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The Random-Lags Approach: Application to
a Microfounded Model

It is well known that a one-dimensional discrete-time model may yield en-

dogenous �uctuations while this is impossible in a one-dimensional continuous-

time model. Invernizzi and Medio (1991) recast this time-modeling issue into

an aggregation issue. They have proposed a "random-lags approach" as a

way of preserving �uctuations while relaxing the discrete-time assumption.

The present paper applies this approach to the model of Aghion, Bacchetta

and Banerjee (2000), and shows that their result that economies at an inter-

mediate level of �nancial development may be prone to economic �uctuations

continues to hold when the discrete-time assumption is relaxed.
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1 Introduction

One explanation of economic �uctuations is based on �nancial frictions.

Bernanke and Gertler (1989) have shown that borrowing constraints on �rms

can amplify and increase the persistence of temporary shocks. Kiyotaki and

Moore (1997), Aghion, Banerjee, and Piketty (1999) and Azariadis and Smith

(1998) have shown that these constraints can lead to oscillations in the con-

text of a closed economy. Aghion, Bacchetta, Banerjee (2004), ABB from

now on, study the case of a small open economy.

The goal of ABB�s paper is to explain why economies at an intermediate

level of development may be more unstable than either more or less developed

economies. They propose a model in which �uctuations are more persistent

for intermediate values of the borrowing constraint (which correspond to an

intermediate level of �nancial development)1. In order to derive their result,

ABB assume time to be discrete. The problem is that there is no reason

(other than technical simplicity) to make this assumption. The present pa-

per shows that their result still holds when the discrete-time assumption is

1They also show that in economies at an intermediate level of �nancial development full

capital account liberalization may destabilize the economy (while foreign direct investment

does not destabilize it). But I will focus here on their �rst result.
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relaxed.

In order to prove ABB�s result while relaxing the discrete-time assump-

tion, I use the approach of Invernizzi and Medio (1991), IM from now on.

They recast this time-modeling issue into an aggregation issue. IM�s insight

is that at the macro level the assumption that production takes place in dis-

crete time implies in fact two assumptions: production at the �rm level must

occur at discrete intervals and production of all �rms must be synchronized.2

If �rms are not synchronized, then at any given date some �rms are �nishing

their production; in this case, aggregate production might best be seen as

continuous although production is a discrete-time variable at the agent level.

IM accept the lag assumption at the micro level, which is often realistic, but

reject the synchronization assumption, which is usually unrealistic. In order

to build a model that is not synchronized, they assume that lags are hetero-

geneous and random. Thus, the date of production of di¤erent �rms cannot

2IM�s approach is general and applies to any discrete-time model of the form Xt =

f(Xt�1). In speci�c applications, the terminology "lags" may sometimes seem inappropri-

ate. For example, in the production case, this lag is the exogenously-given time-interval

between two production processes, which may include periods that one may not want to

call "lags", such as the duration required to produce. But for simplicity I will stick to the

lag terminology.
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be synchronized, since their lags are di¤erent. IM show that their model

converges toward the discrete-time model when the dispersion of lags tends

toward zero. Then they show that if the dispersion of lags is small enough,

the endogenous �uctuations of the discrete-time model are preserved.3

The present paper applies this approach to ABB�s paper and shows not

only that �uctuations are preserved, but also that the point of the ABBmodel

(�uctuations are greater for economies at an intermediate level of �nancial

development) holds while relaxing the discrete-time assumption. The plan

of the paper is as follows: after presenting ABB�s Model (x2), I apply IM�s

approach to it (x3) and present concluding remarks (x4).

2 A speci�c one-dimensional, discrete-time ex-

ample: ABB�s model

The goal of ABB�s paper is to explain why economies at an intermediate

level of �nancial development may be more unstable than either more or less

3In fact IM do not only show that �uctuations still yield: they are mainly interested

in the chaotic properties of these �uctuations.
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developed economies. I focus here on the simplest version of ABB�s model.

It features a small open economy with two types of agents: entrepreneurs

and owners of a local input. Entrepreneurs produce a tradable good which

is both a consumption and a capital good. The price of this tradable good

is taken as given because of the small open economy assumption. The other

input in the production of the tradable good is a local input that is not owned

by entrepreneurs. Entrepreneurs can borrow at an interest rate r� 1, which

is exogenous, given the assumption of a small open economy. Entrepreneurs,

however, may not be able to borrow as much as they wish because they are

subject to a borrowing constraint. This borrowing constraint takes the form

of a constant credit-multiplier �. Entrepreneurs can borrow up to � times

their wealth. The parameter � captures the level of �nancial development.

When � = 0 entrepreneurs cannot borrow, whereas when � =1 there is no

limit to the amount entrepreneurs can borrow.

At time t, after consumption, entrepreneurs have wealth Wt at their dis-

posal. Because of the borrowing constraint they can borrow up to �Wt.

If they choose to borrow the maximum amount possible, they will have

(1 + �)Wt at their disposal. They buy the quantity zt of local input at price

pt, and use the di¤erence Kt = (1 + �)Wt � ptzt as a tradable input. They
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choose zt in such a way as to maximize their own production. Production is

a function y(Kt; zt) of the tradable and local inputs. In their basic example,

ABB assume that the production function is a Leontief: y = min(Kt

a
; zt).

Entrepreneurs receive an exogenous income e and at the end of the period

repay the principal with interest r�Wt to the lender. Then, entrepreneurs

consume a fraction � of their wealth (this behavior can be derived from log

utility).

The equilibrium price pt adjusts to set zt equal to the supply of local input

assumed to be a constant z. If z > K
a
(this happens when Wt is so small

that current investment cannot absorb the total supply of the non-tradable

input), then there is excess supply of the non-tradable input and thus its

price is null. If z = K
a
then it can be shown that pt =

(1+�)Wt�az
z

. The

case z < K
a
cannot exist because it cannot be optimal for the entrepreneurs

to choose a quantity of the costly tradable input in excess of what is useful

given the amount of local input.

Entrepreneurs can also choose not to borrow the maximum amount pos-

sible (they are then not constrained). In this case the return on their invest-

ment is r�1, and their wealth in the next period isWt+1 = (1��)(e+rWt).
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The dynamics Wt+1 = f(Wt) of the entrepreneurs�wealth are therefore

given by:

Wt+1 = (1� �)

�
e+max

�
min

��
1 + �

a
� r�

�
Wt; z � r�Wt

�
; rWt)

��
.

Assuming e > 0, 1 > ar, and (1��)r < 1, these dynamics are represented

graphically in Figure 1.

Figure 1: Dynamics of the entrepreneurs�wealth

Wt

Wt+1

(1­α)e

az/(1+µ) z/r(1+µ)

(1­α)[e+z[1­ra/(1+1/µ)]]

(1­α)[e+z/(1+µ)] (1­α)r­(1­α)µr
(1­α)((1+µ)/a­rµ)

The steady state is given by the intersection between this curve and the

diagonal. There are �uctuations only if the curve has a negative slope at
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the steady state, i.e. if the intersection is on the second segment (and these

�uctuations are permanent only if the slope is a negative number lower than

�1). It can be shown that the steady state will be on the �rst segment if

� is small enough, and on the third segment if it is large enough. Thus,

�uctuations occur (the steady state can be on the second segment) only for

an intermediate level of �nancial development (i.e. for intermediate values

of �).

ABB explain the basic mechanism underlying their model as follows. It is

a combination of two forces: on one side, greater investment leads to greater

output and ceteris paribus, higher pro�ts. Higher pro�ts improve creditwor-

thiness and fuel borrowing that leads to greater investment. Capital �ows

into the country to �nance this boom. At the same time, the boom in invest-

ment increases the demand for the country-speci�c factor and raises its price

relative to the output good. This rise in input prices leads to lower pro�ts

and therefore, reduced creditworthiness, less borrowing and less investment,

and a fall in aggregate output. Of course, once investment falls all these

forces get reversed and eventually initiate another boom. The reason why

an intermediate level of �nancial development is important for this result

is easy to comprehend: at very high levels of �nancial development, most
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�rms�investment is not constrained by cash �ow so shocks to cash �ow are

irrelevant. On the other hand, at very low levels of �nancial development,

�rms cannot borrow very much in any case and therefore their response to

cash-�ow shocks will be rather muted.

If there are �uctuations, one of the two forces described above should

dominate sometimes and the other one should dominate at other times. But

in between there should be a point at which the two forces cancel each other

out. This point would be a steady state. In a single-variable, continuous-time

model governed by a di¤erential equation of degree 1,4 the economy would

be stuck at this steady state and would not �uctuate after all. But ABB

assume that time is discrete. In this case the economy may overshoot the

steady state, and then jump back over the steady state and be ready for a

new cycle. It is this discrete-time assumption that I will try to relax.

4A single-variable, continuous-time model governed by a di¤erential equation of de-

gree n can be regarded as a n-variable, continuous-time model governed by n di¤erential

equations of degree 1.
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3 Extension of ABB�s model with random

lags

I �rst discuss IM�s random-lags approach (x3.1) on which my extension of

the ABB model is based, then this extension is presented (x3.2).

3.1 IM�s random-lags approach

Consider any variable X and assume that its dynamics in discrete time are

given by:

Xt = f(Xt�1) . (1)

For example, it may be useful to think of X as representing aggregate

production �nished at time t.5 The lag is the time required to produce (a

new cycle of production starts right after the preceding is �nished). The

discrete-time dynamics equation (1) says that aggregate production �nished

at time t is a function of aggregate production �nished at time t� 1.

Instead of the single representative �rm implied in equation (1), one may

5When applying this approach to ABB I will choose X=Wealth of the entrepreneurs.
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consider an economy consisting of a large number of �rms di¤ering only

by their production lags. Assume that this lag is random, and the density

function  gives its distribution. Then equation (1) can be written as:

Xt =

Z 1

0

 (s)f(Xt�s)ds . (2)

Equation (2) indicates that aggregate production �nished at time t is

the sum of production processes started in the past. Aggregate production

carried out s periods ago, Xt�s, generates total production f(Xt�s). Only a

fraction  (s) of this production will, however, be �nished at time t. Thus

the production process beginning at time t�s will contribute  (s)f(Xt�s) to

aggregate production at time t. Notice that if  (s) = 0 for s 6= 1 then lags are

not random anymore, and equation (2) can be simpli�ed to Xt = f(Xt�1).

The strength of the approach proposed by IM is to keep the discrete-time

assumption at the micro level, a realistic assumption, but to dismiss the

assumption of perfect synchronization, which is usually unrealistic.

Assuming that  (s) is a gamma density

 (s) =
1

(n� 1)!n
nsn�1e�ns , (3)

with expectation 1 and variance 1
n
(where n�1; the economic interpretation
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of this parameter is presented below), IM show that equation (2) is equivalent

to the following di¤erential equation:

�
1

n
D + 1

�n
X = f(X) , (4)

where D = d
dt
is the time-derivative operator.

Here the parameter n plays a crucial role. If n is in�nite, then the variance

of the distribution of lags is zero, and equation (4) describes a discrete-time

model.6 If n = 1, then equation (4) describes a single-variable, continuous-

time model governed by a di¤erential equation of degree 1. For intermediate

values of n, equation (4) describes an intermediate case between discrete time

and �rst-order continuous time.

n can be interpreted as the number of successive and independent el-

ementary operations needed to complete production, the duration of each

elementary operation being random and following an exponential distribu-

tion. For comparability, only production processes are considered for which

the whole production process is expected to last one period. If there are n

operations, then each operation is assumed to have an expected duration of

6It can be shown that the di¤erential equation (4) tends toward (1) when n tends

toward in�nity.
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1
n
.7 When n rises, the expected production lag stays the same (1 by construc-

tion), but the dispersion around this expected value decreases. The reason

is that when there are many operations, it is very unlikely that operations

are always short or always long. Thus by the law of large numbers the time

gained on short operations tends to be canceled by the delay of some other,

long operations. At the limit as n!1 the distribution of lags is degenerate

and one obtains the discrete-time model.

n = 1 corresponds to the continuous-time model: in this case equation

(4) is a di¤erential equation of degree 1. n = 1 is the opposite of n = 1

(as the continuous-time model is the opposite of the discrete-time model)

because the distribution of production duration for n = 1 is the opposite

of the distribution of production duration in the discrete-time model in the

following sense: the distribution for n = 1 has the property that production

duration can take any positive value (instead of only one as in the discrete-

time model) and that the probability of a �rm �nishing production in the

next in�nitesimal interval of time is completely independent of the time that

7Then it can be shown that the production duration will follow the gamma distribution

given by equation (3).
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has elapsed since production last occurred (instead of being completely de-

termined by the time that has elapsed since production last occurred as in

the discrete-time model).

Values of n between 1 and 1 correspond to intermediate cases between

continuous time and discrete time. IM show that permanent �uctuations that

appear in discrete time still remain in intermediate cases close enough to dis-

crete time. Intuitively, if n is large enough, then the standard deviation of

production duration is small enough, and the tendency of production of vari-

ous �rms to get out of synchronization is weak enough, such that permanent

�uctuations arising in the discrete-time model are not canceled out. Remem-

ber that �uctuations arise in the discrete-time model because all entrepre-

neurs can borrow large amounts when they start with large wealth, putting

upward pressure on the price of the non-tradable input, leaving them with

small pro�ts and thus small wealth for the next period. This whole process

collapses if production of various �rms are su¢ ciently out of synchronization.

Formally IM show8 that the condition for having a periodical solution is

8They don�t explicitly write this equation, but it is a straightforward implication of

their paper.
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0 > f 0(X) = � 1

cosn(�
n
)
, (5)

where X is the steady state of X de�ned by: X = f(X).

It is easy to derive equation (5) by taking the following linear approx-

imation of equation (4) around the steady state (using f(X) � f(X) +�
X �X

�
f 0(X)):

��
1

n
D + 1

�n
� f 0(X)

� �
X �X

�
= 0 . (6)

The eigenvalues � are given by the solutions of
�
1
n
�+ 1

�n
= f 0(X). Notice

that for f 0(X) < 0 the eigenvalues with the higher real component are a

complex number (with the imaginary component di¤erent from zero) and its

complex conjugate. Their real component is n
n���f 0(X)��� 1n cos(�

n
)� 1

o
.

For n = 1, this maximal real component is equal to �
��f 0(X)��� 1 , which

is negative. Thus all real components are negative and the system is stable.

For n = 2, this maximal real component is equal to�1 (except if
��f 0(X)�� =

1), which is negative. Thus all real components are negative and the system

is stable.

For n > 2, the real component of all eigenvalues is negative and the
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system is stable if f 0(X) > � 1
cosn(�

n
)
, whereas there is at least one dimension

in which the system is unstable if f 0(X) < � 1
cosn(�

n
)
. If f 0(X) = � 1

cosn(�
n
)
, it

can be shown that there is a periodical solution.

If n ! 1 , then � 1
cosn(�

n
)
! �1 and, as usual in discrete-time models,

there are permanent �uctuations if the slope of f at the steady state is smaller

than �1. Notice that 1
cosn(�

n
)
is already close to 1 for fairly small n.

3.2 Robustness of ABB�s results

I now show that qualitatively ABB�s result is still valid for intermediate cases

close enough to a discrete-time model.

Using X � W in equation (4), the dynamics are given by

�
1

n
D + 1

�n
W = f(W ) ,

where

f(W ) = (1� �)

�
e+max

�
min

��
1 + �

a
� r�

�
W; z � r�W

�
; rW )

��
.
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How do the properties of the steady state depend on �? First the steady

stateW must be computed. The steady state satis�es the following equation�
1
n
D + 1

�n
W = f(W ), which, since W is constant, reduces to W = f(W ).

Thus, the steady state is the same as in ABB�s discrete-time case. Assuming

a is big enough, the steady state will be either on the second or the third

segment. Let�s discuss the stability of the steady state. Linearizing around

the steady state yields:

��
1

n
D + 1

�n
� f 0(W )

� �
W �W

�
= 0 .

The eigenvalues � are given by the solution of
�
1
n
�+ 1

�n
= f 0(W ). If the

steady state is on the third segment, then 0 < f 0(W ) < 1 and all eigenvalues

have negative real components. Thus the steady state is stable and there will

be no permanent �uctuations. If the steady state is on the second segment,

then f 0(W ) is negative, and there will be permanent �uctuations if f 0(W )

is su¢ ciently negative. The di¤erence with respect to the discrete case is

that "su¢ ciently negative" no longer means that f 0(W ) < �1, but that

f 0(W ) < � 1
cosn(�

n
)
. Thus as long as n>2 the di¤erence from the discrete-

time model is quantitative (how negative f 0(W ) needs to be in order to get

permanent �uctuations) rather than qualitative.
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The set of values of e for which ABB�s result still holds becomes, however,

more restrictive. For example, given our parameters� values, �uctuations

cannot be permanent for n = 3. Simple algebra shows that for n > 2,

if e
z
< 1�(1��)r

1
cosn(�n )

+(1��)r there will always be permanent �uctuations for some

value of �: there will always be a � such that the steady state is on the

second segment and the negative slope is steep enough for �uctuations to

be permanent. With our parametrization, however, there will be no such �

for n = 3 since this inequality is not satis�ed ( e
z
= 1

100
and 1�(1��)r

1
cos3(�3 )

+(1��)r =

9: 1 � 10�3). Changing the value of e would change the results. If e were

small enough there would be permanent �uctuations for intermediate values

of � also for n = 3. On the other hand, for any n we could choose a value

e high enough such that there are no permanent �uctuations. Compared to

the similar condition prevailing in the discrete-time model e
z
< 1�(1��)r

1+(1��)r , the

condition e
z
< 1�(1��)r

1
cosn(�n )

+(1��)r becomes more restrictive when n gets smaller

(that is, when we move away from the discrete-time case). ABB�s result that

permanent �uctuations occur for intermediate values of � is true only for

a particular set of values for the parameters (for example, e must be small

enough). As n decreases this set shrinks. But as long as n > 2, this set

is never empty. In this sense the result ABB obtain in discrete time is still
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qualitatively valid for any n > 2, but quantitatively the set shrinks.

The following intuition explains why the lower bound of e values for which

endogenous �uctuations cannot occur (whatever the value of �) is an increas-

ing function of n. Remember that endogenous �uctuations occur because of

cash-�ow shocks to �rms�capacity to borrow. For endogenous �uctuations

to occur, two conditions must be satis�ed. First, � has to be large enough

for borrowing to be substantial. Second, � has to be small enough for �rms

to be �nancially constrained. When n gets larger, the tendency of �rms to

get out of synchronization diminishes, and a smaller � will su¢ ce to generate

enough borrowing for endogenous �uctuations to occur. With smaller �, the

second condition will also be easier to satisfy: �rms will still be �nancially

constrained even if their exogenous endowment e is a bit larger. Thus, it is

easier to get endogenous �uctuations when n is larger: more pairs (�,e) are

compatible with endogenous �uctuations.

4 Conclusion

Applying Invernizzi and Medio�s approach, the present paper has shown that

Aghion, Bacchetta and Banerjee�s explanation of why economies at an inter-
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mediate level of �nancial development may be more unstable than either more

or less �nancially developed economies is fairly robust to the continuous�time

versus discrete-time choice. When the discrete-time assumption is dropped

in favor of a random-lags assumption that is an intermediate case between

discrete and continuous time, the argument stays qualitatively the same ex-

cept in extreme cases when the variance of the lags is large (larger than half

the variance corresponding to the �rst-order, continuous-time model).

Possible directions for further research would be to apply the random-lags

approach to models other than ABB�s model, or to examine whether it can be

applied to issues purely related to aggregation rather than to time-modeling.

21



References

Aghion Ph., Ph. Bacchetta, and A. Banerjee (2004), "Financial Devel-

opment and the Instability of Open Economies," Journal of Monetary Eco-

nomics 51(6), 1077-1106.

Aghion Ph., A. Banerjee, and T. Piketty (1999), "Dualism and Macro-

economic Volatility," Quaterly Journal of Economics 114(4), 1359-1397.

Azariadis C., and B. Smith (1998), "Financial Intermediation and Regime

Switching in Business Cycles," American Economic Review 88, 516-536.

Bernanke B., and M. Gertler (1989), "Agency Costs, Net Worth, and

Business Fluctuations," American Economic Review 79, 14-31.

Invernizzi S., and A. Medio (1991), "On Lags and Chaos in Dynamic

Economic Models," Journal of Mathematical Economics 20, 521-550.

Kiyotaki N., and J. Moore (1997), "Credit Cycles," Journal of Political

Economy 105, 211-248.

22


