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1. Introduction 
 

Extreme value theory is of major importance in many fields of applications 
where extreme values may appear and have detrimental effects. Such fields 
range from hydrology (Smith, 1989, Davison & Smith, 1990, Coles & Tawn, 
1996, Barão & Tawn, 1999) to insurance (Beirlant et al., 1994, Mikosch, 1997, 
McNeil, 1997, Rootzen & Tajvidi, 1997) and finance (Danielsson & de Vries, 
1997, McNeil, 1998; 1999, Embrechts et al., 1998; 1999, Embrechts, 1999). 
Actually, extreme value theory is a blend of a variety of applications and 
sophisticated mathematical results on point processes and regular varying 
functions.  

The cornerstone of extreme value theory is Fisher-Tippet's theorem for 
limit laws for maxima (Fisher & Tippet, 1928). According to this theorem, if the 
maximum value of a distribution function (d.f.) tends (in distribution) to a non-
degenerate d.f. then this limiting d.f. can only be the Generalized Extreme Value 
(GEV) distribution: 
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A comprehensive sketch of the proof can be found in Embrechts et al. (1997).  
The random variable (r.v.) X (the d.f. F of X, or the distribution of X) is said to 
belong to the maximum domain of attraction of the extreme value distribution 
Hγ if there exist constants cn > 0, dn∈ℜ such that ( ) γ

− →− HdMc d
nn

1
n  holds. 

We write X∈MDA(Hγ) (or F∈MDA(Hγ)). 
In this chapter, we deal with the estimation of the shape parameter γ known 

also as the tail index or the extreme-value index. In section 2 the general 
theoretical background is provided. In section 3, several existing estimators for γ 
are presented, while, in section 4, some smoothing methods on specific 
estimators are given and extended to other estimators, too. In section 5, 
techniques for dealing with the issue of choosing the threshold value of k, the 
number of upper order statistics required for the stimationj of γ, are discussed. 
Finally, concluding remarks are given in section 6. 



 
2. Modelling Approaches 
 

A starting point for modelling the extremes of a process is based on 
distributional models derived from asymptotic theory. The parametric approach 
to modelling extremes is based on the assumption that the data in hand (X1, X2, 
..., Xn) form an i.i.d. sample from an exact GEV d.f. In this case, standard 
statistical methodology from parametric estimation theory can be utilized in 
order to derive estimates of the parameters θ . In practice, this approach is 
adopted whenever the dataset consists of maxima of independent samples (e.g., 
in hydrology where we have disjoint time periods). This method is often called 
method of block maxima (initiated by Gumbel, 1958). Such techniques are 
discussed in DuMouchel (1983), Hosking (1985), Hosking et al. (1985), Smith 
(1985), Scarf (1992), Embrechts et al. (1997) and Coles and Dixon (1999). 
However, this approach may seem restrictive and not very realistic since the 
grouping of data into epochs is sometimes rather arbitrary, while by using only 
the block maxima, we may lose important information (some blocks may 
contain several among the largest observations, while other blocks may contain 
none). Moreover, in the case that we have a few data, block maxima cannot be 
actually implemented. 

In this chapter, we examine another widely used approach, the so-called 
‘Maximum Domain of Attraction or Non-Parametric Approach’ (Embrechts et 
al., 1997). In the present context we prefer the term ‘semi-parametric’ since this 
term reflects the fact that we make only partial assumptions about the unknown 
d.f. F. 

So, essentially, we are interested in the distribution of the maximum (or 
minimum) value. Here is the point where extreme-value theory gets involved. 
According to the Fisher-Tippet theorem, the limiting d.f. of the (normalized) 
maximum value (if it exists) is the GEV d.f. Hθ = Hγ µ σ; , . So, without making 
any assumptions about the unknown d.f. F (apart from some continuity 
conditions which ensure the existence of the limiting d.f.), extreme-value theory 
provides us with a fairly sufficient tool for describing the behavior of extremes 
of the distribution that the data in hand stem from. The only issue that remains to 
be resolved is the estimation of the parameters of the GEV d.f. ),,( σµγ=θ . Of 
these parameters, the shape parameter γ is the one that attracts most of the 
attention, since it is the parameter that determines, in general terms, the behavior 
of extremes.  

According to extreme-value theory, these are the parameters of the GEV 
d.f. that the maximum value follows asymptotically. Of course, in reality, we 
only have a finite sample and, in any case, we cannot use only the largest 
observation for inference. So, the procedure followed in practice is that we 
assume that the asymptotic approximation is achieved for the largest k 
observations (where k is large but not as large as the sample size n), which we 
subsequently use for the estimation of the parameters. However, the choice of k 



 

is not an easy task. On the contrary, it is a very controversial issue. Many 
authors have suggested alternative methods for choosing k, but no method has 
been universally accepted.  
 
3. Semi-Parametric Extreme-Value Index Estimators 
 

In this section, we give the most prominent answers to the issue of 
parameter estimation. We mainly concentrate on the estimation of the shape 
parameter γ due to its (already stressed) importance. The setting on which we 
are working is : 
Suppose that we have a sample of i.i.d r.v.’s X1, X2, ..., Xn (where X1:n ≥ X2:n ≥ 
... ≥ Xn:n are the corresponding descending order statistics) from an unknown 
continuous d.f. F. According to extreme-value theory, the normalized maximum 
of such a sample follows asymptotically a GEV d.f. σµγ ,;H , i.e., 

( )F MDA H∈ γ µ σ; , . 
In the remainder of this section, we describe the most known suggestions 

to the above question of estimation of extreme-value index γ, ranging from the 
first contributions, of 1975, in the area to very recent modifications and new 
developments. 

 
3.1 The Pickands Estimator 
 

The Pickands estimator (Pickands, 1975), is the first suggested estimator 
for the parameter ℜ∈γ  of GEV d.f and is given by the formula 
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The original justification of Pickands’s estimator was based on adopting a 
percentile estimation method for the differences among the upper-order 
statistics. A more formal justification is provided by Embrechts et al. (1997).  

The properties of Pickands’s estimator were mainly explored by Dekkers 
and de Haan (1989). They proved, under certain conditions, weak and strong 
consistency, as well as asymptotic normality. Consistency depends only on the 
behavior of k, while asymptotic normality requires more delicate conditions (2nd 
order conditions) on the underlying d.f. F, which are difficult to verify in 
practice. Still, Dekkers and de Haan (1989) have shown that these conditions 
hold for various known and widely-used d.f.’s (normal, gamma, GEV, 
exponential, uniform, Cauchy). 

A particular characteristic of Pickands’s estimator is the fact that the 
largest observation is not explicitly used in the estimation. One can argue that 
this makes sense since the largest observation may add too much uncertainty. 

Generalizations of Pickands’s estimator have been introduced sharing its 
virtues and rendering its problems. Innovations are related to both alternative 



values of the multiplicative spacing parameter ‘2’ as well as convex 
combinations over different k values (Yun, 2000; Segers, 2001a). 

 
3.2 The Hill Estimator 
 

The most popular tail index estimator is the Hill estimator, (Hill, 1975) 
which, however, is restricted to the Fréchet case 0>γ . The Hill estimator is 
provided by the formula 
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The original derivation of the Hill estimator relied on the notion of 
conditional maximum likelihood estimation method. 

The statistical behavior and properties of the Hill estimator have been 
studied by many authors separately, and under diverse conditions. Weak and 
strong consistency as well as asymptotic normality of the Hill estimator hold 
under the assumption of i.i.d. data (Embrechts et al., 1997). Similar (or slightly 
modified) results have been derived for data with several types of dependence or 
some other specific structures (see for example Hsing, 1991, as well as Resnick 
and Stărică, 1995, 1996, and 1998).  

Note that the conditions on k and d.f. F that ensure the consistency and 
asymptotic normality of the Hill estimator are the same as those imposed for the 
Pickands estimator. Such conditions have been discussed by many authors, such 
as Davis and Resnick (1984), Haeusler and Teugels (1985), de Haan and 
Resnick (1998). 

Though the Hill estimator has the apparent disadvantage that is restricted to 
the case γ>0, it has been widely used in practice and extensively studied by 
statisticians. Its popularity is partly due to its simplicity and partly due to the 
fact that in most of the cases where extreme-value analysis is called for, we have 
long-tailed d.f.’s (i.e., γ>0). However, its popularity generated a tempting 
problem, namely to try to extend the Hill estimator to the general case γ ∈ ℜ. 
Such an attempt, led Beirlant et al. (1996) to the so-called adapted Hill 
estimator, which is applicable for γ ∈ ℜ. Recent generalizations of the Hill 
estimator for γ ∈ ℜ are presented by Gomes and Martins (2001). 

 
3.3 The Moment Estimator 

 
Another estimator that can be considered as an adaptation of the Hill 

estimator, in order to obtain consistency for all γ ∈ ℜ, has been proposed by 
Dekkers et al. (1989). This is the moment estimator, given by 
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Weak and strong consistency, as well as asymptotic normality of the 
moment estimator have been proven by its creators Dekkers et al. (1989).  

 
3.4 The Moment-Ratio Estimator 
 

Concentrating on cases where 0>γ , the main disadvantage of the Hill 
estimator is that it can be severely biased, depending on the 2nd order behavior of 
the underlying d.f. F.  Based on an asymptotic 2nd order expansion of the d.f. F, 
from which one gets the bias of the Hill estimator, Danielsson et al. (1996) 
proposed the moment-ratio estimator defined by 
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They proved that MRγ̂  has a lower asymptotic square bias than the Hill 
estimator (when evaluated at the same threshold, i.e., for the same k), though the 
convergence rates are the same. 

 
3.5 Peng's and W estimators 
 

An estimator related to the moment estimator γ M  is Peng’s estimator, 
suggested by Deheuvels et al. (1997): 
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This estimator has been designed to somewhat reduce the bias of the moment 
estimator. 

Another related estimator suggested by the same authors is the W estimator 

( ) 1

2

2
1

W L
L1

2
11ˆ

−











−−=γ  , where ( )∑

=
+−≡

k

1i

j
n:)1k(n:ij XX

k
1L , j=1, 2. 

As Deheuvels et al. (1997) mentioned, Lγ̂  is consistent for any ℜ∈γ  
(under the usual conditions), while Wγ̂  is consistent only for 2/1<γ . 
Moreover, under appropriate conditions on F and )n(k , Lγ̂  is asymptotically 
normal. Normality holds for Wγ̂  only for 4/1<γ . 
 
 
 
 
3.6 Estimators based on QQ plots 
 

One of the approaches concerning Ηill’s derivation is the ‘QQ-plot’ 
approach (Beirlant et al., 1996). According to this, the Hill estimator is 
approximately the slope of the line fitted to the upper tail of Pareto QQ plot. A 



more precise estimator, under this approach, has been suggested by Kratz and 
Resnick (1996), who derived the following estimator of γ: 
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The authors proved weak consistency and asymptotic normality of the qq-

estimator (under conditions similar to the ones imposed for the Hill estimator). 
However, the asymptotic variance of the qq-estimator is twice the asymptotic 
variance of the Hill estimator, while similar conclusions are drawn from 
simulations of small samples. On the other hand, one of the advantages of the 
qq-estimator over the Hill estimator is that the residuals (of the Pareto plot) 
contain information which potentially can be utilized to confront the bias in the 
estimates when the approximation is not exactly valid. 

A further enhancement of this approach (estimation of γ based on Pareto 
QQ plot) is presented by Beirlant et al. (1999). They suggest the incorporation, 
in the estimation, of the covariance structure of the order statistics involved. 
This leads to a regression model formulation, from which a new estimator of γ 
can be constructed. This estimator is proved to be particularly useful in the case 
of bias of the standard estimators. 

 
3.7 Estimators based on Mean Excess Plots 
 

A graphical tool for assessing the behavior of a d.f. F is the mean excess 
function (MEF). The limit behavior of MEF of a distribution gives important 
information on the tail of that distribution function (Beirlant et al., 1995). MEF’s 
and the corresponding mean excess plots (MEP’s), are widely used in the first 
exploratory step of extreme-value analysis, while they also play an important 
role in the more systematic steps of tail index and large quantiles estimation. 
MEF is essentially the expected value of excesses over a threshold value u. The 
formal definition of MEF (Beirlant et al., 1996) is as follows: 
Let X be a positive r.v. X with d.f. F and with finite first moment. Then MEF of 
X is  
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The corresponding MEP is the plot of points { }0>u allfor  ),u(e,u . 
The empirical counterpart of MEF based on sample ( )n21 X,...,X,X , is 
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Usually, the MEP is evaluated at the points. In that case, MEF takes the form 
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If )H(MDAX γ∈ , γ>0, then it’s easy to show that 

( ) ( ) γ→>−= uXulnXlnEulne Xln ,  as ∞→u . 
Intuitively, this suggests that if the MEF of the logarithmic-transformed data is 
ultimately constant, then )H(MDAX γ∈ , γ>0 and the values of MEF converge 
to the true value γ. 

Replacing u, in the above relation, by a high quantile 
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by X(k+1):n, we find that the estimator )X(e n:)1k(Xln +  will be a consistent 
estimator of γ in case )H(MDAX γ∈ , γ>0. This holds when 0n/k →  as 

∞→n . Notice that the empirical counterpart of )X(e n:)1k(Xln +  is the well-
known Hill estimator. 
 
3.8 Kernel Estimators 
 

Extreme-value theory dictates that if F ∈ ( )σµγ ,;HMDA , 0>γ , then it 

holds that ( ) γ−
← ∈− RVx1F , where  ←F (.) is the generalized inverse (quantile) 

function corresponding to d.f. F. Csörgő et al. (1985) showed that for ‘suitable’ 
kernel functions K, it holds that 
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Substituting ←F  by its empirical counterpart ←
nF  (which is a consistent 

estimator of ←F ), they propose  
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as an estimator of γ, where )n(λ=λ is a bandwidth parameter, and K is a kernel 
function satisfying specific conditions. Under these conditions the authors prove 
asymptotic consistency and normality of the derived estimator. A more general 
class of kernel-type estimators for γ ∈ℜ is given by Groeneboom et al. (2001). 



 
3.9 The ‘k-records’ Estimator 
 

A statistical notion that is closely related to extreme-value analysis is that 
of records, or, more generally, k-records. The k-record values (for definition see 
Nagaraja, 1988) are themselves revealing the extremal behavior of the d.f. F, so 
they can also be used to assess the extreme-value parameter γ ∈ℜ. Berred 
(1995) constructed the estimator : 

)k2n(X)kn(X
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Under the usual conditions on k(n) (though notice that now the meaning of k(n) 
is different than before), he proves weak and strong consistency of recγ̂  while, 
by imposing 2nd order conditions on F (similar to the previous cases), he also 
shows asymptotic normality of recγ̂ .  
 
3.10 Other Semi-Parametric Estimation Methods 
 

Up to now, we have described analytically the best-known semi-parametric 
methods of estimation of parameter γ (extreme-value index) of σµγ ,;H . Still, 
there is a vast literature on alternatives estimation methods. The applicability of 
extreme-value analysis on a variety of different fields led scientists with 
different background to work on this subject and consequently derive many and 
different estimators. The Pickands, Hill and, recently, the moment estimators, 
continue to be the basis. If nothing else, most of the other proposed estimators 
constitute efforts to render some of the disadvantages of these three basic 
estimators, while others aim to generalize the framework of these. In the sequel, 
we present a number of such methods. 

As one may notice, apart from estimators applicable for any γ∈ℜ, 
estimation techniques have been developed valid only for a specific range of 
values of γ. This is due to the fact that Hγ, for γ in a specific range, may lead to 
families of d.f.’s of special interest. The most typical types are estimation 
methods for 0>γ  which correspond to d.f.’s with regularly varying tails (here 
the Hill estimator is included). Moreover, estimators for ( )2/1,0∈γ  are of 
particular interst since Hγ, ( )2/1,0∈γ  represents α-stable distributions (γ=1/α). 

Estimators for the index 0>γ , have also been proposed by Hall (1982), 
Feuerverger and Hall (1999), and Segers (2001b). More restricted estimation 
techniques for α-stable d.f.’s are described in Mittnik et al. (1998) as well as in 
Kogon and Williams (1998). Sometimes, the interest of authors is focused 
merely on the estimation of large quantiles, which in any case is what really 
matters in practical situations. Such estimators have been proposed by Davis and 
Resnick (1984) (for 0>γ ) and Boos (1984) (for 0=γ ). 



 

Under certain conditions on the 2nd order behavior of the underlying 
distribution the error of the Hill estimator consists of two components: the 
systematic bias and a stochastic error. These quantities are functions of unknown 
parameters, prohibiting their determination and, thus, the correction of the Hill 
estimator. Hall (1990), suggested the use of bootstrap resamples of small size for 
computing a series of values of γ to estimate its bias. This approach has been 
further explored and extended by Pictet et al. (1998).  Furthermore, they 
developed a jackknife algorithm for the assessment of the stochastic error 
component of the Hill estimator. The bootstrap (jackknife) methodology in 
estimation of the extreme value index has also been discussed by Gomes et al. 
(2000), where generalized jackknife estimators are presented as affined 
combinations of Hill estimators. As the authors mention, this methodology could 
also be applied to other classical extreme value index estimators. 
 
3.11 Theoretical Comparison of Estimators 
 

So far, we have mentioned several alternative estimators for the extreme-
value index γ. All of these estimators share some common desirable properties, 
such as weak consistency and asymptotic normality (though these properties 
may hold under slightly different, unverifiable in any case, conditions on F and 
for different ranges of the parameter γ). On the other hand, simulation studies or 
applications on real data can end up in large differences among these estimators. 
In any case, there is no ‘uniformly better’ estimator (i.e., an estimator that is best 
under all circumstances). Of course, Hill, Pickands and moment estimators are 
the most popular ones. This could be partly due to the fact that they are the 
oldest ones. The rest of the existing estimators will be introduced later. Actually, 
most of these have been introduced as alternatives to Hill, Pickands or moment 
estimators and some of them have been proven to be superior in some cases. In 
the literature, there are some comparison studies of extreme-value index 
estimators (either theoretically or via Monte-Carlo methods), such as those by 
Rosen and Weissman (1996), Deheuvels et al. (1997), Pictet et al. (1998), and 
Groeneboom et al. (2001). Still, these studies are confined to a small number of 
estimators. Moreover, most of the authors that introduce a new estimator 
compare it with some of the standard estimators (Hill, Pickands, Moment). 
 
3.12 An Alternative Approach: The Peaks Over Threshold Estimation Method 
 

All the previously discussed semi-parametric estimation methods were 
based on the notion of maximum domains of attraction of the generalized 
extreme-value d.f. Still, further results in extreme-value theory describe the 
behavior of large observations that exceed high thresholds, and these are the 
results which lend themselves to the so-called ‘Peaks Over Threshold’ (POT, in 
short) models. The distribution which comes to the fore in this case is the 
generalized Pareto distribution (GPD).  Thus, the estimation of the extreme-
value parameter γ or the large quantiles of the underlying d.f.’s can be 



alternatively estimated via the GPD instead of the generalized extreme-value 
distribution.  

The GPD can be fitted to data consisting of excesses of high thresholds by a 
variety of methods including the maximum likelihood method (ML) and the 
method of probability weighted moments (PWM). MLEs must be derived 
numerically because the minimal sufficient statistics for the GPD are the order 
statistics and there is no obvious simplification of the non-linear likelihood 
equation. Grimshaw (1993) provides an algorithm for estimating the MLEs for 
GPD. ML and PWM methods have been compared for data of GPD both 
theoretically and in simulation studies by Hosking and Wallis (1987) and 
Rootzén and Tajvidi (1997). A graphical method of estimation (Davison & 
Smith, 1990) is also suggested  

Here, an important practical problem is the choice of the level u of the 
excesses. This is analogous to the problem of choosing k (number of upper order 
statistics) in the previous estimators. There are theoretical suggestions on how to 
do this, based on a compromise between bias and variance – a higher level can 
be expected to give less bias, but instead gives fewer excesses, and hence a 
higher variance. However, these suggestions don’t quite solve the problem in 
practice. Practical aid can be provided by QQ plots, mean excess plots and 
experiments with different levels u. If the model produces very different results 
for different choices of u, the results obviously should be viewed with more 
caution (Rootzén & Tajvidi, 1997). 
 
4. Smoothing and Robustifying Procedures for Semi-Parametric Extreme-
Value Index Estimators 
 

In the previous section, we presented a series of (semi-parametric) 
estimators for the extreme value index γ. Still, one of the most serious objections 
one could raise against these methods is their sensitivity towards the choice of k 
(number of upper order statistics used in the estimation). The well-known 
phenomenon of bias-variance trade-off  turns out to be unresolved, and choosing 
k seems to be more of an art than a science. 

Some refinements of these estimators have been proposed, in an effort to 
produce unbiased estimators even when a large number of upper order statistics 
is used in the estimation (see, for example, Peng, 1998, or Drees, 1996). In the 
next section we present a different approach on this issue. We go back to 
elementary notions of extreme-value theory, and statistical analysis in general, 
and try to explore methods to render (at least partially) this problem. The 
procedures we use are (i) smoothing techniques and (ii) robustifying techniques. 

 
 
 
 
4.1 Smoothing Extreme-Value Index Estimators 
 



 

The essence of semi-parametric estimators of extreme-value index γ, is that 
we use information of only the most extreme observations in order to make 
inference about the behavior of the maximum of a d.f. An exploratory way to 
subjectively choose the number k is based on the plot of the estimator )k(γ̂  
versus k. A stable region of the plot indicates a valid value for the estimator. The 
need for a stable region results from adapting theoretical limit theorems which 
are proved subject to the conditions ∞→)n(k  and  0n/)n(k → . However, the 
search for a stable region in the plot is a standard but problematic and ill-defined 
practice. Since extreme events by definition are rare, there is only little data (few 
observations) that can be utilized and this inevitably involves an added statistical 
uncertainty. Thus, sparseness of large observations and the unexpectedly large 
differences between them, lead to a high volatility of the part of the plot that we 
are interested in and makes the choice of k very difficult. That is, the practical 
use of the estimator on real data is hampered by the high volatility of the plot 
and bias problems and it is often the case that volatility of the plot prevents a 
clear choice of k. A possible solution would be to smooth ‘somehow’ the 
estimates with respect to the choice of k (i.e., make it more insensitive to the 
choice of k), leading to a more stable plot and a more reliable estimate of γ. 
Such a method was proposed by Resnick and Stărică (1997, 1999) for 
smoothing Hill and moment estimators, respectively. 
 
4.1.1 Smoothing the Hill Estimator 
 

Resnick and Stărică (1997) proposed a simple averaging technique that 
reduces the volatility of the Hill-plot. The smoothing procedure consists of 
averaging the Hill estimator values corresponding to different values of the 
order statistics p. The formula of the proposed averaged-Hill estimator is : 
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where u<1, and [x] denotes the smallest integer greater than or equal to x. 
The authors proved that through averaging (using the above formula), the 

variance of the Hill estimator can be considerably reduced and the volatility of 
the plot tamed. The smoothed graph has a narrower range over its stable regime, 
with less sensitivity to the value of k. This fact diminishes the importance of 
selecting the optimal k. The smoothing techniques make no (additional) 
unrealistic or uncheckable assumptions and are always available to complement 
the Hill plot. Obviously, when considerable bias is present, the averaging 
technique offers no improvement. 

Resnick and Stărică (1997) derived the adequacy (consistency and 
asymptotic normality) of the averaged-Hill estimator, as well as its improvement 
over the Hill estimator (smaller asymptotic variance). Since the asymptotic 
variance is an increasing function of u, one would like to choose u as small as 
possible to ensure a maximum decrease in the variance. However, the choice of 



u is limited by the sample size. Due to the averaging, the smaller the u, the fewer 
the points one gets on the plot of averaged Hill. Therefore, an equilibrium 
should be reached between variance reduction and a comfortable number of 
points on the plot. This is a problem similar to the variance-bias trade-off 
encountered in the simple extreme-value index estimators. 

 
4.1.2 Smoothing the Moment Estimator 
 

Resnick and Stărică (1999) also applied their idea of smoothing to the 
more general moment estimator Mγ̂ , essentially generalizing their reasoning of 
smoothing the Hill estimator.  

The proposed smoothing technique consists of averaging the moment 
estimator values corresponding to different numbers of order statistics p. The 
formula of the proposed averaged-moment estimator, for given 1u0 << , is : 
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In practice, the authors suggest to take u=0.3 or u=0.5 depending on the sample 
size (the smaller the sample size the larger u should be). 

In this case, the consequent reduction in asymptotic variance is not so 
profound. The authors actually showed that through averaging (using the above 
formula), the variance of the moment estimator is considerably reduced only in 
the case 0<γ . In the case 0>γ  the simple moment estimator turns out to be 
superior than the averaged-moment estimator. For 0≈γ  the two moment 
estimators (simple and averaged) are almost equivalent. These conclusions hold 
asymptotically, and have been verified via a graphical comparison, since the 
analytic formulas of variances are rather complicated to be compared directly. A 
full treatment of this issue and proofs of the propositions can be found in 
Resnick and Stărică (1999). 

 
4.2 Robust Estimators Based on Excess Plots 
 

As we have previously mentioned the MEP constitutes a starting point for 
the estimation of extreme-value index. In practice, strong random fluctuations of 
the empirical MEF and of the corresponding MEP are observed, especially in 
the right part of the plot (i.e., for large values of u), since there we have fewer 
data. But this is exactly the part of plot that mostly concerns us; that is the part 
that theoretically informs us about the tail behavior of the underlying d.f.  
Consequently, the calculation of the ‘ultimate’ value of MEF can be largely 
influenced by only a few extreme outliers, which may not even be representative 
of the general ‘trend.’ The result of Drees and Reiss (1996) that the empirical 
MEF is an inaccurate estimate of the Pareto MEF, and that the shape of the 
empirical curve heavily depends on the maximum of the sample, is striking.  



 

In an attempt to make the procedure more robust, that is less sensitive to the 
strong random fluctuations of the empirical MEF at the end of the range, the 
following adaptations of MEF have been considered (Beirlant et al., 1996): 
• Generalized Median Excess Function n:)1k(n:)1]pk([

)p( XX)k(M ++ −=  
 (for p=0.5 we get the simple median excess function). 

• Trimmed Mean Excess Function n:)1k(
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The general motivations and procedures explained for the MEF and its 
contribution to the estimation of γ hold here as well. Thus, alternative estimators 
for γ>0 are : 

• ( )n:)1k(n:)1]pk([med.gen XlnXln
)p/1ln(

1ˆ ++ −=γ  

which for p=0.5 gives ( )n:)1k(n:)1]2/k([med XlnXln
)2ln(

1ˆ ++ −=γ  

(the consistency of this estimator is proven by Beirlant et al., 1996). 
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It is worth noting that robust estimation of the tail index of a two-parameter 
Pareto distribution is presented by Brazauskas and Serfling (2000). The 
corresponding estimators are of generalized quantile type. The authors 
distinguish the trimmed mean and generalized median type as the most 
competitive trade-offs between efficiency and robustness. 
 
5. More Formal Methods for Selecting k 
 

In the previous sections we have presented some attempts to derive 
extreme-value index estimators, smooth enough, so that the plot { })k(ˆ,k γ  is an 
adequate tool for choosing k and consequently deciding on the estimate )k(γ̂ . 
However, such a technique will always be a subjective one and there are cases 
where we need a more objective solution. Actually, there are cases where we 
need a quick, automatic, clear-cut choice of k. So, for reasons of completeness, 
we present some methods for choosing k in extreme-value index estimation. 
Such a choice of k is, essentially, an ‘optimal choice,’ in the sense that we are 
looking for the optimal sequence )n(k  that balances the variance and bias of the 
estimators. This optimal sequence )n(k opt  can be determined when the 
underlying distribution F is known, provided that the d.f. has a second order 
expansion involving an extra unknown parameter. Adaptive methods for 
choosing k were proposed for special classes of distributions (see Beirlant et al., 
1996 and references in Resnick and Stărică, 1997). However, such second order 
conditions are unverifiable in practice. Still Dekkers and de Haan (1993) prove 



that such conditions hold for some well-known distributions (such as the 
Cauchy, the uniform, the exponential, and the generalized extreme-value 
distributions). Of course, in practice we do not know the exact analytic form of 
the underlying d.f. So, several approximate methods, which may additionally 
estimate (if needed) the 2nd order parameters, have been developed. Notice, that 
the methods existing in the literature are not generally applicable to any 
extreme-value index estimator but are designed for particular estimators in each 
case.  

Drees and Kaufmann  (1998), proposed a sequential approach to construct 
a consistent estimator of k that works asymptotically without any prior 
knowledge about the underlying d.f. Recently, a simple diagnostic method for 
selecting k has been suggested by Guillou and Hall (2001). They performed a 
sort of hypothesis testing on log-spacings by appropriately weighting them. Both 
of these approaches have been originally introduced for the Hill estimator, but 
can be extended to other extreme-value index estimators, too. 

 
5.1 The Regression Approach 
 

Recall that according to the graphical justification of the Hill estimator, this 
estimator can be derived as the estimation of the slope of a line fitted to the k 
upper-order statistics of our dataset. In this sense, the choice of k can be reduced 
to the problem of choosing an anchor point to make the linear fit optimal. In 
statistical practice, the most common measure of optimality is the mean square 
error. 

In the context of the Hill estimator (for 0>γ ) and the adapted Hill 
estimator (for ℜ∈γ ), Beirlant et al. (1996) propose the minimization of the 
asymptotic mean square error of the estimator as an appropriate optimality 
criterion. They have suggested using 
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as a consistent estimate (as ∞→n , ∞→k , 0n/k → ) of asymptotic mean 
square error of Hill estimator ( opt

k,jw  is a sequence of weights). 
Theoretically, it would suffice to compute optMSE  for every relevant value 

of k and look for the minimal MSE value with respect to k. Note that in the 
above expression neither γ (true value of extreme-value index) nor the weights 

opt
k,jw , which depend on a parameter ρ of the 2nd order behavior of F, are known. 

So, Beirlant et al. (1996), propose an iterative algorithm for the search of the 
optimum k.  
 
5.2 The Bootstrap Approach 
 



 

Draisma et al. (1999) developed a purely sample-based method for 
obtaining the optimal sequence )n(k opt . They, too, assume a second order 
expansion of the underlying d.f., but the second (or even the first) order 
parameter is not required to be known. In particular, their procedure is based on 
a double bootstrap. They are concerned with the more general case ℜ∈γ , and 
their results refer to the Pickands and the moment estimators. 

As before, they want to determine the value of k, )n(k opt , minimizing the 
asymptotic mean square error ( )γ−γ )k(ˆEF , where γ̂  refers either to the 
Pickands estimator Pγ̂  or to the moment estimator Mγ̂ . However, in the above 
expression there are two unknown factors: the parameter γ and the d.f. F. Their 
idea is to replace γ by a second estimator +γ̂  (its form depending on whether we 
use the Pickands or the moment estimator) and F by the empirical d.f. Fn. This is 
determined by bootstrapping. The authors prove that minimizing the resulting 
expression, which can be calculated purely on the basis of the sample, still leads 
to the optimal sequence )n(k opt  again via a bootstrap procedure. 

The authors test their proposed bootstrap approach on various d.f.’s (such as 
those of the Cauchy, the generalized Pareto, and the generalized extreme-value 
distributions) via simulation. The general conclusion is that the bootstrap 
procedure gives reasonable estimates (in terms of mean square error of the 
extreme-value index estimator) for the sample fraction to be used. So, such a 
procedure takes out the subjective element of choosing k. However, even in such 
a procedure an element of subjectivity remains, since one has to choose the 
number of bootstrap replications (r) and the size of the bootstrap samples (n1). 

Similar bootstrap-based methods for selecting k have been presented by 
Danielsson and de Vries (1997) and Danielsson et al. (2000), confined to 0>γ , 
with results concerning only the Hill estimator Hγ̂ . Moreover, Geluk and Peng 
(2000) apply a 2-stage non-overlapping subsampling procedure, in order to 
derive the optimal sequence )n(k opt  for an alternative tail index estimator (for 

0>γ ) for finite moving average time series. 
 
6. Discussion and Open Problems 
 

The wide collection of estimators of the extreme value index which 
characterizes the tails of most distributions, has been the central issue of this 
chapter. We presented the main approaches for the estimation of γ, with special 
emphasis to the semi-parametric one. In sections 3 and 4 several such estimators 
are provided (Hill, Moment, Pickands, among others). Some modifications of 
these proposed in the literature based on smoothing and robustifying procedures 
have also been considered since the dependence of these estimators on the very 
extreme observations which can display very large deviations, is one of their 
drawbacks. 



Summing up, there is not a uniformly best estimator of the extreme-value 
index. On the contrary, the performance of estimators seems to depend on the 
distribution of data in hand. From another point of view, one could say that the 
performance of estimators of the extreme-value index depends on the value of 
the index itself. So, before proceeding to the use of any estimation formula it 
would be useful if we could get an idea about the range of values where the true 
γ lies in. This can be achieved graphically via QQ and mean excess plots. 
Alternatively, there exist statistical tests that tests such a hypothesis. (See, for 
example, Hosking, 1984, Hasofer & Wang, 1992, Alves & Gomes, 1996, and 
Marohn, 1998; 2000, Segers & Teugels, 2000). 

However, the 'Achilles heel' of semi-parametric estimators of the extreme-
value index is its dependence and sensitivity on the number k of upper order 
statistics used in the estimation. No hard and fast rule exists for confronting this 
problem. Usually, the scientist subjectively decides on the number k to use, by 
looking at appropriate graphs. More objective ways for doing this are based on 
regression or bootstrap. The bootstrap approach is a newly suggested and 
promising method in the field of extreme-value analysis. Another area of 
extreme-value index estimation where bootstrap methodology could turn out to 
be very useful is in the estimation (and, consequently, elimination) of the bias of 
extreme-value index estimators. The bias is inherent in all of these estimators, 
but it is not easy to be assessed theoretically because it depends on second order 
conditions on the underlying distribution of data, which are usually unverifiable. 
Bootstrap procedures could approximate the bias without making any such 
assumptions. 

Finally, we should mention that a new promising branch of extreme-value 
analysis is that of multivariate extreme-value methods. One of the problems in 
extreme-value analysis is that, usually, one deals with few data which leads to 
great uncertainty. This drawback can be aleviated somehow, by the 
simultaneous use of more than one source of information (variables), i.e., by 
applying multivariate extreme-value analysis. Such an approach is attempted by 
Embrechts, de Haan and Huang (1999) and Caperaa and Fougeres (2001). This 
technique has already been applied to the field of hydrology. See, for example, 
de Haan and de Ronde (1998), de Haan and Sinha (1999) and Barão and Tawn 
(1999). 
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