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Abstract

We study equilibria of first- and second-price all-pay auctions with resale when play-

ers’ signals are affiliated and symmetrically distributed. We show that existence of resale

possibilities introduces an endogenous element to players’ valuations and creates a sig-

naling incentive for players. We characterize symmetric bidding equilibria for both first-

and second-price all-pay auctions with resale and provide sufficient conditions for exis-

tence of symmetric equilibria. Under our conditions we show that second-price all-pay

auctions generate no less expected revenue than first-price all-pay auctions with resale.

The initial seller could benefit from publicly disclosing his private information which is

affiliated with players’ signals.
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1 Introduction

This paper studies all-pay auctions with resale. In contrast to standard auctions where only

winners are required to make payments, all-pay auctions exhibit special characteristic of

unconditional payment, that is, bidders always pay their bids regardless winning or losing.

All-pay auctions or equivalent models have been widely used to model a variety of economic

and social instances of conflict and competition such as lobbying, contests and tournaments,

political campaigns, patent races, and so on.1 Two formats of all-pay auctions are widely used

in the existing literature: first-price all-pay auctions and second-price all-pay auctions.2 They

differ only in winning bidder’ payment. The winning bidder pays his own bid in first-price

all-pay auctions, and the highest losing bid in second-price all-pay auctions. In both auctions,

all losing bidders pay their own bids. Hence, they are analogous to standard first-price and

second-price sealed-bid auctions.

Using the general symmetric model, Krishna and Morgan (1997) study all-pay auctions

by characterizing equilibrium strategies and comparing expected revenues resulting from

both first-price and second-price all-pay auctions. However, there are many instances a static

all-pay auction model could not account for. Participants in such instances often face after-

market competitions, as in the following examples.

Patent Races. Patent races are frequently formalized as all-pay auctions since resources

devoted by competitors are irreversible, regardless winning or losing. Winners in patent races

can either retain exclusive use of the innovations or license the innovations for use by other

producers. When an innovation is to be patented, the winner who comes from a research

institution is very likely to sell the patent to producers interested. On the demand side, an

incumbent monopolist possessing related or substitutable technology has more incentive than

1See, for example, Baye et al. (1993), Krishna and Morgan (1997), and Moldovanu and Sela (2001).
2Second-price all-pay auctions are better known as the war of attrition and are used to model conflicts among

animals (Maynard Smith, 1982) and struggles for survival among firms (Fudenberg and Tirole, 1986).
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a potential entrant to buy the patent.3 Hence, very often there is a secondary market for

patents. In a broader view, the resale of patented technology takes place all over the world.

In particular, the transfer of patented technology from developed countries to developing

ones promotes the economic performances of the latter. This could be evidenced by the

development of many east Asian countries.4

Lobbying. Rent-seeking activities such as lobbying play an important role in the allo-

cation of government contracts. Lobbyists make implicit payments to politicians through

campaign contributions or other channels in order to influence political decisions. Lobbying

is usually formalized as an all-pay auction since lobbyists’ up-front payments are not refund-

able to those failing to win the prize. Again there are aftermarket competitions in lobbying.

Successful lobbyists often use subcontracting to reduce their production costs that are, in

particular, strictly convex.5

Waiting-Line Competition. The allocation procedures based on a first-come-first-served

principle could be considered as waiting-line competitions. Examples include allocating tick-

ets of sports or concerts, foods or other necessities with scarcity, university parking lots or

day-care services, discounted commodities, and so on. These waiting-line allocation proce-

dures are often formalized as all-pay auctions, since players are involved into costly compe-

tition in some non-price dimensions for a limited number of prizes. No matter winning or

losing, players’ effort is sunk. Although resale is usually not allowed, in practice, speculative

behaviors are prevalent. For instance, people with lower time cost could wait in line and

profit by reselling the objects to those with higher opportunity cost of time.6

3By doing this the monopolist could maintain the market power, whereas competition results if the entrant
obtains the patent. See Gilbert and Newbery (1982).

4I thank John Morgan for pointing out this example to me.
5For general results regarding subcontracting, please refer to Kamine et al. (1989) and Gale et al. (2000).
6For example, near the end of each year in China, a large number of migrant workers have to pay much

more for train tickets than their face value in order to go back to their hometown for family reunion during the
Chinese New Year. The middlemen, or huangniu (yellow bulls), who have lower opportunity cost of time would
wait in line and make illegal profits by reselling the tickets to those who long for going home but have no time
waiting in line to buy the tickets.
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The above examples show that many realistic situations could be best analyzed through

a model that incorporates resale possibilities into all-pay auctions. It remains open to char-

acterize players’ behaviors in all-pay auctions with resale. Intuitively existence of resale

possibilities exhibits influence on bidders’ bidding behaviors in the first stage. The aftermar-

ket buyers usually have access to information revealed by the initial seller, such as submitted

bids. If the submitted bids reveal private information of primary bidders, resale price will be

responsive to those bids and a bidder’s resale profit can depend on the bid he makes in the

primary auction. Therefore, resale possibilities introduce an endogenous element to bidders’

valuations upon winning the auction and creates an incentive for primary bidders to signal

their private information to aftermarket buyers. This information connection between resale

price and submitted bids is our primary focus.

The main objective of this paper is to investigate the effect of resale possibilities on bid-

ders’ bidding behaviors and the resulting expected revenues from both first- and second-price

all-pay auctions. This paper considers a two-stage model in which an all-pay auction in the

first stage is followed by resale. For the first stage, we analyze both first- and second-price all-

pay auctions. For the second stage, we do not specify resale mechanism and simply assume

that resale is conducted through competitive market. Therefore, winners of the first-stage

auction have no bargaining power and can only affect their profits by signalling their private

information through bids. This assumption could be relaxed if there is only one aftermarket

buyer. For multiple buyers, this assumption is justified if interested buyers come to the market

randomly and each propose a take-it-or-leave-it offer to the winner.7

We extend Krishna and Morgan (1997)’s general symmetric setting to incorporate resale

possibilities into all-pay auctions. We characterize symmetric bidding equilibria for both

first- and second-price all-pay auctions with resale. Based on these equilibria, we compare

the two formats from the perspective of a revenue-maximizing seller. In addition, we examine

7In equilibrium, such offer will be accepted by the winner. It makes more sense if the winner discounts
future payoff more than the buyer does.
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the impact of information disclosure of the initial seller.

This paper is related to the literature regarding auctions with resale. Bikhchandani and

Huang (1989) present a closely related model with symmetric information applicable to trea-

sury bill auctions, where pure common values and a competitive resale market are assumed.

Resale takes place because most bidders in the first stage are speculators and bid for resale.

They characterize equilibrium bidding strategies for both discriminatory and uniform-price

auctions. Provided existence of symmetric equilibria, they show that uniform-price auctions

generate no less expected revenue than discriminatory auctions. We study all-pay auctions

with resale using a similar model, but we allow bidders’ valuations to be interdependent.

Using a model with independent private values, Haile (2003) studies auctions with re-

sale under private uncertainties. Resale takes place because of the discrepancy between the

estimated values at the time of bidding and the true values realized after the auction. He

characterizes equilibrium bidding strategies for first-price, second-price and English auctions

followed by resale which could be formalized as an optimal auction or an English auction.

He argues that the option to resell creates endogenous valuations and induces signaling in-

centives that may revert the revenue results obtained in the literature that assumes no resale.8

Assuming positively correlated signals and interdependent valuations, we show that second-

price all-pay auctions generate no less expected revenue than first-price all-pay auctions with

resale possibilities.

The rest of this paper is organized as following. Section 2 contains the model. Section

3 and 4 study second-price and first-price all-pay auctions respectively. Section 5 provides

ranking of expected revenues of these two auction formats. Section 6 examines the effect of

information disclosure. Section 7 concludes. The appendix contains all proofs.

8Similar signalling incentive is also examined in Goeree (2003).
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2 The Model

The game proceeds as following. In the first stage, N risk-neutral bidders compete for an

indivisible good in an all-pay auction–either first-price or second-price. The bidder who

submits the highest bid wins the object and pays either his own bid or the highest losing

bid, depending on the exogenously chosen auction format. All losing bidders pay their own

bids. Due to institutional or other reasons, there are some bidders who cannot participate in

the first-stage competition.9 However, they will try to obtain the object through aftermarket

bargaining with the winner. Therefore, after the primary auction is over, there is possibility

for resale.

In the second stage, potential buyers approach the primary winner in order to obtain the

object. We assume that those losers from the first stage do not participate in the aftermarket

competition. Actually in our symmetric setting of the game, if the equilibrium strategies are

nondecreasing, there is no potential gain for resale taking place within the same group of

bidders. On the other hand, it is likely that the valuation of certain aftermarket buyer exceeds

that of primary winner, therefore there may be potential gain to be realized if new entrants

bargain with the first-stage winner.

After the first-stage auction is over, we assume that the initial seller announces the win-

ning bid and the highest losing bid.10 Based on the released information, aftermarket buyers

could infer the private information held by the first-stage winner. To focus on the informa-

tion transmission given resale possibilities, we assume that resale price will be the expected

first-stage winner’s valuation of the object conditional on all publicly available information.

Therefore, the seller has no bargaining power.

9Some bidders may not be eligible to participate in certain competition for a special prize, say an monopoly
privilege. Some bidders may be excluded by strategic behaviors of a revenue-maximizing seller. See an example
in Section 5.

10This information release procedure is standard in most auction literature. Although interesting, the optimal
information disclosure is not addressed in this paper. Calzolari and Pavan (2006) studies optimal information
disclosure for a monopolist who cannot commit to prevent resale.
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For the first-stage all-pay auction, we follow the framework and notation of Krishna and

Morgan (1997) to make the analysis consistent with the literature. Prior to auction each

bidder i receives a private signal, Xi, that affects value of the object Vi defined as:

Vi = V (S,Xi,{X j} j 6=i) (1)

where S = (S1,S2, ...,Sm) are any other random variables that influence the valuation but are

not observed by any bidder. We assume that V is non-negative, continuous, increasing in all

its variables. For each i, E[Vi] < ∞. Moreover, all bidders’ valuations depend on S in the same

manner, and each bidder’s valuation is a symmetric function of other bidders’ signals.

Let X0 be private information held by the initial seller who may or may not reveal it. Let

f (S,X0,X1,X2, ...,Xn) be the joint density of random variables S,X0,X1,X2, ...,XN , where f is

symmetric in bidders’ signals. We assume that f satisfies the affiliation inequality:

f (z∨ z′) f (z∧ z′)≥ f (z) f (z′) (2)

where z∨z′ denotes the component-wise maximum of z and z′ and z∧z′ denotes the component-

wise minimum of z and z′. Roughly, this means that a high value of one of the variables, S j or

Xi, makes it more likely that the other variables also take on high values. Let [0, s̄]m× [0, x̄0]×

[0, x̄]n be the support of f , where [0, x̄]n denotes the n-fold product of [0, x̄].

Let fY1(·|x) denote the conditional density of Y1, where Y1 = max{X j} j 6=1, given X1 = x.

Standard results from Milgrom and Weber (1982) show that X1 and Y1 are also affiliated.

Throughout the paper, we make use of the following facts: FY1(y|x) and
fY1(y|x)

1−FY1(y|x) are non-

increasing in x.11 Moreover, if H is any nondecreasing function, affiliation implies that

h(a1,b1; ...,an,bn) = E[H(X1, ...,Xn)|a1 ≤ X1 ≤ b1, ...,an ≤ Xn ≤ bn] is nondecreasing in all

of its arguments. For simplicity, we also assume that if H is continuously differentiable, then

11In the appendix, we provide the detailed proof for these facts.
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E[H(X1, ...,Xn|a1 ≤ X1 ≤ b1, ...,an ≤ Xn ≤ bn] is also continuously differentiable in all its

arguments.12

A pure strategy for bidder i is a measurable function, βi : [0, x̄]→R. Such a pure strategy

is monotone if x′ ≥ x implies βi(x′)≥ βi(x).

An N-tuple of pure strategies, (β1, ...,βn) is an equilibrium if for every bidder i and every

pure strategy β′i,

EUi(β(x),x)≥ EUi(β′i(x),β−i(x−i),x) (3)

where the left-hand side, is bidder i’s expected utility given the joint strategy β, and the

right-hand side is his expected utility when he employs β′i and the others employ β−i.

The equilibrium is symmetric if β1 = · · ·βN = β. Since bidders are ex ante identical, we

are considering symmetric equilibrium bidding strategies.

3 Second-Price All-Pay Auctions with Resale

We first characterize the symmetric equilibrium for second-price all-pay auction with resale.

Without loss of generality, we analyze the game from bidder 1’s point of view. When bidder

1 submits his bid, he only observes his own private signal X1.

According to our assumption, buyers on the secondary market observe only publicly an-

nounced information and resale price is the expectation of the primary winner’s valuation

conditional on all public information. It is useful to begin with a heuristic derivation of the

first-order condition for βs to be a symmetric Nash equilibrium in strictly increasing and

differentiable strategies.13

Suppose bidders j 6= 1 follow the symmetric equilibrium strategy βs. Suppose bidder 1

receives a private signal X1 = x and bids b. If bidder 1 wins with a bid b and the secondary

12For more details about affiliation, please refer to Milgrom and Weber (1982).
13We will show later that the equilibrium strategy is indeed strictly increasing and differentiable.
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market buyers believe that he is following βs, the resale price will be

P(β−1
s (b),Y1) = E[V1|X1 = β

−1
s (b),Y1] (4)

where β−1
s denotes the inverse of βs and Y1 is the first-order statistic of (X2, ...,XN). When

bidder 1 wins the object and buyers on the secondary market believe that his private signal is

equal to x′, the expected resale price conditional on X1 and Y1 is:

v(x′,x,y)≡ E[P(x′,Y1)|X1 = x,Y1 = y] (5)

By affiliation, both P and v are non-decreasing in all their arguments. With this notation,

the expected payoff for bidder 1 is:

Π(b,x) =
Z

β−1
s (b)

0
(v(β−1

s (b),x,y)−βs(y)) fY1(y|x)dy− [1−FY1(β
−1
s (b)|x)]b (6)

Maximizing (6) with respect to b yields the first-order condition

0 =
1

β′s(β
−1
s (b))

v(β−1
s (b),x,β−1

s (b)) fY1(β
−1
s (b)|x)

+
1

β′s(β
−1
s (b))

Z
β−1

s (b)

0
v1(β−1

s (b),x,y) fY1(y|x)dy]

−[1−FY1(β
−1
s (b)|x)]

where v1 is the partial derivative with respect to β−1
s (b).

At a symmetric equilibrium, it is optimal that βs(x) = b, then we have

β
′
s(x) = v(x,x,x)

fY1(x|x)
1−FY1(x|x)

+
Z x

0
v1(x,x,y)

fY1(y|x)
1−FY1(x|x)

dy (7)
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The solution with the boundary condition βs(0) = 0 is:

βs(x) =
Z x

0
v(t, t, t)

fY1(t|t)
1−FY1(t|t)

dt +
Z x

0
k(u)du (8)

where k(u) =
R u

0 v1(u,u,y)
fY1(y|u)

1−FY1(u|u)dy.

This is only necessary condition for a symmetric equilibrium. For sufficiency, we need

the following assumption.

Assumption 1. Let ψ : R3 → R be defined by ψ(x′,x,y) = v(x′,x,y)
fY1(y|x)

1−FY1(y|x) . We assume

that for all y, (i) ψ2 > 0, and (ii) ψ12 > 0.

Given the above assumption, we have the following result.

Theorem 1. Suppose Assumption 1 hold, then a symmetric equilibrium of second-price all-

pay auction with resale is given by βs defined as

βs(x) =
Z x

0
v(t, t, t)

fY1(t|t)
1−FY1(t|t)

dt +
Z x

0
k(u)du

where k(u) =
R u

0 v1(u,u,y)
fY1(y|u)

1−FY1(u|u)dy.

Remark 1. Assumption 1 is restrictive and critical to the sufficiency result. Note that affil-

iation implies that
fY1(y|x)

1−FY1(y|x) is non-increasing in x, and v(x′,x,y) is non-decreasing in x for

every y. Therefore, part (i) ensures that the affiliation between X1 and Y1 is not so strong that

it overwhelms the increase in the expected valuation of the object, v(x′,x,y), resulting from

a higher signal x. Part (ii) is needed to ensure that the responsiveness of resale price and

primary bidders’ signalling incentive are increasing in signal.

Example 1. Suppose N = 2. Let f (x,y) = 4
9(2 + xy) on [0,1]2, and v(x′,x,y) = x′x + 1

2y.

Simple manipulation yields fy(y|x) = 4+2xy
4+x , and FY (y|x) = 4y+xy2

4+x . Then we have

ψ(x′,x,y) = v(x′,x,y)
fY1(y|x)

1−FY1(y|x)
=

(2x′x+ y)(2+ xy)
4+ x−4y− xy2
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It can be verified that all conditions in Assumption 1 is satisfied.

Using a variation of part (i) of Assumption 1, Krishna and Morgan (1997) derive sufficient

condition for a symmetric equilibrium of second-price all-pay auction (the war of attrition)

without resale. In their context, v(x,y) = E[V1|X1 = x,Y1 = y], and the symmetric equilibrium

is given by:

αs(x) =
Z x

0
v(t, t)

fY1(t|t)
1−FY1(t|t)

dt (9)

To ensure it is indeed a symmetric equilibrium, they assume that φ(·,y) is increasing for all

y, where φ(x,y)≡ v(x,y)
fY1(y|x)

1−FY1(y|x) .

Examining both equilibria, we could observe that βs(x) reduces to αs(x) if there is no

resale possibilities and the primary bidders have no incentive to signal. Resale possibilities

introduce an endogenous element to primary bidders’ valuation since bidders’ resale profit

depend on the bids they make in the primary auction. Hence primary bidders have incentives

to signal their private information to aftermarket buyers. They signal in order to convince

aftermarket buyers that the object is of high value since resale price is responsive to the

announced bids. This responsiveness is measured by v1; v1 is nonnegative and increasing in

x due to affiliation and Assumption 1.

From the analysis above, we can conclude that the information disclosing policy is cru-

cial to our characterization. In second-price all-pay auctions with resale, if only the highest

losing bid (price paid by the winner) is revealed, primary bidders’ signalling incentive will

be reduced since the winning bid conveys private information for the first-stage winner. On

the other hand, if the initial seller releases more information, the expected resale price will

not decrease, may increase based on more information. This increases the expected valuation

of bidders upon winning, hence they will bid more aggressively than otherwise.
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4 First-Price All-pay Auctions with Resale

The analysis is parallel to previous section. Again we begin with a heuristic derivation of

equilibrium. Suppose bidders j 6= 1 follow the symmetric equilibrium strategy β f . Suppose

bidder 1 receives a private signal X1 = x and bids b. If bidder 1 wins with a bid b and

aftermarket buyers believe that he is following β f , slightly abusing notation yields

P(β−1
f (b),Y1) = E[V1|X1 = β

−1
f (b),Y1]

where β
−1
f denotes the inverse of β f . When bidder 1 wins the object and buyers on the sec-

ondary market believe that his private signal is equal to x′, the expected resale price condi-

tional on X1 and Y1 is:

v(x′,x,y)≡ E[P(x′,Y1)|X1 = x,Y1 = y]

By affiliation, both P and v are non-decreasing in all their arguments. With this notation,

the expected payoff for bidder 1 is

Π(b,x) =
Z

β
−1
f (b)

0
v(β−1

f (b),x,y) fY1(y|x)dy−b (10)

Maximizing (10) with respect to b yields the first-order condition:

0 = v(β−1
f (b),x,β−1

f (b)) fY1(β
−1
f (b)|x) 1

β′f (β
−1
f (b))

+
1

β′f (β
−1
f (b))

Z
β
−1
f (b)

0
v1(β−1

f (b),x,y) fY1(y|x)dy−1

where β′f is the first derivative of β f , and v1(β−1
f (b),x,y) is the partial derivative of v with

respect to its first argument.
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At a symmetric equilibrium, β f (x) = b and thus

β
′
f (x) = v(x,x,x) fY1(x|x)+

Z x

0
v1(x,x,y) fY1(y|x)dy (11)

The solution to equation (11) with the boundary condition β f (0) = 0 is:

β f (x) =
Z x

0
v(t, t, t) fY1(t|t)dt +

Z x

0
h(u)du (12)

where h(u) =
R u

0 v1(u,u,y) fY1(y|u)dy.

The derivation is heuristic since (11) is only a necessary condition. For the sufficiency,

we need additional restriction like Assumption 1. Let Φ : R3 → R be defined by

Φ(x′,x,y) = v(x′,x,y) fY1(y|x)

One implication of Assumption 1 leads to the following lemma. The argument makes use

of the fact that FY1(y|x) is non-increasing in x, and proof is contained in appendix.

Lemma 1. Suppose Assumption 1 hold. Then for all y, we have (i) Φ2 > 0, and (ii) Φ12 > 0.

With Lemma 1, we can show that the equilibrium we characterize is indeed a symmetric

equilibrium.

Theorem 2. Suppose Assumption 1 hold, then a symmetric equilibrium in first-price all-pay

auctions with resale is given by β f defined as

β f (x) =
Z x

0
v(t, t, t) fY1(t|t)dt +

Z x

0
h(u)du

where h(u) =
R u

0 v1(u,u,y) fY1(y|u)dy.

For first-price all-pay auctions without resale, Krishna and Morgan (1997) characterize a

12



symmetric equilibrium:

α f (x) =
Z x

0
v(t, t) fY1(t|t)dt (13)

To ensure it is indeed a symmetric equilibrium, they assume that ϕ(·,y) is increasing for all

y, where ϕ(x,y)≡ v(x,y) fY1(y|x).14

Examining both equilibria, we find that β f (x) reduces to α f (x) if there is no resale possi-

bility and primary bidders have no incentive to signal. As we argue in previous section, resale

possibilities introduce an endogenous element to primary bidders’ valuation since bidders’ re-

sale profit depend on the bids they make in the primary auction. Hence primary bidders have

incentives to signal their private information to aftermarket buyers. The implication of As-

sumption 1, say Lemma 1, ensures that the responsiveness of resale price to announced bids

(measured by v1) increases with a bidder’s private signal. This further guarantees that each

bidder’s incentive to signal increases with his private signal. Without resale, only Φ2 > 0 is

needed to characterize the symmetric equilibrium.

Because of responsiveness of resale price to announced bids, the information disclosing

policy affects primary bidders’ bidding behaviors. Affiliation implies that resale price is non-

decreasing in all bidders’ private signals. Therefore, the first-stage bidders may bid more

aggressively if the initial seller announces more bids. If the initial seller announces less

information, bidders’ incentives to signal their private information will be reduced.

5 Revenue Comparison

In this section, we investigate the performance of first- and second-price all-pay auctions

with resale in terms of expected revenue accruing to the initial seller. Given the symmetric

equilibria we characterize, which auction format is better from the perspective of a revenue-

maximizing seller? Without resale, Krishna and Morgan (1997) derive a revenue ranking

14Krishna and Morgan (1997) show that for all y, that φ(·,y) is increasing implies ϕ(·,y) is increasing.
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between these two auction formats: second-price all-pay auctions generate no less expected

revenue than first-price all-pay auctions.15 The following subsection examines whether this

ranking remains true with resale possibilities.

5.1 Two All-Pay Auction Formats with Resale

First, let us compare the expected revenue generated by both auction formats at symmetric

equilibria.

Theorem 3. Suppose Assumption 1 hold. With resale possibilities, the expected revenue from

second-price all-pay auction is greater than or equal to that from first-price all-pay auction

at the symmetric equilibria.

The proof is contained in the appendix. Here we provide an intuitive explanation us-

ing linkage principle. Milgrom and Weber (1982) originally introduce linkage principle to

auction literature in order to derive the revenue ranking among first-price, second-price, and

English auction when signals are affiliated and valuations are interdependent. One of the

implications is that the expected revenue from second-price auctions is no less than that from

first-price auctions. Krishna and Morgan (1997) further apply linkage principle to all-pay

auctions and show that this ranking remains true if we require all bidders pay their bids. The-

orem 3 further implies that this revenue ranking maintains when there are resale possibilities.

The common thread running through is linkage principle.

Consider the auctions as revelation games, then the selling price (the revenue of seller)

could depend only on the bids or bidders’ reports, and on the seller’s information. Then

if the winner’s payment depend on the second-highest bidder’s signal, which is affiliated

with the winner’s private signal, the expected payment would be statistically linked to that

information. As a result of affiliation, this linkage reduces the information rent the seller must

15They further show that second-price all-pay auctions generate no less expected revenue than second-price
auctions, and first-price all-pay auctions generate no less expected revenue than first-price auctions.
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leave to bidders to induce truthful revelation of private information. For a fixed bid, a higher

private signal of the winner means that the second highest signal is more likely to take on

high values, so the expected payment of the winner is also higher. Hence, the linkage makes

the expected price paid in equilibrium by the winner increase more steeply as a function of

his signal than otherwise. By our boundary condition, a bidder with the lowest type pays

nothing, then a steeper expected payment function yields higher expected prices. This is the

intuition behind the revenue ranking result. Clearly this linkage still works when resale is

allowed.

To see how the linkage principle work, suppose bidder 1 learns his private signal as x, but

bids as if it were z. Let ek(z,x) denote the expected payment made by bidder 1 in the k-price

all-pay auction with resale, where k = { f ,s}.

Krishna and Morgan (1997) derive a variation of linkage principle that is more useful in

our model of all-pay auctions with resale.

Proposition 1. Suppose L and M are two auction mechanisms with symmetric increasing

equilibria such that the expected payment of a bidder with the lowest signal is 0. If for all x,

eM
2 (x,x)≥ eL

2(x,x) then for all x, eM(x,x)≥ eL(x,x).

To see how this principle works, let R(z,x) denote the expected value received by bidder

1. Then

R(z,x) =
Z z

0
v(z,x,y) fY1(y|x)dy (14)

Indeed, this expression is the same for both all-pay auction forms at the symmetric equi-

libria. Then the expected payoff for bidder 1 is:

Π
k(z,x) = R(z,x)− ek(z,x) (15)

In equilibrium, it is optimal to choose z = x, and the first-order condition yields e f
1(x,x) =

es
1(x,x), where ek

1(x,x) is the derivative of ek(z,x) with respect to z evaluated at z = x.

15



Note that we have

ek(z,x) =


e f (z) = β f (z), if k = fR z

0 βs(y) fY1(y|x)dy+[1−FY1(z|x)]βs(z), if k = s

Taking the derivative with respect to x, it is trivial to show that e f
2(z,x) = 0 and

es
2(z,x) =− ∂

∂x

Z z

0
β
′
s(y)FY1(y|x)dy ≥ 0

since FY1(y|x) is non-increasing in x due to affiliation. Applying Proposition 1, we have

es(x,x)≥ e f (x,x) since es(0,0) = e f (0,0) = 0.

Therefore, the initial seller could benefit from exogenously choosing second-price instead

of first-price all-pay auctions if resale is allowed.

Recall Example 1: Let f (x,y) = 4
9(2+ xy) on [0,1]2, and v(x′,x,y) = x′x+ 1

2y.

Based on the equilibrium strategies derived above, We have:

R f = 2
Z 1

0

Z x

0

3t4 + t3 +8t2 +2t
4+ t

dtdx

and

Rs = 2
Z 1

0

Z x

0

3t4 + t3 +8t2 +2t
4+ t

θdtdx

where θ = 1−Ft(t|x)
1−Ft(t|t) . Therefore, we have Rs ≥ R f since θ ≥ 1 when x ≥ t.

5.2 Does Resale Benefit Seller?

There are still some questions to be explored. First, if the seller can commit to allow resale

or not, should he allow resale? Under what conditions does the existence of an active sec-
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ondary market benefit the initial seller?16 Generally, if the first-stage winner has access to

some potential buyers to bargain, primary participants not only compete for the object, but

also compete for the right to resell. By signalling their private information, they bid more

aggressively than without resale possibilities.

Second, does a revenue-maximizing seller have incentive to exclude some bidders from

the first stage competition, forcing them to the secondary market? This question remains

open with affiliated signals and interdependent values.

Baye et al. (1993) present an interesting exclusion principle: a revenue maximizing politi-

cian may find it in his best interest to exclude lobbyists with valuations above a threshold from

participating in the all-pay auction. Since values are public information, the exclusion makes

the competition more even and bidders submit higher bids, which in turn increases the initial

seller’s expected revenue. Bose and Deltas (1999) study English auction with two distinct

types of potential bidders: consumers who bid for their own consumption and speculators

who bid for resale. They show that, if the speculators have access to a larger market of con-

sumers than the seller, then the seller prefer to prevent the consumers from participating in

the auction.

6 Information Disclosure by the Initial Seller

Very often the initial seller has private information that may affect bidders’ valuation or pri-

vate information. Suppose the initial seller has private signal X0 that is affiliated with all bid-

ders’ signals. Now consider how equilibria in all-pay auctions are affected when the initial

seller publicly reveals X0. Conditional on X0 = x0, we could derive the symmetric equilibria

for both second-price and first-price all-pay auctions with resale.

16Calzolari and Pavan (2006) show that a monopolist benefits from the existence of resale market when he
cannot contract with all potential buyers and he can prohibit the winner from reselling to the losers. However,
the monopolist will get hurt if resale cannot be banned and takes place among the same group of bidders.
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Before stating the results, we need more notations. Let β̃k(·,x0) be a symmetric equilib-

rium bidding strategy conditional on X0 = x0, k = { f ,s}. Define

P(β̃−1
k (b,x0),Y1,X0) = E[V1|X1 = β̃

−1
k (b,x0),Y1,X0 = x0] (16)

as the resale price if bidder 1 wins the auction with a bid b, and aftermarket buyers believe

that he is following β̃k(·,x0). Similarly, define

ṽ(x′,x,y,x0) = E[P(x′,Y1,X0)|X1 = x,Y1 = y,X0 = x0] (17)

as the expected resale price conditional on X1,Y1 and X0. To derive the symmetric equilibria

given X0 = x0, a modification of Assumption 1 is needed.

Assumption 2. Let ψ̃ : R4 → R be defined by ψ̃(x′,x,y,x0) = ṽ(x′,x,y,x0)
fY1(y|x,x0)

1−FY1(y|x,x0)
. We

assume that for all y, (i) ψ̃2 > 0, ψ̃4 > 0, and (ii) ψ̃12 > 0, ψ̃14 > 0.

By the same argument as Lemma 1, we have

Lemma 2. Suppose Assumption 2 hold. Let Φ̃ : R4 → R be defined by Φ̃(x′,x,y,x0) =

ṽ(x′,x,y,x0) fY1(y|x,x0), then for all y, (i) Φ̃2 > 0,Φ̃4 > 0, and (ii) Φ̃12 > 0, Φ̃14 > 0.

As we characterize the symmetric equilibria without information about the seller’s private

signal, we could derive the symmetric equilibria conditional on seller’s private information

for both auction formats.

Proposition 2. Suppose Assumption 2 hold. Conditional on the seller’s private signal X0, a

symmetric equilibrium in second-price all-pay auctions with resale is given by β̃s defined as

β̃s(x,x0) =
Z x

0
ṽ(t, t, t,x0)

fY1(t|t,x0)
1−FY1(t|t,x0)

dt +
Z x

0
k̃(u)du (18)

where k̃(u) =
R u

0 ṽ1(u,u,y,x0)
fY1(y|u,x0)

1−FY1(u|u,x0)
dy.

18



Proposition 3. Suppose Assumption 2 hold. Conditional on the seller’s private signal X0, a

symmetric equilibrium in first-price all-pay auctions with resale is given by β̃ f defined as

β̃ f (x,x0) =
Z x

0
ṽ(t, t, t,x0) fY1(t|t,x0)dt +

Z x

0
h̃(u)du (19)

where h̃(u) =
R u

0 ṽ1(u,u,y,x0) fY1(y|u,x0)dy.

Remark 2. Note that the equilibrium bidding function β̃ now maps two variables into a bid.

For any fixed value of X0, the equilibrium bidding strategy is a function of bidder’s private

signal only and is similar to β. Affiliation between X0 and (X1, ...,XN), Assumption 2 and

Lemma 2 guarantee that the equilibrium bidding function β̃ is increasing as X0 increases.

Conditional on X0, primary bidders signal their private information to aftermarket buyers

through their bids. The responsiveness of resale price to announced bids and information

increases as the realization of a bidder’s private signal.

An immediate implication of affiliation and Assumption 2 is that the initial seller could

benefit from publicly releasing his private signal.

Proposition 4. Suppose that Assumption 2 hold. A policy of publicly revealing the initial

seller’s private information cannot lower, and may raise the expected revenue for the seller

in all-pay auctions with resale.

The intuition underlying this result can be best understood through linkage principle.

Publicly releasing his private signal, the initial seller establishes a link between the bids

submitted and that signal. This additional link reduces the information rent enjoyed by the

bidders possessing private information. Hence, the revenue-enhancing result follows as a

consequence of linkage principle. Therefore, releasing the seller’s private signal has similar

effect as releasing more bids.

Obviously Proposition 4 relies crucially on Assumption 2. If Assumption 2 fails to hold,

β̃(x,x0) may not be an increasing function of x0 because the marginal effect of the bid on
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the resale price may be reduced and revealing X0 may reduce the bidders’ incentive to signal,

and then lower the expected revenue for the seller even though X0,X1, ...,XN are affiliated.

Extremely, if X0 contains all the relevant information in X1,X2, ...,XN , there will be no sig-

naling incentive for the bidders, and the expected price in all-pay auctions will be lower than

otherwise. The various information structure and corresponding optimal information disclo-

sure policy is technically complex and remains open. Intuitively the optimal information

disclosure policy depends on the specific resale mechanism and the distribution of bargaining

power between the winner and aftermarket buyers.17

7 Conclusions

This paper studies all-pay auctions with resale. Costly competitions over a limited number of

prizes are often followed by aftermarket interaction, as winners of patent races sell or license

patents to other producers. We find that introducing resale possibilities changes bidders’

behaviors in all-pay auctions. The information connection between the resale prices and

the bids submitted by the first-stage bidders creates signalling incentive for primary bidders.

We provide sufficient conditions under which symmetric equilibria exist and characterize

equilibria strategies. Provided the existence of symmetric equilibria, we show that second-

price all-pay auctions generate no less expected revenue than first-price all-pay auctions with

resale. Furthermore, if the bidders’ signals are affiliated to the initial seller’s private signal,

the seller could enhance his expected revenue by publicly disclosing that information.

Several extensions of this model are as following. First, we do not explicitly formalize the

resale mechanism. We simply assume that the resale price equals to the expected valuation

of the winner in the first stage. In practice, the resale mechanism could be another auction,

or a multilateral bargaining. Intuitively different resale mechanisms and the distribution of

17Calzolari and Pavan (2006) studies optimal information disclosure for a monopolist who cannot commit to
prevent resale.
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bargaining power will affect the split of resale surplus between resale seller and buyers, and

in turn affect the bidding strategies adopted by primary bidders.18

Second, we assume that the initial seller announce the winning bid and the highest los-

ing bid after the primary auction. Obviously different information disclosing policies have

different impacts on the significance of information linkage between resale price and submit-

ted bids. The signalling behavior relies on the announcement of winning bids. Therefore, it

remains a challenging question to investigate the optimal information disclosing policy from

the seller’s perspective. From the standpoint of mechanism design, the optimal auction with

resale may also depend on the information disclosing policy. The characterization of optimal

selling mechanism with resale seems to be another challenging exercise.19

Third, we assume that the first-stage losers do not participate in aftermarket competition.

Resale takes place when new entrants come to the market. If there are a fixed number of

competitors, it will be interesting to examine the optimal excluding policy from the seller’s

perspective. We provide a simple example to illustrate that the seller may find in his best

interest to exclude one bidder randomly. A more general analysis is worth exploring.

A special characteristic of all-pay auctions lies in the deterministic winning probabilities.

Many interesting instances, however, have stochastic allocation of the objects. If the winning

probability is stochastic, the more a bidder bids, the higher the probability he wins. But

he never guarantees winning. Then the allocation will be ex post inefficient with positive

probability. It will be worth investigating whether resale enhances allocative efficiency and

compare expected revenue resulting from the deterministic model with that resulting from

the stochastic model.20

18Using an asymmetric two-bidder independent private value model, Hafalir and Krishna (2006) characterize
the equilibrium bidding strategies when resale takes place via monopoly pricing. They also show that the results
could easily extend to other resale mechanisms such as monopsony pricing and a probabilistic k-double auction.

19Ausubel and Cramton (1999) consider an optimal multi-unit auction with efficient secondary market. Zheng
(2002) extends Myerson (1981)’s optimal auction design to the case in which resale cannot be prevented. Lebrun
(2005) shows that the second-price auction with resale implements Myerson’s optimal auction.

20Using a simple two-bidder-two-value stochastic model, Sui (2006) shows that resale enhances allocative
efficiency and increases expected revenue for the seller as long as the winner has more bargaining power than
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A Some Facts from Affiliation

In this section, we prove some useful facts due to affiliation.

Fact 1.
FY1(y|x)
fY1(y|x) is non-increasing in x.

Proof. Let x < x′ and y < y′. By affiliation inequality, we have

f (x,y) f (x′,y′)≥ f (x,y′) f (x′,y)

Hence
f (x,y)
f (x,y′)

≥ f (x′,y)
f (x′,y′)

Then we have
fY1(y|x)
fY1(y′|x)

≥ fY1(y|x′)
fY1(y′|x′)

Integrating with respect to y over [0,y′] yields

FY1(y
′|x)

fY1(y′|x)
≥ FY1(y

′|x′)
fY1(y′|x′)

therefore the result follows.

Fact 2.
fY1(y|x)

1−FY1(y|x) is non-increasing in x.

Proof. By Fact 1,
fY1(y|x)
FY1(y|x) is non-decreasing in x. Hence, − fY1(y|x)

FY1(y|x) is non-increasing in x.

Therefore, the result follows.

Fact 3. FY1(y|x) is non-increasing in x.

Proof. Fact 1 and Fact 2 imply that
FY1(y|x)

1−FY1(y|x) is non-increasing in x. Hence
1−FY1(y|x)

FY1(y|x) is

non-decreasing in x. Therefore, 1
FY1(y|x) is non-decreasing in x. The result follows.

the loser.
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B Proof of Results

Proof of Theorem 1

Proof. The necessity is established in Section 3. For sufficiency, let z ≤ x, and βs(z) = b.

From the first order condition, we have

∂Π(βs(z),x)
∂b

= v(z,x,z)
fY1(z|x)

1−FY1(z|x)
1

β′s(z)
+

1
β′s(z)

Z z

0
v1(z,x,y)

fY1(y|x)
1−FY1(z|x)

dy−1

≥ v(z,z,z)
fY1(z|z)

1−FY1(z|z)
1

β′s(z)
+

1
β′s(z)

Z z

0
v1(z,z,y)

fY1(y|z)
1−FY1(z|z)

−1

=
∂Π(βs(z),z)

∂b
= 0

The first inequality follows from Assumption 1, and the last two equalities follow from the

first-order condition. That means, when X1 = x and bidder 1 bids b = βs(z) ≤ βs(x), his

expected profit could be raised by bidding higher. By similar argument, when z ≥ x, we can

show ∂Π(βs(z),x)
∂b ≤ 0. Consequently, Π(b,x) is maximized at βs(x) = b. Since Π(0,x) = 0 for

all x, we have Π(βs(x),x)≥ 0 for all x > 0 by affiliation. Thus, we have shown that βs(x) is

the best response strategy for bidder 1 when he observes X1 = x and all other bidders j 6= i

follow βs, and when resale market participants believe that all bidders follow βs.

From the above argument, the equilibrium payoff to a bidder who receives a signal of

x is Π(βs(x),x) ≥ 0, and thus it is individually rational for each bidder to participate in the

auction.

It remains to show that the equilibrium bidding strategy is strictly increasing and differ-

entiable. Since v1 is positive by affiliation, β′s(x) is strictly positive. Clearly, the equilibrium

bidding strategy is differentiable. Therefore, the bidding strategy we characterize is indeed a

symmetric equilibrium provided Assumption 1 holds.
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Proof of Lemma 1

Proof. Let x < z. Since Ψ2 > 0, we have that

v(x′,x,y)
fY1(y|x)

1−FY1(y|x)
< v(x′,z,y)

fY1(y|z)
1−FY1(y|z)

By Fact 3, FY1(y|x)≥ FY1(y|z) and thus

v(x′,x,y) fY1(y|x) < v(x′,z,y) fY1(y|z)

This proves that Ψ2 > 0 implies that Φ2 > 0. Similar argument could show that Ψ12 > 0

implies Φ12 > 0.

The proof of Lemma 2 is exactly the same as above, so is omitted.

Proof of Theorem 2

Proof. The proof mimics the proof of Theorem 1. Again the key point is to show ∂Π(b,x)
∂b ≥ 0

if b = β f (x′) ≤ β f (x), and ∂Π(b,x)
∂b ≤ 0 if b = β f (x′) ≥ β f (x). Assumption 2 and affiliation

ensure that it is not profitable for local deviation. It is trivial to verify that βs is strictly

increasing and differentiable.

From the above argument, the equilibrium payoff to a bidder who receives a signal of x is

Π(β f (x),x) ≥ 0, and thus it is individually rational for each bidder to participate in the auc-

tion. Similarly, it is easy to show that the equilibrium strategy is increasing and differentiable,

hence it is indeed a symmetric equilibrium for the first-price all-pay auction with resale.

Proof of Theorem 3

Proof. Let e f (es) denote the expected payment in equilibrium of the first-price (second-price)
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all-pay auction. Then we have

es(x) =
Z x

0
βs(y) fY1(y|x)dy+[1−FY1(x|x)]βs(x)

= βs(x)FY1(x|x)−
Z x

0
β
′
s(y)FY1(y|x)dy+[1−FY1(x|x)]βs(x)

= βs(x)−
Z x

0
β
′
s(y)FY1(y|x)dy

=
Z x

0
v(y,y,y)

fY1(y|y)
1−FY1(y|y)

dy+
Z x

0
k(y)dy

−
Z x

0
[v(y,y,y)

fY1(y|y)
1−FY1(y|y)

+ k(y)]FY1(y|x)dy

=
Z x

0
v(y,y,y) fY1(y|y)[

1−FY1(y|x)
1−FY1(y|y)

]dy+
Z x

0
k(y)[1−FY1(y|x)]dy

=
Z x

0
v(y,y,y) fY1(y|y)[

1−FY1(y|x)
1−FY1(y|y)

]dy+
Z x

0
h(y)[

1−FY1(y|x)
1−FY1(y|y)

]dy

≥
Z x

0
v(y,y,y) fY1(y|y)dy+

Z x

0
h(y)dy

= e f (x)

The second equality follows from integration by parts; by Fact 3, we have that FY1(y|x)

is non-increasing in x, so
1−FY1(y|x)
1−FY1(y|y) ≥ 1 for x ≥ y. This gives us the last inequality, which

completes the proof.

Proof of Proposition 2

Proof. See Krishna and Morgan (1997), proof of Proposition 4.

Proof of Proposition 2 & 3

Proof. For any given value of X0, β̃ is similar to β, and the proofs of Proposition 1 and 2

mimic the proofs of Theorem 1 and 2, so are omitted.
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Proof of Proposition 4

Proof. Consider the first-price all-pay auction with resale. Let β̃ f (·,x0) denote the equilib-

rium strategy conditional on the revealed of seller’s private information X0 = x0. Lemma 2

and affiliation ensures that β̃ f (·,x0) is increasing in x0.

Let e f (x,z) denote the expected payment for bidder 1 if he learns his signal as z but he bids

as if it were x, and ẽ f (x,z) = E[β̃ f (x,X0)|Y1 < x,X1 = z]. Affiliation implies that ẽ f
2(x,z)≥ 0.

Let R(x,z) denote the expected value of winning. At the equilibrium, it is optimal to choose

z = x, the resulting first-order condition yields

e f
1(z,z) = ẽ f

1(z,z)

Since e f
2(x,z) = 0, ẽ f

2(x,z) ≥ 0, then according to linkage principle, we have ẽ f (z,z) ≥

e f (z,z) since ẽ f (0,0) = e f (0,0) = 0. Therefore, in the first-price all-pay auction with resale,

the initial seller will benefit from publicly disclosing his private signal.

Using similar argument, we can show that the information disclosure by the seller does

not decrease, may increase the expected revenue in the second-price all-pay auction with

resale.
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