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Nonlinear Adjustment in US Bond Yields: an

Empirical Analysis with Conditional

Heteroskedasticity∗

Riccardo Lucchetti† Giulio Palomba‡

Abstract

Starting from the work by Campbell and Shiller (1987), empiri-
cal analysis of interest rates has been conducted in the framework of
cointegration. However, parts of this approach have been questioned
recently, as the adjustment mechanism may not follow a simple lin-
ear rule; another line of criticism points out that stationarity of the
spreads is difficult to maintain empirically.

In this paper, we analyse data on US bond yields by means of an
augmented VAR specification which approximates a generic nonlinear
adjustment model. We argue that nonlinearity captures macro infor-
mation via the shape of the yield curve and thus provides an alternative
explanation for some findings recently appeared in the literature.

Moreover, we show how conditional heteroskedasticity can be taken
into account via GARCH specifications for the conditional variance,
either univariate and multivariate.

JEL Classification: C32, C51, E43
Keywords: interest rates, cointegration, nonlinear adjustment,
conditional heteroskedasticity

1 Introduction

Interest rates have been the object of extensive research in the cointegra-
tion framework in the past 20 years, stemming from the seminal paper by
Campbell and Shiller (1987). A fundamental consequence of the expectation
hypothesis is that the most appropriate stochastic process to represent their
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uardo Rossi and Alberto Zazzaro for their helpful comments and suggestions.
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‡Dipartimento di Economia, Università Politecnica delle Marche, Piazzale Martelli n.
8, 60121 Ancona (Italy), g.palomba@univpm.it.
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time-series features is some sort of I(1) process. At the same time, interest
rate spreads should be stationary, possibly around a non-zero mean.

Of course, this translates into very precise hypotheses on the cointegra-
tion properties of interest rates, which should cointegrate in pairs, so the
cointegration rank should be n − 1 and the cointegration vectors should be
of the form [1, 0, . . . ,−1, 0, . . .]. Both ideas can be incorporated in a classic
Vector ECM as:

Γ(L)∆yt = µt + αβ′yt−1 + εt, (1)

where β′yt−1 is a vector containing the (n − 1) lagged spreads.
However, the above model is not guaranteed to fit the data flawlessly;

in some cases, the spreads may appear non-stationary and the hypothesis
that the cointegration rank is (n− 1) may be rejected by conventional tests.
Such findings could be interpreted as an outright rejection of the expectation
hypothesis; on the other hand, there is the possibility that the empirical
model may have to be refined.

Several authors have pointed out the shortcomings of a plain VECM
model: on one hand, Ang and Piazzesi (2003) suggest that the shape of the
yield curve can be influenced by macro factors and, as a consequence, the
typical persistence shown by macro data may result in substantial autocor-
relation in the spreads, to the point that there are even doubts on their
stationarity (see Giese, 2006).

On the other hand, there is some evidence that the adjustment mecha-
nism implicit in a cointegration model may follow a nonlinear dynamic in
the case of bond yields. In most cases, this effect is modelled via a threshold
model à la Balke and Fomby (1997). Hansen and Seo (2002) argue that ad-
justment follows two regimes, and is noticeable in one but not in the other.
A similar argument is put forward in Krishnakumar and Neto (2005), where
the authors argue that the adjustment is brought about by the monetary
authority’s interventions, and therefore occurs sporadically. A serious draw-
back of this class of models is that inference is rather complex, and the issues
arising when modelling more than two series are quite difficult to handle.

An additional complication may arise because interest rates, like any
other financial variable, show considerable changes in volatility if sampled
at a monthly frequency or higher. This empirical regularity is widely ac-
knowledged and has spurred the development of the gigantic literature on
conditionally heteroskedastic processes, from Engle (1982) onwards. In this
context, highly heteroskedastic innovations may have a dramatic impact on
standard inferential procedures: estimator efficiency is an obvious issue, but
there may also be robustness concerns.

In this article, we propose an empirical analysis that combines nonlin-
ear effects in the conditional mean with conditional heteroskedasticity. The
paper is structured as follows: section 2 describes our dataset and provides
some preliminary evidence to motivate our preferred models, which are pre-

2



sented in section 3, while section 4 contains the estimates, their economic
interpretation and an out-of-sample comparison of the forecasts obtained
with our models with some of the alternatives. Section 5 concludes.

2 Integration and cointegration properties

We have used three weekly time series for US government bonds selected
for different maturities: the variables in the model are the US Treasury
constant maturities 3-month (short, rs

t ), the US Treasury constant maturi-
ties 2-year (medium, rm

t ) and the US Treasury constant maturities 10-year
(long, rl

t). The data source is DATASTREAM1. The sample period goes
from 1982/10/08 through 2008/01/25 and includes 1321 observations for
each series; time series plots are shown in Fig. 1. The two spreads smt and
slt are defined as (rm

t − rs
t ) and (rl

t − rs
t ), respectively.

The choice of modelling weekly data basically depends on the fact that
monthly frequencies would not allow us to capture the adjustments occurring
during the period. On the other hand, using daily data may raise other
concerns, due to the fact that information arrival is not uniform through
time2. For these reasons we assume the week as the “natural” timeframe
for adjustments.

In order to ensure that monetary policy rules are broadly consistent
within the sample period, the sample period starts at 1982/10/07, when the
FOMC announcement was made of the switch from M1 to a target rate as the
main objective, as per Thornton (2005). Moreover, in order to evaluate the
out-of-sample predicting properties of our model for a reasonable time span,
we kept the last 52 observation out of the sample used for estimation. These
choices yield a sample size of 1269 observations, that we deem adequate for
our purpose.

As a preliminary step, we ran a battery of unit-root tests, reported in
Table A-1 in the appendix: the classic ADF test3, which is reported here
for completeness, although it is known to suffer from power problems; the
DF-GLS test by Elliott, Rothenberg, and Stock (1996) and the KPSS test
by Kwiatkowski, Phillips, Schmidt, and Shin (1992).

The results appear to support the conventional view only to some extent:
while it is safe to characterise the rates as nonstationary processes, the
evidence for the spreads is more mixed. While for sm conventional tests
seem to favour stationarity, this happens to a lesser extent for sl. However,

1The codes corresponding to the available series are FRTCM3M, FRTCM2Y and
FRTCM10.

2It is well known (see Ghysels, Harvey, and Renault, 1996) that weekend effects, quote
arrivals, dividend announcements or market closures can represent some examples for this
evidence.

3Following Hall (1994), the number of lags for the ADF tests was chosen via a general-
to-specific approach.
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Figure 1: The data
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if we employ the KSS test (see Kapetanios, Shin, and Snell, 2003), which
is specially tailored to have higher power against nonlinear alternatives, the
null hypothesis of a unit root in sl is strongly rejected.

A similar picture comes from a joint analysis on the whole sample, un-
dertaken by using the Johansen procedure (see Johansen, 1996). The results
are shown in Table A-2 and can be briefly summarised by saying that the
expected outcomes of the base model (1) can be found (with very wide con-
fidence intervals) only if a cointegration rank of 2 is imposed; however, this
hypothesis is rejected rather strongly by both the trace and λ-max tests.

This is consistent with the findings by Giese (2006), who argues that
cointegration holds between spreads: under this hypothesis, in a trivari-
ate system such as ours, the cointegration vector should be of the form
[1,−β, (β − 1)], where β is the cointegration parameter between spreads.
Hence, the three elements of the cointegration vector should sum to 0. How-
ever, Table A-2 shows that this hypothesis was tested by means of an LR
test and rejected.

All in all, there is no clear evidence for the feature that should most
typically characterise cointegrated systems, that is mean reversion of the
disequilibrium series which, in our case, are represented by the spreads. In
other words, if we confine ourselves to linear models, there seems to be too
little tendency in the interest rates to move in the direction needed to bring
back the spreads to their long-run equilibrium value.

In the next section, we argue that part of the problem may come from an
adjustment mechanism that cannot be adequately captured by the models
we have used so far. However, there is also reason to believe that unmodelled
features of the innovation process may be important. The most obvious
candidate is clearly high persistence in variance, which is a typical feature
of high-frequency financial data. There is some evidence (Ling, Li, and
McAleer, 2003) that conditional heteroskedasticity may have a dramatic
impact on conventional unit-root tests.

In our opinion, the model put forward in the following section offers a
more convincing alternative.

3 A nonlinear adjustment model

The empirical framework outlined in the previous section delivers results
which are not fully consistent with economic theory; clearly, this may be a
spurious outcome of the base model being mis-specified. There are several
ways in which the base model could be extended: for example, structural
breaks or long-memory effects could be accounted for. In this section, we
argue that the fundamental element to take into account is nonlinearity in
the adjustment process.
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A more general adjustment model can be represented as

Φ(L)∆yt = g(zt−1) + εt,

where the function g(·) is a function for which there exists at least one value
ze such that g(ze) = 0. The disequilibrium term zt is a linear combination
β′yt, where β is the cointegration matrix, assumed known4.

Special cases include the ordinary linear VECM, in which g(zt) = µ+αzt

and ze = E(zt), or a threshold model, where the function g(·) is a piecewise
linear function (a variation of a Band-TAR model, in Balke and Fomby’s
terminology):

g(zt) =











ϕ1(1 − ρ1) + ρ1zt if zt > ϕ1

0 if ϕ2 < zt < ϕ1

ϕ2(1 − ρ2) + ρ2zt if zt < ϕ2,

(2)

Threshold models have received some attention for modelling interest
rates. However, such models are unsuitable for the purpose of the present
work for two reasons: first, the numerical issues in the computation of the
estimates are far from obvious5, mainly due to the necessity of applying
numerical optimisation methods to a function which presents the disconti-
nuities inherent in (2). Moreover, a threshold cointegration model is not
straightforward to generalise to cases, such as ours, when the number of
cointegrated processes is greater than two. The issues involved are explored
in Lo and Zivot (2001). One serious problem with multivariate threshold
model is the multidimensional generalisation of the “no-adjustment” region,
which is a segment in the univariate case: clearly, there is no a priori reason
for assuming that it should be a parallelogram or a circle or an ellipse, and
any choice could only be justified on the grounds of analytical or computa-
tional convenience.

Another possibility is put forward in Escribano (2004): drawing on ear-
lier work by Escribano and Navarro (2002), the author proposes to approx-
imate the function g(·) by Padé polynomials in a model for money demand.
This solution is remarkably elegant, but again is difficult to generalise to a
multivariate setting.

As a consequence, we decided to work with a third-order Taylor expan-
sion of the unknown adjustment function, which allows for the needed flex-
ibility in the adjustment function while keeping the number of parameters
reasonable.

4A considerable body of literature has been developed in which the general properties
of nonlinear autoregressive models are analysed. The obligatory reference here is Meyn
and Tweedie (1993) which is, however, much more general and much more technical than
what would be needed here; an excellent recent paper which is closer to our present setting
is Saikkonen (2005).

5See Hansen and Seo (2002) for an example. In order to overcome some of the difficul-
ties, a Bayesian approach is advocated in Balcombe (2006).
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We assume here that the cointegration rank is (n−1) and the disequilib-
rium terms are given by the spread variables, which are assumed to possess
finite moments of all orders. In this case, our approximate adjustment func-
tion can be written as

g(st) = µ + α′st + θ′(st ⊗ st)+ + λ′(st ⊗ st ⊗ st)+ (3)

where the ()+ operator is understood to remove all duplicate elements6.
For compactness, define

st = [ smt slt ]′ (4)

qt = (st ⊗ st)+ = [ sm2
t smt · slt sl2t ]′ (5)

ct = (st ⊗ st ⊗ st)+ = [ sm3
t sm2

t · slt smt · sl
2
t sl3t ]′ (6)

so st, qt and ct are, respectively, the first-, second- and third-order terms of
the Taylor expansion.

Figure 2: Cubic approximation

cubic approximation
threshold function

The terms qt and ct do not have, per se, a direct economic interpretation:
they only represent corrections to the linear term which are necessary to cap-
ture the threshold effect adequately. The main idea is that a cubic function

6For example, for the second-order term

(st ⊗ st)+ = D+
n (st ⊗ st)

where D+
n is the Moore-Penrose inverse of the duplication matrix, which, for n = 2, equals

D+
n =

[

1 0 0 0
0 1/2 1/2 0
0 0 0 1

]

.

See Magnus and Neudecker (1988).
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can provide a good approximation to an adjustment function for the empir-
ically relevant range of values, while remaining linear in the parameters, so
estimation of equation (3) is relatively straightforward. Since it is reason-
able to assume that the adjustment function should be non-increasing, it is
obvious that a quadratic term alone would not suffice and a cubic term is
needed. For example, the approximation to a piecewise linear function such
as that of a threshold model is depicted in Figure 2.

It must be stressed that this should be considered a local approximation
to the unknown adjustment function, whose main virtue is computational
simplicity. We do not claim in any way that equation (3) is the actual Data
Generating Process, but merely a local approximation to an unknown DGP,
which we assume to satisfy stability conditions such as condition (iv) in
Escribano (2004) (p. 80) or condition (ii) in Saikkonen (2005) (p. 72), even
if the approximating cubic function does not.

4 Estimation results

The choice of the sample to use for building our empirical model is a crucial
one. On one hand, the data in the sample should be as homogeneous as
possible, since the nonlinear adjustment mechanism that we aim to quantify
is a stylised representation of occasional events, most likely monetary policy
interventions. As policy rules change, so does their representation, leading
to structural breaks that inevitably jeopardise the entire statistical analysis.

In the following subsections, we propose three different alternatives to
model the nonlinear adjustment, which take the form of an augmented ver-
sion of a VAR model.

4.1 Single-equation models

A first set of models we propose which incorporate the above mechanism is
a battery of univariate ECM models in which the quadratic and cubic terms
are added to take the nonlinear adjustment effect into account.

We therefore estimate three equations, one for each rate, whose general
form is

∆ri

t = dt + Ai(L)′∆Rt−1 + α′
ist−1 + θ′iqt−1 + λ′

ict−1 + εt (7)

where i = s,m, l, while Rt is a column vector containing the three rates
and st, qt and ct are defined in equations (4)–(6). Ai(L) is a row vector
of lag polynomials and dt is a vector of deterministic terms, which include
a constant and dummy variables for the “Black Monday” of October 19th,
1987 and the WTC attack of September 11th 2001.

We first estimate the three equations (7) unrestricted, with the order of
Ai(L) equal to 6. We then proceed to restrict the base models via a general-
to-specific approach so to obtain a parsimonious representation. The usual
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battery of diagnostic tests is then run against the restricted models. The
results are shown in Table A-3.

The customary array of diagnostic checks show no sign of misspecifica-
tion, except for a very substantial evidence of ARCH effects in each equation;
this is hardly surprising, given the nature of the data. In order to take this
fact into account and as a robustness check, we ran the same specification for
the conditional mean with a GARCH(1,1) specification for the conditional
variance. The estimate for the GARCH parameters are reported in Table
A-4 in the appendix, together with the general-to-specific and nonlinearity
tests.

Table 1: Single-equation ECM estimates — adjustment parameters
Dep. variable: ∆rs

t Dep. variable: ∆rm
t Dep. variable: ∆rl

t

Variable Coeff. S.E. z-Stat Coeff. S.E. z-Stat Coeff. S.E. z-Stat

smt−1 0.107 0.044 2.405
slt−1 -0.025 0.032 -0.777
sm2

t−1 -0.148 0.058 -2.563 -0.063 0.077 -0.820 -0.043 0.071 -0.604
sl2t−1 -0.011 0.022 -0.482 -0.013 0.023 -0.566 -0.009 0.022 -0.392
sm · slt−1 0.063 0.056 1.141 0.076 0.080 0.951 0.060 0.077 0.773
sm3

t−1 0.004 0.030 0.139 -0.118 0.046 -2.557 -0.092 0.041 2.271
sl3t−1 0.006 0.007 0.925 0.013 0.010 1.374 0.009 0.009 1.006
sm2

t−1 · slt−1 0.049 0.052 0.938 0.178 0.072 2.483 0.135 0.068 1.985
smt−1 · sl

2
t−1 -0.032 0.029 -1.098 -0.091 0.043 -2.140 -0.070 0.041 -1.684

Wald test for total nonlinearity:
Robust F = 1.984 Robust F = 2.176 Robust F = 3.054
p-value = 0.054 p-value = 0.033 p-value = 0.003

Sample: 1982/10/08-2007/01/26 (1269 observations)
Newey-West HAC standard errors (window size = 8)

The estimates for the coefficients α, θ and λ are reported in Table 1,
together with a robust Wald test for overall significance. The important
point to note here is that the combined effect of the non-linear terms is
significant at the 5% level in two of the three equations and in all three at
10%. Combined with the previous results, this indicates that a nonlinear
adjustment mechanism is visible in the data and at the same time clears the
model for the conditional mean of any misspecification.

4.2 A multivariate model

Instead of estimating the equations (7) as an array of univariate models,
it may be preferable to use a full multivariate model, in which the adjust-
ment mechanism is captured via the lagged spreads plus their squares and
cubes. The deterministic part (constant and dummy variables) is the same
as equation (7). The multivariate equivalent to equation (7) then becomes

Φ(L)∆Rt = γ′dt + α′
ist−1 + θ′iqt−1 + λ′

ict−1 + εt (8)

9



In this case, however, the model to be used to take conditional het-
eroskedasticity into account becomes an issue. In order to close the model,
a law of motion for the conditional covariance matrix Ωt is needed. Several
choices are available from the wide literature about multivariate GARCH
models: the first attempt to model multivariate conditional covariances is
the Vech Model introduced by Bollerslev, Engle, and Wooldridge (1988) to-
gether with its restricted formulation known as Diagonal GARCH. Other
relevant contributions are Factor GARCH by Engle and Ng (1993) and the
Dynamic Conditional Correlations (DCC model) by Engle (2002). More
recently, models like O-GARCH (Alexander and Chibumba, 1996), GO-
GARCH (Van der Weide, 2002) or the Generalized Orthogonal Factor GARCH
(Lanne and Saikkonen, 2007), based on principal components have been sug-
gested to solve the problem of estimation in presence of a great number of
time series. A fairly comprehensive survey of the literature is provided in
Laurent, Bauwens, and Rombouts (2006).

In this paper, we used a BEKK model (Engle and Kroner, 1995), so to
achieve a reasonable level of generality. Hence, the conditional covariance
matrix is assumed to be

Ωt = CC ′ + Aεt−1ε
′
t−1A

′ + BΩt−1B
′ (9)

In equation (9), C is a lower-triangular matrix, whose diagonal elements are
constrained to be non-negative, while A and B are full-rank square matrices.

In our case, the BEKK model is probably the best tool to use because
we are modelling a small number of series, as it combines high generality
with relative parsimony and has the property that the conditional covariance
matrices Ωt are positive definite by construction under very mild conditions.
As is well known, the BEKK model includes a relatively high number of
parameters, which makes it unsuitable for large-scale models; this problem
is mitigated by the use of the analytical score (see Lucchetti, 2002), which
we also employ here. For larger models, it would be wiser to model the
persistence in variance by a more parsimonious approach.

It should be noted that a dynamic conditional forecast of the covariance
matrix can be useful for many purposes. In fact, if the forecast is a tool to
be employed in some financial activity, such as portfolio allocation or risk
hedging, the forecast of the conditional covariances is likely to be the main
object of interest.

For lack of a better term, we will refer to this model as the NECH
(Nonlinear Error Correction with Heteroskedasticity) model.

We chose to estimate our model with six lags following the indications
provided by several information criteria7 and LR tests; these criteria failed

7In particular we used AIC, BIC, HQC (Hannan and Quinn, 1979) and LWZ (Liu, Wu,
and Zidek, 1997).
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Table 2: Estimates for equation (8) - adjustment parameters

Equation for ∆rs
t Equation for ∆rm

t Equation for ∆rl
t

Par. Coeff. S.E. z-stat Par. Coeff. S.E. z-stat Par. Coeff. S.E. z-stat

α1,1 0.203 0.057 3.528 α2,1 0.032 0.054 0.601 α3,1 0.006 0.045 0.134
α1,2 -0.071 0.040 -1.797 α2,2 0.013 0.038 0.339 α3,2 0.001 0.032 0.034
θ1,1 -0.251 0.082 -3.071 θ2,1 -0.124 0.094 -1.325 θ3,1 -0.062 0.090 -0.693
θ1,2 0.014 0.028 0.497 θ2,2 -0.019 0.033 -0.573 θ3,2 -0.001 0.031 -0.033
θ1,3 0.074 0.068 1.090 θ2,3 0.081 0.092 0.886 θ3,3 0.042 0.093 0.452
λ1,1 0.006 0.026 0.220 λ2,1 -0.136 0.038 -3.603 λ3,1 -0.111 0.040 -2.789
λ1,2 0.002 0.007 0.224 λ2,2 0.013 0.010 1.270 λ3,2 0.008 0.010 0.729
λ1,3 0.070 0.050 1.394 λ2,3 0.207 0.070 2.946 λ3,3 0.165 0.070 2.358
λ1,4 -0.037 0.031 -1.197 λ2,4 -0.095 0.044 -2.144 λ3,4 -0.074 0.044 -1.664

to yield a clear-cut indication of the optimum number of lags. We there-
fore decided to sacrifice parsimony in exchange for robustness; our results,
however, do not change qualitatively with other choices.

Table 3: NECH model - Wald tests for the adjustment parameters

series Total Linear Nonlinear

α1,· = 0, θ1,· = 0, λ1,· = 0 α1,· = 0 θ1,· = 0, λ1,· = 0
∆rs

t 27.0182 14.3615 11.3839
(0.0014) (0.0008) (0.1227)

α2,· = 0, θ2,· = 0, λ2,· = 0 α2,· = 0 θ2,· = 0, λ2,· = 0
∆rm

t 21.4705 8.8296 16.9247
(0.0107) (0.0121) (0.0179)

α3,· = 0, θ3,· = 0, λ3,· = 0 α3,· = 0 θ3,· = 0, λ3,· = 0

∆rl
t 15.7207 2.1794 15.4139

(0.0729) (0.3363) (0.0310)

Joint test for total nonlinearity:
(θ = 0, λ = 0):

W=33.5727 p-val=0.0402

Test for the same nonlinearity between medium and long :
(θ2,· = θ3,· and λ2,· = λ3,·)

W=5.6026 p-val = 0.5868

The estimates for the parameters of the linear terms of the conditional
mean and the conditional variance have little interest for interpretation;
therefore, they are reported in the appendix as Tables A-5 and A-6. Suffice
it to say that the estimates for the A and B matrices leave no room for
considering the innovations homoskedastic. Moreover, the hypothesis of
diagonality of the matrices A and B is strongly rejected, which confirms
that a full multivariate model is arguably preferable.

The adjustment parameters α, θ and λ are displayed in Table 2, while
Table 3 reports a battery of robust Wald tests for several hypotheses of
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interest8.
As can be seen by comparing tables 1 and 2, the estimates are very simi-

lar in sign and in magnitude. Again, despite the fact that several coefficients
are not individually significant, joint tests indicate that the adjustment ef-
fect is detectable for all rates and the nonlinear effect is highly significant
when we consider all the equations jointly. The hypothesis of no nonlinear
adjustment is only accepted for rs

t . These tests together indicate that some
error correction operates, but it cannot be described by a simple linear rule,
as would be the case had we estimated an ordinary VECM model.

Moreover, the estimates for the parameter vectors θ and λ in the rm
t and

rl
t equations are very similar in sign and magnitude. In fact, this prompts

the intriguing hypothesis that the nonlinear effects may in fact be the same
for the two rates. Accepting this idea would lead one to think that if nonlin-
earity effectively captures monetary policy interventions, then these operate
in a parallel fashion on the long-term end of the yield curve; in other words,
interventions operate on the 2-year and the 10-year rates by altering their
level, but not the spread between them. This hypothesis was tested via a
robust Wald test: the test statistic for the hypothesis of a common adjust-
ment for the two longer-term bond is 5.0626, with a p-value of 0.5868, which
leads to accepting this hypothesis too. Further investigation on this kind
of parallelism seems very promising: the possibility of generalising the idea
to a wider span of the yield curve looks particularly interesting and will be
analysed in future work.

Since nonlinearity seems to exert a lesser effect on the short rate, a re-
stricted model was also estimated, combining the restriction on the short rate
equation θ1 = 0, λ1 = 0 with the cross-equation restrictions θ2 = θ3, λ2 = λ3.
However, the restriction was rejected quite strongly (LR = 67.007, with p-
value 6.69E-09).

4.3 An interpretation of the adjustment process

In order to visualise how changes in rates are driven by the spreads, Figure
3 displays a plot of the adjustment function of the three rates in response to
the two lagged spreads smt−1 and slt−1. The nonlinearity is evident: if the
adjustment process had followed the standard linear VECM mechanism, the
contour lines of the adjustment surface would have been parallel, equidistant
lines. In contrast, notice that there are ample regions of the {smt, slt}
plane where the adjustment mechanism is idle, whereas outside those regions
nonlinearity operates and adjustment occurs much more effectively. An
alternative way to express this result is to consider the attractor of the
long-run relationships not as a single line, but rather as a region of the
three-dimensional space.

8All standard errors and test statistics are computed by using the Bollerslev and
Wooldridge (1992) robust variance estimator.
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Figure 3: Adjustment surfaces
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In other words, the response of bonds yields to movements in the short-
term rate depends on the shape of the yield curve. If slope and curvature
remain “standard”, then little adjustment occurs, if any at all. On the
contrary, when the curve shape becomes “unusual” adjustment is triggered.
This is the effect captured by the nonlinear part of our model, which operates
in a way comparable to the threshold models cited above.

Figure 4: Historical adjustments
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It is also interesting to evaluate graphically when the error-correction
part of the model played a significant role in driving the dependent variables.
Figure 4 reports the combined estimated effects on the bond rates of the
adjustment parameters reported in Table 2.

Most of the spikes in the real data coincide with relevant shocks to the
bond market and consequent policy interventions. A few examples are given
by the Brady Plan implementation in July 1989 (see Ünal, Demirgüç-Kunt,
and Leung (1993) for a detailed account of the timeline), the Mexican Peso
crisis of December 1994 and the “dot-com” bubble burst that occurred in
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early 2000.

4.4 Out-of-sample performance

In order to assess the predictive ability of our estimated model, 52 observa-
tions were kept out of sample. This type of check is particularly important
because nonlinear models often overfit the data and show poor out-of-sample
performance. Hence, the aim of this section is to perform an overall robust-
ness check, rather than to advocate our models as forecasting tools.9

The one-step-ahead forecasts for our univariate specifications (ECM for
the homeoskedastic variant and GARCH for the conditionally heteroskedas-
tic one) plus the multivariate model (NECH) were computed. For com-
parison purposes, we did the same with the following array of competing
models:

RW The random walk model. In this model, the forecast error is simply
the first difference of the series. This is equivalent to an ARIMA(0,1,0)
model.

LVAR A vector autoregressive model of order 6 on the rates in levels. The
order of the model was chosen by considering the BIC and the HQC
information criteria.

C2 Same as above, in VECM form with cointegration rank set to 2. No
restrictions are imposed on the cointegration vectors.

C1 Same as above, with cointegration rank set to 1.

DVAR Same as above, with cointegration rank set to 0, that is, an unre-
stricted VAR in differences.

BEKK Same as above, with a BEKK specification for the conditional co-
variance. This model is included because it is customary in applied
financial analysis to set up multivariate conditional heteroskedasticity
models on the log-returns, discarding the information supplied by the
series in levels.

All the above models were estimated over the same sample as in section
4 and both statistics were calculated up to the 25th of January, 2008. In all
the estimated models the dummy variables for the “Black Monday” and the
WTC attack are used.

The RMSE and the Diebold and Mariano (1995) test (DM) were used to
evaluate their predictive ability; for the DM test, we used a V-shaped loss

9As (Clements, 2005, pp. 39–40) argues, “. . . [I]t is often argued that non-linear models
will be better in some states than others[. . . ] If those occasions which favour the non-
linear model are relatively infrequent, then the good performance at those times may be
diluted by averaging squared forecast errors over all periods”.

15



function, while the long-run variance was computed by using pre-whitening
as in Andrews and Monahan (1992) and a Bartlett window size of 3.

Tables 4 and 5 summarise the results; the null hypothesis of the DM test
is that of equal predictive accuracy between our proposed models (NECH,
GARCH, ECM) and all the alternative models.

Table 4: Out-of-sample RMSE

Model rs
t

rm
t

rl
t

RW 0.2066 0.1502 0.1077
LVAR 0.4019 0.3014 0.2162
C2 0.4015 0.3008 0.2151
C1 1.1727 0.3006 0.5929
DVAR 0.2116 0.1522 0.1054
BEKK 0.2092 0.1606 0.1147
ECM 0.1951 0.1505 0.1075
GARCH 0.1947 0.1530 0.1098
NECH 0.2046 0.1493 0.1093

In terms of RMSE, our proposed models are in most cases superior to
all the competing models; in the worst cases, they are comparable with the
best ones. Moreover, it is noteworthy that among the competing models the
random walk model is consistently among the best, if not the best overall10.
For the short-term rate rs

t , the models containing a nonlinear part exhibit
the lowest RMSE of all; for the other two rates, the results are less strong,
but similar. The DM tests carry a similar message: apart from one case (the
RW for the short rate), the nonlinear models always outperform their linear
alternatives when the test rejects the null. It should be noted, however, that
even the superiority displayed in this case by the RW for the short rate is
contrasted by a higher value of the RMSE.

It should also be noted that our out-of-sample period includes the sub-
prime mortgage crisis, which could potentially have disruptive effects on
forecasts if our models suffered from in-sample overfitting.

The overall message from the out-of-sample forecasting exercise is that
no evidence of misspecification and overfitting by the nonlinear models is vis-
ible; on the contrary, nonlinearity seem to help forecasts, albeit marginally.

10The fact that no model clearly outperforms the random walk model is not surprising.
It is a well-established fact that, on the very short run, financial variables are essentially
impossible to predict. The considerations in Kilian and Taylor (2003) on the difficulties
of beating the random walk model when important nonlinearities are present in the data
generating process also apply here.

16



Table 5: Diebold and Mariano (1995) test versus the nonlinear adjustment
models

Model rs
t

rm
t

rl
t

versus NECH
RW -3.3228 *** 1.7928 * 2.3043 **
LVAR 3.6649 *** 2.1834 ** 2.2304 **
C2 3.6332 *** 2.2158 ** 2.2767 **
C1 1.3252 0.1118 0.2603
DVAR -0.1026 1.0800 1.2505
BEKK 0.1933 0.9623 0.2712

versus GARCH
RW -4.0512 *** 1.6007 2.4417 **
LVAR 3.0511 *** 2.1486 ** 2.3417 **
C2 3.0341 *** 2.1791 ** 2.3920 **
C1 1.0576 0.2537 0.2010
DVAR 0.5284 0.6207 0.6930
BEKK 0.7288 0.1671 -0.8878

versus ECM
RW -4.0837 *** 1.6245 2.4991 **
LVAR 3.1638 *** 2.1671 ** 2.3520 **
C2 3.1443 *** 2.1974 ** 2.4019 **
C1 1.1294 0.2734 0.1976
DVAR 0.9298 0.8118 1.8468 *
BEKK 0.9566 0.3646 -0.0095

Two-tailed tests: positive test values indicate superior forecasting accuracy for the
nonlinear model; negative test values indicate superior forecasting accuracy for
the linear model.
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5 Summary and conclusions

The main message of our paper is clear: nonlinear adjustment is an impor-
tant empirical feature in US bond rates. From an economic point of view,
this is an interesting result because it suggests that the notion of long-run
equilibrium should be broadened to include the concept that equilibrium
could be attained in a region of the state space, rather than a single point
(or a collection of isolated points). From a statistical point of view, failure
to include nonlinearity into an empirical model leads to mis-specification
and may hamper predictive ability.

Our models for US bonds approximate a nonlinear adjustment mecha-
nism via a simple variable addition to an otherwise ordinary VAR model.
Moreover, incorporating conditional heteroskedasticity can be done via stan-
dard methods. Hence, they are much less complex to estimate, from a com-
putational point of view, than multivariate threshold models and can also
be used when the number of time series is greater than two.

In our empirical application, we provide a description of the data that
reconciles the findings of different strands of applied work in this area. The
most prominent features of our dataset are encompassed, identifying non-
linear adjustment effects in particular periods such as the Brady Plan intro-
duction, the Mexican Peso crisis, the Russian crisis or the “dot-com” bubble
burst. In addition, our out-of-sample analysis shows that the 2007 subprime
mortgage crisis is handled satisfactorily.

Finally, the description of policy shocks transmission to long-term bonds
that our model offers prompts some interesting considerations: out of the
three interest rates considered, the short-term rate is the one displaying the
least compelling evidence for nonlinearity and for which the improvements in
forecasting power are least obvious. This may suggest that the adjustment
mechanism we have studied is particularly important for longer-term bond
rates. This aspect may be investigated in more detail by considering a wider
spectrum of maturities. This point will be the object of future research.
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Appendix

Table A-1: Stationarity tests for rates and spreads

Sample: 1982/10/08 - 2007/01/26 (1269 observations)

series ADF DFGLS KPSS KSS

rs
t -1.4800 -0.1638 2.8847 ***

rm
t -2.0591 0.0317 3.3792 ***

rl
t -1.8446 0.4898 4.0010 ***

smt -2.1617 -1.8720 * 0.1518 -2.1564
slt -2.3812 -1.6406 * 0.4103 * -2.9957 **

Stars indicate rejection of the null hypothesis at the 10%, 5% and 1% level (the KPSS test
has stationarity as its null hypothesis). The p-values for the ADF tests were computed
via the algorithm by MacKinnon (1996). The critical values for the DF-GLS test are from
Elliott et al. (1996). The KPSS test is carried out with a window size of 26; critical values
are from Kwiatkowski et al. (1992). The KSS test was carried out with a contant and no
trend; lag selection via Hannan and Quinn’s (1979) criterion. For the critical values see
Kapetanios et al. (2003).

Table A-2: Johansen test and cointegrating vectors

Time series

Sample: 1982/10/08-2007/01/26 (1269 observations)
Restricted constant - Selected number of lags: 2

Rank Eigenvalue Trace test p-value λ-max test p-value

0 0.0629 89.6430 0.0000 82.4690 0.0000
1 0.0036 7.1737 0.8803 4.5282 0.9139
2 0.0021 2.6456 0.6540 2.6456 0.6529

1 cointegrating vector: rs
t−1 rm

t−1 rl
t−1 const

β′ 1.0000 -1.4501 0.59036 -0.57064
(0.0000) (0.0562) (0.0615) (0.1539)

LR Test for β1 + β2 + β3 = 0: 28.0490 , p-value = 1.18e-07

Optimal number of lags is selected via Hannan and Quinn (1979) information criterion.
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Table A-3: Single-equation ECM estimates
Dep. variable: ∆rs

t Dep. variable: ∆rm
t Dep. variable: ∆rl

t

Variable Coeff. S.E. z-Stat Coeff. S.E. z-Stat Coeff. S.E. z-Stat

const -0.011 0.008 -1.328 -0.006 0.008 -0.715 -0.006 0.008 -0.784
wcct -1.752 0.020 -87.678 -1.485 0.030 -50.169 -1.217 0.023 -52.617
wtct -0.595 0.014 -42.510 -0.657 0.015 -42.861 -0.228 0.014 -16.753
wtct−1 -0.358 0.038 -9.444 0.033 0.038 0.853 0.121 0.035 3.409
∆rs

t−1 -0.145 0.069 -2.109 -0.044 0.057 -0.772 -0.121 0.046 -2.642
∆rs

t−2 0.027 0.052 0.513 0.128 0.055 2.340
∆rs

t−3 0.020 0.040 0.488 0.102 0.042 2.404
∆rs

t−4 0.092 0.035 2.636 0.067 0.034 1.998
∆rs

t−5 0.070 0.032 2.170
∆rm

t−1 0.166 0.048 3.460 0.032 0.066 0.479 0.136 0.062 2.172
∆rm

t−2 -0.120 0.072 -1.659
∆rl

t−1 -0.088 0.049 -1.805 0.006 0.061 0.092 -0.073 0.066 -1.109

∆rl
t−2 0.138 0.071 1.959

smt−1 0.107 0.044 2.405
slt−1 -0.025 0.032 -0.777
sm2

t−1 -0.148 0.058 -2.563 -0.063 0.077 -0.820 -0.043 0.071 -0.604
sl2t−1 -0.011 0.022 -0.482 -0.013 0.023 -0.566 -0.009 0.022 -0.392
sm · slt−1 0.063 0.056 1.141 0.076 0.080 0.951 0.060 0.077 0.773
sm3

t−1 0.004 0.030 0.139 -0.118 0.046 -2.557 -0.092 0.041 2.271
sl3t−1 0.006 0.007 0.925 0.013 0.010 1.374 0.009 0.009 1.006
sm2

t−1 · slt−1 0.049 0.052 0.938 0.178 0.072 2.483 0.135 0.068 1.985
smt−1 · sl

2
t−1 -0.032 0.029 -1.098 -0.091 0.043 -2.140 -0.070 0.041 -1.684

General-to-specific test:
F(11, 1238) = 1.493 F(12, 1238) = 1.326 F(17, 1238) = 0.931
p-value = 0.128 p-value = 0.197 p-value = 0.537

RESET test with squares and cubes:
F(2. 1248) = 1.407 F(2. 1249) = 1.548 F(2. 1254) = 1.281
p-value = 0.245 p-value = 0.213 p-value = 0.278

Breusch-Godfrey test for first-order autocorrelation:
LMF stat = 1.102 LMF stat = 3.315 LMF = 0.983
p-value = 0.294 p-value = 0.069 p-value = 0.322
TR2 = 1.120 TR2 = 3.359 TR2 = 0.994
p-value = 0.290 p-value = 0.067 p-value = 0.319

ARCH(2) test:
LM stat = 163.362 LM stat = 15.681 LM stat = 18.290
p-value = 0.000 p-value = 0.000 p-value = 0.000

CUSUM test for stability of parameters (Harvey-Collier):
t(1248) = 1.807 t(1250) = -0.471 t(1255) = 0.764
p-value = 0.071 p-value = 0.638 p-value = 0.445

Wald test for total nonlinearity:
Robust F = 1.984 Robust F = 2.176 Robust F = 3.054
p-value = 0.054 p-value = 0.033 p-value = 0.003

Sample: 1982/10/08-2007/01/26 (1269 observations)
Newey-West HAC standard errors (window size = 8)
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Table A-4: Univariate GARCH models

Dep. variable: ∆rs
t Dep. variable: ∆rm

t Dep. variable: ∆rl
t

Variable Coeff. S.E. z-Stat Coeff. S.E. z-Stat Coeff. S.E. z-Stat

const 0.000 0.000 1.433 0.001 0.001 1.759 0.000 0.001 0.416
ARCH 0.142 0.057 2.486 0.088 0.031 2.817 0.044 0.048 0.920
GARCH 0.858 0.050 17.097 0.859 0.055 15.703 0.943 0.077 12.179

General-to-specific test:
W = 12.763 W = 9.149 W = 13.334
p-value = 0.309 p-value = 0.690 p-value = 0.714

Wald test for total nonlinearity:
W = 13.860 W = 24.589 W = 18.585
p-value = 0.054 p-value = 0.001 p-value = 0.010

QML standard errors; complete estimates are available upon request.

Table A-5: Estimates for equation (8) - short-run parameters

Equation for ∆rs
t Equation for ∆rm

t Equation for ∆rl
t

Par. Coeff. S.E. z-stat Par. Coeff. S.E. z-stat Par. Coeff. S.E. z-stat

µ1 -0.037 0.014 -2.725 µ2 -0.019 0.011 -1.719 µ3 -0.012 0.010 -1.208
γ1,1 -1.829 0.027 -68.560 γ2,1 -1.516 0.030 -50.400 γ3,1 -1.184 0.029 -40.380
γ1,2 -0.570 0.015 -38.980 γ2,2 -0.667 0.017 -39.370 γ3,2 -0.222 0.016 -13.690
γ1,3 -0.420 0.236 -1.783 γ2,3 -0.056 0.125 -0.452 γ3,3 0.141 0.056 2.510
φ1,1,1 -0.057 0.044 -1.298 φ1,2,1 0.009 0.050 0.183 φ1,3,1 -0.074 0.042 -1.749
φ1,1,2 0.068 0.043 1.573 φ1,2,2 0.007 0.066 0.113 φ1,3,2 0.163 0.061 2.649
φ1,1,3 0.009 0.039 0.229 φ1,2,3 0.064 0.056 1.138 φ1,3,3 -0.086 0.057 -1.509
φ2,1,1 0.024 0.038 0.629 φ2,2,1 0.052 0.043 1.208 φ2,3,1 -0.023 0.041 -0.556
φ2,1,2 -0.018 0.046 -0.390 φ2,2,2 -0.012 0.066 -0.181 φ2,3,2 0.028 0.064 0.433
φ2,1,3 -0.005 0.040 -0.114 φ2,2,3 0.027 0.060 0.444 φ2,3,3 -0.002 0.061 -0.033
φ3,1,1 0.017 0.037 0.443 φ3,2,1 0.056 0.045 1.258 φ3,3,1 -0.047 0.040 -1.183
φ3,1,2 -0.050 0.045 -1.107 φ3,2,2 -0.050 0.067 -0.758 φ3,3,2 0.046 0.064 0.715
φ3,1,3 0.053 0.042 1.276 φ3,2,3 0.083 0.063 1.331 φ3,3,3 0.009 0.061 0.144
φ4,1,1 0.145 0.038 3.846 φ4,2,1 0.074 0.042 1.746 φ4,3,1 0.014 0.040 0.344
φ4,1,2 -0.051 0.045 -1.130 φ4,2,2 0.016 0.069 0.232 φ4,3,2 -0.001 0.059 -0.015
φ4,1,3 0.029 0.041 0.709 φ4,2,3 0.021 0.064 0.328 φ4,3,3 0.023 0.058 0.396
φ5,1,1 0.008 0.037 0.219 φ5,2,1 -0.048 0.040 -1.223 φ5,3,1 -0.091 0.040 -2.289
φ5,1,2 -0.000 0.041 -0.010 φ5,2,2 0.066 0.060 1.103 φ5,3,2 0.102 0.061 1.671
φ5,1,3 0.005 0.033 0.160 φ5,2,3 0.019 0.055 0.343 φ5,3,3 -0.026 0.056 -0.466
φ6,1,1 0.004 0.033 0.124 φ6,2,1 0.045 0.036 1.236 φ6,3,1 0.010 0.036 0.269
φ6,1,2 0.053 0.038 1.401 φ6,2,2 -0.021 0.056 -0.380 φ6,3,2 0.023 0.056 0.409
φ6,1,3 -0.042 0.033 -1.284 φ6,2,3 0.006 0.053 0.113 φ6,3,3 -0.039 0.055 -0.713
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Table A-6: Estimates for equation (9)

Par. Coeff. S.E. z-stat Par. Coeff. S.E. z-stat

C1,1 0.0113 0.0038 2.9470 A1,3 -0.0016 0.1115 -0.0147
C2,1 0.0000 0.0088 0.0008 A2,3 -0.1081 0.0864 -1.2510
C3,1 -0.0030 0.0062 -0.4865 A3,3 0.1217 0.0655 1.8600
C2,2 0.0260 0.0054 4.7740 B1,1 0.9331 0.0305 30.5700
C3,2 0.0079 0.0060 1.3230 B2,1 0.0254 0.0230 1.1060
C3,3 -0.0000 0.0000 -0.8786 B3,1 -0.0106 0.0166 -0.6359
A1,1 0.3594 0.0805 4.4620 B1,2 0.0129 0.0453 0.2836
A2,1 0.0258 0.0652 0.3959 B2,2 0.9182 0.0360 25.4900
A3,1 0.0685 0.0488 1.4050 B3,2 0.0265 0.0296 0.8971
A1,2 -0.0226 0.1126 -0.2003 B1,3 -0.0054 0.0395 -0.1361
A2,2 0.2755 0.0836 3.2970 B2,3 0.0361 0.0256 1.4100
A3,2 -0.0170 0.0740 -0.2292 B3,3 0.9685 0.0198 49.0300

Moduli of the eigenvalues of (A ⊗ A + B ⊗ B):
0.9995 0.9774 0.9625 0.9614 0.9516 0.9459 0.9161 0.9066 0.9024

Wald test for diagonal BEKK: W = 46.0351, p-value = 6.8e-6
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