infrequently occuring large travel times. Given that the

semi-parametric conditional quantile estimates mimics the distribution-free conditional quantile

estimates (based on our approach), we may conclude that the conditional distribution of travel
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time is leptokurtic and the student t-distribution is a reasonable way to capture it.

For a complete discussion of the practical implications of the conditional quantile modeling

of ambulance travel times to operational planning and related decision problems, we refer the

reader to Budge et al. (2008). These authors also discuss the additive median function estimates

in the context of existing operations research models.

6 Concluding remarks

We have introduced two simple kernel estimators for estimating additive components of an

additive quantile regression model. Taken together, these estimators are are offered as a better

alternative to existing kernel-based methods (De Gooijer and Zerom, 2003 and Yu and Lu, 2004)

due to better efficiency and computational convenience. We provide asymptotic properties for

both estimators. The validity of the asymptotic properties is established for dependent data and

in particular for β-mixing processes, that include independent and time series data as special

cases. On the other hand, the asymptotic validity of Horowitz and Lee (2005) is proved only for

independent data.

It is well known that proper choice of the bandwidth is critical for the accuracy of any non-

parametric function. This paper does not address this issue for the proposed nonparametric

estimators. In practice, it is desirable to have a feasible data-driven method of choosing band-

width values. For example, Yu and Lu (2004) suggest a simple practical bandwidth selection

rule for their back-fitting approach. We defer this important topic for future research.

Appendix: Proofs

In this Appendix, we provide proofs of theoretical results. For better exposition of the deriva-

tions, we divide this section into two appendices. In Appendix A, we provide proofs of the main

results, i.e. theorems and propositions. In Appendix B, proofs are provided for intermediate

lemmas that are used in the derivations of the theorems and propositions.
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Appendix A

Proof of Theorem 2.1

We note that q̂∗α,u (xu) − q∗α,u (xu) = S1,n + S2,n + S3,n, where

S1,n =
1

nh1

n
∑

i=1

K

(

xu −Xi,u

h1

)

f̂w (Wi,u)

f̂(Xi)

(

Q̂α(Xi) −Qα(Xi)
)

,

S2,n =
1

nh1

n
∑

i=1

K

(

xu −Xi,u

h1

)

(

f̂w (Wi,u)

f̂(Xi)
− fw (Wi,u)

f(Xi)

)

Qα(Xi)

and S3,n = 1
n

∑n
i=1 ζi − q∗α,u (xu) with

ζi = ζi(xu) =
1

h1
K

(

xu −Xi,u

h1

)

fw (Wi,u)Qα(Xi)

f(Xi)
. (A.1)

Hereby, we investigate S1,n, S2,n and S3,n in the following three steps, in a reverse order.

We first consider S3,n. Using equation (1.2), C1, variable substitution, Taylor expansion, we

have

IEζi =

∫

K (tu)Qα(xu + h1tu, wu)fw (wu) dtudwu = cα +

∫

K (tu) qα,u(xu + h1tu)dtu

= q∗α,u(xu) +
q
(p)
α,u(xu)

p!
κph

p
1 + o (hp

1) . (A.2)

Let ζ̄i = h
1
2
1 (ζi − IEζi). By variable substitution, Taylor expansion and i) of C4, it can be

inferred that

IEζ̄2
i = h2

1

∫ (

K (tu)

h1

)2 Q2
α(xu + h1tu, wu)f2

w (wu)

f (xu + h1tu, wu)
dtudwu(1 + o(1)) = σ2

2(1 + o(1)) (A.3)

where σ2
2 is as defined in Theorem 2.1. Using C6 and variable substitution, it follows that

cov(ζ̄1, ζ̄i+1) = O(h1). Let mn be a sufficiently large integer with the restriction mnh1 → 0.

For δ > 2 introduced in C4, by Davydov (1968) inequality, C4 and the fact that
(

IE|ζ̄1|δ
)

2
δ =

O

(

h
2
δ
−1

1

)

, we obtain

n
∑

i=mn

(n− i)|cov(ζ̄1, ζ̄i+1)| ≤ Cn

n
∑

i=mn

π
1− 2

δ
i

(

IE|ζ̄1|δ
) 2

δ
= o(1).

Hereby, we know that

ID

(

n
∑

i=1

ζ̄i√
n

)

=IEζ̄2
1 +

(

mn
∑

i=1

+

n
∑

i=mn+1

)

2(n − i)

n
cov(ζ̄1, ζ̄i+1) = σ2

2(1 + o(1)) (A.4)

16



where the operator ID is defined in Lemma 2. Then, in view of (A.4), C4, C5, and following the

same line as the proofs of (32)-(35) in Cai and Ould-Säıd (2003), we infer that

1√
n

n
∑

i=1

ζ̄i → N(0, σ2
2). (A.5)

Thus, it follows from (A.5) and (A.2) that

√

nh1

(

S3,n − q
(p)
α,u(xu)κp

p!
hp

1

)

→ N
(

0, σ2
2

)

. (A.6)

Moving to S2,n, we first write it as S2,n = I1 − I2 + I3 + I4 + I5, where

I1 =
1

nh1

n
∑

i=1

K

(

xu −Xi,u

h1

)

(

f̂w (Wi,u) − IEif̂w (Wi,u)
)

(

1

f̂(Xi)
− 1

f(Xi)

)

Qα(Xi),

I2 =
1

nh1

n
∑

i=1

K

(

xu −Xi,u

h1

)

f̂(Xi) − f(Xi)

f2(Xi)
Qα(Xi)IEif̂w (Wi,u) ,

I3 =
1

nh1

n
∑

i=1

K

(

xu −Xi,u

h1

)

(f̂(Xi) − f(Xi))
2

f̂(Xi)f2(Xi)
Qα(Xi)IEif̂w (Wi,u) ,

I4 =
1

nh1

n
∑

i=1

K

(

xu −Xi,u

h1

)

Qα(Xi)

f(Xi)

(

f̂w (Wi,u) − IEif̂w (Wi,u)
)

,

I5 =
1

nh1

n
∑

i=1

K

(

xu −Xi,u

h1

)

Qα(Xi)

f(Xi)

(

IEif̂w (Wi,u) − fw (Wi,u)
)

and the operator IEi is as defined in Lemma 4. By C1 and the dominated convergence theorem,

it can be inferred that fw(wu) has the partial derivatives up to order p̄. Thus, it holds that

IEif̂w (Wi,u) − fw (Wi,u) =
1

hd−1
2

IEiL1

(

Wi,u −Wj,u

h2

)

− fw(Wi,u) = O
(

hp̄
2

)

.

From this, WLLN and p̄ > pd
p+1 , we know that I5 = OIP

(

hp̄
2

)

= oIP

(

(nh1)
− 1

2

)

. By virtue of the

uniform weak law of large number, it can be inferred that

f̂w (Wi,u) − IEif̂w (Wi,u) = OIP

(

(

nhd−1
2

)− 1
2

)

. (A.7)

Let

ξij = K

(

xu −Xi,u

h1

)(

L1

(

Wi,u −Wj,u

h2

)

− IEiL1

(

Wi,u −Wj,u

h2

))

Qα(Xi)

f(Xi)
,

J1 =
1

n2h1h
d−1
2

n
∑

i=1

∑

1≤j 6=i≤n

(ξij − IEjξij) and J2 =
2(n − 1)

n2h1h
d−1
2

n
∑

j=1

IEjξij.

Thus, I4 = J1 + J2. Noting that IEiξij = 0, J1 is a degenerated U-statistic. By C4 and C6,

it can be inferred that supi6=j IE|ξij |k = O
(

h1h
d−1
2

)

. Hence, applying Lemma 3 and vi) of C5,
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we obtain J1 = oIP

(

(nh1)
− 1

2

)

. To arrive at this result, we use the same techniques as that of

(A.13) - see below. To deal with J2, let

ςj = IEj

{

K

(

xu −Xi,u

h1

)

L1

(

Wi,u −Wj,u

h2

)

Qα(Xi)

f(Xi)

}

.

As in (A.4) and taking mnh1 = o(1), it follows that IE(ς21 ) = O

(

(

h1h
d−1
2

)2
)

,

mn
∑

j=1

(n− j)|cov(ς1, ςj+1)| = O

(

nmn

(

h1h
d−1
2

)2
)

,

and

n
∑

j=mn+1

(n− j)|cov(ς1, ςj+1)| ≤ Cn

n
∑

j=mn+1

β
1− 2

δ
j

(

(

h1h
d−1
2

)δ
)

2
δ

= Cn

n
∑

j=mn+1

β
1− 2

δ
j

(

h1h
d−1
2

)2
.

From the above three equations, we see that ID (J2) = o
(

1
nh1

)

. Thus, J2 = oIP

(

(nh1)
− 1

2

)

and

so does for I4. We begin to handle I2. Note that

IEif̂ (Xi) − f (Xi) = O
(

n−p̄/(d+p̄)
)

= o
(

(nh1)
− 1

2

)

, (A.8)

where the last equation follows from p̄ > pd
p+1 and h1 ≤ Cn

− 1
2p+1 . Similar to the proof of I4, it

can be obtained that

1

nh1

n
∑

i=1

K

(

xu −Xi,u

h1

)

f̂(Xi) − IEif̂(Xi)

f2(Xi)
Qα(Xi)IEif̂w (Wi,u) = oIP

(

(nh1)
− 1

2

)

. (A.9)

Hereby, from (A.8), (A.9) and WLLN, it can be obtained that I2 = oIP

(

(nh1)
− 1

2

)

. Moving to

I3, using WLLN and (A.8), we know that

|f̂(Xi) − f(Xi)| ≤ |f̂(Xi) − IEif̂(Xi)| + |IEif̂(Xi) − f(Xi)| = OIP

(

n
− p̄

2(d+p̄)

)

. (A.10)

Combination of this, p̄ > pd
p+1 and WLLN implies that I3 = oIP

(

(nh1)
− 1

2

)

. Finally, from (A.10),

(A.7), WLLN and p̄ > pd
p+1 , it can be inferred that

I1 = OIP

(

n
− 1

2

(

1− d−1
d+p̄

)

· n−
p̄

2(d+p̄)

)

= oIP

(

(nh1)
− 1

2

)

.

We now consider S1,n. By the same method as that of S2,n, it can be proved that S′
1,n =

oIP

(

(nh1)
− 1

2

)

, where S′
1,n = S1,n − S′′

1,n and

S′′
1,n =

1

nh1

n
∑

i=1

K

(

xu −Xi,u

h1

)

fw (Wi,u)

f(Xi)

(

Q̂α(Xi) −Qα(Xi)
)

. (A.11)
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Inserting (B.1) into (A.11), we obtain two terms (denoted by S4,n and S5,n) where the second

(which is S5,n) is the remainder term that is of order oIP

(

(nh1)
− 1

2

)

because κ < 2p+3
3d(2p+1) . Let

ϕij = eT1B
−1
i,nKjiVji

(

II
(

Yj ≤ VijβXj

)

− II (Eα,j ≤ 0)
)

. By SLLN, κ > 1
2p+1 and Taylor expansion

for Qα(x), it could be proved that

1

nhd

∑

1≤j 6=i≤n

ϕij = O (hp) = o

(

1√
nh1

)

(A.12)

holds almost surely and uniformly for i = 1, . . . , n. Thus, by WLLN, we obtain that

1

n2h1hd

n
∑

i=1

∑

1≤j 6=i≤n

K

(

xu −Xi,u

h1

)

fw (Wi,u)

f(Xi)
ϕij = oIP

(

1√
nh1

)

.

Therefore,

S4,n =
1

n2h1hd

n
∑

i=1

∑

1≤j 6=i≤n

ηij + oIP

(

1√
nh1

)

,

where

ηij = K1

(

xu −Xi,u

h1

)

fw (Wi,u)

f(Xi)
eT1B

−1
i,nLjiAji (α− II (Eα,j ≤ 0)) .

Note that IEiηij = 0. According to H-decomposition of U-statistic,

S4,n =
1

n2h1hd

n
∑

i=1

∑

1≤j 6=i≤n

(ηij − IEjηij) +
n− 1

n2h1hd

n
∑

j=1

IEjηij + oIP

(

1√
nh1

)

.

Denote the first two terms of S4,n by S′
4,n and S′′

4,n, respectively. Trivially, S′
4,n is a degenerated

U-statistic. Therefore, by applying iv) of C5 and Lemma 3 and taking 1
s = 1 − k+1

θ − ǫ and

k = 2, we know that

(nh1)
k
2 IE

∣

∣S′
4,n

∣

∣

k ≤ (nh1)
k
2nk

(n2h1hd)k

(

1 +
n
∑

i=1

ikβ
1− 1

s
i

)

sup
1≤i6=j≤n

(

IE|ηij |sk
)

1
s

= O

(

(

nhd
(

h1h
d
)

3
θ
+ǫ
)−1

)

= o(1). (A.13)

Hereby, from this and Markov inequality, it can be inferred that S′
4,n = oIP

(

(nh1)
− 1

2

)

. To

simplify notations, let φj = φj(xu) = IEjηij . By variable substitution and h/h1 → 0, it can be

inferred that

IE(φ2
1) = α(1 − α)IE

(

IEjK

(

xu −Xi,u

h1

)

fw (Wi,u)

f(Xi)
eT1B

−1
i,nLjiVji

)2

∼ α(1 − α)h2dIE

(∫

K

(

xu − hsu −Xj,u

h1

)

eT1B
−1
2 L (s)V1 (s)

g(0|Xj + hs)f(Xj + hs)
fw

(

Wj,u + hs−u
)

ds

)2

∼ Ch1h
2dσ2

1, (A.14)
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where B2 =
∫

V1(s)V
T
1 (s)L(s)ds, and the fact eT1B

−1
2

∫

V1(s)L(s)ds = 1, which follows from

properties of the inverse matrix and the adjoin matrix, is used in the last step. Taking mnh1 =

o(1) and using the same arguments used earlier, we can obtain that

mn
∑

j=1

(n − j)|cov(φ1, φj+1)| = O
(

nmnh
2dh2

1

)

.

Further, according to Davydov’s inequality, δ > 2 in A4 and iv) of A5, it can be shown that

n
∑

j=mn+1

(n− j)|cov(φ1, φj+1)| ≤ Cn
n
∑

j=mn+1

π
1− 2

δ
j

(

hdδh1

) 2
δ

= Cnm
1−θ(1− 2

δ
)

n h2dh
2
δ
1 .

Thus using (A.14) and the above two equations, we see that ID
(

S′′
4,n

)

=
σ2
2

nh1
. Further, following

the same line of proofs as(A.5), it can be obtained that

√

nh1 ·
n− 1

n2h1hd

n
∑

j=1

φj → N
(

0, σ2
1

)

. (A.15)

From the foregoing proofs, it can be observed that 1

nh
1/2
1

∑n
i=1 ζ̄i and n−1

n2h1hd

∑n
i=1 φi are

the two leading terms for the sum S1,n + S2,n + S3,n. On the other hand, all other terms are

asymptotically negligible and convergence at the rate of oIP

(

1√
nh1

)

. For any 1 ≤ i, j ≤ n, we

note from the conditional expectation that cov
(

ζ̄i, φj

)

= 0. Therefore, the two leading terms

are asymptotically uncorrelated.

In view of the above arguments, (A.15) and (A.6), the asymptotic normal relationship (2.5)

can be inferred directly.

Proof of Proposition 2.2

Note that ĉα = 1
n

∑n
i=1 Q̂α(Xi). Let

ĉ1 =
1

n

n
∑

i=1

(

Q̂α(Xi) −Qα(Xi)
)

and ĉ2 =
1

n

n
∑

i=1

(Qα(Xi) − IEQα(Xi)) .

Then, ĉα − cα = ĉ1 + ĉ2. Similar to the proof of (A.12), it can be obtained that

ĉ1 =
1

n2hd

n
∑

i=1

∑

1≤j 6=i≤n

eT1B
−1
i,nLjiVji [α− II (Eα,i ≤ 0)] +OIP

(

hp +

(

log n

nhd

)3/4
)

.

According to iii) of C5, the remainder term is of order oIP

(

n−
p

2p+1

)

. Denote the first term on the

right hand side of the relationship above by ĉ′1. And let ηi,j = eT1B
−1
i,nLjiVji [α− II (Eα,i ≤ 0)].

Since IEjηi,j = 0, by H-decomposition of U-statistic, we have

ĉ′1 =
1

n2hd

n
∑

i=1

∑

1≤j 6=i≤n

(ηi,j − IEiηi,j) +
n− 1

n2hd

n
∑

i=1

IEiηi,j = A1 +A2.
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Since A1 is a degenerated U-statistic, by Lemma 3, iv) of C5, and taking 1
s = 1 − k+1

θ − ε and

k = 2, we have

(nh1)
k/2IE|A1|k ≤ C(nh1)

k/2n
k(supi6=j IE|ηi,j |sk)1/s

(n2hd)
k

≤ C(nh1)
k/2 n

khd/s

(n2hd)
k
≤ Ch1

nhd+ 3
θ
+ε

→ 0.

Thus, it follows that A1 = oIP

(

1√
nh1

)

. By WLLN, it can be derived that A2 = OIP

(

1√
n

)

. From

the two relationships above and ĉ2 = oIP

(

1√
nh1

)

, Proposition 2.2 holds.

Proof of Proposition 3.1

For a ∈ R
p, denote by ∆n (a, tn) = ∆n,1 (a, tn) − ∆n,1 (βxu ,0), ∆n,1 (a, tn) =

∑n
i=1 ∆i,1 (a, ti,n),

∆i,2 (a, ti,n) = ∆i,1 (a, ti,n) − ∆i,1 (a, 0),

∆i,1 (a, ti,n) =

n
∑

i=1

Ku,iVu,i

[

α− II
(

Eα,i ≤ aTVu,i + ti,n − qα,u (Xi,u)
)]

.

Let G (y|xu) be the conditional distribution function of Eα,i given that Xi,u = xu. Then, by

Taylor expansion and condition C8, it can be inferred that

IE∆n (a, tn)

nhe
=

n
∑

i=1

IE
Ku,iVu,i

nhe

[

G
(

aTVu,i + ti,n − qα,u (Xi,u) |Xi,u

)

−G
(

βT
u Vu,i − qα,u (Xi,u) |Xi,u

)]

= Bn (a− βu) +
IE (Ku,iVu,igu (0|Xi,u))

nhe

n
∑

i=1

ti,n +O
(

r2n
)

. (A.16)

From the definition of β̂xu , we know that ∆n,1

(

β̂tn , tn

)

= O(1). From this, (A.16), Lemma 12

and the following relationship

− ∆n,1 (βxu ,0) = [∆n (a, tn) − IE∆n (a, tn)] + IE∆n (a, tn) − ∆n,1 (a, tn) ,

it can be inferred that

β̂tn − βxu = −B
−1
n IE (Ku,igu (0|Xi,u)Vu,i)

nhe

n
∑

i=1

ti,n

− B−1
n

nhe

n
∑

i=1

Ku,iVu,i

[

α− II
(

Yi − cα −Qα,−u (Wi,u) − βT
xu
Vu,i ≤ 0

)]

+O

(

n−ε0

√
nhe

)

. (A.17)

In the relationship above, if we set tn = 0, then we can derive that

β̂oracle
xu

− βxu = −B
−1
n

nhe

n
∑

i=1

Ku,iVu,i

[

α− II
(

Yi − cα −Qα,−u (Wi,u) − βT
xu
Vu,i ≤ 0

)]

+O

(

n−ε0

√
nhe

)

. (A.18)

In view of Equations (A.17) and (A.18), it can be inferred that Proposition 3.1 holds.
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Proof of Theorem 3.2

Note that

Q̂∗
α,−u(Wi,u) −Q∗

α,−u(Wi,u) =
∑

1≤j 6=u≤d

[

q̂∗α,j(Xi,j) − q∗α,j(Xi,j)
]

.

We now consider the asymptotic representation of q̂∗α,j(Xi,j)−q∗α,j(Xi,j) for j 6= u. From the proof

below, we are mainly interested in its leading term. While, all other left terms are controlled at

the rate O
(

(n1+ε0h1)
− 1

2

)

and kept in the remainder term. According to the proof of Theorem

2.1, q̂∗α,j(xj)− q∗α,j(xj) includes three leading terms
κpq

(p)
α,u(xj)
p! hp

1,
1
n

∑n
k=1(ζk(xj)− IEζk(xj)) and

n−1
n2h1hd

∑n
j=1 φj(xu), see (A.2), (A.5) and (A.15). In fact, all other left terms can be controlled at

the rate O
(

(n1+ε0h1)
− 1

2

)

with probability one by slight change of the proof of Theorem 2.1. For

example, when dealing with the appeared degenerated U-statistics, we could choose a suitable

large k for the purpose of using Borel-Cantelli lemma. By following the same line as that of

Theorem 2.1 and applying Lemma 2, we could obtain the same two leading terms of q̂∗α,j(Xi,j)

as that of q̂∗α,j(xj) with xj replaced by Xi,j, which are
q
(p)
α,u(Xi,j)

p! κ2h
p
1,

1
n

∑

1≤k 6=i≤n ψk(Xi,j) and

n−1
n2h1hd

∑n
j=1 φj(Xi,u), respectively, where the function ψk(xj) = ζk(xj)− IEζk(xj) (see (A.1) for

the notation ζk(xj)). Let ηi,k =
∑

1≤j 6=u≤d ψk(Xi,j) and

ξi =
κph

p
1

p!

∑

1≤j 6=u≤d

q(p)
α,u(Xi,j) +

1

n

∑

1≤k 6=i≤d

ηi,k +
n− 1

n2h1hd

n
∑

j=1

φj(Xi,u) = ξi1 + ξi2 + ξi3. (A.19)

By virtue of the argument above, we know that, with probability one,

Q̂∗
α,−u(Wi,u) −Q∗

α,−u(Wi,u) = ξi +O
(

(n1+ε0h1)
− 1

2

)

. (A.20)

For β ∈ R
p, let f1(β) be equal to (3.3) with βxu replaced by β,

f2(β) =
1

nhe

n
∑

i=1

Ku,iρα

(

Yi − cα −Qα,−u (Wi,u) − βTVu,i

)

,

f3(β) =
1

nhe

n
∑

i=1

Ku,iρα

{

Yi + (d− 2)cα −Q∗
α,−u(Wi,u) − ξi − βTVu,i

}

and β̂3 = arg minβ f3(β). By slight change of the proof of Proposition 2.2, we know that

ĉα − cα = oIP

(

n−
ε0
4√

nhe

)

. Hereby, from this and (A.20), it can be inferred directly that

sup
β

|f1(β) − f3(β)| = OIP

(

n−
ε0
4

√
nhe

)

.

Combination of this and the fact that both f1(β) and f3(β) are linear functions leads to

√

nhe

(

β̂xu − β̂3

)

= OIP

(

n−
ε0
4

)

. (A.21)
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Note that ξi,1 = O(hp
1) = o (rn) holds with probability one and uniformly for 1 ≤ i ≤ n.

According to SLLN, it can be inferred that ξi,2 = O
(

nε0/4(nh1)
− 1

2

)

= O (rn) holds uniformly

for 1 ≤ i ≤ n, and so does for ξi3. Thus, ξi = O (rn) holds with probability one and uniformly

for 1 ≤ i ≤ n. From this and Proposition 3.1, we obtain that

β̂3 − β̂oracle
xu

=
B−1

n IE (K2,iVu,igu (0|Xi,u))

nhe

n
∑

i=1

ξi +OIP

(

(n1+2ε0he)
− 1

2

)

.

Substituting (A.19) into the right hand side of the relationship above, we denote the derived

three terms by I1, I2 and I3, respectively. Clearly,

√

nheI1 = OIP

(

√

nheh
p
1

)

= OIP

(

n−
pε0
2

)

. (A.22)

As for I2, it is of the same order as that of

1

n2

n
∑

i=1

∑

1≤j 6=i≤n

ηi,j =
1

n2

n
∑

i=1

∑

1≤j 6=i≤n

(ηi,j − IEiηi,j) +
n− 1

n2

n
∑

i=1

IEiηi,j = I21 + I22.

Since I21 is a degenerated U-statistic, by following the same line as that of (A.13), it follows

that
√
nheI21 = oIP (1). By the standard WLLN, it can be obtained that

√
nheI22 = OIP

(√
he

)

.

Therefore, we have that
√
nheI2 = oIP (1). Analogously, it can also obtained that

√
nheI3 =

oIP (1). From these two relationships and (A.22), we have that
√
nhe(β̂3 − β̂oracle

xu
) = oIP (1).

Whence, by following this and (A.21), this theorem holds.

Appendix B

Lemmas for Theorems 2.1 and Proposition 2.2

Lemmas 1, 2 and 3 are on absolutely regular processes. For the proof of Lemma 1, we refer to

Yoshihara (1978). The proofs of Lemmas 2, 3 and 4 are given by Cheng and De Gooijer (2008).

Lemma 1. Let F1 and F2 be the two distribution functions of the random vectors ξi1 , . . . , ξij

and ξij+1 , . . . , ξik . h(x1, . . . , xk) is a Borel measurable function with the bound M > 0. Then

∣

∣

∣

∣

IEh(ξi1 , . . . , ξik) −
∫

· · ·
∫

h
(

xi1, . . . , xij , xij+1 , . . . , xik

)

dF (1)
(

xi1, . . . , xij

)

dF (2)
(

xij+1 , . . . , xik

)

∣

∣

∣ ≤ 2Mπ(ij+1 − ij).

Lemma 2. Suppose that g(·, ·) is a Borel measurable function with the bound M > 0. Let

g2(·) = IEg(ξ, ·), σ(·) = ID(
∑q

i=1 g(ξi, ·)) and Uij0 = g(ξi, ξj0) − g2(ξj0), where 1 ≤ j0 ≤ n is
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fixed. Then, for any x > 0, r1 > 1 and positive integer q ≤ n
4 it holds that

IP







∣

∣

∣

∣

∣

∣

∑

1≤i≤n,i6=j0

Uij0

∣

∣

∣

∣

∣

∣

≥ x







≤ 2IE exp

{

−
(

x
4

)2

n
2qσ(ξ0) + 2

3qM
x
4

}

+
n

q
β(q) +

2r1qr1−1

xr1

∑

|i−j0|<2q

IE|Uij0 |r1 .

Lemma 3. Let Un =
∑

1≤i<j≤n hn(ξi, ξj) be a degenerated U-statistic with the symmetric kernel

hn(·, ·), i.e., for any t ∈ R, IEhn(ξi, ·) = 0. Then for k ∈ N, there exists a universal constant

C > 0 such that

IEUk
n ≤ Cnk

(

1 +

n−1
∑

i=1

ikβ
1− 1

s
i

)

Mk
sk,

where s > 1 and

Msk = sup
(i1,i2),IP

(∫

|hn(ξi1 , ξi2)|skdIP
)

1
sk

with IP being either the probability measure IP(ξi1
,ξi2

) or IPξi1
⊗ IPξi2

.

Lemma 4. Define an operator IEi as IEig(ξj , ξi) = g2(ξi) for any i 6= j. Then, under the

conditions C1 to C6, the following Bahadur representation for conditional quantiles holds almost

surely and uniformly for 1 ≤ i ≤ n that

Q̂α(Xi) −Qα(Xi) =
eT1B

−1
i,n

nhd

∑

1≤j 6=i≤n

LjiVji

(

α− II
(

Yj ≤ V T
ij βXi

))

+O

(

(

log n

nhd

) 3
4

)

, (B.1)

where Lji = L
(

Xi−Xj

h

)

, Vij = V1

(

Xi−Xj

h

)

and Bi,n = 1
hd IEi

(

LjiVjiV
T
ji g(0|Xj)

)

.

Lemmas for Proposition 3.1

We show a sequence of lemmas with proofs that help to show the result in Proposition 3.1.

Without loss of generality, in the proofs of Lemma 5 to Lemma 12, α is taken to be 1
2 , condensing

presentation of the proofs.

For a ∈ R
p, denote by Λ (a, tn) = 1

nhe

∑n
i=1 Λi and

Λi = Λi(a, ti,n) = Ku,i

(∣

∣Yi − cα −Qα,−u (Wi,u) − aTVu,i − ti,n
∣

∣

−
∣

∣Yi − cα −Qα,−u (Wi,u) − βT
xu
Vu,i

∣

∣

)

.

Lemma 5. There exists a constant M1 > 0 such that, with probability one,

|Λ (a, tn) − IEΛ (a, tn)| ≤ M1rn√
log n

(B.2)

holds uniformly for ‖a− βxu‖ = Cr
1
2
n and |ti,n| ≤ Crn, i = 1, 2, . . . , n.
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Proof. Divide the interval |t| ≤ Crn into a sequence of subintervals with equidistance ln =

rn/
√

log n. Let {vi,n} be the set of all the grid points of the number N1 = O
(√

log n
)

. For any

|si,n| ≤ Crn, i = 1, 2, . . . , n, let ti,n be the left abscissa of the corresponding subinterval. Denote

by sn = (s1,n, . . . , sn,n) and tn = (t1,n, . . . , tn,n). Next, we divide the sphere ‖a − βxu‖ = Cr
1
2
n

into a sequence of smaller areas with the length of the sides ln. The number of such kinds of

smaller areas is of order N2 =
(

r−1
n log n

)
p−1
2 . For any b in the mentioned sphere, let a be the

nearest grid point to b. Then, we have that

|Λ (b, sn) − Λ (a, tn) − IE [Λ (b, sn) − Λ (a, tn)]| ≤ ln
nhe

n
∑

i=1

(Ku,i + IEKu,i) . (B.3)

Below, we will use the fact that IE |Λi(a, tj,n)|s ≤ Cher
s
2
n for any s > 0 is used. By using Theorem

3 of Yoshihara (1978), Corollary 2.1 of Hall and Heyde (1980) and Rosenthal inequality, and

taking m = (nhe)
1
4 and constant r sufficiently large, we know that

N2IP

{

∪tn

{

|Λ (a, tn) − IEΛ (a, tn)| ≥ M1rn√
log n

}}

≤ N2

N1
∑

j=1

IP

{

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

i=1

(Λi(a, vj,n) − IEΛi(a, vj,n))

∣

∣

∣

∣

∣

≥ nh2rn
N1

√
log n

}

≤ N2

C log n
∑

j=1

{

C(r)

m
∑

l=1

nIE |Λi(a, vj,n)|r +
[
∑n

i=1E(Λ2
i (a, vj,n))

]
r
2

(

m−1r−1
n

)r + nπ (m)

}

≤ CN1N2

{

mr+1

(

(log n)2

nhern

)
r
2

+ nπ(m)

}

≤ C

n (log n)2
, (B.4)

where C(r) is a constant only related to r, and the condition C4 on θ is used in the last

inequality. Next, we will verify (B.6). Let L1 =
∑u

i=1Ku,i. According to Lemma 1 and the two

facts θ ≥ p+ 9 and mn = O(h−1
2 ), it can be inferred that

ID (L1) ≤ uIEK2
u,1 + u

u−1
∑

i=1

cov (Ku,1,Ku,i+1) ≤ uhe + u

mn
∑

i=1

cov (Ku,1,Ku,i+1)

+Cu
∞
∑

i=mn

πi ≤ Cuhe + umnh
2
e + Cum−(θ−1)

n ≤ Cuhe. (B.5)

For suitable large constant M1, we have that ln
nhe

nIEKu,i ≤ M1rn/
√

log n. Thus, by letting
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u = nhe
log n , it can be obtained subsequently that

N2IP

{

ln
nhe

n
∑

i=1

(Ku,i + IEKu,i) ≥M1rn/
√

log n

}

≤ N2IP

{

n
∑

i=1

(Ku,i − IEKu,i) ≥ CM1nhe

}

≤ N2

{

exp

{

(CM1nhe)
2

2vID (L1) + 2uCM1nhe

}

+
n

u
π (u)

}

≤ C

n (log n)2
. (B.6)

By virtue of Borel-Cantelli Lemma, (B.4) and (B.6), we can get that (B.2) holds.

Lemma 6. It holds uniformly for |ti,n| ≤ Crn, i = 1, 2, . . . , n, with probability one that ‖β̂tn −
βxu‖ ≤M1r

1
2
n .

The proof of the lemma above is similar to Lemma 3.2 of Honda (2000).

Denote by

ξn,i(a, ti,n) = −Ku,iVu,i

[

2II
(

Yi − cα −Qα,−u(Wi,u) − aTVu,i − ti,n ≥ 0
)

− 1
]

.

Lemma 7. There exists a constant M2 > 0 such that, with probability one,

∣

∣

∣

∣

∣

n
∑

i=1

ξn,i(a, ti,n) − 2nhegu(0|xu)fu(xu)

∫

Ke(s)V (s)V T (s)ds(a− βxu)

∣

∣

∣

∣

∣

≤M2

√

n1+ε0he

holds uniformly for ‖a− βxu‖ ≤M1r
1
2
n and |ti,n| ≤ Crn with 1 ≤ i ≤ n.

Proof. First note that, when |xi,u − xu| ≤ he, it then holds that

−qα,u(xi,u) + aTVu,i = −(qα,u(xi,u) − βT
xu
Vu,i) + (a− βxu)TVu,i = O (hp

e) + (a− βxu)TVu,i.

Thus, by using variable substitution, the mean value of the integration and Taylor expansion,

we can obtain that

n
∑

i=1

IEξn,i(a, 0) = 2
n
∑

i=1

∫

Ku,iVu,i

∫ −qα,u(xi,u)+aT Vu,i

0
gu(s|xi,u)dsfu(xi,u)dxi,u

= 2nhegu(0|xu)fu(xu)

∫

Ke(s)V (s)V T (s)ds(a− βxu) +O
(

nhe|a− βxu |2 + nh2p+1
e

)

.

Divide the ball ‖a − βxu‖ ≤ M1r
1
2
n into a sequence of smaller cubics with the length of the

side ln = rn. Thus, the total number of different smaller cubics is of order r
− p

2
n . Denote by
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ηi = Ku,iII
(∣

∣Yi − cα −Qα,−u(Wi,u) − aTVu,i

∣

∣ ≤ Crn
)

. For any b in the mentioned ball, a is the

corresponding nearest grid point. Clearly, we have that
∣

∣

∣

∣

∣

n
∑

i=1

(ξn,i(b, ti,n) − IEξn,i(b, ti,n)) −
n
∑

i=1

(ξn,i(a, 0) − IEξn,i(a, 0))

∣

∣

∣

∣

∣

≤ 2

n
∑

i=1

(ηi + IEηi).

It can be calculated that nIEηi ≤ C
√
n1+ε0he. Thus, by the same method as that of (B.6) and

taking u =
√
n1+ε0he/ log n and mn = her

2
n, we obtain that

r
− p

2
n IP

{

n
∑

i=1

ηi ≥M2

√

n1+ε0he

}

≤ 1

n(log n)2
.

Analogously, by letting u =
√
n1+ε0he/ log n and mn = Che, it holds that

r
− p

2
n IP

{∣

∣

∣

∣

∣

n
∑

i=1

(ξn,i(a, 0) − IEξn,i(a, 0))

∣

∣

∣

∣

∣

≥M2

√

n1+ε0he

}

≤ 1

n(log n)2
.

Then, by Borel-Cantelli Lemma, we can obtain Lemma 7.

We now divide the ball ‖a− βxu‖ ≤M1r
1
2
n into a sequence of smaller cubics with the length

of the sides (n1−ε0he)
−1. Denote Bn by the set of all the grid points, the number of which is

of order
(

n1−ε0he

)
p
2 . Let β∗xu

be nearest grid point to the point β̂tn . Then, we can see that

‖β∗xu
− β̂tn‖ ≤ (n1−ε0he)

−1.

Lemma 8. There exists a constant M3 > 0 such that, with probability one,

max
a∈Bn

n
∑

i=1

∣

∣Ku,iVu,iII
(

|Yi − cα −Qα,−u(Wi,u) − aTVu,i − ti,n| ≤ Crn
)∣

∣ ≤M3

√

n1+ε0he

holds uniformly for |ti,n| ≤ C1rn, 1 ≤ i ≤ n.

Proof. Let

ζi(a, ti,n, C1) = Ku,iVu,iII
(

|Yi − cα −Qα,−u(Wi,u) − aTVu,i − ti,n| ≤ C1rn
)

.

Then, there exists a constant C2 > 0 such that
∣

∣

∣

∣

∣

n
∑

i=1

[ζi(a, ti,n, C1) − ζi(a, 0, C1)]

∣

∣

∣

∣

∣

≤
n
∑

i=1

|ζi(a, 0, C2)|.

Analogous to the proofs of (B.6) and (B.5), through letting u = 1
log n

√
n1+ε0he and mn = h−1

e r2n,

we know that

(

n1−ε0he

)

p
2 IP

{∣

∣

∣

∣

∣

n
∑

i=1

ζi(a, 0, C2)

∣

∣

∣

∣

∣

≥M3

√

n1+ε0he

}

≤ C

n(log n)2
.

Thus, Borel-Cantelli lemma leads to Lemma 8.
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Lemma 9. There exists a constant C > 0 such that, with probability one,
∣

∣

∣

∣

∣

n
∑

i=1

Ku,iVu,i

[

2II
(

Yi − cα −Qα,−u(Wi,u) − β̂T
tn
Vu,i − ti,n ≥ 0

)

− 1
]

∣

∣

∣

∣

∣

≤ C

holds uniformly for |ti,n| ≤ C1rn, 1 ≤ i ≤ n.

Proof. This can be obtained by the definition of β̂tn , see, for example, Lemma 3.3 of Honda

(2000).

Lemma 10. There exists a constant M4 > 0 such that, with probability one,
∣

∣

∣

∣

∣

n
∑

i=1

Ku,iVu,i

[

2II
(

Yi − cα −Qα,−u(Wi,u) − (β∗xu
)TVu,i − ti,n ≥ 0

)

− 1
]

∣

∣

∣

∣

∣

≤M4

√

n1+ε0he

holds uniformly for |ti,n| ≤ C1rn, 1 ≤ i ≤ n.

Proof. The left hand side of the relationship above is bounded by I1 + I2 with

I1 = 2

∣

∣

∣

∣

∣

n
∑

i=1

Ku,iVu,i

[

II
(

Yi − cα −Qα,−u(Wi,u) − (β∗xu
)TVu,i − ti,n ≥ 0

)

− II
(

Yi − cα −Qα,−u(Wi,u) − β̂T
tn
Vu,i − ti,n ≥ 0

)]∣

∣

∣

and

I2 =

∣

∣

∣

∣

∣

n
∑

i=1

Ku,iVu,i

[

2II
(

Yi − cα −Qα,−u(Wi,u) − β̂T
tn
Vu,i − ti,n ≥ 0

)

− 1
]

∣

∣

∣

∣

∣

,

respectively. When
∣

∣Yi − cα −Qα,−u(Wi,u) − (β∗xu
)TVu,i − ti,n

∣

∣ ≤ rn, by SLLN, it follows that

I1 ≤ 2
n
∑

i=1

Ku,iVu,iII
(∣

∣Yi − cα −Qα,−u(Wi,u) − (β∗xu
)TVu,i − ti,n

∣

∣ ≤ rn
)

≤ C
√

n1+ε0he

holds with probability one. For any two reals a1 and a2, define U(a1) = a1
|a1| for a1 6= 0 and

U(a1) = 1 if a1 = 0. Note that 2II(a1 ≥ 0) − 1 = U(a1) and |U(a1) − U(a2)| ≤ 2|a1−a2|
|a1| .

Then, if
∣

∣Yi − cα −Qα,−u(Wi,u) − (β∗xu
)TVu,i − ti,n

∣

∣ ≥ rn, from the known result
∣

∣

∣β∗xu
− β̂tn

∣

∣

∣ ≤
(n1−ε0he)

−1 and SLLN, we get to know that, with probability one,

I1 ≤ 2

n
∑

i=1

Ku,i

∣

∣

∣β∗xu
− β̂tn

∣

∣

∣

∣

∣Yi − cα −Qα,−u(Wi,u) − (β∗xu
)TVu,i − ti,n

∣

∣

≤ C
√

n1+ε0he.

In view of Lemma 9, I2 ≤ C. Therefore, this lemma holds.

Lemma 11. It holds uniformly for |ti,n| ≤ Crn, i = 1, . . . , n, with probability one that
∥

∥

∥β̂tn − βxu

∥

∥

∥ ≤
Crn.
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Proof. For a satisfying that M1r
1
2
n ≥ ‖a− βxu‖ > M5rn, it follows from Lemma 7 that

∣

∣Ku,iVu,i

[

2II
(

Yi − cα −Qα,−u(Xi,−u) − aTVu,i − ti,n ≥ 0
)

− 1
]∣

∣

≥ −M2

√

n1+ε0he +

∥

∥

∥

∥

2nhegu(0|xu)f(xu)

∫

Ke(s)V (s)V T (s)ds(a− βτ )

∥

∥

∥

∥

≥ (CM5 −M2)
√

n1+ε0he.

We could choose sufficiently large M5 > 0 such that CM5 −M2 > M4. Hence, by Lemma 10,

we have that ‖β∗xu
− βxu‖ ≤M5rn. Therefore, in view that ‖β∗xu

− β̂xu‖ ≤ (n1−ε0he)
−1, it holds

with probability one that ‖β̂tn − βxu‖ ≤ (M5 + 1)rn.

Lemma 12. With probability one, it holds uniformly for ‖a − βxu‖ ≤ Crn and |ti,n| ≤ Crn,

i = 1, 2, . . . , n, that

∆n (a, tn) − IE∆n (a, tn) = O
(

(nhe)
1
2 n−ε0

)

. (B.7)

Proof. Divide the ball ‖a − βu‖ ≤ Crn into a sequence of cubics with the length of the sides

ln = n−ε0√
nhe

. As before, the total number of different cubics N2 is of order n
3
2
pε0. For any b in the

mentioned ball, let a be the center of the cubic in which b locates. Then, we divide the interval

|t| ≤ Crn analogously to Lemma 5 but with equidistance ln. The same notations related to this

division is adopted here. Then, N1 = Cn
3
2
ε0. Clearly, we have that

|(∆n (b, sn) − ∆n (a, tn)) − IE (∆n (b, sn) − ∆n (a, tn))| ≤
n
∑

i=1

(ξi + IEξi) ,

where

ξi = Ku,iAu,iII
(∣

∣Eα,i −
(

aTVu,i + ti,n − qα,u (Xi,u)
)∣

∣ ≤ ln
)

.

Note that, for any s > 0, it holds that IE|∆i,2(a, vj,n)|s ≤ Chern. Then, by using Theorem 3 of

Yoshihara (1978), Corollary 2.1 of Hall and Heyde (1980) and Rosenthal’s inequality, and taking

m = n−6ε0(nhe)
1
4 , and letting constant r > 0 sufficiently large, we know that

N2IP
{

∪tn

{

|∆n (a, tn) − IE∆n (a, tn)| ≥ C
√

nhen
−ε0

}}

≤ N2

N1
∑

j=1

IP

{

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

i=1

(∆i (a, vj,n) − IE∆i (a, vj,n))

∣

∣

∣

∣

∣

≥ C
√
nhen

−ε0

N1

}

≤ N2

N1
∑

j=1







C(r)

m
∑

l=1

nIE|∆i(a, vj,n)|r +
[
∑n

i=1 IE(∆2
i (a, vj,n))

]
r
2

(

C
√

nhen−ε0

mN1

)r + nπm







≤ CN1N2







m

(

m2n11ε0/2

C2
√
nhe

)
r
2

+ nπm







≤ C

n(log n)2
. (B.8)
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Note that, for any s > 0, it holds that IE|ξi|s ≤ Cheln. On the other hand, by the same strategy

and taking m = n−3ε0(nhe)
1
4 , it can be derived subsequently that

N2IP

{

∪t

{∣

∣

∣

∣

∣

n
∑

i=1

(ξi + IEξi)

∣

∣

∣

∣

∣

≥ C
√

nhen
−ε0

}}

≤ N2IP

{

∪t

{∣

∣

∣

∣

∣

n
∑

i=1

(ξi − IEξi)

∣

∣

∣

∣

∣

≥ C

2

√

nhen
−ε0

}}

≤ N2

N1
∑

j=1







C(r)

m
∑

l=1

nIE|ξi|r +
[
∑n

i=1 IE(ξ2i )
]

r
2

(

C
√

nhen−ε0

mN1

)r + nπm







≤ CN1N2

{

m

(

m2n4ε0

C
√
nhe

)
r
2

+ nπm

}

≤ C

n(log n)2
. (B.9)

Then, from Borel-Cantelli Lemma, (B.8) and (B.9), we know that (B.7) holds.
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Figure 1: Panel (a) and panel (b) plot the median function with respect to distance from the

non-parametric (our approach) and semi-parametric approaches, respectively. Panel (c) and

panel (d) give the median function with respect to time-of-day from the non-parametric and

semi-parametric approaches, respectively. For better resolution, we truncate those distances

that exceed 10 kms. There are very few calls that entail distances larger than 10 kms.
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Figure 2: Panel (a) and panel (b) give the quantile function estimates for α=0.25 and for distance

and time-of-day, respectively. Panel (c) and panel (d) plot the quantile function estimates for

α=0.75 and for distance and time-of-day, respectively. In all panels, solid lines correspond to

non-parametric estimates while dashed lines correspond to semi-parametric estimates.

34


