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Abstracts 
This paper investigates  sensitivity of U.S. natural gas price  to crude oil price changes, 

using time-varying coefficient models. Identification of the range of variation of the 

sensitivity of natural gas price to oil price change allows more accurate  assessment of upper 

and minimum risk levels that can be utilized in pricing natural gas derivatives  such as gas 

futures and option contracts, and gas storage facility contracts. 
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1-Introduction: 

For many years in the past, natural gas and refined petroleum products  

viewed as close substitutes, as major users of natural gas substituted one 

product for the other depending on the price level of each. As a result, a 

common view held by some (Brown and Yucel, 2007) is that natural gas 

prices adjust to crude oil prices which in turn determined by world oil 

market conditions. Such stable relationship between oil prices and natural 

gas prices led in the past to the use of rules of thumb in energy industry that 

relate natural gas prices to those for crude oil. The simplest of these rules 

predict a constant relationship between the two prices1. However, as oil 

prices surged upward in past recent years the association between the two 

energy prices seemed more complex than can be explained by the simple 

relationship implied by the rules of thumb. As a result, in recent years the 
                                                 

1 One simple rule determine natural gas prices as one tenth of crude oil prices, whereas another rule that 
takes the energy content of a barrel of oil, determine natural gas price as one sixth of crude oil price. For 
more details about these rules see Brown and Yucel (2006).  
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relationship between crude oil prices and natural gas prices became the focus 

of research work in the field of energy economic. 

Serletis and Ricardo (2004) investigate the strength of shared trends and 

shared cycles between crude oil prices and Henry Hub natural gas prices 

using testing procedure suggested by Engle and Kozicki (1993), and Vahid 

and Engle (1993) to reject the null-hypothesis of common and codependent 

cycles. Similarly, Bachmeir and Griffin (2006) indicate although natural gas 

prices in recent years have shown upward movements with crude oil prices, 

the natural gas prices seemed to lag well behind oil price movements. 

Serletis and Shahmoradi (2006) indicate price volatility in the US natural gas 

market is mainly due to seasonal effects and significant lead time effects 

associated with production and delivery. However, Villar and Joutz (2006), 

Asche and Sandsmark (2006) detect long-term relationship between oil and 

natural gas prices. In a different theoretical framework, Chen and 

Forsyth(2006), use stochastic regime switching models to confirm regime 

switching models explain better the dynamics of gas derivative prices. The 

findings of regime switching dynamic models support evidence of time-

varying coefficient models rather than constant coefficient models implied 

by rules of thumb models. Drawing together the aforementioned studies it 

can be concluded that even though in the long term gas prices adjust to crude 

oil prices, in the short term the dynamics of each of the two prices is affected 

by different factors. While speculative events in oil future markets play 

important role  in influencing short term oil prices,  gas prices in the short 

term mainly affected by its own supply and demand disruptive shocks, such 

as extreme  weather events (hurricanes-related production shut-ins in the 

Gulf of Mexico), seasonality, and supply storage constraints.   
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The primary objective in this paper to investigate the relationship between 

natural gas price and crude oil price changes using time-varying coefficient 

specification, under two different crude oil price levels, low and high oil 

prices (below  and above $40 per oil barrel). The distinction between high 

and low oil price levels is based on the  graphical illustrations included in 

the appendix, which indicate at low oil price levels (graph 3) both markets 

exhibit  higher volatility, and at high oil prices (graph 2) they show more 

stability2.  

The remaining part of the paper structured as follows. Section two includes 

basic statistical analysis. Section three illustrates the methodology of the 

research. Section four includes estimation results, and the final section 

concludes the study.  

 

2. Data analysis:  

Data employed in this study are weekly Henery Hub natural gas prices and 

West Texas intermediate crude oil prices as reported in the Wall Street 

Journal and recorded  in the data base of the Center for Energy Studies of 

Luisiana State University. The sample period covers from January-2-1996 to 

January-30-2008, including 516 observations. Price returns in this paper 

defined as the log first difference, . Results in table (1) indicate 

the two energy prices yield positive mean returns, and almost equal  

volatility levels. The positive  skewness results indicate a higher probability 

of rise of the two prices during the sample period. The high value kurtosis 

statistics indicate the stock price returns distribution is characterized by high 

peakness (fat tailedness) which imply probability of a higher risk cannot be 

)/log( 1−tt pp

                                                 
2 A factor that  contributes to  natural gas market volatility at low crude oil price, is the fuel oil substitution 
effect .   
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ruled out  .  The Jarque-Bera (JB)  test statistic provides clear evidence to 

reject the null-hypothesis of normality for the unconditional distribution of 

the two price changes. The sample autocorrelation statistic indicated  by 

Ljung-Box , Q statistic, show the Q(5) test statistic reject the null hypothesis 

of uncorrelated gas price returns for five lags, but fails to reject correlation 

in oil price returns. The high values for Q2(5) test statistic suggest 

conditional homoskedasticity can be rejected for the gas price, but not for oil 

price. However, to test the presence of hetroskidasticity more formally the 

LM test is employed. Results of LM statistics for ARCH(1) and ARCH(5) 

error terms confirm the significance of ARCH effects in both prices. 

 

Table (1): Summary statistics of log-differenced Energy prices. 

 Gas Oil 

Mean 0.004 0.01 

Std.Deviation 0.12 0.14 

Skewness 2.62 18.1 

Excess kurtosis 30.1 377 

JB test 

p-value 

18808 

(0.00) 

24850 

(0.00) 

Q(5) 

p-value 

11.8 

(0.04) 

0.60 

(0.98) 

Q2(5) 

p-value 

40.7 

(0.00) 

0.01 

(0.99) 

LM ARCH(1) 

p-vlue 

674 

(0.00) 

98 

(0.00) 

LM ARCH(5) 

p-value 

837 

(0.00) 

909 

(0.00) 
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3- Methodology 

3.1: Volatility modeling:  

Although the simple GARCH specification is widely used in the empirical 

research of finance, there are substantial evidences that volatility of asset 

returns characterized by time varying asymmetry (Glosten, Jagannathan and 

Runkle (1993). As a result, to avoid misspecification of the conditional 

variance of natural gas price changes, in this paper the asymmetric GARCH 

model is adopted. The asymmetric GARCH specification allows a quadratic 

response of volatility for positive and negative shocks, but maintains the 

assertion that the minimum volatility will result when there is no shocks3. 

More specifically, the sensitivity of natural gas price change to crude oil 

price changes determined as follows: 
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where   is the change in crude oil price, and  tPΔ tGΔ  is the change in natural 

gas price, Dt is a dummy variable  reflecting change in demand for natural 

gas due to the regular seasonal effects4.  η  is a constant, tβ  is time-varying 

coefficient, and  is a random error term specific to te tGΔ  and assumed to be 
                                                 

3 Any selection of an appropriate ARCH/GARCH model requires having a good idea of what empirical 
regularities the model should capture. Among documented other regularities in the literature are  thick tails 
that characterize asset returns, and volatility clustering, which refers to the phenomena that large changes  
in volatility tend to be followed by large changes of either sign, and small changes to be followed by small 
changes.  
4  To take into account  seasonal demand changes, set Dt=1 for all winter weeks from November to April, 
and zero otherwise.  
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uncorrelated with .  The random term, etPΔ t , is set to reflect the seasonal 

random shocks due to the extreme weather events like hurricanes.  

f(.) is the density function of the  random term, et, where  μ=)( teE , 

, and  ttev 2)( σ= ω  is a vector of parameters reflecting skewness and kurtosis 

parameters. Given negative random shocks  cause upward pressure on gas 

prices, it is assumed the error terms,   in equation (1) follow a half-normal 

distribution, so that the restriction   is imposed.  

te

0≥te

As the coefficient tβ  varies over time, equation (1) hypothesize a nonlinear 

relationship between change in natural gas prices and crude oil price 

changes. The slope coefficient, tβ , is often called the measure of volatility 

sensitivity, or systematic risk. In this case it tells us that when change in 

crude oil price for a given period is 1% above its mean, the corresponding 

change of natural gas price is %β  higher than its mean return, and the 

opposite is true when oil price change is 1% below its mean. 

In GARCH-type models the variance covariance matrix of change in the 

prices of crude oil and natural gas are not constant over time. In this case the 

beta coefficient defined as: 
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where ρ  is the correlation coefficient between changes in the two prices. 

Thus, equation (1) becomes, 
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One approach to estimating  is to estimate conditional covariance, 

 and conditional variance 

GARCH
tβ

),( tt PGCov ΔΔ )( tPVar Δ . Since no seasonal shocks 

attributable to crude oil markets, the conditional variance of oil price 

changes determined by symmetric GARCH- type specification .  However, 

when estimating conditional variance of gas price changes we need to 

include seasonal random shocks that reflects hurricanes related disruptive 

changes in gas prices. Thus, when incorporating the constraint  , in 

equation (1), the variance of gas price changes determined as: 

0>te

)4()(
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The condition that ,0>+α  captures the upward pressure on gas prices due to  

negative supply shocks. 

  

3.2: Skewness effect: 

It is well documented that even asymmetric GARCH models fail to fully 

account for skewness and leptkurtosis of high frequency financial time series 

when they are assumed to follow Normal or symmetric student’s t-

distributions. This has led to the use of asymmetric non-Normal distributions 

to better specify conditional higher moments. An important candidate in this 

respect is Hansen’s (1994) distribution. Despite there are also other 

distributions that allow for skewness and excess kurtosis we choose 

Hansen’s distribution due its superiority in empirical performance (Patton, 

2004). Given the standardized errors  
t

t
tz

2σ

ε
= , with mean zero and 
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variance one, then Hansen’s (1994) autoregressive conditional density model 

with skewed error terms can be specified as: 
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where  is a gamma function, and Γ
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Specification of conditional distribution of the standardized residuals, Zt,  in 

equation (6) is determined by two parameters, Kurtosis )(θ and the skewness 

parameter )(φ .The two parameters are restricted to ,2>θ and 11 <<− φ . 

When ,0=φ the skewed t-distribution tend to symmetric t-distribution, and 

when ∞→θ , tend to standardized Normal distribution.  

Hansen’s skewed t-distribution is fat tailed, and skewed to the left (right) 

when φ  is less (greater) than zero. Similar to the case of Student’s t-

distribution, when  ,2>θ  Hansen’s skewed t-distribution is well defined and 

its second moment exist, while skewness exist if 0≠φ  and kurtosis is 

defined if ,4>θ .  

The log-likelihood function of the GJR-skt is defined as:  
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The maximum likelihood estimator for Ω  is the solution of maximizing the 

log likelihood function with respect to the unknown parameters. 

 

3.3:  Performance Evaluation: 

Since we have two competing models to determine conditional volatility of 

the two energy prices, it is important identifying which model better 

describes volatility dynamic of the two prices. In this paper the predictive 

power of volatility forecast, and the log-likelihood criterias employed to 

distinguish between the two models (skewed t-distribution and normal 

distribution). 

To test the forecasting power of these models, for the natural gas, s-step 

ahead forecast for the conditional variance in equations (4) can be set as: 
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Where tε  is the error term corresponding to AR(q) specification of crude oil 

price changes. 

Since  and the indicator function t
2ε )( ttI ε  are uncorrelated, then s-step 

ahead forecast can be stated as: 
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The parameters of the two models estimated using the sample data up to 

three weeks before the end of the sample date (Jan/13/2007). And then a 

forecast of one week ahead (Jan-20 observation) is computed. Using the 

estimated parameters and the one week-ahead forecast value of volatility a 

new forecast for volatility of Jan-27, is computed from equations (5) and (6) 

to obtain two weeks ahead forecast value. This procedure is repeated until 

we exhaust the actual realized values.  

To test the predictive power of the two competing models (normal and 

skewed t-distributions)  the Root Mean Squared Error (RMSE) employed, 

which is computed by comparing the forecast values  with the actually 

realized values,  , or   

jtF +

jtA + ∑
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Where k=1,2,3 denotes the forecast step, , is total number of k-steps 

ahead forecasts. 

kN

Diebold and Mariano (1995) (DM) test has been employed to compare the 

accuracy of forecasts. When comparing forecasts from two competing 

models; model A, (Normal distribution error terms model), and model B 

(skewed t-distribution error terms model), it is important to verify that 

prediction of either of these models is significantly more accurate, in terms 

of a loss function, DM(v), than the other one. The Diebold and Mariano test 

aims to test the null hypothesis of equality of forecast accuracy against the 

alternative of different forecasts across models. The null hypothesis of the 

test can be written as: 

)7(0))()(( =−= B
t

A
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where  refers to volatility forecast error of model i =A, B, when 

performing k-steps ahead forecast. The Diebold and Mariano test uses the 
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autocorrelation-corrected sample mean of   in order to test  significance of 

equation (7). If N observations available, the test statistic is: 

tv
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Under the null hypothesis of equal forecast accuracy, DM is asymptotically 

normally distributed. 

4: Empirical results 

The analysis in this paper investigate the association between conditional 

volatility of crude oil and natural gas prices assuming normal distribution 

and skewed-t distribution models. Graphical illustrations included in the 

appendix (Graphs 1- 3),  indicate natural gas price is relatively more 

sensitive to crude oil price changes at low oil price levels (below $40 per oil 

barrel); as compared to the case of high oil price levels, which is relatively 

more stable.  More formally, the sensitivity of natural gas price to crude oil 

price changes reported in table (2) include estimation result of time-varying 

coefficient model of equation (3), under two alternative specification of 

conditional volatility, normal distribution and skewed t-distribution models.  

Normal distribution parameters estimated using MLE method, whereas 

conditional skewness and kurtosis parameters of skewed t-distribution 

estimated using MLE and quasi-Newton optimization algorithm, which 

carried out using shazam (version 10) programming procedure. 
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Log likelihood values reported in tables (2) and (3), support the normal 

distribution specification over skewed t- distribution model. Also Diebold-

Mariano test results reported in table (4), strongly suggest the normal 

distribution model outperforms skewed t-distribution model, as it yield the 

lowest values of the RMSE loss functions, implying the normal distribution 

specification yield superior forecast performance for forward-looking beta 

values. Given the normal distribution model better describes the dynamics of 

conditional volatility, we take into account results in table (2).  

The mean values of beta coefficients in table (2), show at low oil price 

levels, natural gas price rise by 13 cents for each dollar increase in crude oil 

prices; whereas at the high oil price levels the sensitivity of natural gas price 

is  9 cents for each  dollar increase in crude oil price. However, over longer 

period of time the adjustment of natural gas price changes to crude oil price 

change is 12 per cent.  

Investigation of the range of the sensitivity values, show the mean value of 

sensitivity is closer to its minimum value, implying natural gas price 

sensitivity in general is highly skewed towards those values at the lower 

boundary. But at the same time it shows, there are certain periods of time 

where sensitivity of natural gas price change to oil price changes hit upper 

highest values, scoring up to 51 per cent. Results in table (2), also report 

significance of regular seasonal effects on  changes in natural gas price. 

 Table (3) present estimation results of conditional volatility, indicated by 

equations (4) and (6).  The significance of the coefficients  and  of 

crude oil price volatility imply negative and positive shocks have equally 

important effects on volatility of crude oil price. This result support the view 

held by some (Asch, et al., 2006 ), that speculative trading positions in oil 

future markets affect significantly oil price changes. 

)( −α )( +α
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Table (2): Natural gas sensitivity (half-Normal distribution)  
sectors Low oil prices* 

 
high oil price* 
 
 

Full-sample

Beta: 
(low/high) 
mean 
range statistic 

 
 (0.05/0.51) 
0.13 
0.46 
 

   
 (0.07/0.23) 
0.09 
0.16 

 
 (0.04/0.48) 
0.12 
0.44 

Seasonal effect: 
D 
(p-value) 

-- ---  
0.015 
(0.06) 

Ln L 325 245 463 
Note: The main entries are mean values of Betas. 
*Low  and high oil prices are respectively below and above  $40  per oil barrel .  
 

 
 
 
 

Table (3): Natural gas sensitivity (skewed t-distribution)  
sectors Low oil prices* 

 
high oil price* 
 
 

Full-sample

Beta: 
 (low/high) 
Mean 
Range statistic 

 
 (0.01/0.22) 
0.09 
0.21 

   
 (0.004/0.13) 
0.06 
0.09 

 
 (0.01/0.16) 
0.07 
0.15 

Seasonal effect: 
D 
(p-value) 

-- ---  
0.023 
(0.01) 

Ln L 252 135 453 
Note: The main entries are mean values of Betas. 
*Low  and high oil prices are respectively below and above  $40  per oil barrel 
 

Table (4):Conditional volatility  parameter estimates 

        Oil 

   GARCH(1,1) 

        Gas 

       GARCH(1,1)

 Skew-t Normal Skew-t Half- 
Normal 

ω   

(p-value) 

0.03 

(0.04) 

0.002 

(0.00) 

0.77 

(0.38) 

0.001 

(0.00) 

δ   

(p-value) 

0.17 

(0.01) 

0.05 

(0.23) 

0.02 

(0.34) 

0.33 

(0.00) 
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+α   

(p-value) 

0.03 

(0.04) 

0.01 

(0.83) 

0.11 

(0.04) 

0.04 

(0.10) 

−α   

(p-value) 

-0.05 

(0.03) 

0.018 

(0.51) 

-- 

-- 

--- 

φ   

(p-value) 

0.32 

(0.28) 

- 0.16 

(0.09) 

- 

θ   

(p-value) 

3.86 

(0.00) 

- 4.21 

(0.08) 

- 

LnL 1345 2466 1246 1750 

The order of GARCH(1,1), determined based on convergence of Maximum Likelihood Function. 
 
 
 
 
Table (5): RMSE Loss functions and Diebold & Mariano test.                   
 RMSE  Loss  Functions

Normal            skew t 

 

D&M 

statistic

High oil price 

(p-value) 

0.11 0.28 9.2 

(0.05) 

Low oil price 

(p-value) 

0.09 0.22 7.1 

(0.06) 

*The loss functions are based on three days ahead forecast errors. Root Mean Square Error (RMSE) and 
Diebold-Mariano (1995) test results  in table (4) are based on the full sample period and on the low oil 
price period which is the period from January-2-1996 to July-14-2004, when crude oil price was below $40 
per barrel. 
 
 

5. Conclusion 

Taking into account seasonality, and disruptive random shocks that affect 

natural gas storage capacity, the primary aim in this paper to identify the 

sensitivity of natural gas price changes to crude oil price changes, using 

time-varying coefficient specification. Unlike the fixed coefficient models, 

employed in previous similar researches, this approach has the benefit of 

measuring the range of variation of the sensitivity of natural gas price to oil 
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price changes based on the covariance of the two prices. Identification of the 

range of variation of the sensitivity of natural gas price to oil price change 

allows better assessment of upper and minimum risk levels that can be 

utilized in pricing derivatives on natural gas such as gas futures and option 

contracts, and gas storage facility contracts. An important empirical 

regularities that have been taken into account in this paper are thick tail 

phenomena that characterize probability of extreme events occurrence, and 

skewness. To reflect surge in natural gas price due to extreme seasonal 

events such as hurricanes, half-normal distributed positive error terms 

adopted in the computation of conditional volatility of natural gas price.  

The findings in the paper indicate the association between the two prices has 

short term dynamics, reflected in wide range variability of natural gas price 

sensitivity to oil price changes. Taking into account the superior 

performance of the normal distribution model, compared to skewed t-

distribution specification, estimation results in the paper indicate, on 

average, at low oil price levels (below $40 per oil barrel), natural gas price 

increase by 13 cents for each dollar increase in crude oil price; whereas for 

high oil prices the sensitivity of natural gas price estimated  9 cents for each  

dollar increase in crude oil price. However, over longer period of time the  

adjustment of natural gas price to change in crude oil price is 12 per cent on 

average. Looking at the range of the sensitivity values, it can be realized 

that, the mean value of sensitivity is closer to its minimum boundary value, 

implying natural gas price sensitivity in general is highly skewed towards 

those values at the lower boundary. But also indicate, even though the 

sensitivity values on average are low, there are certain periods of time where 

sensitivity of natural gas price to crude oil price changes hit upper extreme 

values, reaching up to 51 per cent. 
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 The findings in the paper also shows regular seasonal demand effects 

remain a significant factor in natural gas price changes.  

While the analysis in the paper related to short term dynamic analysis, an 

important future extension of this research include, investigation of the long 

term linkage between the two energy prices using non-linear cointegration 

techniques to accommodate the nonlinear dynamic nature of  time-varying 

coefficient models. 
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Appendix 
 

Graph (1): daily Gas & oil prices (full-sample)
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Graph (2):daily gas & oil prices (High oil prices)
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Graph (3): daily gas & oil prices (low oil prices)
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