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Abstract

Maximum likelihood has proved to be a valuable tool for fitting the

log-normal stochastic volatility model to financial returns time series. Us-

ing a sequential change of variable framework, we are able to cast more

general stochastic volatility models into a form appropriate for importance

samplers based on the Laplace approximation. We apply the methodol-

ogy to two example models, showing that efficient importance samplers

can be constructed even for highly non-Gaussian latent processes such as

square-root diffusions.
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1 Introduction

During the last two decades, a vast literature on fitting stochastic volatility

(SV) models to price return data has emerged. Parameter estimation in such

models is made difficult by the presence of a latent volatility process. The

recent approaches follow essentially two lines of attack for integrating out the

volatility: simulated maximum likelihood (SML) (e.g. Danielsson and Richard

(1993); Danielsson (1994); Shepard and Pitt (1997); Sandmann and Koopman

(1998); Liesenfeld and Richard (2003, 2006); Durham (2006, 2007); Richard

and Zhang (2007)) and Markov chain Monte Carlo (MCMC) (e.g. Omori et al.

(2007) and refrences therein). In this paper we seek to extend the class of SV

models that can be efficiently fit using SML, and hence to provide access to the

maximum likelihood toolbox.

Earlier SML approaches are mainly focused around extensions of the discrete-

time log-normal SV model (Taylor, 1982)

Xt =
√
Vt ηt, t = 1, . . . , n (1)

Vt =σ2
X exp(Ut) (2)

Ut =φUt−1 + σZt, t = 2, ..., n (3)

U1 = σ√
1− φ2

Z1 (4)

where (φ, σ, σX) are parameters and (ηt, Zt), t = 1, . . . , n are i.i.d. standard

Gaussian variates. Here, Xt is the process of price log-returns and Vt is the

volatility process. The Gaussian AR(1) process Ut is typically highly autocorre-

lated, with a small transition variance σ2. The success of Laplace approximation

(applied to U = [U1, . . . , Un]′), and the associated SML, may be traced back to

the fact that the conditional probability density function (PDF) of U given X

deviates only to a little extent from a multivariate Gaussian PDF.
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A large number of other SV models, in particular in continuous-time, have

been proposed in literature (e.g. Nelson (1990); Heston (1993); Barndorff-

Nielsen and Shephard (2001); Durbin and Koopman (2001); Jones (2003); Nielsen

and Shephard (2003)) and are typically specified as a bi-variate stochastic pro-

cess {(Xt, Vt)} where Vt > 0 is a Markov process and t indexes either continuous-

or discrete-time. Inspired by the high accuracy of Laplace-based SML for (1 -

4) in Ut, we introduce a Gaussian white noise process Zt and re-specify the

original model (Xt, Vt) as (Xt, Zt) so that the marginal distribution (and hence

the likelihood) of Xt sampled at discrete times X is equal in both models. Ap-

plication of Laplace importance samplers in the corresponding Z yield a rapidly

converging approximation of the likelihood function, and for a fixed number of

importance samples, this approximate likelihood function can be maximized to

obtain parameter estimates and approximate test statistics.

A prerequisite for this approach is that the PDF of (X,V) at a collection of

time points 1, . . . , n may be written on the form

pX,V(x,v) = pX1,V1(x1, v1)
n∏
i=2

pXi,Vi|Vi−1(xi, vi|vi−1) (5)

and that the transition probability density (TPD) pXi,Vi|Vi−1(xi, vi|vi−1) can be

evaluated efficiently. For continuous-time models, the observations need not to

be at equidistant times as long as the TPDs can be calculated accordingly.

The rest of the paper is laid out as follows. Section 2 is devoted to an

outline of the proposed change of variable methodology, and we illustrate some

important features through simple examples. Some issues of implementation

are also discussed. In section 3 we illustrate the methodology through fitting

two example models to the classic Dollar/Pound dataset (Harvey et al., 1994).

The first model considered is the log-normal model (1 - 4), but we depart from

earlier work by disregarding the underlying Gaussian process Ut. The second
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model is a semi-discrete version of the Heston model (Heston, 1993), where

the volatility process follows a continuous-time square-root diffusion. Finally,

section 4 provides some discussion.

2 Methodology

In this section, we outline the proposed methodology to transform a general

stochastic volatility model likelihood problem into a form suitable for Laplace

importance sampler analysis. First, we review some basic facts concerning vari-

able transforms and the Laplace approximation. Then we motivate and state

the general sequential change of variable map that constitutes the core of this

work. Finally we consider implementation issues.

2.1 Changes of variables and Laplace approximations

At the core of any textbook in multivariate calculus is the change of variable

formula for integrals

∫
Rn
f(v)dv =

∫
Rn
f(ψ(z))|∇ψ(z)|dz, (6)

where ψ : Rn → Rn and one-to-one, and |∇ψ(z)| is the Jacobian determinant

of ψ (Sydsæter et al., 1999). When n is large, the Laplace approximation

(Barndorff-Nielsen and Cox, 1989) and related importance samplers (Kuk, 1999;

Skaug, 2002) are the workhorses for approximating integrals on this form. The

Laplace approximation is given as

∫
Rn
f(v)dv ' f(v̂) (2π)n/2√

|∇2g(v̂)|
, v̂ = arg min

v
g(v), g(v) = − log f(v) (7)
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where |∇2g(v̂)| is the determinant of the Hessian of g(v) at the minimizer

v̂. It is easily verified that the Laplace approximation is nothing more than

approximating the integrand with an un-normalized N(v̂,
[
∇2g(v̂)

]−1) density

and calculating the exact integral over the approximate integrand. We refer to

this Gaussian PDF as the Laplace approximating density (LAD). In itself, the

Laplace approximation is fairly accurate over a large class of integrals, but the

fixed accuracy is a drawback. To work around this, we use Laplace importance

samplers (LIS)

ILIS = 1
m

m∑
i=1

f(vi)
pLAD(vi)

with vi, i = 1, . . . ,m iid sampled from the LAD. Provided that var(ILIS) <∞,

ILIS converges strongly, as m→∞, to the exact value of the integral. We shall

use the terms Laplace approximation and Laplace importance samplers more or

less interchangeably.

Combining (6) with the LIS sets the stage for the rest of the discussion

here. Since the change of variable map ψ is to our disposition, we hope that by

approximating the right hand side of (6) with a LIS, the Monte Carlo variance

can be reduced significantly compared to applying a LIS to the left hand side.

Some properties of the Laplace approximation deserve mentioning here. The

Laplace approximation is exact when the integrand is an un-normalized Gaus-

sian density. As noted in Butler (2007), the Laplace approximation is invariant

under affine changes of variable in the original integral. Both of these properties

extends trivially to the LIS and points out some directions as how to choose ψ.

An affine ψ will not improve anything, and the right hand side integrand in (6)

should be close to an un-normalized Gaussian density.

If the Laplace approximation is applied to a marginalization integral in a

latent variable model, say (X,V) with V latent, then the mode v̂ is the empirical

Bayes MAP estimate of V provided that the parameters are at their maximum
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likelihood estimate (Carlin and Louis, 1996). In the context of SV models, this

may be applied to smooth and filter the volatility process.

2.2 A toy example

Consider the following one-dimensional example. Let X ∼ N(0, V ) and V ∼

lognormal(0, σ). This may be thought of as a special case of the SV model (1

- 4) with only one observation. To calculate the PDF of X marginally, i.e. the

likelihood, we need to integrate out the latent V :

pX(x) =
∫
pX|V (x|v)pV (v)dv

=
∫

R

1√
2πv

exp(−x
2

2v
) 1
vσ
√

2π
exp(− (log(v))2

2σ2 )1{v>0}(v)dv, (8)

where 1 denotes the indicator function. Now, consider the change of variable

map v = ψ(z) = F−1(Φ(z)) = exp(σz), where Φ denotes the standard Gaussian

cumulative distribution function (CDF) and F is the CDF associated with pV .

Simple manipulations yield that the integral (8) may be rewritten as

pX(x) =
∫

R

1√
2π exp(σz)

exp(− x2

2 exp(σz)
) 1√

2π
exp(−z

2

2
)dz. (9)

Simple probabilistic arguments suggest that the variance of LISs applied to both

integrals converges to 0 as σ → 0. However, the order of magnitude in the mean

square error (MSE) of LISs applied to the two differ significantly as depicted in

Figure 1. There are several partial explanations to this. First, since the integral

(8) is taken over the positive half line, there is always positive probability that

samples from the LAD hit outside the support, slowing down convergence of the

importance sampler. By the simple change of variable, this is fixed for in (9).

The most prominent feature of this comparison is still the fact that the rate at
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Figure 1: Monte Carlo estimates of the mean square error (MSE) in the cal-
culation of pX in section 2.2 using LISs with m = 32 importance samples for
different values of the parameter σ. The MSEs are estimated over 1000 runs
of the importance samplers for each value of σ. “LIS in v” refers to the LIS
applied to (8) whereas “LIS in z” refers to a LIS applied to (9).

which (9) approaches an un-normalized Gaussian PDF is much higher, yielding

a faster converging importance sampler.

All previous authors who have applied SML to the SV model (1 - 4) have

applied an approximation to an integral corresponding to (9), and the above

example may thus seem somewhat artificial. However, more general SV models

are naturally cast in terms of the non-Gaussian variable V , leading to an integral

similar to (8). Maps on the form ψ(z) = F−1(Φ(z)) constitute the backbone in

our methodology for transforming integrals from the form (8) to (9).

Another change of variable in (9), say u = σz, would have brought us closer

to the practice of integrating in the U variables in the log-normal SV model.

This illustrates that it irrelevant whether the “small number” representing the

small transition variance in the in the volatility process sits in ψ or in the un-
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derlying Gaussian as the Laplace methodology is invariant under linear variable

changes. Throughout this paper, we will for simplicity, leave it in ψ and let the

“driving” vector Z be standard Gaussian white noise.

2.3 A sequential change of variable framework

The map introduced in the previous example generalizes naturally to the se-

quential change of variable framework

v =ψ(z) =



ψ1(z)

ψ2(z)
...

ψn−1(z)

ψn(z)


=



F−1
1 (Φ(z1))

F−1
2 (Φ(z2), v1)

...

F−1
n−1(Φ(zn−1), vn−2)

F−1
n (Φ(zn), vn−1)


. (10)

For now, we let the Fis be absolutely continuous CDFs in their first argument.

Specific choices are discussed shortly. It is easily verified, by an induction argu-

ment forward in time, that (10) is a one-to-one mapping.

The strict one-step-backward dependence is introduced to mimic the Markov

structure of (X,V) and has the pleasant feature of a triangular Jacobian. This

last fact leads to a particularly simple formula for the log-Jacobian determinant:

log |∇ψ(z)| = −n
2

log(2π)−
n∑
i=1

1
2
z2
i − log p1(v1(z))−

n∑
i=2

log pi(vi(z), vi−1(z)),

where pi is the PDF (in its first argument) defined by pi(vi, vi−1) = ∂/∂vi F (vi, vi−1).

Combining the log-determinant with the joint PDF of the SV model (5) yields
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the general modified negative log-integrand in z.

g∗(z) = n

2
log(2π)+1

2

n∑
i=1

z2
i−[log pX1|V1(x1|v1(z))+log pV1(v1(z))−log p1(v1(z))]

−
n∑
i=2

[
log pXi|Vi(xi|vi(z)) + log pVi|Vi−1(vi(z)|vi−1(z))− log pi(vi(z), vi−1(z))

]
.

(11)

2.4 Choices of Fi

In this work, we consider two specific choices of the Fis that are rather apparent

given (11). These are chosen under the constraints that they are easy to evaluate

and invert, and that they apply to a broad class of models.

If we take Fi, i = 2, . . . , n to be the CDFs of Vi|Vi−1, and let F1 be the

limiting CDF of Vt, we get a sequential change of variable map which we will

denote ψ(1). Under this formulation, the negative log-integrand (11) takes the

form:

g∗(1)(z) = n

2
log(2π) + 1

2

n∑
i=1

z2
i −

n∑
i=1

log pXi|Vi(xi|vi(z))

= n

2
log(2π) + 1

2

n∑
i=1

z2
i −

n∑
i=1

M
(1)
i (vi(z)). (12)

Typically, if the volatility process has small variance relative to 1, v(z) will vary

slowly and the standard Gaussian part will dominate the total variation of g∗(1).

Under ψ(1), the distributions of V and ψ(1)(Z) are equal, and we may interpret

the methodology as simply adding a new level in the hierarchical representation

of the SV model.

We denote by ψ(2) the sequential change of variable map when Fi, i =

2, . . . , n are taken to be the CDFs of Vi|Vi−1, Xi and F1 to be the CDF of

V1|X1. Since pi, i > 2 in this case may be written as pXi,Vi|Vi−1/pXi|Vi−1 , the
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negative log-integrand has the form

g∗(2)(z) = n

2
log(2π) + 1

2

n∑
i=1

z2
i −

n∑
i=2

log pXi|Vi−1(xi|vi−1(z))− pX1(x1)

= n

2
log(2π) + 1

2

n∑
i=1

z2
i −

n∑
i=2

M
(2)
i (vi−1(z))−M (2)

1 .

It is reasonable to assume, and we shall see this in the examples, that ψ(2)

should lead to faster convergence of the LIS since M (2) depends more weakly

on z than does M (1). The drawback is that the ψ(2) formulation typically leads

to non-standard CDFs that need to be evaluated using numerical integration

techniques.

By construction, choosing one of these maps resolves the issues concerning

the joint support of the latent process. This is of particular importance in

models where the support of Vi|Vi−1 depends on Vi−1, such as in the exponential

AR(1) process proposed by Nielsen and Shephard (2003) or the gamma AR(1)

processes proposed by Durbin and Koopman (2001).

A few more points deserve mentioning here. In both formulations, it is not

essential to have an explicit limiting distribution for the volatility process. This

can be worked around by starting the latent process in some fixed point at some

time prior to where we have data, and then let it be integrated out. Missing

data can be handled equally well in this manner. Moreover, the explicit splitting

of the PDFs into transition and observation parts seen in (11) is not strictly

necessary as the cancellation effects can be made implicitly in the computations.
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2.5 A simple explicit example

Consider a modified version of the SV model proposed in Nielsen and Shephard

(2003),

Xt =
√
Vt + γ ηt, t = 1, . . . , n

Vt =φVt−1 + λεt, t = 2, . . . , n

V1 = λ

1− φ
ε1,

where ηt, t = 1, . . . , n are iid standard Gaussian, εt, t = 1, . . . , n are i.i.d. exp(1)

and λ, γ > 0, φ ∈ [0, 1) are parameters. For simplicity, we have chosen the start

condition so that it matches the mean of the limiting distribution. Under ψ(1),

this model admits an explicit sequential change of variable map given by the

recursion

v1 =− λ

1− φ
log(1− Φ(z1))

vi =φvi−1 − λ log(1− Φ(zi)), i = 2, . . . , n

and it is easy to verify that the gradient and Hessian of g∗(1) are on the form

[
∇g∗(1)(z)

]
i
=zi +O(λ)

[
∇2g∗(1)(z)

]
ij

=


1 +O(λ) if i = j

O(λ2) otherwise

for fixed values of φ, γ and small values of λ. Moreover all the higher derivatives

are at least O(λ) as one would expect. This suggests that for small λ, the

transition standard deviation, a high degree of accuracy could be expected when

using Laplace methods. Moreover, the transition to a degenerate volatility
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process, i.e. Xt is i.i.d. N(0, γ), is smooth both theoretically and numerically.

2.6 Derivative calculations and implementation issues

For the proposed methodology to be applicable, it is essential that the first and

second order derivative arrays of the negative modified log-integrand g∗(z) can

be evaluated efficiently. The sparsity pattern in the Hessian matrix seen in the

classical treatment of the log-normal SV model (1 - 4) is in general lost with the

introduction of the change of variable map. Still, we can find efficient methods

for calculating derivatives using a combination of forward and backward mode

algorithmic differentiation (AD) techniques (Griewank, 2000).

In the current work, the derivative calculations are done in two phases based

on the local preaccumulation principle in Griewank (2000). First, we calculate g∗

forward in time, and concurrently, calculate and store the first and second order

partial derivatives of Mi and ψi. Since the dependence structure is completely

given by (10), backward accumulation of the gradient and Hessian can be done

secondly in only O(n) and O(n2) operations respectively, with only a small

multiple of n extra memory required. Note that the computational cost of the

determinant evaluation in (7) is O(n3), and hence the cost of the derivative

calculation will be neglectible when n gets large. We use the AD tool Tapenade

(Hascoët and Pascual, 2004) to generate multi-directional forward mode code

for the derivatives of ψi and Mi, whereas the backward accumulation schemes

have been hand coded. This balance between backward and forward AD yields

a fast and memory-efficient code, which is easily adapted to new models.

All non-trivial one-dimensional integrals are evaluated using the integrals of

Chebyshev interpolating polynomials (Press et al., 1992) to obtain fast repeated

evaluation of the approximate CDFs and smooth code. The optimization prob-

lem in (7) is solved using a two-step procedure following Skaug and Fournier
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(2006). First a BFGS quasi-Newton solver (Nocedal and Wright, 1999), then

a full Newton solver (Nocedal and Wright, 1999). The BFGS solver provide

stability over a large part of the parameter space, whereas the Newton solver

lets us solve the inner problem to machine precision to keep the simulated like-

lihood function smooth. Common random numbers in the importance samplers

is another remedy applied for keeping the likelihood approximation smooth. For

each of the i.i.d. standard Gaussian vectors used to simulate from the LAD, we

use four antithetics to balance for location and scale (Durbin and Koopman,

2001).

3 Application to real data

To illustrate the proposed methodology, we fit two models to the classic data set

of log-returns of the Dollar/Pound exchange rate from 01/10/1981 to 28/06/1985

(Harvey et al., 1994). The data consist of a total of n = 945 log-return obser-

vations.

The first model is the log-normal SV model (1 - 4), but with the latent pro-

cess taken to be Vt in (2), i.e. the process with log-normal marginals. This ex-

ample is included for two reasons. First, it shows that the current methodology

gives accurate results compared to highly model-specific methods in previous

work. Secondly, it provides a reference for comparison between the two mod-

els. The second example considers a simplified semi-discretized version of the

Heston model (Heston, 1993) where the volatility process follows a square-root

diffusion. Simulated likelihood analysis under such a volatility process is, to our

knowledge, new.

In both examples, we use m = 128 samples from the LAD, based on 32 i.i.d.

standard Gaussian vectors.
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3.1 The log-normal SV model

The log-normal SV model fitted to the classic Dollar/Pound data have been

thoroughly analyzed by Harvey et al. (1994); Shepard and Pitt (1997); Durbin

and Koopman (2001); Liesenfeld and Richard (2006) using simulated likelihood

and MCMC methods. Common for the simulated likelihood approaches is that

the latent process is taken to be the Gaussian AR(1) process (3), thus yielding

a near-Gaussian integrand suitable for straight forward LIS. Here, we disregard

the Gaussian process Ut, and apply the methodology directly to Vt, so that our

ψ(1) map is equivalent to the approach taken by previous authors.

The setup is as follows. We first estimate the parameters for the Dol-

lar/Pound data 100 times with different seeds in the importance sampler. This

is done to assess the convergence of the importance samplers for the chosen value

of m. For a single simulation (seed) in the ψ(2) formulation, the function mini-

mizer failed to meet the convergence criterion, and this simulation replica was

ignored. We take the mean of the parameter estimates (column 1 in Table 1) to

be our “best estimates”. Then we conduct a parametric bootstrap experiment

using 100 simulated data sets each of length n = 945, with the mean parame-

ter estimates as “true” parameters. Resulting estimates of bias, variance and

correlation are summarized in Table 1.

The most prominent feature of this analysis is that the Monte Carlo standard

errors for ψ(2) are reduced by a factor ≈ 4 relative to those of ψ(1) using the same

number of importance samples. This supports the hypothesis that ψ(2) takes the

modified negative log-integrand (11) closer to a quadratic form. The parameter

estimates are very much in accordance with those presented in previous work,

e.g. (φ, σ, σX) = (0.9731, 0.1726, 0.6338) in Durbin and Koopman (2001). The

parametric bootstrap based standard errors and covariance matrices are also

much in accordance with those reported in the previous work.

14



Monte Carlo Parametric bootstrap
MC Mean MC S.E. Bias S.E. Correlations

φ σ σX
ψ(1)

φ 0.9742 0.0012 0.0095 0.0176 1 -0.5975 0.0403
σ 0.1709 0.0041 -0.0101 0.0344 1 -0.1279
σX 0.6317 0.0014 -0.0061 0.0709 1
l -918.662 0.2554

ψ(2)

φ 0.9741 0.0003 0.0095 0.0177 1 -0.5963 0.0391
σ 0.1715 0.0007 -0.0105 0.0344 1 -0.1263
σX 0.6315 0.0003 -0.0061 0.0708 1
l -918.648 0.0657

Table 1: Parameter estimates for the log-normal SV model fit to the Dol-
lar/Pound data. The first two columns show the mean and standard deviation
calculated across the maximum likelihood estimations using different seeds in
the importance sampler. l denotes the negative log-likelihood approximation.
The remaining columns show the results of the parametric bootstrap experi-
ment.

3.2 A semi-discrete version of the Heston model

The Heston model (Heston, 1993) in a fairly general form may be written as the

stochastic differential equation (Aït-Sahalia and Kimmel, 2007)

d

 st

Vt

 =

 a+ bVt

β(α− Vt)

 dt+

 √(1− ρ2)Vt ρ
√
Vt

0 σ
√
Vt

 d
 B1

t

B2
t

 , (13)

where st is the log-price and (B1
t , B

2
t ) are independent standard Brownian mo-

tions. To be consistent with log-normal SV model we assume that observations

are on a daily time scale, and simplify the model (to keep the exposition clear

without too many technicalities) using Euler discreteization with time-step 1 on

the price process and set a = b = ρ = 0. Then

st+1 = st +
√
Vtηt =⇒ Xt = st+1 − st =

√
Vtηt

15



where ηt are i.i.d. N(0, 1) shocks, Xt is the process of log-returns and Vt as

in (13). These simplifications may be interpreted as observing the continuous-

time volatility process with multiplicative noise at a collection of discrete times

t = 1, . . . , n.

The volatility process is strictly positive when 2αβ > σ2 and for β > 0, the

process is stationary and has the property of mean reversion towards the long

run mean α. The TPD can be shown to be a scaled non-central χ2 (Cox et al.,

1985) and the marginal distribution is a gamma. See Cox et al. (1985) for a

complete characterization of these properties.

In all of the computations, we use a re-normalized saddlepoint approximation

(Butler, 2007) to the non-central χ2 density to obtain fast, stable and smooth

evaluation over the whole parameter space. The setup is as in the previous

example with 100 maximum likelihood estimations of the Dollar/Pound data

set using different seeds and 100 parametric bootstrap estimations. In the ψ(2)

computations, two runs for both Monte Carlo and parametric bootstrap failed

to converge, and were consequently ignored.

The results are given in Table 2, and again we see that an approximate

four-fold decrease in Monte Carlo error when switching from ψ(1) to ψ(2).

3.3 Comparison and diagnostics

Since the price return process in both models is linked to the volatility process

in the same manner, we may directly compare the estimated volatility processes.

A brief numeric summary of the volatility processes and resulting properties of

the price return data are given in Table 3. We see that the volatility process

of the semi-discrete Heston model is estimated to have a smaller marginal stan-

dard deviation and higher temporal correlation than the log-normal counterpart.

This is further reflected in the empirical Bayes smoothed volatilities presented
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Monte Carlo Parametric bootstrap
MC Mean MC S.E. Bias S.E. Correlations

α β σ

ψ(1)

α 0.5425 0.0225 -0.0328 0.1154 1 -0.2206 0.0615
β 0.0194 0.0046 -0.0060 0.0120 1 0.7525
σ 0.0959 0.0079 -0.0043 0.0209 1
l -920.322 1.0006

ψ(2)

α 0.5376 0.0049 -0.0408 0.1197 1 -0.2667 -0.0119
β 0.0200 0.0011 -0.0064 0.0126 1 0.7674
σ 0.0991 0.0025 -0.0055 0.0230 1
l -920.148 0.2362

Table 2: Parameter estimates and parametric bootstrap summary for the semi-
discrete Heston model. See the caption of Table 1 for details.

Model E[Vt] Std[Vt] Skewness[Vt] Corr(Vt, Vt+1) Std[Xt] Kurtosis[Xt]
Log-normal 0.5317 0.4689 8.1916 0.9662 0.7292 2.3327

Semi-discrete Heston 0.5376 0.3633 9.0309 0.9802 0.7332 1.3701
Data 0.7111 4.8619

Table 3: Properties of the two volatility process and the resulting log-returns, for
the Dollar/Pound data. Moments are evaluated under a stationary assumption
on {Vt} and for parameter estimates based on ψ(2).

in Figure 2. It is immediate that the AIC based on the estimated likelihood

values suggest that the log-normal SV model is the better model for these data

as the two models have the same number of parameters. Discrepancy between

the estimated and empirical standard deviations and kurtosis of the observed

data presented in Table 3 further supports this.

4 Discussion

In the current paper, we have proposed a general methodology for casting non-

Gaussian volatility problems into a form suitable for LIS-approximation of the

likelihood function. The results we have presented suggest that models with a

highly non-Gaussian volatility process can be handled in a similar way.
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Figure 2: Empirical Bayes estimates of the volatility process based on the com-
plete Dollar/Pound dataset under ψ(2). The upper (positive) estimate is from
the log-normal SV model. The lower (negative) estimate is from the semi-
discrete Heston model and has been negated to make the plot clearer. The gray
curve is the actual data.
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We have gone to some length to keep the proposed framework fairly general,

so there is clearly scope for tuning for specific models. One such example, given

that the specific volatility process limiting density has the same support as

the transition density, would be to take the Fis to be the CDFs of Vi|Xi. This

formulation has the fortunate property of preserving the tri-diagonal form of the

Hessian, but the performance of the LIS is dependent on the mixing properties

of the volatility process.

For a specific model, it is natural to ask which of the sequential change of

variable maps is preferable from a computational perspective. Judging from the

two example models considered here, one need about a 16-fold increase in the

number of importance samples to obtain the same precision for ψ(1) as for that

of ψ(2) (column 2 in Tables 1 and 2). For models that have an explicit ψ(1),

this may still be preferable, as most of the computational burden in the current

implementation lies in the evaluation and inversion of the Fis. If the sequential

change of variable map cannot be made explicit, one is almost always certain

to be better off with ψ(2).

The idea of changing the integration variables is not new (Mackay, 1998).

Still, it is an area that has received very little attention in the latent variable

maximum likelihood literature, considering its huge potential.

The examples presented in this work do by no means deplete the potential of

these methods. There are no immediate reasons why models displaying asym-

metries and other real-world properties of financial time series should not work,

as long as the corresponding TPDs may be computed efficiently. In the con-

text of continuous-time models, the TPD-expansions of Aït-Sahalia and Kimmel

(2007) may prove valuable, but this is still a question that will require further

research.
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