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1 Introduction

Due to increasingly severe catastrophes in the last five years the property
insurance industry has paid out over $125 billion in losses. In 2004 property
insured losses resulting from natural catastrophes and man-made disasters,
excluding the tragic tsunami of December 26, amounted to $42 billion, of
which 95% was caused by natural disasters and 5% by man-made incidents
(SwissRe 2004). These huge billion dollar figures call for very accurate mod-
els of catastrophe losses. Even small discrepancies in model parameters can
result in underestimation of risk leading to billion dollar losses of the rein-
surer. Hence, sound statistical analysis of the catastrophe data is of uttermost
importance.

In this paper we analyze losses resulting from natural catastrophic events in
the United States. Estimates of such losses are provided by ISO’s (Insurance
Services Office Inc.) Property Claim Services (PCS). The PCS unit is the
internationally recognized authority on insured property losses from catastro-
phes in the United States, Puerto Rico, and the U.S. Virgin Islands. PCS
investigates reported disasters and determines the extent and type of damage,
dates of occurrence, and geographic areas affected. It is the only insurance-
industry resource for compiling and reporting estimates of insured property
losses resulting from catastrophes. For each catastrophe, the PCS loss es-
timate represents anticipated industrywide insurance payments for property
lines of insurance covering: fixed property, building contents, time-element
losses, vehicles, and inland marine (diverse goods and properties), see Bur-
necki et al. (2000).

In the property insurance industry the term “catastrophe” denotes a natural
or man-made disaster that is unusually severe and that affects many insurers
and policyholders. An event is designated a catastrophe when claims are
expected to reach a certain dollar threshold. Initially the threshold was set
to $5 million. However, due to changing economic conditions, in 1997 ISO
increased its dollar threshold to $25 million. In what follows we examine the
impact of the presence of left-truncation of the loss data on the resulting risk
processes.

The correct estimation of the claims frequency and severity distributions is
the key to determining an accurate ruin probability. A naive and possi-
bly misleading approach for modelling the claim magnitudes would be to
fit the unconditional distributions. Since the lower quantiles of the actual
catastrophe data are truncated from the available data set, ignoring the
(non-randomly) missing data would result in biased estimates of the pa-
rameters leading to over-stated mean and understated variance estimates,
and under-estimated upper quantiles, in general. Furthermore, treating the
available frequency data as complete, results in under-estimated intensity of
the events (for example, in compound Poisson processes for aggregated in-
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surance claims). One serious implication of such data misspecification could
be wrong (under-estimated) ruin probabilities for the compound risk process.
The estimation technique for loss data truncated from below is also useful
when dealing with excess-of-loss reinsurance coverage where the data gener-
ally exceeds some underlying retention, see Klugman et al. (1998) and Patrik
(1981).

The paper is organized as follows. In Section 2 we give a brief overview
of the insurance risk model and present a methodology of treating the loss
data samples with non-randomly missing observations in which the number
of missing data points is unknown. Necessary adjustments to the loss and
frequency distributions are discussed. In Section 3 we examine the theoreti-
cal aspects of the effects of such adjustment procedures to the severity and
frequency distributions from Section 2 on the ruin probabilities. In Section
4 we present an extensive empirical study for the 1990-1999 U.S. natural
catastrophe data. In this section we model the incidence of events with a
non-homogeneous Poisson process and consider various distributions to fit
the claim amounts. We then conduct the goodness-of-fit tests – in-sample
and out-of-sample, select most adequate models, and examine the effects of
model misspecification on the ruin probabilities. Finally, an additional fore-
casting methodology based on the robust statistics is proposed. Section 5
concludes and states final remarks.

2 Catastrophe insurance claims model

2.1 Problem description

A typical model for insurance risk, the so-called collective risk model, has
two main components: one characterizing the frequency (or incidence) of
events and another describing the severity (or size or amount) of gain or
loss resulting from the occurrence of an event (Panjer & Willmot 1992). The
stochastic nature of both the incidence and severity of claims are fundamental
components of a realistic model. Hence, claims form the aggregate claim
process

St =

Nt∑

k=1

Xk, (1)

where the claim severities are described by the random sequence {Xk} and
the number of claims in the interval (0, t] is modelled by a point process
Nt, often called the claim arrival process. It is reasonable in many practical
situations to consider the point process Nt to be a non-homogeneous Poisson
process (NHPP) with a deterministic intensity function λ(t). We make such
an assumption in our paper.
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The risk process {Rt}t≥0 describing the capital of an insurance company is
defined as:

Rt = u+ c(t) − St. (2)

The non-negative constant u stands for the initial capital of the insurance
company. The company sells insurance policies and receives a premium ac-
cording to c(t). In the non-homogeneous case it is natural to set

c(t) = (1 + θ)µ

∫ t

0

λ(s)ds, (3)

where µ = E(Xk) and θ > 0 is the relative safety loading which ’guarantees’
survival of the insurance company.

In examining the nature of the risk associated with a portfolio of business, it is
often of interest to assess how the portfolio may be expected to perform over
an extended period of time. One approach concerns the use of ruin theory
(Grandell 1991). Ruin theory is concerned with the excess of the income c(t)
(with respect to a portfolio of business) over the outgo, or claims paid, S(t).
This quantity, referred to as insurer’s surplus, varies in time. Specifically,
ruin is said to occur if the insurer’s surplus reaches a specified lower bound,
e.g. minus the initial capital. One measure of risk is the probability of such
an event, clearly reflecting the volatility inherent in the business. In addition,
it can serve as a useful tool in long range planning for the use of insurer’s
funds.

The ruin probability in finite time T is given by

ψ(u, T ) = P

(
inf

0<t<T
{Rt} < 0

)
. (4)

Most insurance managers will closely follow the development of the risk busi-
ness and increase the premium if the risk business behaves badly. The plan-
ning horizon may be thought of as the sum of the following: the time until
the risk business is found to behave “badly”, the time until the management
reacts and the time until a decision of a premium increase takes effect. There-
fore, in non-life insurance, it is natural to regard T equal to four or five years
as reasonable (Grandell 1991). We also note that the ruin probability in
finite time can always be computed directly using Monte Carlo simulations.
Naturally, the choice of the intensity function and the distribution of claim
severities heavily affects the simulated values and, hence, the ruin probability.

We denote the distribution of claims by Fγ and its probability density func-
tion by fγ . The loss distribution Fγ is assumed to belong to a parametric
family of continuous probability distributions. Depending on the distribu-
tion, γ is a parameter vector or a scalar; for simplicity, we will refer to it as a
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parameter throughout the paper. We assume that the family of distributions
is sufficiently well behaved so that the parameter γ can be estimated consis-
tently by maximum likelihood. To avoid the possibility of negative losses we
restrict the distribution to be concentrated on the positive half line. Indepen-
dence between frequency and severity distributions is generally assumed (we
assume it also in this paper). The process Nt uniquely governs the frequency
of the loss events, and the distribution Fγ controls the loss severity.

Given a sample x = (x1, x2 . . . , xn) containing all losses which have occurred
during a time interval [T1, T2], the task of estimating γ can be (but is not
limited to) performed with the maximum likelihood estimation (MLE) prin-
ciple:

γ̂ = γ̂MLE(x) = arg max
γ

n∑

k=1

log fγ(xi) (5)

and λ(t) can be estimated by fitting a deterministic function to the loss
frequency process via, for example, a least squares procedure (see Section
4.2) Note that for a homogeneous Poisson process (HPP) we can apply the

MLE and obtain λ̂ = λ̂MLE(x) = n/(T2 − T1). In reality not all insurance
losses over a certain time interval are recorded accurately. In the framework
of catastrophic losses, the losses of magnitudes not exceeding $5 million (until
1996) or $25 million (since 1997) are not recorded in the databases.

The problem of catastrophe insurance claims data thus lies in the presence
of non-randomly missing data on the left side of the loss distribution. The
question addressed in the subsequent analysis is whether ignoring the missing
data has a significant impact on the estimation of the intensity function
λ(t) and the severity parameter γ, and hence the ruin probability estimates.
From the statistical viewpoint, with non-randomly missing data, all estimates
would be biased if the missing data is not accounted for. However in practical
applications a possible rationale for ignoring the missing data would be as
follows: since the major part of catastrophic insurance losses is in excess of
the $5 and even the $25 million threshold, then losses below it can not have
a significant impact on the ruin probabilities, that is largely determined by
the upper quantiles of the loss distribution.

2.2 Estimation of loss and frequency distributions

In this section we present a procedure for a consistent estimation of the
claims size distribution. Given a time interval [T1, T2] – the sample window –
the collected data which is available for estimating λ(t) and γ, is considered
incomplete: there exists one non-negative pre-specified threshold H ≥ 0, that
defines a partition on R≥0: [0,H] and (H,∞). If a random outcome of the loss
distribution belongs to [0,H] then it does not enter the data sample: neither
the frequency nor the severity of losses not exceeding H are recorded (missing



5

data). Realizations in (H,∞) are fully reported, i.e. both the frequency and
the loss amounts are specified. Hence, we are dealing with truncated data.

Let the observed sample in [T1, T2] be of the form xo = (x1, x2, . . . , xn) ∈
(H,∞), where n denotes the number of observations in (H,∞) and x1, x2, . . . ,
xn the values of the observations. The corresponding sample space is denoted
as X . Given that the total number of observations in the complete sample
is unknown, the joint density on X (with respect to the product of counting
and Lebesgue measures) which is consistent with the model specification in
equation (1), can be given by the following expression1:

gλ(△T ),γ(xo) =
1

n!

(∫ T2

T1

λo(t)dt

)n

exp

{
−
∫ T2

T1

λo(t)dt

}
n∏

k=1

fγ(xk)

1 − Fγ(H)

(6)
where Fγ(H) denotes the probability for a random realization to fall into the
interval [0,H]. By representation (6), the Poisson process No

△T that counts
only the losses of magnitudes greater than H is interpreted as a thinning of
the original (complete) process N c

△T governed by λc(t), with a new intensity
(rate) function λo(t) = (1 − Fγ(H))λc(t). The time frame is △T = T2 − T1.
The superscripts ”o” and ”c” refer to ”observed” (the incomplete data set),
and ”complete” or ”conditional” (the complete data set), respectively. The
maximization of the corresponding log-likelihood function of the compound
process is done only with respect to γ:

γ̂c
MLE = arg max

γ
log

(
n∏

k=1

fγ(xk)

1 − Fγ(H)

)
, (7)

In this study, the estimation of the intensity function does not require MLE.
It is obtained directly by fitting a deterministic function to the aggregated
numbers of events per unit interval over the time frame of interest. The

true intensity of the complete data set is obtained by λ̂c(t) = λ̂o(t)/(1 −
F̂γc(H)). The unknown value Fγc(H) needs to be estimated from (7). Such
an adjustment allows to ’add back’ the fraction of the missing data. Certainly,
Fγc(H) would vary for various distributions. The crucial assumption of such
an amendment is that the underlying distribution of the loss magnitudes is
indeed the true distribution.

In the cases where no closed-form expression for the MLE estimate of γ in
expression (7) is available, as applies to most of the distributions considered
in the empirical part of this paper, we have to solve for it numerically via
direct numerical optimization. However, in the cases where a closed-form ex-
pression for both the unconditional MLE estimate of γ as well as the expecta-
tions Eγ(log fγ(xo)) and Eγ(log fγ(xc)) for given value of γ are available (e.g.

1Other model specifications, such as a renewal process or a Cox process are also possible,
but not considered in this study.
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for distributions such as Gaussian, Lognormal, Exponential, 1-parameter
Pareto), it might be optimal to apply the Expectation-Maximization algo-
rithm (EM -algorithm), see Dempster et al. (1977). The EM -algorithm is
designed for maximum likelihood estimations with incomplete data. It has
been also used in a variety of applications such as probability density mixture
models, hidden Markov models, operational risk, cluster analysis, survival
analysis, and image processing. References include Bee (2005), Bierbrauer
et al. (2004), Chernobai et al. (2005a), Chernobai et al. (2005c), Figueiredo &
Nowak (2003), McLachlan & Krishnan (1997), and Meng & van Dyk (1997),
among many others. Surprisingly, for the distributions under study (Lognor-
mal and Exponential) no advantage over direct integration in either speed or
accuracy was observed. Hence, only the latter method was used for calibra-
tion throughout the paper.

3 Impact of density misspecification on the

ruin probability

We examine two possible approaches insurance companies may undertake for
the parameter estimation and subsequently the ruin probability determina-
tion.

1 The first, and correct, approach involves finding the estimates λ̂c(t)
and γ̂c

MLE for the unknown function λc(t) and parameter γc with the
direct numerical optimization (or the EM -algorithm) and determine
the ruin probability. For simulations, losses can be drawn from the
distribution with the complete-data estimated parameters, and use the
complete-data frequency parameter.

2 An alternative, but naive approach would be to use the observed fre-

quency estimate λ̂o(t) and fit the unconditional distribution to the trun-
cated data. Evidence from the literature indicates that this approach
has been widely used in practice.

For reinsurance, when only large losses matter, a third approach could be
relevant. It involves estimating the frequency function λ(t) by the observed

frequency λ̂o(t), and estimating the complete-data conditional distribution.
For the calculation of the ruin probabilities with the Monte Carlo method
(which is most commonly used), losses above the threshold should be simu-
lated from the conditional distribution, and the observed frequency should
be used.

In our subsequent analysis and estimations of the ruin probabilities, we com-
pare approaches 1 and 2. The second oversimplified and misspecified ap-
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proach will lead to biased estimates for the rate function λ(t) and the para-
meter γ of the loss distribution. The bias can be expressed analytically. For
a Lognormal LN (µ, σ) loss distribution, for example, the bias is expressed
as follows:

Eλo(t) = λ
c(t) · (1 − Fγc(H)) = λ

c(t) + bias(λo(t))

= λ
c(t) · 1 − Φ

log H − µc

σc
,

Eµo = E
1

n

n

k=1

log Xk |Xk > H = µ
c + bias(µo)

= µ
c + σ

c ·
ϕ log H−µc

σc

1 − Φ log H−µc

σc

,

E(σo)2 = E
1

n

n

k=1

log2
Xk − (µo)2 |Xk > H

= (σc)2 + bias((σo)2)

= (σc)2 1 +
log H − µc

σc
·

ϕ log H−µc

σc

1 − Φ log H−µc

σc

−
ϕ log H−µc

σc

1 − Φ log H−µc

σc

2

,

where ϕ and Φ denote the density and d.f. of the standard Normal law and
µc and σc are the true (complete data) Lognormal parameters.

In the first expression above, the oversimplified approach leads to a misspec-

ification bias: bias(λ̂o(t)) that will be less than 0 always. Since the bias of
the location parameter µ̂o is always positive, then the observed µ̂o is always
overstated. For practical purposes, since logH < µ̂c (the threshold level is
relatively low), then the bias of the scale parameter is negative, and so the
true (σc)2 is underestimated under the unconditional fit. The effect (increase
or decrease) on the ruin probability would depend on the values of H, µ̂c and
(σ̂c)2.

4 Empirical analysis of catastrophe data

We take for our study the PCS (Property Claim Services) data covering losses
resulting from natural catastrophe events in USA that occurred between 1990
and 1999. The data were adjusted using the Consumer Price Index provided
by the U.S. Department of Labor, see Burnecki et al. (2005). These events
will be used for testing our estimation approaches. For the calibration and
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in-sample validation we consider the following data set: All claim amounts
exceeding $25 million between 1990 and 1996. For the forecasting part of the
paper we consider the losses over a three year period 1997-1999.

The goal of the subsequent empirical study is three-fold: we aim at 10 ex-
amining the effect of ignoring the threshold (missing data) on distributional
parameters, 20 obtain the best model via the goodness-of-fit tests, and 30

examine the effect of the data misspecification (from part 10) on ruin prob-
ability under the threshold $25 million.

4.1 Loss distributions

The following distributions for severity are considered in the study:

Exponential Exp(β) fX(x) = βe−βx

x ≥ 0, β > 0

Lognormal LN (µ, σ) fX(x) = 1
√

2πσ2x
exp − (log x−µ)2

2σ2

x ≥ 0, µ, σ > 0

Gamma Gam(α, β) fX(x) = βαxα−1

Γ(α)
exp {−βx}

x ≥ 0, α, β > 0

Weibull Weib(β, τ) fX(x) = τβxτ−1 exp {−βxτ}
x ≥ 0, β, τ > 0

Burr Burr(α, β, τ) fX(x) = ταβαxτ−1(β + xτ )−(α+1)

x ≥ 0, α, β, τ > 0

Generalized GPD(ξ, β) fX(x) = β−1(1 + ξxβ−1)
−(1+ 1

ξ
)

Pareto x ≥ 0, β > 0

log-αStable logSα(β, σ, µ) no closed-form density
α ∈ (0, 2), β ∈ [−1, 1], σ, µ > 0

In Table 1 we demonstrate the change in the parameter values when the
conditional (truncated) distribution is fitted instead of the unconditional.
The location parameters are lower and the scale parameters are higher un-
der the correct data specification. In addition, the shape parameter which is
present in the relevant distributions is lower (except for log-αStable) under
the conditional fit, indicating a heavier tailed true distribution for the claim
size data. The log-likelihood values (denoted as l) are higher under the con-
ditional fit, except for the Burr distribution for which parameter estimates
appear highly sensitive to the initial values of the computation procedure.



9

γ,F (H),l Unconditional Conditional

Exponential β 2.7912·10−9 3.0006·10−9

F (H) 6.74% 7.23%
l -4594.7 -4579.2

Lognormal µ 18.5660 17.3570

σ 1.1230 1.7643
F (H) 8.63% 42.75%

l -4462.4 -4425.0

Gamma α 0.5531 2.155·10−8

β 1.5437·10−9 0.8215·10−9

F (H) 18.34% ≈100%
l -4290.6 -4245.6

Weibull β 2.8091·10−6 0.0187
τ 0.6663 0.2656

F (H) 21.23% 82.12%
l -4525.3 -4427.1

Pareto (GPD) ξ -0.5300 -0.8090

β 1.2533·108 0.5340·108

F (H) 17.27% 32.77%
l -4479.2 -4423.0

Burr α 0.1816 0.1748

β 3.0419·1035 1.4720·1035

τ 4.6867 4.6732
F (H) 2.58% 3.87%

l -4432.3 -4434.3

log-αStable α 1.4265 1.9165

β 1 1
σ 0.5689 0.9706
µ 18.8584 17.9733

F (H) 0.005% 23.27%
l -438.1 -360.6

Table 1: Estimated parameters, F (H) and log-likelihood values of the fitted
distribution to the PCS data. For log-αStable, l are based on log-data.

The estimated fraction of the missing data F (H) is larger under the condi-
tional fit, as expected. This could be considered as evidence for the fact that
conditional estimation accounts for true ‘information loss’ while the uncondi-
tional fit underestimates the fraction of missing data. We point out that the
estimates of F (H) are explicitly dependent on the choice of the distribution
(and certainly the threshold H). Further, we find that for the light-tailed
Exponential distribution the estimated fraction of data below threshold H
is almost negligible while for more heavy-tailed distributions like Weibull or
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Figure 1: Left panel : The quarterly number of losses for the PCS data.
Right panel : Periodogram of the PCS quarterly number of losses, 1990-1996.
A distinct peak is visible at frequency ω = 0.25 implying a period of 1/ω = 4
quarters, i.e. one year.

log-αStable the estimated fraction is significantly higher for the conditional
case. The results are consistent with the findings in Chernobai et al. (2005c)
with operational loss data.

For the purpose of our subsequent analysis, we decided to exclude the Gamma
distribution for the following reasons. The Gamma distribution produced the
true ‘information loss’ nearly equal to 100%, which means that if Gamma is
the true distribution for the data, then nearly all data is considered missing,
which is unfeasible. The true estimate of the intensity rate would blow up to
infinity.

4.2 Intensity function

We model the frequency of the losses with a NHPP, in which the intensity
of the counting process varies with time. The time series of the quarterly
number of losses does not exhibit any trends but an annual seasonality can
be very well observed using the periodogram, see Figure 1. This suggests that
calibrating a NHPP with a sinusoidal rate function would give a good model.
Following Burnecki & Weron (2005) we estimate the parameters by fitting
the cumulative intensity function, i.e. the mean value function E(Nt), to the
accumulated quarterly number of PCS losses. The least squares estimation
is used to calibrate λ(t) = a+ b · 2π · sin{2π(t− c)} yielding parameters a, b
and c displayed in Table 2. This form of λ(t) gives a reasonably good fit mea-
sured by the mean square error MSE = 18.9100, and the mean absolute error
MAE = 3.8385. It is notable, that if, instead, a homogeneous Poisson process
(HPP) with a constant intensity was considered for the quarterly number of
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losses, then the respective error estimates would yield MSE = 115.5730 and
MAE = 10.1308. The latter values are based on the Poisson parameter esti-
mated to be λ = 33.0509 for the data set, obtained by fitting the Exponential
distribution to the respective inter-arrival times, in years. Alternatively, the
mean annual number of losses, can be obtained by multiplying the quarterly
number of points by four and averaging, yielding 31.7143. These result in
MSE = 38.2479 and MAE = 5.3878. In either case, significantly higher values
for MSE and MAE under HPP, lead to the conclusion that NHPP with the
intensity rate of a functional form described above, results in a reasonably
superior calibration of the loss arrival processes.

a b c MSE MAE

30.8750 1.6840 0.3396 18.9100 3.8385

Table 2: Fitted sinusoidal function to the catastrophe loss frequency data.

To adjust for the missing data, we adjust the parameters a, b and c, accord-
ing to the procedure described in Section 2.2. Using the estimates of the
missing data, F (H), from Table 1, straightforward calculations result in the
conclusion that the true frequency of the loss events is highly underestimated.

4.3 Backtesting

In this section of our empirical study we aim at determining which of the
considered distributions is most appropriate to use for the catastrophe loss
data. The ultimate choice of a model can be determined via backtesting. We
conduct two types of test: in-sample and out-of-sample goodness-of-fit tests.

4.3.1 In-Sample Goodness-of-Fit Tests

We test a composite hypothesis that the empirical d.f. belongs to an entire
family of hypothesized truncated distributions. After necessary adjustments
for the missing data, the hypotheses are summarized as:

H0 : Fn(x) ∈ F̂ (x)

HA : Fn(x) /∈ F̂ (x),
(8)

where Fn(x) is the empirical d.f. and F̂ (x) is the fitted d.f. estimated for
this truncated sample as:

F̂ (x) =

{
Fγc (x)−Fγc (H)

1−Fγc (H)
x > H

0 x ≤ H,
(9)
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We consider four kinds of statistics for the measure of the distance between
the empirical and hypothesized d.f.: Kolmogorov-Smirnov (D), Kuiper (V ),
Anderson-Darling (A2) and Cramér-von Mises (W 2), computed as

D = max(D+,D−), (10)

V = D+ +D−, (11)

A2 = n

∫ ∞

−∞

(Fn(x) − F̂ (x))2

F̂ (x)(1 − F̂ (x))
dF̂ (x), (12)

W 2 = n

∫ ∞

−∞

(Fn(x) − F̂ (x))2dF̂ (x), (13)

where D+ =
√
n supx{Fn(x) − F̂ (x)} and D− =

√
n supx{F̂ (x) − Fn(x)}.

For numerical implementation of the above formulas consult e.g. Burnecki
et al. (2005). Since the limiting distributions of the test statistics are not
parameter-free, the p-values and the critical values were obtained from Monte
Carlo simulations. For the truncated case, to account for the missing data
the corresponding statistics were computed and the simulations were carried
out according to the procedure described in Chernobai et al. (2005b). The
results are presented in Table 3.

It is evident that under the data misspecification (unconditional fit), none
of the considered distributions – except for Burr to some extent – appear to
provide a good fit, as indicated by the near-zero p-values.2 Note that the log-
αStable distribution’s fit is poor under the unconditional fit, because, despite
the high p-values, the observed test statistic values are very high compared
to the rest of the distributions (except the Exponential under which the test
statistic values are very high and the fit is poor).

With the truncated calibration, Burr and Pareto distributions show a very
good fit around both the median and the tails as indicated by the low statistic
values and high p-values. The fit of the light-tailed Exponential distribution
is again poor, on the basis of which we exclude it from further analysis. The
Weibull distribution provides moderately low values of the test statistics,
however in terms of p-values the results are rather poor. As for log-αStable
and Lognormal, relatively low observed statistic values and often high p-
values suggest an acceptable fit. In general, the data seems to follow a very
heavy-tailed law.

Table 3 figures lead us to the conclusion that modelling claim sizes with
unconditional loss distributions results in rejecting the null hypothesis of the

2At this point, we decided to look at whether using the correct testing methodology
for the truncated samples with wrong (unconditional) parameters would result in higher
p-values, which would make them more comparable to those corresponding to the condi-
tional fit. Computational analysis indicated that the p-values were left generally almost
unchanged from the left half of Table 3, and the test statistic values have increased in most
cases, confirming a generally unacceptable fit of wrongly specified loss distributions.
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Unconditional Conditional

D V A2 W 2
D V A2 W 2

Exp

5.1234 6.1868 48.9659 10.1743 5.5543 5.9282 72.2643 13.1717
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN

1.5564 2.9710 4.4646 0.7139 0.6854 1.1833 0.7044 0.0912
[<0.005] [<0.005] [<0.005] [<0.005] [0.256] [0.315] [0.080] [0.133]

Weib

3.2755 5.5430 14.2197 2.3859 0.8180 1.5438 1.3975 0.1965
[<0.005] [<0.005] [<0.005] [<0.005] [0.107] [0.053] [0.006] [0.008]

GPD

2.7084 3.9240 7.6731 1.1013 0.4841 0.8671 0.3528 0.0390
[<0.005] [<0.005] [<0.005] [<0.005] [0.795] [0.847] [0.487] [0.666]

Burr

0.8876 1.3149 0.8983 0.1469 0.4604 0.8668 0.2772 0.0342
[0.054] [0.106] [0.014] [0.022] [0.822] [0.793] [0.560] [0.659]

log S

4.9863 4.9953 94.6918 11.3252 0.8961 1.2111 0.8062 0.1535
[0.596] [0.616] [0.483] [0.575] [0.456] [0.470] [0.484] [0.444]

Table 3: Results of the in-sample goodness-of-fit tests. p-values were obtained
via 1,000 Monte Carlo simulations, and are given in the square brackets.

goodness of fit, for practically all considered distributions. On the basis of
such conclusion, we agree that unconditional loss distributions should not be
used for forecasting purposes, and only the conditional distributions should
be used. Furthermore, poor fit of the truncated Exponential distribution
leads us to exclude it from further consideration as a candidate for the claim
size distribution. As the next step we examine and compare the forecasting
power of the remaining considered truncated loss distributions.

4.3.2 Out-of-Sample Goodness-of-Fit Tests

Examining how well or how badly various considered models predict the
true future losses, is, we believe, the key to determining which of the loss
distributions is the best to be used for practical purposes.

For our loss distribution estimations in Section 4.1 we used the data set from
1990 to 1996. We now analyze our models’ predicting power regarding the
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Figure 2: Left panel : The 25th, 50th and 75th quantiles for the PCS 1997-
1999 data. Right panel : Actual aggregated losses (bold) and 95% bootstrap
confidence interval for realized PCS 1997-1999 loss data.

data between 1997 and 1999. For the out-of-sample backtesting, we assume
that our model has a one-step ahead predicting power, with one step equal to
one quarter. The window length of the sample used for calibration is taken
to be six years. We start with the data from the first quarter of 1990 until
the fourth quarter of 1996, in order to conduct the forecasting about the first
quarter of 1997. First, we estimate the unknown parameters of truncated dis-
tributions. Next, to obtain the distribution of the quarterly aggregated losses
we repeat the following a large number (10,000) of times: use the estimated
parameters to simulate N losses exceeding the $25 million threshold, where
N is the actual number of losses in the quarter that we perform forecasting
on, and aggregate them. At each forecasting step (twelve steps total) we shift
the window by one quarter forward and repeat the above procedure. Note,
that in this way we test the model for the severity distribution but not for
the entire risk process or the intensity itself.

We break the analysis of the forecasting results into two main parts. First,
we look at how good are the different model assumptions in predicting the
distribution of accumulated losses around the center, or the main body, of
the actual loss distribution. Then we examine how well they predict the true
aggregated losses around the tails.

At each step, we estimate the 25th, 50th and 75th percentiles of the distri-
bution of the sum of realized losses for the corresponding quarter. This is
conducted using the non-parametric bootstrapping technique. Similarly, we
determine the 95% confidence interval for the quarterly sum of losses. Next,
we use the previous 24 quarters of data (six years) to estimate the parame-
ters of the conditional distributions, for the five considered cases. Based on
the parameter estimates, we determine the 25th, 50th and 75th percentiles,
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Figure 3: The 25th and 75th quantiles for conditional (dashed blue) fore-
casted cumulative losses and corresponding bootstrap quantiles for realized
losses (solid red): Lognormal (top left), Weibull (top right), Generalized
Pareto (mid left), Burr (mid right), and log-αStable (bottom).
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Figure 4: 95% confidence intervals for conditional (dashed blue) forecasted
cumulative losses and corresponding 95% bootstrap confidence intervals for
realized losses (solid red): Lognormal (top left), Weibull (top right), Gener-
alized Pareto (mid left), Burr (mid right), and log-αStable (bottom).
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and estimate the 95% confidence intervals (2.5th and 97.5th percentiles) for
the quarterly cumulative losses, by simulating 10,000 samples (of losses that
exceed the threshold of $25 million) of the size equal to the number of real-
ized losses in the forecasted quarter. We then compare the intervals with the
bootstrapped intervals based on the actual data.

Figure 2 shows the accumulation of PCS losses above $25 million around the
center (left panel) and the tails (right panel) of their distribution, obtained
via bootstrapping. Figure 3 demonstrates the 25th and 75th percentiles of
the forecasted distributions, relative to the realized corresponding quantiles,
obtained with the bootstrapping procedure. It is notable, that for 1997 (quar-
ters 1-4) all models tend to overestimate the cumulative losses around the
central part of the distribution, to various extents. For 1998 and 1999 (quar-
ters 5-12) the situation changes as the empirical data seems to be more con-
sistent with the whole sample. The Lognormal, Weibull, Pareto and Burr
distributions appear to capture the spread of the central part reasonably
well.

Figure 4 portrays the forecasting ability of the considered five models around
the tails of the actual loss distribution. Again, in 1997, all considered models
tend to overpredict the aggregated losses. As for the remaining part of the
test period, Lognormal and Weibull assumptions generally result in quite
accurate forecasted 95% confidence interval estimates. As for Pareto and
Burr, the forecasted 95% confidence intervals’ upper bounds are much higher
than the true bootstrapped bounds. The effect is even more significant under
the log-αStable law. Hence, the ruin probabilities may be unnecessarily high
under these assumptions. Overall, the figures indicate that Lognormal and
Weibull assumptions possess a reasonably good predicting power.

We also use the 10,000 Monte Carlo generated samples to compute the MSE
and MAE for the estimates of the sum of losses, with respect to the true
realized losses of each quarter. We present the estimates of the average
MSE and MAE over the 3-year forecasting time interval in Table 4. The
results confirm our conclusions. In terms of the average MSE and MAE, the
Lognormal, Weibull and Pareto distributional assumptions result in relatively
accurate predictions regarding the aggregated losses one quarter ahead, for
the considered three year period. In particular, the Weibull model is most
optimal in terms of the MSE and the Lognormal model appears most optimal
in terms of the MAE. The errors under the Burr and log-αStable assumptions
are considerably higher.

Summarizing, based on the in-sample goodness of fit tests, the observed test
statistic values are the lowest for the GPD and Burr laws, indicating their
superior in-sample fit. However, the forecasting analysis rather supports the
use of the less heavy-tailed Lognormal and Weibull model, as is indicated by
the smallest error estimates. Since Lognormal also provided an acceptable in-
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MSE MAE

Lognormal 6.8803·1018 1.2969·109

Weibull 5.7869·1018 1.3745·109

Pareto (GPD) 3.2915·1020 1.9123·109

Burr 1.2562·1024 1.4986·1010

log-αStable 1.8654·1089 1.2468·1042

Table 4: Estimates for the average MSE and MAE of forecasted aggregated
losses above $25 million, obtained via 10,000 Monte Carlo simulations.

sample fit it could be considered as the overall most appropriate distribution.

It is notable that, although Pareto, Burr and log-αStable distributions showed
acceptable in-sample fit, they highly overpredict the actual losses in the fore-
casting three year period. This is due to the following: in the data sample
used for calibration, there were few losses whose magnitude was of signifi-
cantly higher order than the rest of the data. Such losses can be categorized
as ‘low frequency/ high severity’ losses. The two largest losses and their
magnitudes (after the inflation adjustment) were as follows:

1. Hurricane ‘Andrew’ that hit Florida and Louisiana on August 24-26,
1992; appr. $18.5 billion losses;

2. Northridge earthquake that struck in California on January 17, 1994;
appr. $14.4 billion losses.

The latter loss entered all twelve shifted sample windows used for forecasting
the quarterly losses, while the former entered the first seven. As a conse-
quence very heavy-tailed distributions yielded good in-sample fits. However,
since losses of a comparable magnitude were not present in the 1997-1999
sample, this resulted in an overestimation of the confidence intervals’ upper
bounds.

4.4 Ruin Probability

We consider a hypothetical scenario where the insurance company insures
losses resulting from catastrophic events in the United States. The company’s
initial capital is assumed to be u = $10 billion and the relative safety loading
used is θ = 30%. We choose different models of the risk process whose
application is most justified by the statistical results described above. We
decided to exclude both the Burr and the log-αStable distributions as they
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Increase
Unconditional Conditional

(appr. # times)

Lognormal 0.00545 0.10443 19

[0.00122] [0.00197]

Weibull 0.00754 0.10785 14

[0.00799] [0.00317]

Pareto (GPD) 0.07938 0.15997 2

[0.00238] [0.00418]

Table 5: 5-year ruin probability estimates and the degree of increase for
u = $10 billion and θ = 30%, based on 10×10,000 Monte Carlo simulations.
The standard errors are indicated in the square brackets.

Increase
Unconditional Conditional

(appr. # times)

Lognormal 0.00669 0.13137 20

[0.00092] [0.00205]

Weibull 0.00874 0.13077 15

[0.00056] [0.00142]

Pareto (GPD) 0.10376 0.20434 2

[0.00197] [0.00428]

Table 6: 10-year ruin probability estimates and the degree of increase for
u = $10 billion and θ = 30%, based on 10×10,000 Monte Carlo simulations.
The standard errors are indicated in the square brackets.

produce an infinite first moment, making them inapplicable for the purpose
of estimating the ruin probability (recall the premium formula (3)). This
leaves us with three models: Lognormal, Weibull and GPD (Pareto).

In this paper, the ruin probability is approximated by means of Monte Carlo
simulations. For the Monte Carlo method purposes we generated 10×10,000
simulations. Estimates for the 5-year and 10-year ruin probabilities are
demonstrated in Tables 5 and 6. We recall that the ‘unconditional’ case
refers to the naive approach when neither the severity nor the frequency dis-
tributions were adjusted for the ‘information loss’ due to the missing data.
‘Conditional’ case refers to the correct data specification, in which truncated
loss distributions were used and the frequency was adequately adjusted, lead-
ing to more accurate estimates of the finite-time ruin probabilities. The
standard errors were computed from all 10×10,000 simulations.
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Tables 5 and 6 demonstrate the effects on the ruin probability due to the
data (mis)specification. Based on the results with the considered three dis-
tributions, the ruin probability tends to be significantly underestimated when
the naive approach is used (i.e. when unconditional distribution is fitted to
the loss magnitudes, and the frequency rate function estimates are left un-
adjusted) instead of the correct approach, in which both the frequency and
severity account for the missing data.

4.5 Robust Estimation Approach

We briefly discussed the reasons why in-sample goodness of fit tests favor
heavy-tailed distributions (e.g. Pareto has high p-values and relatively low
test statistic values), while more moderately heavy-tailed distributions such
as Weibull or Lognormal have a better forecasting power as heavier-tailed
distributions tend to overestimate the true losses. As was pointed out, two
losses of magnitudes $18.5 and $14.4 billion are present in the data used for
the in-sample testing, while comparable magnitude losses did not enter the
data used for forecasting. We refer to such events as “low frequency/ high
severity” events.

In recent years outlier-resistant or so-called robust estimates of parameters
are becoming more wide-spread in risk management. Such models – called
robust (statistics) models – were introduced by P.J.Huber in 1981 and ap-
plied to robust regression analysis, more recent references on robust statistics
methods include Huber (2004), Rousseeuw & Leroy (2003), Martin & Simin
(2003), Knez & Ready (1997) and Hampel et al. (1986). Robust models treat
extreme data points as outliers (or some standard procedure is used to detect
outliers in the data) which distort the main flow of the loss process. Under
the robust approach, the focus is on modelling the major bulk of the data
that is driving the entire process. Robust models help protect against the
outlier bias in parameter estimates and provide with a better fit of the loss
distributions to the data than under the classical model. Moreover, outliers
in the original data can seriously drive future forecasts in an unwanted (such
as worst-case scenario) direction, which is avoided by the robust approach
models.

Following the idea of robust statistics, for the forecasting purposes we offer
a second methodology that involves determining outliers and trimming the
top 1-5% of the data. This data adjustment results in a more robust outlook
regarding a general future scenario. Excluding the outliers in the original loss
data noticeably improves the forecasting power of considered loss distribu-
tions, and can be used for forecasting of the generic (most likely) scenario of
future losses within reasonable boundaries. The resulting ruin probabilities
will be more optimistic than otherwise predicted by the classical model.
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γ,F (H),l Unconditional Conditional

Exponential β 4.7177·10−9 5.3486·10−9

F (H) 11.13% 12.52%
l -4437.8 -4411.9

Lognormal µ 18.5210 17.7897

σ 1.0236 1.4611
F (H) 7.32% 30.26%

l -4391.9 -4362.5

Gamma α 0.8983 1.6475·10−6

β 4.2378·10−9 1.8241·10−9

F (H) 13.18% ≈100%
l -3829.7 -3798.6

Weibull β 7.8535·10−8 0.8615·10−3

τ 0.8579 0.4121
F (H) 16.01% 61.84%

l -4431.8 -4363.1

Pareto (GPD) ξ -0.3717 -0.6655

β 1.3220·108 0.6083·108

F (H) 16.70% 30.46%
l -4415.7 -4362.8

Burr α 0.2022 0.2046

β 6.6114·1033 0.1774·1033

τ 4.4573 4.2746
F (H) 2.66% 4.25%

l -4374.7 -4376.9

log-αStable α 1.4822 1.7796

β 1 -1
σ 0.5681 1.2292
µ 18.7586 17.1497

F (H) 0.09% 51.09%
l -382.5 -291.8

Table 7: Estimated parameters, F (H) and log-likelihood values of the fitted
distribution to the trimmed PCS data. For log-αStable, l are based on log-
data.

In the context of this paper, the pitfall of using only the classical approach,
that makes use of the entire data set, is that it leads to an upward bias in the
forecasted losses and overly conservative estimates of the ruin probabilities –
both phenomena observed in this paper’s empirical study. The adjustments
the insurers would have to incorporate into their policies (such as raising the
safety loading factor θ) on the basis of such estimates may not be reasonable
for the practical purposes. Practitioners are more likely to be searching for a
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Unconditional Conditional

D V A2 W 2
D V A2 W 2

Exponential

2.8508 4.5958 13.5090 2.6223 3.3324 4.0820 23.2179 4.3263
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

Lognormal

1.3512 2.5616 3.7007 0.5581 0.5693 0.9528 0.4288 0.0502
[<0.005] [<0.005] [<0.005] [<0.005] [0.545] [0.685] [0.334] [0.460]

Weibull

2.4880 4.5218 9.6317 1.5862 0.6615 1.1256 0.7045 0.0906
[<0.005] [<0.005] [<0.005] [<0.005] [0.334] [0.433] [0.102] [0.145]

Pareto (GPD)

2.6100 3.8319 7.0758 0.9959 0.4696 0.9133 0.3363 0.0331
[<0.005] [<0.005] [<0.005] [<0.005] [0.831] [0.766] [0.529] [0.751]

Burr

0.8914 1.3929 1.0414 0.1600 0.4799 0.9472 0.3972 0.0466
[0.043] [0.058] [0.005] [0.010] [0.757] [0.607] [0.274] [0.399]

log-αStable

4.2920 4.3149 65.8189 8.5308 1.3800 1.4265 4.4837 0.7335
[0.587] [0.603] [0.459] [0.549] [0.730] [0.753] [0.699] [0.711]

Table 8: Results of the in-sample goodness-of-fit tests for the trimmed data.
p-values in square brackets were obtained via 1,000 Monte Carlo simulations.

stable model that would capture the mainstream tendency of the loss process.

We emphasize, however, that we are not recommending the use of only one
of the two approaches – classical or robust – instead of the other. Rather, in
the presence of outliers, we encourage the use of both models for the analysis,
and use the robust model as the complement to the classical.3

Here we exclude the top 1% of the data, which corresponds to the two highest
losses described earlier as outliers. We reproduce Tables 1, 3, 4, 5 and 6, and
Figures 3 and 4, now for the trimmed data. They are presented respectively
in Tables 7, 8, 9, 10 and 11, and Figures 5 and 6. We would like to briefly
comment on the results.

Table 8 provides in-sample goodness of fit results. Under the conditional ap-

3We wish to stress that the reason for trimming the top several percent of the data is
independent from the consideration that, since the highest claims are transferred to the
reinsurers, they need to be taken out from the insurers’ database. This transfer of risk
from the insurers to the reinsurers is not treated in this paper.
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MSE MAE

Lognormal 2.6103·1018 1.0635·109

Weibull 2.0225·1018 1.0135·109

Pareto (GPD) 2.3701·1019 1.2851·109

Burr 5.9534·1023 1.0456·1010

log-αStable 2.6091·1018 1.0701·109

Table 9: Estimates for the average MSE and MAE of forecasted aggregated
losses above $25 million, obtained via 10,000 Monte Carlo simulations, for
the trimmed data.

proach, even after excluding the two highest points, the Pareto model results
in the lowest distance statistics and highest p-values. Also for the heavy-
tailed log-αStable p-values are quite high, followed by Burr and Lognormal,
which contrary to the former also give good results for the test statistics.
The fit of the Weibull distribution is not so good while the results for the Ex-
ponential remain very poor for the trimmed data. Another main observation
is that the forecasts for all distributions show clearly lower MSEs and MAEs
for all distributions (Table 9). While the Weibull distribution provides the
best forecasts in terms of the MSE and MAE, the log-αStable and Lognor-
mal give only slightly worse results. Like in the case of the original data the
forecasts of the Burr distribution are very conservative and give the highest
MSE and MAE error. As regards the finite time ruin probabilities, the figures
are much lower than under the classical model with untrimmed data, even
in the “conditional” case (we note that the gap between the figures under
unconditional and conditional models is remarkably big), because the robust
methods put more probability to the medium and small size losses and thus
increase the probabilities of ruin resulting from them (Table 10 and 11).

Overall, evidence confirms the classical model result that the Lognormal as-
sumption can be considered as plausible providing both an acceptable in-
sample and good out-of-sample results. For the trimmed data, however also
the log-αStable provides good results for both criteria. The Pareto model
provides the best in-sample fit but higher forecast errors than Lognormal
and log-αStable while Weibull is convinving in terms of forecast MSE and
MAE but doesn’t provide good in-sample results.
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Figure 5: The 25th and 75th quantiles for conditional (dashed blue) fore-
casted cumulative losses and corresponding bootstrap quantiles for realized
losses (solid red), for the trimmed data: Lognormal (top left), Weibull (top
right), Generalized Pareto (mid left), Burr (mid right), and log-αStable (bot-
tom).
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Figure 6: 95% confidence intervals for conditional (dashed blue) forecasted
cumulative losses and corresponding 95% bootstrap confidence intervals for
realized losses (solid red), for the trimmed data: Lognormal (top left), Weibull
(top right), Generalized Pareto (mid left), Burr (mid right), and log-αStable
(bottom).
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Increase
Unconditional Conditional

(appr. # times)

Lognormal 0.00077 0.03040 39.5

[0.00035] [0.00223]

Weibull 0.00004 0.00702 175.5

[0.00007] [0.00082]

Pareto (GPD) 0.01487 0.10434 7

[0.00095] [0.00281]

Table 10: 5-year ruin probability estimates and the degree of increase for u =
$10 billion and θ = 30%, based on 10×10,000 Monte Carlo simulations, for
the trimmed data. The standard errors are indicated in the square brackets.

Increase
Unconditional Conditional

(appr. # times)

Lognormal 0.00103 0.03719 36

[0.00092] [0.00205]

Weibull 0.00006 0.00835 139

[0.00010] [0.00087]

Pareto (GPD) 0.01911 0.14079 7

[0.00132] [0.00337]

Table 11: 10-year ruin probability estimates and the degree of increase for u =
$10 billion and θ = 30%, based on 10×10,000 Monte Carlo simulations, for
the trimmed data. The standard errors are indicated in the square brackets.

5 Conclusions

This paper focused on analyzing the effects of data misspecification, under
which the loss data available from a loss database is truncated from below
at a predetermined threshold level. Such thresholds are often ignored in
practice. We examined the consequences on the estimates of the ruin prob-
abilities and the choice of claim size distribution for the catastrophic claims
model. The theoretical study proposed a practical solution to the problem
and suggested that using truncated (conditional) distributions instead of reg-
ular (unconditional) distributions provides for more accurate distributional
parameters. In-sample goodness-of-fit tests confirmed that fitting a wrong
distribution results in an unacceptable fit and the rejection of the null hy-
pothesis that the data is drawn from a hypothesized family of distributions.



27

Fitting truncated distributions and using a correct testing procedure, consid-
erably improved the goodness-of-fit. The truncated Lognormal distribution
showed a good fit – both in-sample and out-of-sample (forecasting). Pareto,
Burr and log-αStable showed a good in-sample fit but a poor forecasting
power. The Weibull distribution provided good forecasting results but the
in-sample fit of the distribution was rather poor. Overall, Lognormal was
concluded to be superior on the basis of the in-sample and out-of-sample
goodness of fit testing procedures.

A methodology for performing necessary adjustments to the frequency para-
meter of the loss events was also proposed. It was demonstrated that given
the estimated fraction of missing data, the true total number of claims is
significantly underestimated, if the missing data is left unaccounted for. The
paper then argued and provided empirical evidence that the finite-time ruin
probabilities are always seriously underestimated under the model misspec-
ification, i.e. when unconditional distributions are wrongly used. For the
several considered distributions, the true ruin probability is up to 20 times
higher for 5 and 10 years, than what one would obtain using a wrong model.
This has a variety of serious implications for the insurance purposes, and can
be of high interest for both insurers and reinsurers. As a counter measure, for
a more solid protection against the risk of ruin, they might need to consider
increasing the safety loading parameter θ.

This paper finally advocates the use of the “robust” approach, as a com-
plement to the classical approach, under which top 1% of the loss data was
treated as outliers and was excluded from the database, and all model para-
meters were reestimated. Such models are more pertinent to the mainstream
loss events and possess an advantage of a more credible forecasting capacity.
The use of the robust methodology improved remarkably the forecasts. It
also improved the fit of the log-αStable distribution (making it roughly the
second-best candidate), and confirmed the good results of the Lognormal law.
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