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Abstract

Using PIRLS (Progress in International Reading Literacy Study) data, we inves-
tigate which countries’ schools can be be classified as significantly better or weaker
than Germany’s as regards the reading literacy of primary school children. The
‘standard’ approach is to conduct separate tests for each country relative to the
reference country (Germany) and to reject the null of equally good schools for all
those countries whose p-value satisfies pi 6 0.05. We demonstrate that this approach
ignores the multiple testing nature of the problem and thus overstates differences
between schooling systems by producing unwarranted rejections of the null. We
employ various multiple testing techniques to remedy this problem. The results
suggest that the ‘standard’ approach may overstate the number of significantly dif-
ferent countries by up to 30%.
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1 Introduction

Multi-country comparisons of student achievement regularly cause lively debate, both

in academic circles and, perhaps even more so, the wider public. In view of below-

average results in recent Programme for International Student Assessments (PISA), this

seems to be particularly the case in Germany. Germany’s place in the international

ranking is tracked closely across different editions of the assessment, and comparatively

better performances in other exercises, such as PIRLS (Progress in International Reading

Literacy Study), are widely acclaimed. Of course, the professional literature (as well as

the better media) recognizes that a country being placed before another one in a ranking

does not necessarily have a better educational system than worse-placed one. To keep

the effort of student assessments manageable, all of these are inevitably based on samples

from the countries’ student population. Thus, any comparison of any two country must

make use of the tools of statistical inference. In particular, it is to be investigated whether

differences found between two countries are statistically significant. If the only analysis

of interest was one single comparison of two countries, this could be done routinely with,

say, a suitable t-test.

However, large-scale international student assessments typically have several dozens of

participating countries. The relevant issue then becomes to test whether any of n coun-

tries’ schools is better (or weaker) than the reference country of interest. The literature

typically investigates this question by conducting separate t-tests for each country relative

to the reference country, and declares all those countries’ schools as significantly different

from the reference country’s for which the corresponding p-value is sufficiently small, say,

pi 6 0.05 [e.g., Bos, Hornberg, Arnold, Faust, Fried, Lankes, Schwippert, and Valtin,

2007]. In the sequel, we shall refer to this approach as the ‘standard’ approach.
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Unfortunately, this simple and intuitive way of investigating whether countries’, say, read-

ing performances are significantly different from each other is problematic from a statis-

tical point of view. Effectively, it ignores the multiple testing nature inherent of the

approach. To illustrate the problem, consider the following artificial numerical example.

Suppose one has achievement data on a panel of, say, n = 20 countries (plus one reference

country). Also assume for simplicity that the the countries are statistically indepen-

dent and that all countries’ performances are identical.1 When conducting tests on each

country at the α = 0.05 level, one might casually expect the probability to erroneously

find evidence in favor of significant differences in at most one case to equal 5%, because

1/20 = 0.05. However, the event of a rejection is a Bernoulli random variable with “suc-

cess” probability 0.05. Hence, Pk, the probability of finding k rejections in n tests, is the

probability mass function of a Binomial random variable,

Pk =

(
n

k

)
αk(1− α)n−k.

Therefore, the probability of (at least) one erroneous rejection, also known as the Fami-

lywise Error Rate2 (FWER), equals

Pk>1 =
20∑
j=1

(
20

j

)
0.05j(1− 0.05)20−j

= 1− P0

= 1−
(

20

0

)
0.050(1− 0.05)20

= 0.6415.

Even if all countries have identically good schools, one will falsely find some evidence of

1This assumption is only made to justify the following calculation. It is not needed for any of the
procedures we shall employ later.

2Let P be the true data generating mechanism and I0(P ) ⊂ {1, . . . , n} the units for which correspond-
ing null hypothesis Hi is true. A precise definition is then given by

FWERP = PrP {Reject at least one Hi : i ∈ I0(P )}

More generally, the j-FWER is defined as Pk>j , the probability of j or more false rejections.
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differences with a rather high probability. Of course, the problem only worsens if one

adds more units to the panel. If one has data on a broader set of 100 countries, the

corresponding probability equals 0.9941. That is, one is then practically bound to declare

at least one—and potentially quite a few more—countries’ schools as significantly different

from the average even if all are equal.

This so-called “multiplicity” problem, while not widely recognized in the broader econo-

metrics literature [Savin, 1984], has of course been realized long ago in the statistics

literature [see Lehmann and Romano, 2005]. Several solutions to controlling the FWER

at some specified level α have been suggested. Among the most popular are the Bonferroni

and the the Holm [1979] procedure. These procedures have however been less successful

in applications because ensuring FWER 6 α typically comes at the price of reducing the

ability to identify false hypotheses. That is, the procedures are conservative or have low

“power.”3 Hence, often quite reasonably, researchers have tended to ignore the issue of

multiplicity.

There has been substantial research on improving the ability of multiple testing ap-

proaches to detect false hypotheses while still controlling the FWER. Romano and Wolf

[2005] put forward a bootstrap scheme that exploits the dependence structure of the

statistics in order to improve the power of the multiple test. Hommel [1988], in turn,

works with a computationally less demanding p-value combination technique. Benjamini

and Hochberg [1995] suggest a procedure that is likely to detect more false hypotheses in

particular in situations with a large n.

The present study uses data from the 2006 edition of the PIRLS assessment—better known

as IGLU in Germany—to investigate the effect of multiplicity on the classification of

countries’ schools into those better or weaker than Germany’s. We analyze which countries

3For a discussion of “power” in a multiple testing framework see Romano and Wolf [2005], Sec. 2.2.
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have better or weaker schools as regards the reading literacy of 4th grade students. Our

main finding is that not controlling for multiplicity via suitable multiple testing techniques

overstates the number of significantly different countries by up to 30%.

The next section summarizes the multiple testing procedures used in the present study.

Section 3 provides some background on the PIRLS study. Section 4 presents the empirical

results, while the last section summarizes and provides an outlook for possible further

research.

2 Multiple Testing Procedures

We now briefly outline the multiple testing procedures used here. For a full discussion of

the properties of the procedures, the reader is referred to the original contributions. Also,

Dudoit and van der Laan [2007] and Romano and Wolf [2008] provide recent surveys of

the literature.

2.1 Classical FWER-controlling techniques

Probably the most widely used techniques to control the FWER are the Bonferroni and

the Holm [1979] procedures. Recall that the former rejects the null hypothesis Hi if the

p-value pi corresponding to the test statistic τ̂i satisfies pi 6 α/n. The Holm [1979]

procedure first sorts the p-values from smallest to largest, p(1) 6 . . . 6 p(n). Relabel the

hypotheses accordingly as H(k). Then, reject H(k) at level α if

p(j) 6 α/(n− j + 1) for all j ∈ Nk,

with j ∈ Nk shorthand for j = 1, . . . , k. The cutoff value for the first hypothesis is

identical for both methods, but unlike the Bonferroni method, the Holm [1979] procedure

uses gradually less challenging criteria for H(2), . . . , H(n).
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Table I—Hommel’s [1988] procedure for n = 3

i = 1: k = 1 p(3−1+1) = p(n) > α

i = 2: k = 1 p(3−2+1) = p(n−1) > α/2
k = 2 p(3−2+2) = p(n) > α

i = 3: k = 1 p(3−3+1) = p(1) > α/3
k = 2 p(3−3+2) = p(n−1) > 2α/3
k = 3 p(3−3+3) = p(n) > α

2.2 Hommel’s Procedure

Hommel [1988] suggests the following procedure to control the FWER.

Hommel’s Procedure

A. Compute

j = max{i ∈ Nn : p(n−i+k) > kα/i for k ∈ Ni}. (1)

B1. If the maximum does not exist, reject all Hi (i ∈ Nn).

B2. If the maximum exists, reject all Hi with pi 6 α/j.

For concreteness, consider an illustrative example where n = 3. We find j as the largest i

such that all adjacent conditions in Table I hold. If j does not exist, then even p(n) 6 α, so

that we can ‘safely’ reject all hypotheses. If the p-values are given by, say, 3α/5, 2α, α/5,

then j = 2 such that we only reject H3.

Graphically, the procedure works as sketched in Figure I. We depict n = 5 sorted p-values

and take α = 0.05. In this case, j = 2 because, starting from the left, the second-to-last

of the blue (darker) lines is the first one such that all corresponding sorted p-values are

above that line. Hence, we reject all those Hi for which pi 6 α/2. That is, the first three

hypotheses.
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Sorted p-values and Hommel’s cutoff lines

Figure I—A Graphical Illustration of Hommel’s
Procedure

Originally, Hommel’s Procedure was only known to control the FWER under indepen-

dence, an overly strong assumption in our setup. Indeed, student achievement is likely to

be affected by background variables such as the extent to which learning is valued in a

society. Since that valuation is typically more prevalent in certain geographically related

groups of countries, achievement data will not be independent from one country to the

next. Fortunately, Sarkar [1998] shows that the assumption of independence is not nec-

essary and can, in fact, be weakened substantially. The following is adapted from Sarkar

[1998, Prop. 3.1]4

Proposition 1.

If the test statistics for testing the Hi, i ∈ Nn, are multivariate totally positive of order 2

(MTP2), then, for j from (1),

PH0(∃ i ∈ Nn : pi 6 α/j) = PH0(Hommel rejects for some i) 6 α,

where PH0 denotes the probability under the null hypothesis.

4In fact, Hommel [1988] proves that his procedure controls the FWER if the intersection test by Simes
[1986] is a level α test. Sarkar [1998], in turn, proves that Simes’ test is a level α test under the MTP2

condition.
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A vector of random variables T = (T1, . . . , Tn)′ is said to be MTP2 if its joint density f

satisfies

f
(
min(T1, U1), . . . ,min(Tn, Un)

)
· f
(
max(T1, U1), . . . ,max(Tn, Un)

)
>

f(T1, . . . , Tn) · f(U1, . . . , Un),

for any two points (T1, . . . , Tn) and (U1, . . . , Un). The MTP2 class is rather large, including

the multivariate normal with nonnegative correlations, the absolute-valued multivariate

normal with some specific covariance structures, multivariate gamma, absolute-valued

central multivariate t, and central multivariate F distributions. Sarkar [1998] further

verifies that even the MTP2 condition of Proposition 1 is not necessary.

2.3 Benjamini and Hochberg [1995]

When the number of multiple tests n is large, control of the FWER is often an overly

strict criterion, as ensuring a low probability of only one false rejection then comes at the

price of low power of the procedures. Also, one might be willing to tolerate more than one

false rejection if there are a larger number of total rejections. Put differently, one might

be willing to tolerate a small share of false rejections out of the total rejections. To that

end, Benjamini and Hochberg [1995] suggest the “False Discovery Rate” (FDR). Let Vn

the number of false rejections and Rn the total number of rejections. The FDR is then

defined as

FDR = E

[
Vn
Rn

I(Rn > 0)

]
A multiple testing method is said to control the FDR at level γ if FDR 6 γ for any

P . Unless all null hypotheses are true, the FDR is a more liberal error rate. That is,

if a procedure controls the FWER, it will also control the FDR, but generally not vice

versa. (If Vn > 0, FWER = E[I(Vn > 0)] > E[(Vn/Rn)I(Rn > 0)] = FDR, because
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(Vn/Rn) 6 1.) The Benjamini and Hochberg [1995] is a “stepup” method, which first

examines the largest p-value, and then proceeds “up” to the more significant hypotheses.

It works as follows.

A. Sort the p-values from small to large,

p(1) 6 · · · 6 p(n).

Relabel the hypotheses accordingly as H(k).

B. Choose some (small) γ.

C. Define

j∗ = max{j ∈ Nn : p(j) 6 γj} where γj =
j

n
γ

D1. If j∗ exists, reject H(1), . . . , H(j)∗ .

D2. If not, reject no hypotheses.

Benjamini and Hochberg [1995] show this procedure to control the FDR at γ under in-

dependence of the test statistics. Importantly, Benjamini and Yekutieli [2001] extend

this result and show that this procedure controls the FDR under the more general and

practically relevant “positive regression dependency on each one from a subset” (PRDS)

condition. See Benjamini and Yekutieli [2001] for a precise definition of the PRDS condi-

tion, which is somewhat similar to the MTP2 condition stated above.

3 PIRLS

Inaugurated in 2001 and conducted every 5 years, PIRLS—Progress in International Read-

ing Literacy Study—is an assessment of students’ reading achievement in the fourth grade

(9-10 years old). It aims to monitor international trends in primary school reading achieve-

ment [Mullis, Martin, and Foy, 2007]. The 2006 edition of PIRLS was implemented in 40
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Figure II—A Text and a Question from the
PIRLS Study

countries, including Belgium with 2 educational systems and Canada with 5 provinces.

This yields 45 participants in total—see Figure II for a list of participating countries.5

Each country selected at least 150 schools, some of which were subsequently excluded

from the sample. See Mullis et al. [2007] for a detailed discussion of the reasons.6

Figure II depicts an example of a text to be read by students, as well as a corresponding

question. (Of course, texts and questionnaires were provided in the students’ mother

tongues.)

Table II provides some descriptive statistics. It is readily apparent that the countrywise

averages have a rather skewed distribution, with many countries exceeding the interna-

tional average of 500, and correspondingly fewer countries having a substantially lower

average score. We further see that there is quite some variation in the number of partici-

5Iceland and Norway participated with both the 4th and the 5th grade, which, for the purposes
of the present analysis, are treated as two separate units. For brevity, we shall henceforth refer to
countries/regions as simply countries.

6The data are available at http://www.timss.bc.edu/.
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Table II—Descriptive School-Level Statistics.

Country Average Standard Deviation Number of Schools
Russian Federation. RUS 569.32 67.54 232
Hong Kong. HKG 565.25 58.92 144
Canada, Alberta. CAB 560.51 67.12 150
Canada, British Columbia. CBC 558.09 68.66 148
Luxembourg. LUX 557.09 66.73 178
Hungary. HUN 556.41 68.19 149
Bulgaria. BGR 555.10 81.07 143
Singapore. SGP 552.74 78.42 178
Italy. ITA 551.79 67.14 150
Iceland (5th grade) IS5 551.11 62.39 35
Netherlands. NLD 550.78 51.78 139
Denmark. DNK 549.74 69.25 145
Sweden. SWE 549.05 63.34 147
Belgium (Dutch). BFL 548.39 55.45 137
Latvia. LVA 548.11 60.18 147
Germany. DEU 548.07 65.20 405
Lithuania. LTU 540.77 56.59 146
Canada, Ontario. COT 540.08 72.14 180
Canada, Nova Scotia. CNS 537.67 76.62 201
Austria. AUT 537.35 63.09 158
Norway (5th grade). NO5 537.31 60.62 66
United States. USA 536.84 73.67 183
England. ENG 536.71 86.61 148
Taiwan. TWN 536.47 63.76 150
Slovakia. SVK 535.55 74.21 167
Canada, Quebec. CQU 530.35 65.59 185
Scotland. SCO 529.88 78.93 130
New Zealand. NZL 526.13 90.93 243
Poland. POL 524.09 74.90 148
Slovenia. SVN 523.06 69.75 145
France. FRA 522.84 66.74 169
Spain. ESP 516.77 69.31 152
Israel. ISR 511.47 99.85 149
Iceland. ICE 510.65 67.52 128
Moldova. MDA 502.26 68.26 150
Belgium (French). BFR 500.43 68.62 150
Romania. ROM 500.04 88.49 146
Norway. NOR 497.21 67.47 135
Georgia. GEO 474.14 72.83 149
Trinidad and Tobago. TTO 445.97 102.84 147
Macedonia. MKD 442.85 100.02 147
Iran. IRN 435.56 96.74 236
Indonesia. IDN 405.67 79.04 168
Qatar. QAT 354.31 96.24 119
Kuwait. KWT 330.56 110.30 149
Morocco. MAR 328.04 106.66 159
South Africa. ZAF 282.02 119.17 397
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pating schools per country, with some countries such as Germany (405) strongly exceeding

the target value of 150, and others falling short.

4 Results

As argued in the Introduction, the extent to which different educational systems are found

to be statistically significantly different may be overstated in the literature, as the em-

ployed testing procedures typically do not account for multiplicity. This section presents

an application of the above multiple testing procedures to identify those countries that

have statistically significantly better primary schools than Germany as regards reading

literacy, while controlling for multiplicity.7

We first aggregate student achievement data at the school level. Due to missing data, the

PIRLS database constructs imputation-based results for all students, so called “Plausible

Values”. The PIRLS reading achievement scale is standardized to have a mean of 500.

All our results are based on “Plausible Value: Overall Reading PV5”.8 Then, let Ti be

the number of schools in country/region i; and x̄T,i and s2
T,i = (n− 1)−1

∑Ti

t=1(xt − x̄T,i)2

countrywise averages und variances across schools. We keep the statistical approach to

the countrywise comparisons to Germany deliberately simple to focus on the effect of

multiplicity on the test results.9 Accordingly, we conduct a standard t-test, defined by

the rejection of the null H0 : µ = µ0 if

|ti| := |
√
Ti(x̄T,i − µ0)/sT,i| > cα/2,

7Of course, the choice of Germany is arbitrary and dictated by the author’s personal interest. Any
other country (as well as the overall average of 500) could have been used as a reference country.

8Since the different Plausible Values correlate rather strongly, all our results should remain qualita-
tively unchanged if another of the available imputed set of scores was used.

9Mullis et al. [2007] report standard errors based on jackknife estimates to take the stratified sampling
design as well as imputation error into account. Again, differences to our results were checked to be
negligible.
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Blue Dotted Dashes—Standard Cyan Dashes—Hommel
Red Short Dashes—Holm Magenta Dots—BH

Figure III—Individual Countries’ p-values
Relative to Germany

the α/2-quantile of the normal distribution. The corresponding two-sided p-value is pi =

2(1 − Φ(|ti|)), with Φ the standard normal distribution function. As Germany’s 2006

average score is 548 (see Table II), we have µ0 = 548.

Results are presented in Figure III. (See Table II for the abbreviations used.) For a num-

ber of countries such as Sweden (SWE), Italy (ITA), the Netherlands (NLD) or England

(ENG), the p-values are rather large, implying that student reading literacy in these coun-

tries’ schools is by all standards comparable to that in Germany. For several countries, we

find p-values less than, but close to, 0.05. Examples include Austria (AUT), the United

States (USA) or Slovakia (SVK). Finally, there is a large set of countries for which the

the p-values are essentially indistinguishable from zero. (To make the lower left portion

of Figure III more easily readable, Figure IV reports that fraction in higher resolution.)

Several points are worth noting. Applying the ‘standard’ approach would lead to 29
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Cyan Dashes—Hommel Red Short Dashes—Holm Green Dots—Bonferroni

Figure IV—Some Countries’ p-values Relative to
Germany

rejections, as p(29) = pUSA = 0.039 and p(30) = pCNS = 0.054. On the other hand, all

FWER-controlling techniques (cf. Sections 2.1-2.2) happen to indicate the same number

of 23 rejections in this application. This is due to a large jump from p(23) = pHKG = 0.0004

to p(24) = pSCO = 0.0085, a value 20 times as large. This leads all these procedures to

cut off at 23. Note, however, from Figure IV that the rejection curve of Hommel’s pro-

cedure lies noticeably higher than that of Bonferroni’s, and, initially, that of Holm’s.

Although, as seen above, the particular distribution of the p-values in this application

implies that Hommel’s procedure is no more rejective than Bonferroni’s here, this under-

scores that the former is likely to be more powerful in general. According to the more

liberal FDR-controlling Benjamini and Hochberg [1995]-procedure (with γ = 0.025) we

find 24 rejections, as Scotland is also declared significantly different from Germany. All in

all, the multiple testing procedures indicate 5-6 countries less for which significant differ-

ences in the ability of schools to foster reading literacy in primary school children relative
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to Germany can be found. This implies that the number of different countries may be

overstated by up to 30% by the ‘standard’ approach.

Of course, the two-sided p-values plotted in Figures III and IV give no indication as to

whether schools in countries with small p-values are better or weaker than in Germany.

Table III therefore reports the direction of a rejection according to the different (multiple)

testing criteria. According to the ‘standard’ approach, more than half of the countries’

schools (the entire left column plus those countries in the middle column printed in italics)

are declared significantly weaker than Germany’s. Three countries—those from the right

column and Alberta are found to have significantly better schools. On the other hand,

the multiple testing procedures paint a more cautious picture. Only 21 (22 in the case

of the Benjamini and Hochberg [1995]-procedure) are found to have significantly weaker

schools than Germany. Only two countries’ schools—the Russian Federation and Hong

Kong—are significantly more successful than Germany at conferring reading literacy to

its students.

5 Conclusion

This study has investigated which countries’ schools can be be classified as significantly

better or weaker than Germany’s as regards the reading literacy of primary school chil-

dren. The ‘standard’ approach is to conduct separate tests for each country relative to

the reference country (Germany) and to reject the null of equally good schools for all

those countries whose p-value satisfies pi 6 0.05. It is discussed that this approach suf-

fers from not controlling for multiplicity. That is, it overstates the difference between

schooling systems by producing unwarranted rejections of the null. We demonstrate how

various multiple testing techniques can remedy this problem. The results suggest that

the ‘standard’ approach may overstate the number of significantly different countries by
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Table III—Classification of Countries Reading
Skills Relative to Germany.

Weaker than Germany As Good as Germany Better than Germany
South Africa (ZAF) Scotland (SCO) Russian Federation (RUS)
Morocco (MAR) Canada, Alberta (CAB) Hong Kong (HKG)
Kuwait (KWT) Taiwan (TWN)
Indonesia (IDN) Slovakia (SVK)
Qatar (QAT) Austria (AUT)
Iran (IRN) USA (USA)
Macedonia (MKD) Canada, Nova Scotia (CNS)
Georgia (GEO) Luxembourg (LUX)
Trinidad & Tobago (TTO) Canada, Brit. Columbia (CBC)
Norway (NOR) England (ENG)
Belgium (French) (BFR) Lithuania (LTU)
Moldova (MDA) Hungary (HUN)
Romania (ROM) Canada, Ontario (COT)
Iceland (ICE) Norway (5th grade) (NO5)
Spain (ESP) Bulgaria (BGR)
France (FRA) Singapore (SGP)
Israel (ISR) Italy (ITA)
Slovenia (SVN) Netherlands (NLD)
Poland(POL) Denmark (DNK)
New Zealand (NZL) Iceland (5th grade) (IS5)
Canada, Quebec (CQU) Sweden (SWE)
(Scotland) (SCO) Belgium (Dutch) (BFL)

Latvia (LVA)

Country classification according to the multiple testing procedures.
In brackets: Declared Significant by BH. In Italics: Declared weaker by the ‘standard’ approach.
In Smallcaps: Declared better by the ‘standard’ approach.

up to 30%.

Of course, the techniques employed here are by no means the only ones that could have

been used. The multiple testing literature is very active in suggesting procedures that can

be more suitable in related applications. Plausible candidates include resampling-based

techniques [see, e.g. Romano and Wolf, 2005], or, in particular in applications with large n,

further FDR-controlling procedures such as those of Finner, Dickhaus, and Roters [200x].
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Furthermore, the approach used here could be extended to for instance efficiency analyses

of countries’ schools by comparing residuals from a suitable (e.g. panel) estimator relating

reading achievement scores to input variables such as class size or investment per student.

We believe the framework put forward here may prove valuable in related applications.

For instance, Jürges and Schneider [2007] propose a ‘fair’ ranking of teachers based on

German PIRLS data (fair meaning that determinants of student achievements that are

beyond the control of the teacher are controlled for). They then rank teachers into three

different groups: average teachers and teachers that are ‘significantly’ better/weaker than

the average, depending on whether suitable confidence intervals of a teacher’s performance

does (not) straddle the overall average efficiency. In view of the duality of tests and

confidence intervals, such an approach will also suffer from “multiplicity”, in the sense

that a certain number of teachers will unduly be declared above or below average. When

controlling for multiplicity, one would quite likely find that based on the available data,

it would only be possible to declare fewer than Jürges and Schneider’s 36.7% of teachers

as truly different from the average.

Similarly, Wößmann and West [2006] conduct a multi-country study to investigate whether

smaller classes lead to significant improvements in student achievement. They only find

‘significantly’ positive effects for Greece and Iceland. This finding is rationalized by not-

ing that teachers in these countries are relatively less qualified and hence likely less well

equipped to deal with large classes. It is beyond the scope of the present study to dis-

cuss whether the rationale put forward by Wößmann and West [2006] holds true—we do

however tentatively suggest that these two significant findings might be induced by not

controlling for multiplicity, rather than a genuine positive effect of smaller class sizes in

these countries.

Similar issues arise in many studies in this and related literatures, see e.g. Hanushek and
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Wößmann’s [2006] study of the impact of early tracking on student achievement. As such,

it could be a fruitful topic for further research to investigate whether these findings are

robust to controlling for multiplicity, i.e. whether they are still significant according to

the procedures such as those sketched in Section 2.
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