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Abstract 

 The term “disruptive innovation” has been the buzzword of industries looking to create 

technological advancements in their respective fields ever since the term was first coined in 

1995. In order to invest in the future of the industry, companies are beginning to focus on new, 

innovative ideas that come into the market as a low-cost alternative to the sustaining innovations 

currently in place. Similar business-models can be seen in the healthcare industry, as physicians 

look to disruptive innovations to provide methods of diagnosis and treatment that are easier to 

perform and maintain. Companies, from medical device manufacturers to the hospitals using 

these devices, are now working to comply with the Federal Drug Administration Amendments 

Act of 2007’s requirements of Unique Device Identifiers on all equipment – a new, standardized 

identification system to ensure all necessary information about a device is provided. This honors 

thesis analyzes the recent history of disruptive innovations, in all industries and specifically 

healthcare, and the emergence and benefits of Unique Device Identification. Modeling of the 

implementation of Unique Device Identifiers in an industrial setting resulted in a 16.55% time 

improvement of the affected phases of the recall process, preventing 30 fatalities. When a 

benefit-cost analysis was performed – comparing the value of a human life to the cost of UDI 

implementation – the benefit of implementation outweighed the costs by 277%.  
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Introduction 
 

In the past 40 years, the healthcare industry has seen tremendous growth in technological 

advancements, revolutionizing medical care and the management of health information. The 

quality of equipment used in hospitals and clinics is unparalleled by its predecessors, 

contributing to quicker diagnoses and more effective treatment of patients. Upgraded computer-

based methods of record keeping and data transfer between doctors and patients have made 

medical information accessible with the click of a button. These advancements to the very 

framework of the world’s healthcare systems have been possible only through the design and 

implementation of disruptive innovations – convenient and affordable innovations that gain 

popularity as sustaining innovations eventually overshoot the needs of the majority of the 

market. These innovations improve over time until they take over as the standard product – put 

in place to make patient treatment both more efficient and more affordable (Hwang & 

Christensen, 2008). 

 While the healthcare industry’s rapid modernization is being driven by disruptive 

innovations, consider the state of the industry decades ago and the medical field becomes 

drastically different: effective and efficient medical equipment of the time was too expensive for 

most family clinics and even some hospitals to own and operate, and computer-aided 

bookkeeping and data transfer was nowhere near being universally accepted and used. Most 

family clinics and many hospitals keep patient information on physical charts, requiring vast 

amounts of space for storage, and information transfer through fax was the disruptive innovation 

of the time. For many years, the industry retained the sustaining innovations of the period, 

working on improving methods that were already in place. The market was stable and effective 
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enough for the time, until new disruptive technologies began taking form and reshaping the 

industry. 

 Recently, concern has risen over the transportation of medical equipment to and from 

healthcare systems and the storage of this equipment – as a lack of visibility has frequently led to 

misplaced or stolen equipment – and work has been done to create a way to track this equipment 

throughout transportation and its working lifespan. Many technologies have been adopted to 

accomplish this, including Radio-Frequency Identification (RFID) chips, integration of Wi-Fi 

technology, and many other methods put in place to make tracking of equipment much more 

accessible to clinics and hospitals. One of the newest disruptive innovations to emerge in this 

area of focus is Unique Device Identification (UDI), a system being established by the FDA that 

will standardize the labeling of medical devices in the United States; this system will be used to 

track all devices from the manufacturer to the customer and continue to do so post-

transportation.  

This honors thesis analyzes the importance of disruptive technologies in the healthcare 

industry, as well as all industries, and discusses specific innovations affecting the tracking and 

management of medical devices in the U.S. market. This analysis will also delve into Unique 

Device Identification, considering the system design and regulations placed on labelers of 

medical devices, and evaluate the benefits of UDI over other disruptive technologies that are in 

use today. Then UDI implementation will be modeled and the benefits seen through this 

implementation will be discussed. 
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Importance of Disruptive Technologies to the Market 
 

 Disruptive technologies – though often opposed by businesses comfortably using 

sustaining innovations – are vital to the development and enhancement of any industry, paving 

the way for new and improved methods of completing complex tasks in a simpler, more efficient 

way. These innovations can even create an entirely new market that changes the way the world 

works: the Wright brothers’ dream of flight established the foundation for an entirely new form 

of transportation, unparalleled in speed and convenience still to this day.  

 According to Clayton Christensen, professor of business administration at Harvard 

Business School and a world leader in innovative thinking, and well known for his Theory of 

Disruptive Innovation, there are two types of innovations: sustaining innovations and disruptive 

innovations (Christensen, Bohmer, & Kenagy, 2000). Sustaining innovations are new 

technologies that improve on the technologies already in place in a market, such as a new home 

computer with improved features (e.g. more storage, faster processor). Disruptive innovations, 

on the other hand, come into the market generally unknown, but eventually rise to take over the 

older technologies in place (the creation of portable laptop computers). Figure 1 shows 

Christensen’s depiction of the “Progress of Disruptive Innovation,” and shows that eventually, a 

sustaining technology will surpass the needs of the market. As sustaining innovations surpass the 

needs of the consumers they are intended for, the price of these products continue to rise. 

Eventually, the cost for these items proves too much for consumers to continue purchasing them. 

This is when disruptive technologies start to emerge onto the scene, better serving customers that 

were left behind by sustaining innovations. 
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 While disruptive technologies prove to be crucial to the continued advancement of 

technology – in so improving the overall well-being of the market and the consumers of the 

market – there will always be opposition; corporations commanding the industry will attempt to 

hinder these new technologies from entering the market, as they pose a financial threat to the 

current operational structure. Christensen illustrates why this happens with the following 

hypothetical situation: an entrepreneur designs a new, portable X-ray machine that costs less than 

a conventional X-ray machine and could be used by any clinic, saving patients the hassle of 

going somewhere else. The only problem is that he faces many barriers, including X-ray 

equipment suppliers who are threatened by this new technology, radiologists fighting for their 

jobs, and hospitals that rely on patients coming to them for X-rays for the profit (Christensen, 

Bohmer, & Kenagy, 2000). 

 This scenario is seen much too often in all industries: a new, innovative idea is born that 

could change the way the industry works for the better; however, this innovation threatens the 

business-model in place. The controlling parties of the industry note the financial threat that this 

innovation poses to their operations and work to impede the idea’s progression. Change is vital 

to the continuous improvement of the market, regardless of what market is being affected by 

these disruptive technologies.  While these innovations may affect the companies in the market, 

they prove to benefit the consumer and ensures the future of the industry, both key components 

to the longevity of industries.
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The Progress of Disruptive Innovation
Performance

Time

Performance That 
Customers in the 
Mainstream Market 
Can Absorb

 

Figure 1: Christensen’s Theory of Disruptive Innovation. Adapted from Will Disruptive 

Innovations Cure Health Care? by Christensen, C., Bohmer, R., & Kenagy, J. Harvard Business 

Review, 102-112
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Disruptive Innovation in Healthcare 
 

 Disruptive technologies have always paved the way for the future of markets worldwide 

and will continue to do so; new, innovative ideas will always arise that will change the way a 

system or an industry is run. In the healthcare industry, however, disruptive innovations are not 

as commonplace. While methods of diagnosing and treating patients have improved over time, 

these improvements seem to be a continuation of sustaining technologies, instead of completely 

redefining the way the industry works. 

 Professor Christensen’s model of disruptive innovation shows that disruptive 

technologies, while providing an improved method of performing the tasks associated with the 

innovation, come into the market as a cheaper alternative to the sustaining technologies. 

Sustaining technologies, on the other hand, continue to increase in cost as the technologies 

improve, making these technologies increasingly more unobtainable by the common consumer. 

With the large costs associated with it, the modern healthcare industry more closely follows the 

path of sustaining technologies. 

 Costs for healthcare treatment have been growing constantly for so long that people focus 

more on the “rate of increase of costs” than simply the change in costs. Recently, this rate of 

increase has started to drop, but consumers still seem to be paying much more than expected for 

healthcare in the form of out-of-pocket payments and deductibles. Drew Altman, President of the 

Kaiser Family Foundation, notes that “even though [health costs] have been growing at record 

low rates in recent years…the gap is widening between growth in wages and what workers pay 

for health premiums and deductibles” (Altman, 2015). The average worker’s wages have grown 

23% since 2006, but the average deductible price has increased over four times as much at a 
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staggering 108%. The increasing costs of medical treatments is surpassing the financial abilities 

of most consumers, making healthcare treatment continually more difficult for consumers to 

afford. 

 Despite the difficulties disruptive innovations seem to have in breaking into the medical 

field, some technologies have broken the mold of common healthcare environments and made an 

impact on the way medical institutions run. For example, electronic health records (EHRs) have 

changed the way that doctors store and distribute patient information by transitioning from the 

sustained idea of physical file storage to a modern, computerized method. While the concept of 

EHRs has been around since the 1960s, the idea didn’t really stick until the 1990s, when the 

Institute of Medicine (IOM) started arguing, through multiple studies, the need to seriously 

consider the use of computerized health records in the industry (Atherton, 2011). These studies 

opened the industry up to the benefits of using EHRs, and many organizations sought to integrate 

this technology into their systems. Many modern hospitals and clinics now use EHRs to more 

easily store all of the information about a patient – including demographics, medical history, 

previous medications, etc. – which can be effortlessly distributed to a patient’s other doctors 

safely and securely. This improved method of distribution and storage of information can be seen 

as a disruptive innovation to the industry itself, saving money for hospitals and clinics by 

allowing instantaneous transferring of information without the variable costs of time and money 

associated with delivery of physical information through mail or fax. While these costs are 

generally low, the complete elimination of them can accumulate to a substantial amount over 

time. 

 A primary focus of disruptive innovation in healthcare is the diagnosis and treatment of 

simple ailments; if assistant physicians and nurse practitioners could take over the simpler cases 
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and be able to diagnose and treat them appropriately, the primary physicians can focus on 

diagnosing the complex cases that a physician’s office would see. A worthy indicator of positive 

innovation, especially in healthcare, is the push to “innovate downward in order to enable those 

with less-specialized training to deliver top-flight care” (Brill & Robbins, 2005). An excellent 

example of this is the website WebMD.com, where anyone with an Internet connection can 

access “credible information, supportive communities, and in-depth reference material about 

health subjects that matter to you,” all offered by “board-certified physicians, award-winning 

journalists, and trained community moderators” to provide reliable information to help people 

better understand what their health conditions might be (WebMD, 2014). While this website was 

not intended to be a reliable replacement for diagnosis and treatment by a certified doctor, 

WebMD offers reliable information pertaining to what a person’s symptoms could correspond to 

– keeping patients with very mild symptoms out of doctors’ offices so they can focus on patients 

that are more in need of their services. This innovation allows for free information distribution to 

all people with Internet access, lightening the burden on the healthcare industry and spreading 

basic knowledge of medical practices globally. 

 While disruptive innovations are still not as commonplace as one would hope in the 

healthcare industry, new and exciting ideas are being generated that have the potential to change 

the way healthcare is provided, both for the good of the consumer and for the good of those 

providing these services. The goal of disruptive innovations in the healthcare industry is to make 

services, such as diagnosing and treatment of ailments, easier to perform so that less severe cases 

can be treated by less specialized individuals; this leaves the more complex issues to the most 

experienced doctors and clinicians. Ultimately, most ailments should be able to be treated by 
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family doctors and nurses, while only the extreme cases would need the services of a hospital or 

specialty clinic.  
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Disruptive Technologies Associated with Medical Device Tracking 
 

 With the advancement of medical equipment being integrated into many hospitals, health 

clinics, and special care units, progress must also be made in the handling, transportation, and 

tracking of these devices. While there has been no standardized method of tracking devices in the 

medical industry, a few technologies have emerged that have made tracking possible and 

relatively easy for clinics and hospitals to perform. Among those technologies include Radio-

Frequency Identification (RFID), integration of Wi-Fi technology, Ultrasound, and Infrared 

systems – all of which are classified as Real-Time Location Systems. RFID’s and Wi-Fi systems 

are the most commonplace amongst industry and healthcare systems, but there are other 

technologies being used, including Bluetooth, ZigBee, and Cellular tracking. 

 Real-Time Location Systems (RTLS) are a form of Automatic Identification and Data 

Capture (AIDC) – methods of identifying objects and collecting and storing data about them. 

AIDC’s can be defined as “local systems for the identification and tracking of the location of 

assets and/or persons in real or near-real-time” (Kamel Boulos & Berry, 2012). The basic 

components of RTLS consist of a location sensor that receives a wireless signal from an 

identification tag which is attached to the object being tracked. The location sensor then 

transmits the information to the engine software, which translates the information and displays it 

in the application software. Figure 2 illustrates the components of RTLS. Whether the assets 

being tracked are patients or machinery, RTLS have made tracking and maintenance of medical 

assets a much simpler and more reliable computerized process. 
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Figure 2: Basic Components of an RTLS. Reprinted from Real-time locating systems (RTLS) in 

healthcare: a condensed primer by Kamel Boulos, M. N., & Berry, G. International Journal of 

Health Geographics, 11, 25. http://doi.org/10.1186/1476-072X-11-25 

 

 RFIDs are used in all industries for the tracking of items and as a means to improve the 

process of inventory management and control. Whether it is a retail store (such as Wal-Mart) 

tracking all of the different SKUs that travel through their distribution centers and stores, or a 

transportation company (such as J.B. Hunt) using advanced RTLS technologies to bypass weigh 

stations, RFIDs have been integrated into a wide variety of industries to save money and improve 

performance. The same can be said for the healthcare industry, as RFID technology is used to 

both track patients within a hospital setting and machine inventory. Radio waves are transmitted 

from an identification tag at a specific frequency, either at specified intervals or only when 

needed, and sensors set to pick up waves of that frequency will gather the information and store 

it in the local system. RFID technology is being used in the healthcare industry for multiple 

purposes, from reducing inventory costs through automated replenishment requests to keeping 
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track of people who come into contact with potentially dangerous, infectious diseases in order to 

alert the hospital of who needs to be screened (Baum, 2013). The Health Industry Business 

Communications Council (HIBCC) cites one drawback of RFIDs as being their lack of 

compatibility between each other; with different standards for different RFID systems, 

interoperability is currently not possible, and any future innovation will most likely increase the 

already large cost of these systems (Figarella, Kikirekov, & Oehlmann, n.d.). 

 Some RTLS systems are deployed over Wireless Local Area Networks (WLAN) through 

Wi-Fi Access Points, allowing easy integration of tracking systems through networks already 

established. Ekahau, Incorporated – a leader in Wi-Fi design solutions based out of Reston, 

Virginia – is a large provider of RFID-over-Wi-Fi™ RTLS systems, which consist of battery-

powered Wi-Fi tags attached to the devices compatible with many of the largest WLAN 

providers, including Cisco and Motorola. One of their systems can support up to 50,000 different 

tags, helping to identify the location of devices, staff, and any other equipment a company 

wishes to track (Ekahau, 2015). Some Wi-Fi systems, such as Ekahau’s, are used with the 

additional incorporation of RFID technologies. However, Wi-Fi RTLS systems can also be 

stand-alone systems, with tags being tracked solely through the WLAN Access Points. This 

increases the ease of implementation, but also makes the system completely reliant on the 

reliability of the WLAN being used. 

 All of these technologies vary in mechanisms and methods, but they are all used to 

perform the same main task of identifying the location of assets and reporting this information to 

a main software system, displaying this information to the user, and performing this task as 

precisely as needed. It is up to the hospital or clinic to determine which type of RTLS is best for 

them based on qualitative/quantitative analyses, risk identification methods, and cost/benefit 
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analyses that will provide management with the information they need to make the right 

decision. With the right real-time location systems in place, and with the future complete 

integration of unique device identification into the healthcare industry, tracking medical devices 

will become quicker and easier for both manufacturers and hospitals alike. 
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Unique Device Identification (UDI) 
 

 In 2004, the FDA Center for Drug Evaluation and Research developed regulations 

requiring “drug and biological product labels contain a bar code consisting of, at a minimum, the 

National Drug Code (NDC) number” in order to help verify that the right drugs are being used 

on the right patients at the right time, in order to “reduce the number of medication errors that 

occur in hospitals and health care settings” (FDA, 2011). The NDC numbers are used as a 

standardized method of determining what exactly a drug is before treating a patient with it. 

Likewise, the Center for Devices and Radiological Health sought to create a standardized method 

of labeling medical devices that device manufacturers produce and deliver to hospitals and 

clinics. This new method would be used to verify products and improve patient safety by 

knowing exactly what is being used on or put into them. 

 On September 27, 2007, President George W. Bush signed into federal law the Food and 

Drug Administration Amendments Act (FDAAA). Part of this law “establishes a unique 

identifier system for all medical devices. Specifically, the FDA is directed to promulgate 

regulations requiring an identifier on the label of each medical device that is specific enough to 

identify the device through distribution and use.” The law was finalized on September 24, 2013, 

requiring a unique device identifier (UDI) on all device labels and packages, barring any 

exceptions provided by the law. Before this legislation was passed, there had been no 

standardization concerned with the labeling of medical devices, creating ambiguity and a large 

variety of different labeling methods. One of the key reasons for the creation of a unique device 

identification system is to create a clearer, standardized method of identifying medical devices 

for the sake of all parties involved, including manufacturers, insurance providers, customers 

(hospitals, clinics, etc.), and the patients that are being treated with these devices. Before Unique 
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Device Identification, labeling and means of identifying medical devices and their packaging 

varied from manufacturer to distributor to providers, creating clashing methods between all of 

them. Figure 3 provides an example of the variation of “current” methods and compares it to the 

standardized UDI method. When all methods coincide like the UDI method, flow of devices 

becomes quicker and easier throughout the supply chain. Because of this standardization of 

labeling, the healthcare industry should find an increase in the reliability and speed of device 

recalls – an issue that has threatened the safety of the patients and the credibility of the devices 

used on these patients. 

 

 

Figure 3: Comparison of the “Current” Methods to the “Future” UDI Methods. Reprinted from 

Improving Patient Safety Using Unique Device Identification. (n.d.). Retrieved October 16, 

2015, from http://marketo.spartasystems.com/rs/spartasystems2/images/Whitepaper - UDI.pdf  
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A UDI consists of two major components – a Device Identifier (DI) and a Production 

Identifier (PI). The Global Language of Business (GS1), who is, as of December 17, 2013, the 

issuing agency accredited for UDI’s, considers DI as a Global Trade Item Number (GTIN), 

which are used to “identify products and services that are either sold, delivered or invoiced at 

any point in the supply chain” (GS1, 2015). In other words, a GTIN is used to determine which 

unique product the device is, usually through barcode systems. PI consists of any additional 

information that appears on the device label or the packaging; this extra information could be 

expiration date, lot number, serial number, manufacturing date, or distinct identification codes. 

DI’s are always necessary in a UDI – both in human-readable form and in AIDC form – while 

PI’s are required only if the extra information is provided. Figure 4 provides an example of a 

proper UDI label provided by the FDA. Note the text-based representations of the product’s 

name, physical parameters, and storage requirements, along with a barcode that can be scanned 

to collect this information automatically. 
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Figure 4: Example of a Unique Device Identifier. Reprinted from UDI Basics, In U.S. Food and 

Drug Administration, 2015, Retrieved October 20, 2015, from http://www.fda.gov/MedicalDevic 

es/DeviceRegulationandGuidance/UniqueDeviceIdentification/UDIBasics/default.htm 

  

 There are three classes of medical devices, based on the level of risk and amount of 

control required with the devices: Class I, Class II, and Class III. Class I devices generally are 

the most low-risk devices – such as bandages and examination gloves – and therefore have the 

least regulations imposed on them. Class III devices require the most regulatory control on them, 

due to the large risk involved with their transportation and use; examples of Class III devices 

include devices that are surgically placed in a patient’s body, such as heart valves and 

prosthetics, and potentially hazardous devices that pose a high risk to those handling it. The 

FDA’s final ruling in 2013 included different compliance dates for each class of device. All 
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Class III device labels and packages must bear a Unique Device Identifier by September 24, 

2014 – one year after the final ruling. Class II device labels and packages must do the same two 

years later in 2016, and all other devices – including Class I – must have UDI’s on their labels 

and packaging by 2018. The devices themselves must have permanent UDI labels on them if 

they are to be used more than once by 2016, 2018, and 2020 respectively. Therefore, by 2020, 

the FDA’s rule of Unique Device Identification systems should be fully integrated into the 

United States healthcare system. 

 Unique Device Identifiers will eventually be integrated into Electronic Health Records in 

order to create an all-encompassing post-market surveillance system to track all patient 

information, including devices that were used on them or implanted into them. UDI will play a 

vital role in the development and continuous improvement of the FDA’s National Medical 

Device Postmarket Surveillance System. This will be integrated with many forms of data – such 

as Medical Device Reporting (MDR), a strong surveillance network, administrative and claims 

data, and other tools and studies that can all be incorporated with tracking systems and UDI to 

provide an effective post-market surveillance system that will increase patient safety while 

retaining their privacy of information (FDA, 2013). This surveillance system is summarized in 

Figure 5. 
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Figure 5: FDA’s Planned Components of a National Medical Device Postmarket Surveillance 

System. Reprinted from Strengthening Our National System for Medical Device Postmarket 

Surveillance: Update and Next Steps, In U.S. Food and Drug Administration, 2013, Retrieved 

October 25, 2015, from http://www.fda.gov/downloads/MedicalDevices/Safety/CDRHPostmar 

ketSurveillance/UCM348845.pdf 
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Benefits of UDI 
 

 As UDI begins to integrate into the healthcare industry, benefitting factors associated 

with this innovation should be apparent. UDI can be integrated with RTLS technologies to 

become a standardized tracking system, which can be used in multiple ways to help reduce risk 

involved with procedures and improve inventory control methods. UDI can also be integrated 

into EHR’s to provide more detailed information of patients’ histories for the use of doctors and 

their patients. The FDA is also currently creating and maintaining a universal database for 

information storage about all UDI’s that can be accessed by anyone. This database – known as 

the Global Unique Device Identification Database (GUDID) – will help labelers and hospitals 

distinguish between devices and help define how to properly label devices. One of the UDI rule’s 

ultimate goals is to increase the reliability of medical device tracking, ensuring that recalls of 

medical equipment are completed soundly and efficiently, with no devices left in the market – or 

worse, in a patient. 

 Mary Baum, chief healthcare officer at Connexall USA Inc., stresses the important roles 

that UDI’s can play in a healthcare environment when incorporated with RTLS technologies, as 

it can “dramatically improve real-time decision support to deliver better outcomes” by “bridging 

information silos” to allow quicker decision making in the hospital (Baum, 2011). Baum 

illustrates this advantage with examples highlighting the potential uses in different areas of a 

hospital setting. RFID and UDI technologies can be integrated together to help properly identify 

patients and devices before going into surgery. Connecting the device to the patient before the 

surgery occurs can prevent cases of “wrong procedure/wrong patient” incidents, saving time and 

money for the hospital by preventing the need for surgery to remove the device and saving the 

patient from potential difficulties associated with the wrong device implants. UDI 
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implementation can also assist in security purposes, automatically notifying security teams if a 

device is taken out of the facility so they can act quickly to prevent burglaries. If technology is 

used to keep track of temperature in storage facilities, departments can be automatically updated 

by the UDI system, alerting them to a dangerous temperature change in time to relocate the 

devices if necessary. These three examples help to emphasize how important UDI 

implementation can be when used with RTLS systems in place – as safety precaution, security 

measurement, and risk mitigation tools. 

 Electronic Health Records provide doctors, hospitals, and patients with all available 

information about a patient, including treatments, prescriptions, number of visits, and conditions 

vital to the treatment of patients. One thing that EHR’s do not contain at the time, however, is a 

list of medical devices used on, or implanted in, a patient. This information will be documented 

using the Unique Device Identifiers in the GUDID, and can also be integrated into EHR’s in 

order to provide patients and doctors with all of the information necessary to better treat patients. 

Since EHR’s can be easily distributed through multiple healthcare systems securely, doctors 

would be able to quickly access this information in order to help make better decisions regarding 

patient treatment. For example, patients that have undergone a heart valve transplant in the past 

need to be closely monitored during pregnancy, as the treatment during pregnancy and the 

birthing process have much larger risks associated with them after heart valve transplant 

surgeries have occurred (Butchart, 2005). In this scenario, doctors and patients would greatly 

benefit from UDI information in EHR’s, which would immediately inform the doctors that the 

patient will need to be treated differently, removing the threat of mistreatment due to lack of 

information. 
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 With the creation of a new method of identifying and keeping track of medical devices, 

the FDA decided that the next logical step would be to implement a universal database for 

information storage associated with medical devices and the new style of labeling. The Global 

Unique Device Identification Database is being created in order to store the data associated with 

medical devices and make this data available to everyone. The FDA will work with device 

labelers to ensure that all necessary information is uploaded to the GUDID and that all 

information uploaded is accurate and relevant to the devices. 

 The GUDID will only store detailed information on the Device Identifier (DI), which will 

serve as “the primary key to obtain device information in the database” (Center for Devices and 

Radiological Health, 2014). The GUDID will also provide information pertaining to what types 

of Production Identifiers (PI) are on the device labels, but not the exact PI’s. Each submission to 

the GUDID will require all of the information designated in Title 21 of the Code of Federal 

Regulations, Part 830.310 – including, but not limited to, the name of the labeler, the DI, the 

name of the device, the model number, and the type of PI’s that appear on the label of the device, 

such as serial numbers, expiration dates, and batch numbers (Code of Federal Regulations, 

2014). The GUDID will ensure that all DI’s are unique to the device so that DI’s are not used as 

identifiers for multiple devices, regardless of whether or not the device is still in commercial 

distribution. The GUDID will note whether or not a device is still in commercial distribution as 

well. 

 Information on packaging of medical devices will also be stored in the GUDID so that 

hospitals and distributors will know exactly what to look for; for a device sold in boxes of thirty 

packages, which are sold in cartons of twelve boxes, “a different DI would be required to appear 

on the individual device package, on the box of thirty packages, and on the carton of twelve 



25 
 

boxes of thirty device packages” (Center for Devices and Radiological Health, 2014). This will 

ensure that any faulty packaging can be easily detected by distributors, guaranteeing the quality 

of the devices being shipped. The primary DI of a device will be the lowest level of packaging 

for it and will be used as the main identifier of the device in the GUDID. All other DI’s 

associated with the device will be listed as secondary DI’s. Figure 6 illustrates the different 

types of DI’s and how they will be uploaded to the GUDID. For all of the detailed information 

about DI records and the GUDID as a whole, visit the FDA’s website and refer to the GUDID 

Compliance Guide. 

With integration into RTLS and EHR’s and the implementation of the Global Unique 

Device Identification Database, specifications and locations of medical devices all across the 

U.S. can be tracked by labelers, distributors, doctors, and patients in order to improve the overall 

reliability of these devices. The ultimate goal of any healthcare system is to provide reliable and 

safe treatment of patients, and the implementation of Unique Device Identifiers will serve only 

as a boost to provide safe and reliable treatment by making the location of devices as transparent 

as possible to all parties involved. 
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Figure 6: Package Configuration Example. Reprinted from Global Unique Device Identification 

Database (GUDID) Guidance for Industry and Food and Drug Administration Staff. (2014, June 

27). Retrieved November 15, 2015, from http://www.fda.gov/downloads/MedicalDevices/Device 

RegulationandGuidance/GuidanceDocuments/UCM369248.pdf 
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Types of Modeling 
  

In order to support the notion that UDI implementation will increase the reliability of 

medical device tracking through a decrease in recall time and in the number of fatalities because 

of a poor recall process, some type of model needs to be made and run; an abstract representation 

of a real-world healthcare environment can provide insight into how the system runs before 

implementation and how it will run after implementation. The AnyLogic Company, one of the 

leading simulation software providers for dynamic simulation tools, will be used to model a 

healthcare system setting – from the manufacturer to the consumer – both before and after UDI is 

implemented into the system to highlight the benefits associated with UDI implementation. 

These systems will be analyzed to determine the significance of this improvement for the 

doctors, patients, manufacturers, and every other component of the system. Ilya Grigoryev 

(2015), Head of Training Services at The AnyLogic Company, provides great insight into the 

need of modeling software and how the AnyLogic simulation software is used to model different 

methods of simulation modeling. 

 Modeling, in its many different forms, is simply a method of abstracting real-world 

scenarios in a virtual setting; this virtual model can then be manipulated, risk free, to find the 

best solution to the real-world problem. Models have always been used by people to make 

decisions; deciding whether or not to go to class is an example of the most fundamental form of 

modeling – mental modeling. This type of modeling typically involves deciding between 

multiple options by comparing the consequences of each alternative, which can be compared to 

an IF-THEN statement in most programming languages. Now, with advancements in technology, 

anyone can develop different kinds of models on a computer. With computers and advanced 

processors readily at hand, analytical models and simulation models can be quickly created and 
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ran to provide a much more accurate representation of the real world, increasing reliability of the 

results. Analytical, or “spreadsheet-based modeling,” is used when relatively simple formulas 

can be used to adequately describe the system in question. When the system becomes too 

complicated to model by simple functions and becomes more dynamic in nature, simulation 

models can be used to monitor these complex changes in the system. Grigoryev explains that “a 

simulation model is always an executable model: running it builds you a trajectory of the 

system’s state changes” (p. 10). These changes cannot be monitored with a simple analytical 

model, as the inner mechanisms of the model are not simple formulas, but complex rules that the 

system has to follow to transform an input into an output. For the UDI implementation, a 

simulation model will be created and ran to better abstract the complexity of a healthcare system. 

 Simulation modeling provides a large advantage compared to other forms of modeling in 

that, while mathematically providing solutions to difficult problems, they are also structured in a 

way that mirrors the real world system, providing a visual representation of the system as well. 

While analytical models are generally purely computational, simulation models can provide a 

representation of the flow of objects through the system while also recording data from the 

objects, or system, for computational analysis. Simulation modeling provides multiple modes of 

comprehension for the user to better reflect the real-world system in a virtual world, providing a 

more accurate representation of the real world. 

 A simulation model can be abstracted in a variety of ways, and the level of abstraction 

can be used to determine which method of simulation modeling to use, as each method proves 

useful only for a range of abstractions. Abstraction level ranges from a low abstraction of reality 

to a high abstraction. Low abstraction models are the most highly-detailed models, where 

“physical interaction, dimensions, velocities, distances, and timings” are important to model, as 
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all of these interactions can largely affect the system (p. 11). This high level of detail is suited 

best for small or microsystems, as smaller systems are more largely affected by these details. An 

assembly line in a facility would be modeled with a low abstraction in order to minimize 

bottlenecking. High abstraction models, on the other hand, provide the minimum amount of 

details required to model the system. These systems are normally macro in scale as compared to 

the low abstraction models, and are used to better understand relationships; for example, high 

abstraction models can be used to model “how the money [a] company spends on advertising 

influences [their] sales,” as the main focus of the model is the company as a whole (p. 12). For 

this UDI implementation model, an intermediate level of abstraction will be used, as the physical 

space of the system is irrelevant, but the focus is still on the objects moving through the system. 

 AnyLogic’s simulation software allows a user to choose one of three methods, or 

frameworks “to map a real world system to its model,” of simulation modeling: System 

Dynamics, Discrete Event Modeling, and Agent Based Modeling (p. 13).  Each method provides 

beneficial insight into the structure and mechanisms of a real-world system; however, a user 

should carefully choose which method to use based on the abstraction desired of the model. 

 System dynamics is a “methodology to study dynamic systems” assuming “high levels of 

object aggregation” and is generally used for high abstraction levels (p. 101). Large, complex 

systems are modeled with system dynamics to determine stocks – the characteristics of the 

system states – and flows – the rate of change of these system states. System dynamics models 

are suitable for large-scale scenarios, such as modeling population changes of a city due to 

industrialization in the area or environmental conditions before and after a natural disaster. 

 Discrete event modeling focuses more on the process that objects, or agents, flow through 

to move from the beginning of the system to the end. As agents move through the system, they 
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must pass through each process of the system. Each process requires some amount of time to 

accomplish; these times are normally stochastic, making the discrete model itself a stochastic 

model. Discrete event models are generally used for mid to low levels of abstraction where 

details become increasingly more important in the design of the system. Outputs gained from a 

discrete event model include “utilization of resources, time spent in the system or its part by an 

agent, waiting times, queue lengths, system throughput, bottlenecks” (p. 135-136). Examples of 

discrete event models include modeling the receiving dock of a distribution center or modeling 

the drive-thru of a fast food restaurant. 

 Agent based modeling is a newer form of simulation modeling that became feasible to 

perform because of advancements in technology that allowed models of their kind to be created 

and manipulated. Agent based modeling should be used when “you may not know how a system 

behaves, be able to identify its key variables and their dependencies, or recognize a process flow, 

but you may have insights into how the system’s objects behave” (p. 20). The behavior of the 

system as a whole is irrelevant in agent based modeling compared to the agents, as it is the 

behavior of the agents themselves that are worth modeling. Agents can interact in agent based 

models, but it is not a requirement of them to do so. Agents also are not required to adapt to 

changes, but they can adapt to changes between each other or environmental changes as well. 

Examples of agent based models include modeling the adoption of a product through means of 

advertisement or through word-of-mouth. The Bass Diffusion Model is often used to model the 

diffusion of innovation and product growth and is a form of agent based modeling. 

 For the modeling of UDI implementation in a healthcare environment, agent based 

modeling will be used to focus on the flow of agents, or medical devices, throughout the market 

and patients and understand the influence that the Unique Device Identifiers – a change in the 
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healthcare environment – affects the flow of these agents. As each type of medical device has its 

own characteristics when it comes to their flow through the system, the focus is primarily on the 

behavior of these agents and not on the system as a whole. The agent based model will be able to 

distinguish between different classes of recalls and be able to clearly show the advantages of 

UDI implementation by illustrating the quantitative improvement in the recall process as seen 

through the medical devices. 
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Pre-UDI Model 
 

 In order to illustrate the advantages of incorporating UDI into the healthcare system, a 

model has to be designed that depicts both pre-integration and post-integration, whereby a 

comparison can be properly made. Before the system can be appropriately defined and modeled, 

an analysis of the process of recalls in the U.S. healthcare system first needs to be performed. 

Once the process is clearly defined, the system itself can be defined and data can be used to 

create a model that accurately represents the pre-integration system. Once this system is created, 

valid assumptions can be determined and used to create the post-integration system, which will 

be used to determine the benefits of UDI integration. 

 UDI implementation has been predicted to vastly improve the process of recalling faulty 

medical devices – both from hospital settings and from patients. For this reason, the main focus 

of this model will revolve around the recall process and the improvements to the total time 

required to perform a recall, efficiency of recalls, and mortality rates that the implementation of 

UDI is expected to bring. The model will accurately depict the recall process currently used by 

hospitals and the FDA, and utilize data compiled by the FDA to determine the speed of this 

process and the amount of deaths caused by this process. The model will then take the expected 

benefits of UDI implementation to determine, through valid assumptions, the expected decrease 

in the average time required to perform a recall and, through that, the expected decrease in deaths 

of patients. 

 The FDA’s “Medical Device Recall Report” compiles information regarding the process 

associated with recalls, along with data of all the medical device recalls ranging from 2003-2012; 

this document will be used for the majority of the information for the model (FDA, 2012). The 
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recall process is divided into four main phases, defined by the different groups involved in each 

phase. This process is depicted in Figure 7 below. Phase I begins when the manufacturer of the 

device becomes aware of the faulty device and initiating the recall process. The manufacturer 

then alerts the Office of Regulatory Affairs (ORA) district office of the issue, initiating Phase II. 

The district office issues a 24-hour alert to the FDA’s Center for Devices and Radiological 

Health (CDRH), including a recommendation of the classification of recall. Now in Phase III, the 

CDRH then performs a final review of the issue and releases a final classification of the recall. 

Notices are then posted online and word is spread. Phase IV involves the physical removal of the 

recalled products from the environment. The recall process is not terminated until the “FDA 

determines that manufacturers have completed all reasonable efforts to remove or correct the 

product in accordance with the recall strategy, and that proper disposition or correction has been 

made commensurate with the degree of hazard of the recalled product” (p. 6). 

 

 

Figure 7: FDA’s Recall Process. Adapted from Medical Device Recall Report: FY2003 – 

FY2012. Retrieved October 25, 2015, from http://www.fda.gov/downloads/aboutfda/centers 

offices/officeofmedicalproductsandtobacco/cdrh/cdrhtransparency/ucm388442.pdf 
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 Medical device recalls can be classified into one of three classes, Class I – Class III, 

based on the severity of the consequences associated with the product being recalled. A Class I 

recall is issued when “there is a reasonable probability that use of or exposure to a violative 

product will cause serious adverse health consequences or death” (p. 4). Class II recalls are 

issued when the product may cause “temporary or medically reversible adverse health 

consequences” to patients (p. 4). A Class III recall is issued when it is “not likely [for a product] 

to cause adverse health consequences” (p. 4). Each process varies in time required to complete 

based on multiple factors – including number of products to recall, complexity of the recall, and 

information available to the recalling firms. As the model this thesis will focus on is interested in 

only the potentially lethal cases of recalls, Class III recalls will not be considered. 

 The FDA provides statistics for the average time it takes for each phase to occur for the 

fiscal years 2010 – 2012 for all classes of recalls. These numbers are provided in Table 1 below. 

Since the recalls are not classified into Class I – III types until Phase III of the recall process, 

Phase I and Phase II recall time is assumed to be equal for all classes of recalls. While the time it 

takes for the CDRH to review and classify the recall is decreasing annually, the overall time 

from the initial firm awareness to the posting of the recall is growing steadily. Since Phase I and 

Phase II times are considered to be equal for all classes of recalls, the only variance in classes 

occurs in Phase III. These differences are shown in Table 2. The FDA keeps records of all 

medical device recalls in their Medical Device Recall Database, which can be accessed on their 

website. In 2012, on average, it took 64 and 56 days respectively for Class I and Class II recalls 

between the ORA being notified of a recall and it being publicly posted online. 
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Table 1: Average Days by Phase and Year. Adapted from Medical Device Recall Report: 

FY2003 – FY2012. Retrieved October 25, 2015, from http://www.fda.gov/downloads/aboutfda/ 

centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhtransparency/ucm388442.pdf 

 

 

Table 2: Average Phase III Days by Class and Year. Adapted from Medical Device Recall 

Report: FY2003 – FY2012. Retrieved October 25, 2015, from http://www.fda.gov/downloads/ 

aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhtransparency/ucm388442.p

df 

 

 

Year

Number 

of Recalls

Phase I - Firm 

Awareness to 

District 

Awareness 

(mean days)

Phase II - District 

Awareness until 

Recommendation 

Sent to CDRH 

(mean days)

Phase III - CDRH 

Receipt to 

Classification and 

Posting (mean 

days)

Phase I - III 

Total Recall 

Days to Posting 

(mean days)

FY2010 876 85.7 99.7 48.3 233.7

FY2011 1271 98.2 111.6 37.1 246.9

FY2012 1190 99.4 135.9 21.3 256.6

FY2010 FY2011 FY2012

Class I Mean, Days 37.4 32.8 28.1

Class I Range, Days 7 - 137 10 - 90 2 - 159

Class II Mean, Days 47 37.3 21.1

Class II Range, Days 2 - 301 0 - 476 2 - 232

Class III Mean, Days 68.7 36.1 19.6

Class III Range, Days 8 - 208 8 - 208 2 - 57



36 
 

 Each recall can encompass multiple medical devices that are out in the field, requiring 

more effort and time to perform a recall. Figure 8 shows the average number of products per 

recall for each fiscal year from 2003 to 2012; data was obtained from the FDA website to create 

this figure, along with Table 3, which contains the data for this graph. The number of products 

per recall activity varies greatly with Class I recalls, but there is not much variation in the Class 

II recalls, which tend to stay around 2.5 products per recall. 

 

  

Figure 8: Trend of Products per Recall by Class and Fiscal Year 
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Table 3: Number of Products per Recall by Class and Fiscal Year 

 

 

 The FDA claims that, for the duration of the 10-year report, deaths were associated with 

25% of Class I products to be recalled and 1% of Class II products, meaning that in 2012, there 

were 38 Class I recalled products with fatal instances associated with them and 24 Class II 

recalled products with the same. Since there is no specific data available for the actual number of 

deaths caused by these products, each product will be modeled as one product that either causes 

a death or does not. These fatal occurrences can be attributed to the length of time necessary for 

a recall event to be made publicly aware. A faulty implant can be put into a patient over 200 days 

after the manufacturing firm realizes the dangers of that implant, which is unacceptable if patient 

safety is to be valued as highly as it should. With the implementation of UDI technologies into 

the healthcare industry, these deaths could be avoided by ensuring a quicker response to faulty 

equipment and minimizing the number of devices used before the recall is made aware. 

Year Class I Class II

2003 4.29 1.85

2004 2.54 2.80

2005 2.50 3.08

2006 2.95 2.54

2007 1.69 2.19

2008 9.93 3.08

2009 5.00 3.07

2010 8.69 3.04

2011 6.02 2.07

2012 2.63 2.35

Average 4.62 2.61

Products per Recall
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 The major assumption of this model will be that the fatal incidences that occurred 

because of faulty medical devices were largely due to the time it took for the recall process to 

transpire, and that these fatal instances were attributed to the recalls that took the longest time to 

be posted. While time may not be the main attributing factor for all recall fatalities, it is 

undeniably a negative factor that affects mortality rates in many instances. Time is also a factor 

that UDI implementation can help to reduce drastically. It will be assumed that since 25% of 

Class I recalls and 1% of Class II recalls resulted in deaths, the fatal instances occurred in the top 

25th percentile and top 1st percentile of time for each class respectively. From 2010 – 2012, it 

took on average 243 days to post a Class I recall and 245 days to post a Class II recall; by 

calculating each respective percentile, it can be concluded that – once the ORA became aware of 

the recall – Class I recalls that took over 97 days to post from that point were likely to result in 

deaths and Class II recalls that took over 1,104 days to post from that point were likely to result 

in deaths. 

 Minitab, the statistical analysis software, was used to analyze the recall data obtained 

from the FDA’s database. An “Individual Distribution Identification” test was performed on both 

the Class I and Class II sets of data to determine the distribution that best fit each set. For the 

Class I data, recalls within the FDA that took longer than 1,000 days were considered outliers, as 

their presence in the data set highly skewed the statistical results (8 data points out of the 1,464 

points were removed as outliers). With those points removed, it was determined that the Class I 

data best follows a Lognormal distribution with a location of 3.94 and a scale of 0.7765. A 

histogram of the data set is shown in Figure 9. For the Class II data – as there were many points 

that surpassed 1,000 days between ORA notification and the recall’s posting – all of the points 

were considered in the analysis. The Class II data best follows a Weibull distribution with an 
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alpha value of 0.9694 and a beta value of 138.5. A histogram of these data points is shown in 

Figure 10. These distributions were used to determine the time of transitions between the 

beginning of Phase II and the posting of the recall in the AnyLogic model. 

 

 

Figure 9: Distribution of Class I Recall Data 
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Figure 10: Distribution of Class II Recall Data 

 

 Each important phase of the recall process is depicted in AnyLogic as a “state” with 

which an item (or a medical device) is in. An item enters the first state – “Phase_1” – at the 

beginning of the model, then stays in that state until the transition period has passed. For Phase I, 

the transition period is a set 99.4 days, as this portion of the recall process is not the focus. The 

item then enters the next state – “Phase_2_3” – and remains in this state until one of two things 

happens: the time for the recall to be posted (determined by the two distributions above) passes, 

allowing the item to pass into the “Posted” state, or the item stays in this state for too long, 

becoming a fatal instance and passing into the “Fatalities” state. This transition is determined by 

the percentiles of days to posting as stated above (97 and 1,104 days, respectively). Class I’s 

state flow chart is shown in Figure 11 and an example of the usage of transition times is shown 
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in Figure 12 below. Once an agent passes into the Phase_2_3 state, the agent has 97 or 1,104 

days, depending on the class, to make the ORA_to_Posting transition and be “posted.” If the 

number of days above passes, the agent takes the Lethality transition instead, and becomes a 

“fatality.” 

 

 

Figure 11: State Flow Chart of Class I Products in AnyLogic 

 

 

Figure 12: Transition from Phase_2_3 to Posting in AnyLogic 
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 The results from the model prove to be an accurate representation of the actual recall 

results from 2012, varying only very slightly from the number of deaths that were seen. While 38 

deaths and 24 deaths were observed in 2012 from Class I and Class II recalls, respectively, the 

model projected, on average of 80 replications, 31 deaths and 2 deaths out of 150 and 2,447 

products, with standard deviations of 5.00 and 0.98 respectively; this proved to be within 4.13% 

and 0.94% of the actual results. These numbers are shown in Table 4 below. The model itself is 

displayed in the Appendix. 

 

Table 4: Actual Fatalities vs. AnyLogic’s Projected Fatalities 

 

 

 

  

Class Actual % of Total Model % of Total Variance

I 38 25.33% 31 20.67% 4.67%

II 24 0.98% 2 0.08% 0.90%

Number of Fatalities
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Post-UDI Model 
 

 The post-implementation model will be projected forward to the year 2020, the year that 

the FDAAA final ruling requires that UDI be fully implemented for all types of medical devices. 

In order to project the model forward, the amount of recalls need to be determined for both Class 

I and Class II recall devices, along with the number of products per recall for the year 2020 and 

the average number of days for a recall process to reach Phase IV. The number of recalls and 

number of products per recall can be forecasted using the data from the figures above; however, 

determining the average number of days to complete a recall will be more difficult, as time 

valuations concerning the effects of UDI implementation will need to be carefully made and 

validated. 

To determine the number of products and the number of recalls for the year 2020, a 

regression analysis was performed on the data for products and recalls from the fiscal years 2003 

– 2012. The data for this regression analysis is shown in Table 5, and the ANOVA tables for 

each regression analysis are provided in the Appendix. The P-Values for each analysis are less 

than the desired confidence interval of 95%, so all of the regression equations are suitable for 

forecasting the number of products and the number of recalls for each class, respectively. Table 

6 provides the forecasted number of products and recalls found using the appropriate regression 

equations for each class. 
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Table 5: Products per Year and Recalls per Year for Class I and Class II Recalls 

 

 

Table 6: Forecasted Number of Products and Recalls for F.Y. 2020 

 

 

 In order to determine the effectiveness of UDI implementation, one must look closely at 

the process in which a recall occurs. Phase I occurs solely in the manufacturing firm, as the firm 

initially becomes aware of a potential issue. In this moment, the firm is normally not sure on 

whether or not a recall needs to occur, prompting an evaluation of the potential health hazards 

associated with a faulty product. Manufacturing firms will not have access to patients’ EHR’s, so 

they will not have complete visibility as to where these products are; they will only have access 

Year Class I Class II Year Class I Class II

2003 30 853 2003 7 460

2004 61 1309 2004 24 467

2005 65 1299 2005 26 422

2006 65 1283 2006 22 505

2007 44 1185 2007 26 540

2008 139 2185 2008 14 710

2009 160 2076 2009 32 677

2010 426 2288 2010 49 753

2011 301 2388 2011 50 1152

2012 150 2447 2012 57 1043

Products per Year Recalls per Year

Class I Class II Class I Class II
519 4021 89 1611

Forecasted Products and Recalls for 2020

Products Recalls
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to their customers, as before. Once the evaluation is complete and a recall is deemed appropriate, 

the ORA is notified. This is where UDI implementation may prove beneficial, as determination 

of the recalling strategy occurs here. This includes determining the depth of the recall, how to 

alert the public of the recall, and notifying all required parties of the recall. UDI implementation 

can make this process almost instantaneous, as there is clear visibility on where these products 

are being used, whether it be in a hospital or in a patient. Notification can also occur through the 

GUDID so that all hospitals that frequently use it will be notified much quicker than through a 

public advertisement or mailing of recall information. The CDRH will be able to more easily 

verify the classification made and make quicker postings that hospitals will see. Because of these 

expected benefits, UDI implementation is anticipated to positively affect Phase II and Phase III 

of the recall process, reducing the time necessary to complete each phase and working toward the 

prevention of patient injuries and deaths. 

 The modeling of the post-UDI system will be designed exactly like the pre-UDI system 

so that the only varying aspects of the system are the number of agents in the system and the 

time it takes for an agent to transition from the beginning of Phase II to the posting of the recall. 

This change in time between states is expected to decrease, as the transition time to a fatality 

remains the same for each class of product. This is expected to decrease the number of agents to 

finish off in the “Fatalities” state, and therefore decrease the number of deaths associated with 

medical device recalls. 

 The initial post-UDI implementation model will be run without a change in time between 

states to form a basis of comparison. This unaltered model will represent the healthcare system in 

the year 2020 if UDI implementation did not occur and all recalls were performed as they 

currently are. When the model is run without the time change, there are 106 (20.42%) fatalities 
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associated with Class I recalls, and 3 (0.075%) fatalities associated with Class II recalls. While 

this signifies an increase in deaths from the 2012 results, it does show a slight decrease in the 

percentage of deaths. With the expected decrease in time between the beginning of Phase II of 

the recall process and the public posting of the recall, these percentages should decrease even 

more. 

 To properly estimate the effectiveness of UDI implementation, we can look into similar 

technologies and their effectiveness to the healthcare industry. Since EHR’s have been 

implemented, there have been multiple studies on the effectiveness of them pertaining to 

reducing the risk on patients.  A study performed on Pennsylvania hospitals concluded that EHR 

implementation provided a “27% decline in overall patient safety events and a 30% decline in 

medication errors” (Hydari, 2015). Similarly, a study was conducted on a general hospital in 

China with similar results, concluding that “ADEs [adverse drug events] would be reduced by 

approximately 40% as a result” (Li, 2012). These values are associated not with a time 

improvement, but with a decrease in the number of events that occur, signifying that these 

improvements will correspond to the number of lives saved, as opposed to the amount of time 

saved. A minimalistic approach will be taken in this study, taking the minimum value of 27% as 

the expected percentage of lives saved from UDI implementation. 

 Running the model with a 27% decrease in the number of deaths associated with medical 

device recalls resulted in 29 less Class I fatalities and one less Class II fatality. These results – 

compared to the result of the model when UDI is not implemented – are displayed in Table 7 

below. This corresponds to a 16.55% improvement in recall time. 
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Table 7: Number of Fatalities without UDI vs. with UDI (Assuming a 27% Fatality Decrease) 

Class No UDI % of Total UDI % of Total

I 106 19.65% 77 14.84%

II 3 0.07% 2 0.050%

Number of Fatalities
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Discussion 
 

 In order to better visualize the effectiveness of UDI implementation on the national 

healthcare system, one needs to see how sensitive the system is to change; specifically, a 

sensitivity analysis needs to be performed on the time from the beginning of Phase II and the 

posting of the recall to be made publicly aware. This analysis – along with a proper cost model 

of implementation vs. the valuation of a human life – can be used together to determine the exact 

increase in efficiency needed for UDI implementation to be deemed beneficial to the system as a 

whole. 

 The sensitivity analysis can be performed on the post-UDI implementation model by first 

assuming that there is no change in time between the pre-UDI model and the post-UDI model 

and run the model, again with 80 replications, to see how many fatalities occur. This process can 

be repeated, with the only difference being a percentage improvement in time between the 

beginning of Phase II and the public posting of the recall. The results of the sensitivity analysis 

are graphed in Figure 13 and quantified in Table 8 below. Note that the Class II products are 

generally insensitive to the change in time, as the number of fatalities associated with them are 

already significantly low. Class I products, however, prove to be quite sensitive to the change, 

illustrating that UDI implementation could potentially be very effective pertaining to these 

products. More detailed statistics of the replications of data for the sensitivity analysis of the 

model are displayed in the Appendix. Descriptive statistics were only taken for Class I products, 

since Class II products had very little deviation. 

 



49 
 

 

Figure 13: Sensitivity Analysis on the Time Between ORA Notification to Recall Posting 

 

Table 8: Percent of Fatalities for Sensitivity Analysis 

 

 

 In order to complete a proper analysis on this data, two different costs need to be 

determined: the expected cost of implementation in a healthcare environment and the valuation 

of a human life. A benefit/cost analysis can be conducted with these two values – with the cost of 

UDI implementation as the cost and the expected number of lives saved times the valuation of 

each life as the benefit. The varying factor here will be the expected number of lives saved, 

which the sensitivity analysis above is focused on. With all of these factors in place, it can be 
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determined which percentage value of improvement UDI implementation would have to provide 

in order for the ratio of benefit to cost to equal one – in order for the system to deem it cost 

effective to implement UDI. 

 The valuation of a human life is a dynamic value, due to multiple economic, political, 

environmental, and moral factors, and has been increasing as of late. There are many different 

valuations of human lives out there – different U.S. governmental agencies provide different 

valuations based on their separate evaluations. For this discussion, it is most appropriate to use 

valuations provided by the FDA over other agencies. As of 2010, “the Food and Drug 

Administration declared that life was worth $7.9 million” (Appelbaum, 2011). Pertaining to the 

model above, each life saved by UDI implementation will indirectly save the system $7.9 

million. Economically speaking, there is a certain number of lives that need to be saved in order 

for UDI implementation to be advantageous to the market. Since the value of a life has not 

changed since then, this same value can be used as the 2012 value of a life for the current cost 

analysis. To further the minimalistic approach of this study, it will be assumed that there is only 

one fatal instance per fatal product from the model. 

 The cost of implementation will affect three different areas, according to a detailed cost 

analysis developed by the Eastern Research Group, Inc. for the FDA: domestic labelers, issuing 

agencies, and the FDA itself (Federal Register, 2013). A vast majority of these costs will be 

incurred by the domestic labelers, which include “manufacturers, re-processors, specification 

developers, re-packagers and re-labelers that cause a label to be applied to a medical device.” 

The costs were calculated as being incurred over a 10-year life cycle using a 7 percent discount 

rate, using the 2012 value of money. A summary of the results is displayed in Table 9 below. 

Note that the total present value of costs over the 10-year period is $642.2 million. 
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Table 9: Summary of the Estimated Domestic Regulatory Costs of the Final Rule (2012 dollars). 

Adapted from Federal Register. (13, September 18). Dodd-Frank Wall Street Reform 270 in the 

last year. Retrieved March 05, 2016, from https://www.federalregister.gov/articles 

/2013/09/24/2013-23059/unique-device-identification-system#h-58 

 

 

 Now that all of the costs – the cost of a human life and the cost of UDI implementation – 

have been determined, the number of lives that need to be saved by UDI implementation to 

economically justify the decision can be determined. In order for UDI implementation to be 

justified monetarily, the value saved by UDI implementation in human lives must be equal to or 

greater than the cost of UDI implementation. Projecting the value of a single human life forward 

10 years and calculating the net present value of it yields a value of $59,370,335. This is 

equivalent to saving one human live each year for the next 10 years. Table 10 displays the net 

present value of a single human life and the net present value of the number of lives that need to 

be saved per year in order for the value of those lives to equal that of the cost of implementation, 

with n representing the number of human lives. If UDI implementation saves the lives of 11 

people each year, UDI implementation will be economically justified. This corresponds to a 

percentage improvement of between only 5% and 6%. A table of the net present values of the 

Affected Sectors

Total PV of Costs 

over 10 Years

Total AV of Costs 

over 10 Years

Domestic Labelers $620,400,000 $82,600,000

Issuing Agencies $1,300,000 $200,000

FDA $20,500,000 $2,900,000

Total Domestic Cost $642,200,000 $85,700,000
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improvements determined in the sensitivity analysis above is displayed in Table 11 and 

graphically illustrated – along with the cost of implementation – in Figure 14 below. 

 

Table 10: Net Present Value of Human Lives (2012 dollars) 

 

 

 

 

 

 

 

 

Year

 Single Life's 

Value 
n = 10.817

1 7,900,000$    85,453,114$    

2 7,383,178$    79,862,724$    

3 6,900,166$    74,638,059$    

4 6,448,753$    69,755,196$    

5 6,026,872$    65,191,772$    

6 5,632,591$    60,926,889$    

7 5,264,104$    56,941,018$    

8 4,919,723$    53,215,905$    

9 4,597,872$    49,734,491$    

10 4,297,077$    46,480,832$    

Total Value 59,370,335$ 642,200,000$ 
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Table 11: Net Present Values of the Improvements Determined in the Sensitivity Analysis 

 

 

 

 

Figure 14: Net Present Values of Improvements with UDI Implementation vs. UDI Cost 

 

Year  Single Life's Value 

Value of 10% 

Improvement

Value of 20% 

Improvement

Value of 30% 

Improvement

Value of 40% 

Improvement

Value of 50% 

Improvement

1 7,900,000$            142,200,000$         284,400,000$         426,600,000$         553,000,000$         655,700,000$         

2 7,383,178$            132,897,196$         265,794,393$         398,691,589$         516,822,430$         612,803,738$         

3 6,900,166$            124,202,987$         248,405,974$         372,608,961$         483,011,617$         572,713,774$         

4 6,448,753$            116,077,558$         232,155,116$         348,232,674$         451,412,726$         535,246,518$         

5 6,026,872$            108,483,699$         216,967,398$         325,451,097$         421,881,052$         500,230,391$         

6 5,632,591$            101,386,635$         202,773,269$         304,159,904$         394,281,357$         467,505,038$         

7 5,264,104$            94,753,864$           189,507,728$         284,261,593$         368,487,250$         436,920,596$         

8 4,919,723$            88,555,013$           177,110,027$         265,665,040$         344,380,607$         408,337,006$         

9 4,597,872$            82,761,695$           165,523,389$         248,285,084$         321,851,035$         381,623,370$         

10 4,297,077$            77,347,378$           154,694,756$         232,042,135$         300,795,360$         356,657,355$         

Total Value 59,370,335$         1,068,666,026$     2,137,332,052$     3,205,998,077$     4,155,923,434$     4,927,737,786$     
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 UDI implementation can be considered financially beneficial to the healthcare market as 

a whole if implementation accounts for reducing the number of fatalities of Class I and Class II 

recalls combined by at least 11. The sensitivity analysis shows that the number of fatalities is 

significantly affected by the time between the beginning of Phase II of the recall process and the 

public posting of the recall, assuming that the average time between the two that, if surpassed, 

indicates a fatality remains constant.  

 The results of the post-UDI implementation model show that the number of lives saved 

per year will be 30. The value saved by this implementation is shown in Table 12 and graphed in 

Figure 15 below. This figure compares the cost of UDI implementation to these expected 

benefits, showing that the number of lives saved proves to be sufficient economically to 

supplement the costs associated with the implementation. Not only does the benefit outweigh the 

costs, but it is 177% more than the costs of UDI implementation. 
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Table 12: Value of Saving 27% More Lives Using UDI Implementation 

 

 

 

Figure 15: UDI Cost vs. Value of Lives Saved  

Year

 Single Life's 

Value 

Value of 30 Lives 

Saved

1 7,900,000$    237,000,000$       

2 7,383,178$    221,495,327$       

3 6,900,166$    207,004,979$       

4 6,448,753$    193,462,597$       

5 6,026,872$    180,806,165$       

6 5,632,591$    168,977,725$       

7 5,264,104$    157,923,107$       

8 4,919,723$    147,591,689$       

9 4,597,872$    137,936,158$       

10 4,297,077$    128,912,297$       

Total Value 59,370,335$ 1,781,110,043$    
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Conclusion 

Disruptive innovations prove to be essential to the progression of modern industries; 

these efficient ideas keep their respective markets competitive and provide affordable services 

for consumers. Examples of disruptive innovations can be seen all throughout history, as new, 

more efficient and effective ideas are implemented and eventually become commonplace in their 

respective industries. Disruptive innovations can also be completely new ideas that forever 

change the landscape of its industry, such as the Wright brothers’ transformation of the 

transportation industry through the creation of the airplane, or Alexander Graham Bell 

developing instantaneous long-distance communication through his invention of the telephone. 

The healthcare industry has pushed to improve many aspects of its operations, including 

the technologies being used, better treatment and diagnostic performance on the patients, and the 

visibility of the many components surrounding the system. Many innovations have occurred that 

have reshaped and modernized the healthcare industry as we see it; these innovations help to 

provide better treatment at a cheaper cost, providing a cost effective alternative to sustaining 

innovations. Electronic Health Records have made patient information readily available for all 

doctors that treat said patient, saving the time required to obtain this information from other 

doctors and decreasing the risk of mistreating a patient because of a lack of information about 

previous conditions. Real-Time Location Systems have helped improve the visibility of the 

supply chain, helping to keep track of all equipment and patients throughout a hospital or clinic, 

as well as during transportation from the manufacturers to the hospitals and clinics. The 

healthcare industry is progressing towards an all-encompassing surveillance system that will 

keep track of all equipment, patients, and personnel involved in the supply chain of the entire 

system. 
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Unique Device Identification seeks to alter the supply chain network of the healthcare 

industry, adding much needed visibility to the medical devices that are traveling through this 

supply chain. Manufacturers and hospitals often lose track of where devices have been used, or 

which patients have specific devices in them. This lack of visibility leads to many potential risks, 

including an increase in treatment errors, poor inventory management, and an increase in the 

time required to classify and complete a recall. These risks cost the healthcare industry immense 

amounts of money and costs patients their health and, sometimes, their lives. 

With Unique Device Implementation expected to be fully implemented in 2020, there has 

been no formal data on the expected time benefits associated with implementation, although all 

parties agree that recall times should decrease and, therefore, the number of fatalities associated 

with lengthy medical device recalls should decrease. This study concludes that UDI 

implementation should see at least a 27% decrease in fatalities associated with recalls – not only 

saving those lives, but through that supplementing the cost associated with UDI implementation. 

The total cost associated with UDI implementation will be saved in the number of lives saved in 

the first three years after implementation; the annual benefits of UDI implementation outweigh 

the annual costs by a considerable margin, making UDI implementation both morally sound and 

financially beneficial to the healthcare industry. 

To our knowledge, this is the first study that has attempted to put a monetary value on the 

benefits associated with Unique Device Identification. Future research should be performed to 

further analyze the potential benefits in order to further emphasize the positive consequences of 

implementation. The main conclusions from this study are that Unique Device Identification will 

decrease the amount of time required for manufacturing firms and the FDA to complete the 

classification and posting of a recall, and the benefits linked to this decrease in time should 
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supplement the costs of implementation, making UDI implementation monetarily beneficial and 

will increase the safety of the patients, all while improving the operations of the healthcare 

industry as a whole.  
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Appendix 
 

 

Figure 16: AnyLogic UDI Implementation Model 
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Table 13: ANOVA Analysis for the Number of Recalled Products per Year for Class I 

 

 

 

Table 14: ANOVA Analysis for the Number of Recalled Products per Year for Class II 

 

 

ANOVA - Products

df SS MS F Significance F

Regression 1 74100.07576 74100.07576 8.147697652 0.021333686

Residual 8 72756.82424 9094.60303

Total 9 146856.9

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Class I -60020.06667 21077.58735 -2.84757765 0.021559216 -108625.0703 -11415.06307 -108625.0703 -11415.06307

Year 29.96969697 10.4994101 2.854417218 0.021333686 5.758013857 54.18138008 5.758013857 54.18138008

ANOVA - Products

df SS MS F Significance F

Regression 1 2767968.876 2767968.876 49.63439454 0.000107685

Residual 8 446137.2242 55767.15303

Total 9 3214106.1

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Class II -365981.8667 52193.72117 -7.0119903 0.000111299 -486340.8035 -245622.9298 -486340.8035 -245622.9298

Year 183.169697 25.99933636 7.04516817 0.000107685 123.2151198 243.1242741 123.2151198 243.1242741
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Table 15: ANOVA Analysis for the Number of Recalls per Year for Class I 

 

 

 

Table 16: ANOVA Analysis for the Number of Recalls per Year for Class II 

ANOVA - Recalls

df SS MS F Significance F

Regression 1 1773.409091 1773.409091 22.42370251 0.001472712

Residual 8 632.6909091 79.08636364

Total 9 2406.1

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Class I -9276.8 1965.530683 -4.71974316 0.001502663 -13809.32188 -4744.278116 -13809.32188 -4744.278116

Year 4.636363636 0.979092738 4.735367199 0.001472712 2.378571734 6.894155539 2.378571734 6.894155539

ANOVA - Recalls

df SS MS F Significance F

Regression 1 464662.6939 464662.6939 35.00870522 0.000354961

Residual 8 106182.2061 13272.77576

Total 9 570844.9

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Class II -149986.9333 25463.01951 -5.89038285 0.00036569 -208704.7616 -91269.10506 -208704.7616 -91269.10506

Year 75.04848485 12.68393198 5.916815463 0.000354961 45.79928526 104.2976844 45.79928526 104.2976844
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Figure 17: Pre UDI Replication Statistics 

 

 

 

Figure 18: Post UDI Replication Statistics (No Change) 

Pre UDI

Mean 30.4375

Standard Error 0.559114

Median 30

Mode 34

Standard Deviation 5.00087

Sample Variance 25.0087

Kurtosis -0.00184

Skewness 0.237639

Range 25

Minimum 19

Maximum 44

Sum 2435

Count 80

Confidence Level(95.0%) 1.112889

Post UDI (No Change)

Mean 105.925

Standard Error 0.988506

Median 106

Mode 103

Standard Deviation 8.841466

Sample Variance 78.17152

Kurtosis 0.489429

Skewness -0.25352

Range 45

Minimum 80

Maximum 125

Sum 8474

Count 80

Confidence Level(95.0%) 1.967572
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Figure 19: Post UDI Replication Statistics (10% Time Improvement) 

 

 

Figure 20: Post UDI Replication Statistics (20% Time Improvement) 

Post UDI (10%)

Mean 87.9

Standard Error 0.914822

Median 88

Mode 88

Standard Deviation 8.182414

Sample Variance 66.9519

Kurtosis 0.415339

Skewness -0.02913

Range 44

Minimum 66

Maximum 110

Sum 7032

Count 80

Confidence Level(95.0%) 1.820907

Post UDI (20%)

Mean 69.5

Standard Error 0.728272

Median 70

Mode 70

Standard Deviation 6.513861

Sample Variance 42.43038

Kurtosis 0.162158

Skewness 0.189679

Range 31

Minimum 55

Maximum 86

Sum 5560

Count 80

Confidence Level(95.0%) 1.449589
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Figure 21: Post UDI Replication Statistics (30% Time Improvement) 

 

 

Figure 22: Post UDI Replication Statistics (40% Time Improvement) 

Post UDI (30%)

Mean 52.0875

Standard Error 0.786193

Median 52

Mode 50

Standard Deviation 7.031923

Sample Variance 49.44794

Kurtosis 0.884471

Skewness 0.416296

Range 40

Minimum 37

Maximum 77

Sum 4167

Count 80

Confidence Level(95.0%) 1.564878

Post UDI (40%)

Mean 36.3625

Standard Error 0.653676

Median 35

Mode 35

Standard Deviation 5.846656

Sample Variance 34.18339

Kurtosis -0.49923

Skewness -0.02037

Range 26

Minimum 22

Maximum 48

Sum 2909

Count 80

Confidence Level(95.0%) 1.30111
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Figure 23: Class I Results (40% Time Improvement) 

Post UDI (50%)

Mean 22.775

Standard Error 0.502202

Median 22

Mode 22

Standard Deviation 4.491835

Sample Variance 20.17658

Kurtosis -0.15246

Skewness 0.166289

Range 20

Minimum 14

Maximum 34

Sum 1822

Count 80

Confidence Level(95.0%) 0.999609
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