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1. Introduction

Much effort has been devoted recently to refining the notion of a Nash equilibrium.
Beginning with Selten’s [1965, 1974] notions of perfection, concepts such as properness .
(Myerson [1978]), sequentiality (Kreps and Wilson [1982]), and stability (Kohlberg and
Mertens [1985]) are often invoked or discussed in the literature. The guiding philosophy is
that the analyst knows things about the structure of the game that enable him to reject
some of the Nash equilibria as unreasonable. The point of this paper is to indicate that the
word know in the preceding sentence deserves emphasis. Specifically, the analyst creates a
model of the situation that is a simplification and (he hopes) an approximation. Suppose
that, in the model, the analyst can reject a particular equilibrium outcome using the various
refinements, but for models that are arbitrarily “close” to the one created, this outcome

cannot be rejected. Unless faith in the model is absolute, it seems wise to have second

thoughts about rejecting this outcome.

To show that this problem is no phantom, we carry out the following basic program
in this paper. Fix a space of games and a notion of “cldseness” for the games in the space.
For each game in the space, a Nash equilibria is strict if, for each player, the strategy
prescribed is a unique best response (in the normal form) to the other players’ strategies.
This is as formidable a refinement criterion as we can think of, implying, for example,
Kohlberg and Mertens’ (1985) hyperstability. Now ask: which Nash equilibria of a given
game are limit points of strict equilibria for nearby games? We call such equilibria locally |
strict. Following the discussion above, we would h;sitate to reject any equilibrium that is
locally strict, insofar as the sense of closeness specified initially captures our doubts about

the exact specification of the game.
In section 2, we take for the space of games all normal form games over a fixed (finite



player and action) normal form, and we take for “closeness” the Euclidean metric on payoffs.
The result is that every pure strategy Nash equilibrium is locally strict. (This is not
quite true for mixed equilibria, but a weakening of the strictness requirement is given that
accomodates every equilibrium, pure or mixed.) This is hardly surprising (the proof is
obvious), but then the various refinements of Nash equilibrium are motivated for the most
part by the analysis of extensive games. In the rest of the paper, we turn to extensive games
with the following philosophy: The analyst is certain (in his model) of the “physical” rules
of the game — who moves when, with what information about earlier moves, and so on.
That is, roughly, a (pbysical) extensive form is given. But the analyst may entertain doubts
about the players’ payoffs and/or their knowledge of the payoffs.

The perturbations that arise from such doubts are considered in the work on repu-
tation and incomplete information. (See Kreps, Milgrom, Roberts and Wilson [1982] and
Fudenberg and Maskin [1986).) Our theory differs from this work on reputational effects
in one important way. The previous work considers the effect of a fixed perturbation on a
family of repeated games of varying lengths. The typical result there is that if the hoxizon
is sufficiently long, even outcomes that are not Nash equilibria of the unperturbed game
are Nash (and even, see below, locally strict) in the perturbed game. In this paper the
game is fixed, and the perturbation is allowed to vary (and made to vanish). Hence only
Nash equilibrium outcomes of the original game can be locally strict.

Section 3 concerns the program for cases in which the analyst may be unsure of the
players’ payoffs himself, but knows that these payoffs are common knowledge among the
players. That is, an extensive form is fixed, the space of games is the space of all payoffs for
the extensive form, and “closeness” is measured by the Euclidean metric on payoffs. We do
not get very clean results here: there do exist locally strict equilibria that are themselves

not strict, but the class of locally strict equilibria has no apparent simple characterization.

Sections 4 and 5 are the heart of the paper. Here we imagine that the analyst has
no doubts about the physical rules of the game, but is not quite certain of payofis, and is
willing to admit the possibility that the players themselves are not quite certain of each
others’ payoffs. Put another way, close to a given extensive game are games in which players
entertain slight doubts about each others’ payoffs, and our analyst is not prepared to reject

an equilibrium that cannot be rejected in games that are nearby in this sense.
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Section 4 deals with a definition of “closeness® under which every (pure) Nash equi-
- librium of the original gime is locally strict. We begin with a motivating example in
subsection 4.1. Technical details and the definition of closeness are given in 4.2. This ver-
sion of closeness allows each player to be uncertain of his own payoff, and to believe that
his opponents may (with small probability) have better information about it than he does.
In this setting, an unexpected deviation by one player can signal that all players should
change their play. In 4.3 we show that, with this notion of closeness, all pure strategy
Nash equilibria are locally strict (and mixed equilibria can be accomodated with a minor
weakening of the definition).

In section 5 we consider a second notion of closeness, which requires that each player’s
additional private information relate only to his own payoffs, and each player’s additional
information must be independent of the others. With this notion of closeness, an unex-
pected deviation by a player signals only that his own payoffs are different than had been
anticipated. With this more restrictive notion of closeness, not all (pure) Nash equilibria
are locally strict. However all pure strategy equilibria that are strictly trembling hand
perfect in the normal form are locally strict, including some that are not subgame perfect.

2. Normal form games and payoff perturbations

Fix a finite player, finite action normal form. (We restrict attention throughout to
games with finitely many players, each of whom possesses finitely many strategies.) Let
i=1,...,I index the players, and let ¢; € S; index the pure strategies of player <. Denote
Hf_._l S; by S. Let T be the space of games over this normal form: We take I' = RIXS

where for vy € T', 4(4,8) is the payoff to player ¢+ under strategy s.

The set T comes endowed with a natural topology, namely the Euclidean topology.
So does E;, the space of mixed strategies for player ¢, and ¥ = H-{=1 L;. (We will use
the term strategy profile to refer to elements of T .)

A Nash equilibrium ¢ = (031,...,01) for a given game 7 is called strict if, for each
player i, o; is the player’s unique best response to the strategies (o1, ..., 0i-1,0541, - or)
of the other players. Note that only an equilibrium in pure strategies can be strict, according
to this definition. Strict equilibria satisfy all the standard reﬁném‘ents; in particular, a strict

equilibrium, taken as a singleton set, is hyperstable in the sense of Kohlberg and Mertens
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[1985). 1

Definition. A strategy profile ¢ € T is locally strict in the pormal form for a game 7
if there is a sequence of games 4™ (over the same normal form as 7) and a sequence of
strategies {o™} such that (i) lim, 7" = v, (ii) for each n, o" is a strict equilibrium of

7", and (iii) lim, o™ =0.

Proposition 1. A strategy combination ¢ € T is locally strict in the normal form for « if

and only if it is a pure strategy Nash equilibrium for 7.

The proof is quite simple. To see that any strategy profile that is locally strict in the
Normal form for 7 is a Nash equilibrium of 7, use the upper hemi-continuity of the Nash
equilibrium correspondence. For the converse, consider the perturbation that adds a small
amount to the players’ utilities at the outcome prescribed by the strategy in question.

It is easy to deal with mixed strategies, if one permits a small extension to the definition
of local strictness. Recall from Kohlberg and Mertens [1985] that for any given normal
form game, an equivalent normal form game is one in which pure strategies that are convex
combinations of other pure strategies are added to or deleted from the original game.
Corresponding to every strategy profile in an original game are (possibly many) strategy
profiles for a given equivalent game. Consider the following modification of the definition

of local strictness in the normal form.

Definition. A strategy profile o for a normal form game 7 is locally strict in equivalent
pormal forms for 7 if it corresponds to some strategy profile o' of an equivalent game ~'

that is locally strict in the normal form for +'.

Proposition 2. A strategy profile ¢ is locally strict in equivalent normal forms for 7 if

and only if it is a Nash equilibrium of 7.

Again the proof is easy. A simple example will illustrate the method of proof. Consider the
~ game depicted in figure 2.1, and the particular equilibrium in which player 2 randomizes

equally between L and R. If figure 2.2 we have an equivalent game v’ , with the particular

1 Conversely, any pure strategy equilibrium that is, as a singleton set, hyperstable, will
be strict. Hence as long as we restrict attention to pure strategy equilibria, we could use
“hyperstable as a singleton set” instead of “strict”.
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" the following sense?

equilibrium strategy for 2 added as a new strategy for player 2. in this game, this added
strategy M corresponds to the mixed strategy of player 2 in the original game; the Nash
equilibrium in the original game corresponds to a pure strategy equilibrium in the equivalent
game, and we can apply the first proposition.

The spirit of this extended definition is that players may derive a little extra utility
from playing a particular randomized strategy. This technique can be applied at any point
in the development to follow, to extend results from pure to mixed equilibria. Hence we
will, in what follows, discuss only the local strictness of pure strategy profiles, leaving it to

the reader to fill in extensions to mixed strategies.

8. Extensive games and payofl perturbations

The result that every pure Nash equilibria of 7 is locally strict in the normal form
(and, hence, is hyperstable as a singleton set) is hardly surprising, since we allow for any
sequence of (vanishing) payoff perturbations to the normal form game. Recall that, for
most normal form games, every Nash equilibrium satisfies the standard refinements; the
refinements were created initially to deal with games that arise from a specified extensive
form. Hence we might wish to permit, as perturbations to an initial extensive game model,

only perturbations that respect the structure of that extensive form.

We can imagine that our outside analyst is concerned with a game over an extensive
form E, and he entertains no doubts about the physical rules of the game so specified. But
still our analyst may have doubts about the full specification of the situation. He may, for
example, be slightly unsure of the payoffs to the players or their probability assessments
concerning nature’s moves. We will suppose that there is no question about the probability
assessments. (The usual accounting tricks make this without loss of generality, if there is
no question about the support of those assessments.) Thus we can ask: Fix an extensive
form E and probability assessments for nature’s moves in E. Let T' be the space of all
payoffs for players in E. For a given 4 € I', which strategy profiles are locally strict in

Definition. Fixing 4 € T', a (pure) strategy profile o of the game 7 is locally strict in

the extensive form if there exist a sequence of payoffs v* — 7 and (normal form) strict
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equilibria o™ of 4 such that ¢" — 0.2

We know from Section 2 that, for at least some games, there are equilibria that are
locally strict in the normal form but not strict themselves. Viewing a given normal form as
a simple extensive form, we see then that there will be profiles that are locally strict in the
extensive form but that are not strict. It is easy to show that every strategy profile that
is locally strict in the extensive form is a pure strategy Nash equilibrium. But not every
pure strategy Nash equilibrium over a given extensive form is locally strict in the extensive
form. Consider the extensive game in Figure 3.1. (Our system for diagramming extensive
form games is taken from Kreps and Wilson [1982].) It should be easy to see that the Nash
equilibrium (L, D) is not locally strict in the extensive form; only (R,U) is.

Indeed, for some extensive games, no equilibrium is locally strict in the extensive
form. The game depicted in figure 3.2 is an example: While (R,Uu) and (R,Ud) (and,
more generally, any randomization between these two strategies) are very nice equilibria,
neither is locally strict. In fact, for an equilibrium of an extensive game to be locally strict
in the Normal form, it is necessary that every information set is reached with positive
probability.® This is a very simple manifestation of the type of problem that leads Kohlberg
and Mertens to define stable components of equilibria, and we could similarly attempt to
define locally strict components. We can, however, obtain cleaner and more provocative
results by imagining that our outside analyst is a bit more uncertain as to the game.
Roughly, if we weaken the distance measure, so that more games are close to a given game

«, then more equilibria o will be locally strict.

4. General Elaborations

1)

4.1. An example
To motivate this development, we provide a simple example. Consider first the game
in figure 3.1 and the equilibrium (L, D). Imagine an outside analyst whose thought about

this situation run as follows:

2 A better definition would require only that the o™ be strict in the reduced normal
form - see the discussion in section 4.3.

3 n section 4 we look for strictness in the reduced normal form, which requires that the
only information sets with zero prior probability are those at which either (i) the player’s
choice is irrelevant to everyone’s payoff or (ii) the player who moves at the information set
is solely responsible for the set having zero prior probability.
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“] know the particular physical rules of this game. Player 1 must first choose
between L and R, aud player 2 must choose between U and D if R is chosen.

And P'm fairly sure that the payoffs are as in figure 3.1. But I'm not completely
certain of this. I am willing to admit that there is a small chance that the payoffs
are quite diffcrent from those shown. Moreover, it might not be common knowl-
edge between the players what those payoffs are. That is, the game may have
incomplete information, in that players do not know the precise payoffs, although
all the players will have priors that give probability close to one for the payoffs in

3.1”

To model this, we introduce a game that is more elaborate than that in figure 3.1, as
follows. Nature moves first, selecting one of several “versions” of the game. Each version is
distinguished by having the same extensive form as in 3.1 but may have different payofls.
Nature chooses version having payoffs close to those in 3.1 with probability close to one.
Each player has a partition over versions of the game, with each respective player being

told in which cell of his partition the true version lies.

One such elaboration is given in figure 4.1. Nature picks one of two versions, the first
(having prior probability 1-¢) with payoffs exactly as in 3.1, and the second (having prior
probability €) with very different payoffs. Player 1 knows which version nature picks, while
player 2 is not told. Is this elaboration of the game in 3.1 very different from the game
in (3.1) for small €? Our outside analyst, plagued by the sort of doubts expressed above,
might not be willing to rule out the possibility that the players perceive the situation as

being that in figure 4.1.

The point of this example is now easy to make. For the game in figure 4.1, the
equilibrium (LyRz,D) is strict in the normal form. Moreover, it remains strict as we
decrease ¢ towards zero. This should not be hard to see: Given that player 2 will play D,
player 1’s choices at his two information sets are both strictly optimal choices. And, given

. the strategy -of player 1, player 2 is given the move only if nature picks version-2,-which - .-
renders strictly optimal the choice D by 2.

If we were to measure distance so that, as € goes to zero, this game approaches the

game in figure 2.1, then we would conclude (in the spirit of earlier discussion) that (L, D)
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in 3.1 is locally strict. This is so even though, in 3.1, (Z, D) is subgame imperfect. (Note
that a pontrivial step is implicit here: In what sense does (L; Rz, D) approach (L,D) as

¢ goes to zero? A formal criterion will be suggested shortly.)

Witk this as a prelude, we now develop a general treatment.

4.2. Elaboration perturbations
We begin with a precise definition concerning when one game is a small perturbation
of another. We will not develop a formal topology on the space of games, but instead we

give a simple sufficient condition for games to be close.

Fix an I -player extensive game of perfect recall, E. This prescribes a game tree T
(with nodes denoted by t) which is partitioned into sets of nodes T; that “belong” to the
various players, some of which are initial nodes w € W, and terminal nodes z € Z; an
initial assessment p over W ; information sets h € H, with H(t) deroting the information -
set containing the (nonterminal) node t; actions a € A(h) at each information set; and a

payoff function u:J x Z — R assigning utilities to all players.

The kind of perturbation of E that we have in mind is one in which one of N possible
“versions® of the game above is selected by nature at the cutset, where each version has
the game tree of the game above and, except for initial uncertainty as to nature’s choice of
version, the same information structure. Versions are distinguished by the players’ payoffs.
And players are unsure (in a general sense) as to which version prevails. Such perturbations
of E will be called elaborations of E.

To formalize this, imagine a game E of perfect recall built up as follows. A positive
integer N is given, together with a probability distribution g on {1,.,N}. In E, the
game tree consists of an N fold copy of T, or T x {1,..,N}; we use (t,n) to denote the
n th copy of the node t. H player i moves at (non-terminal) node ¢ m E (if t € T; ), then
1 moves at (t,n) forall n;i.e., T =T;x {1,..., N} . The set of initial nodes consists of the
N fold copy of W, with the probability of initial node (w,n) given by p(w)p(n) . The
utility to player i at terminal node (z,n) is denoted by u(s,z,n) . Finally, information
sets are ccmposed as follows. For each player ¢, a pastition P; of {1,2,..,N } (with
cells denoted by F;(n)) is given, aﬁd the information set in E with node (¢,n) € T; is
H(t) x P;(n) . Actions at information sets are inherited in the obvious fachion.
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The information structure bears some scrutiny. Player s ’s exogenously given infor-
mation concerning which version n is chosen at the outset is described by the partition
P:. That is, whenever it is player ’s turn to move at node (t,n); his knowledge about
t is given by H(t) and his knowledge about n is given by P;(n). Figures 3.1 and 4.1
illustrate the basic construction. The game E in figure 4.1 consists of two versions of E
in figure 3.1. In the first (upper) version, the payoffs are identical with those in 4.1. In
the second (bottom) version, they are quite different. Player 1 learns at the outset which
version is chosen — P; is the discrete partition. Player 2 learns nothing — P, is the trivial
partition.

We consider such elaborations E of a game E as being among the possible pertur-
bations of E. For E to be a “small” perturbation, we take it to be sufficient that the
payoffs in E should be, with high probability, approximately those in E. Formally, we

pose the following criterion.

Convergence Criterion. For a given game E, let {173" } be a sequence of elaborations of

E . To say that the sequence approaches E, it is sufficient that:

(i) there is a uniform bound on the number of versions of the original game in each elabo-

ration E*, and a uniform bound on the absolute values of the uk;
(ii) for each k,i and z, limy_.oo u*(4,2,1) = u(i, z) ; and
(lll) limg—eo [lk(l) =1.

Conditions (ii) and (iii) state that, along the sequence, the probability that nature picks a
version in which payoffs are asymptotically as in the original game approaches one. The
first part of condition (i) is probably unnecessary to support a notion of closeness, but since
we are giving a sufficient condition for convergence, it cannot hurt. The second part of (i)
is quite important, however: Even if the probability of other versions is going to zero, if
there is no uniform bound on the payoffs of those versions, then we can inflate the payofis

*in other versions so that, in expected utility terms, players’ payoffs overall are anything we
wish them to be. With the uniform bound on payoffs, however, (iii) implies that in ex ante
calculations of expected payoffs, only the first version (which gives nearly the payoffs of the
original game) will loom large in the limit.



Is this a reasonable sufficient condition for closeness of games in the extensive forn.?
The considerations put into the mouth of our outside analyst at the top of this section
would argue that it is, although the reader may already see how broad a class of small
perturbations this allows. Insofar as the refinements of Nash equilibrium deal with out-of-
equilibrium behévior, a small probability ex ante of very different payoffs may loom quite
large ex post. In what follows, we will see that this is so, and the reader should consider
carefully whether the uncertainty of an outside analyst may be so great as this.

4.8. Local strictness under general elaborations

As in the previous two sections, we wish to identify (equilibrium) strategies for a given
game E that are locally strict, in this case under the notion of closeness developed above.
To do so presents two conceptual problems: First, how does one speak of the convergence
of strategies, when strategies in an elaborated game are much richer than strategies in the
original game? Since we take the point of view that the outside analyst is only able to view
actions in the physical game given by E (and not those actions contingent on which version
nature selected), one answer is to look at the distribution induced by strategies on endpoints
of the “physical” game. That is, given a strategy o for E , look at the distribution induced
on Z ; given a sequence of strategies on various elaborations of a game, ask for convergence
of these distributions. Note that even if all elaborations are trivial, in the sense that each
has a single version of T', this gives us convergence of strategies only at information sets
that are reached with positive probability. Hence this is weaker than the usual convergence
of entire strategies. Because of this, we will take the slightly sharper convergence criterion:
we ask for convergence of behavior prescribed in an elaborated game at those information
sets h that contain the nodes (t,1). -

The second conceptual problem arises in cases in which players have multiple informa-
tion sets in sequence. Say player ¢ moves at an information set h and then, if he chooses
action ¢ € A(h), he moves again (immediately or after other players move) at informa-
tion set h'. In any strategy for ¢ that prescribes a move other than a at h, ’s choice
~ of action at h' is wholely irrelevant to the payoffs of all the players. 'Assuming multiple-
choices at h', ¢ will have multiple pure strategies in the normal form that correspond to a
choice other than a at h and that vary in the irrelevant choice at A’. No one of these pure

strategies could ever be strictly superior to another, in any game of perfect recall. Following
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Kohlberg and Mertens, we identify these multiple strategies, and speak of strictness with
respect to the reduced normal form, in which all strategies that are convex combinations
of others are eliminated and, in particular, these identical strategies are identified.

Definition. An strategy o for the game E is locally strict under general elaborations if
there is a sequence of elaborations of E, {E*}, that converges to E in the sense of the
convergence criterion given above, and a sequence of strict (in the reduced normal form)
equilibria {6*} for the respective elaborations, such that the bebavior prescribed by the

o* at nodes (t,1) in their respective games converges to behavior at node t prescribed

by o.

Proposition 3. A pure strategy profile ¢ for the game E is locally strict under general
elaborations if and only if it is a (pure) strategy Nash equilibrium in E.

Remark. Mixed behavior strategy equilibria are easily handled as in section 2, by passing to
an equivalent extensive form in which the mixed strategy becomes “pure”, and perturbing

payoffs if the player chooses that particular mixture before passing to the reduced normal

form.

Proof. We leave to the reader the job of showing that if o is locally strict, then it is a Nash
equilibrium. For the converse, we fix a (pure strategy) Nash equilibrium ¢ and comstruct

an elaboration E® as follows.

For each player ¢ and pure strategy &; for 1, design payoffs for ¢ that make strategy
8; strictly dominant for player ¢ throughout the course of play. To do this, at each terminal
node z € T', ask how many times m;(z,s;) player ¢ had to deviate from s; if z is to be
reached. (For example, when z lies along a path that passes through no information sets
of i, mi(z,8;) =0.) To give ¢ the strict incentive to follow s; at every opportunity, set
i ’s payoffs at —m;(z,¢;).

‘Letting #3S; be the number of pure strategies for player ¢, in each elaboration there
are n,{=1(#S.- + 1) versions of the original game. We label these versions by (ry,...,r1),
where each r; is drawn from the set S;{J{0}. In version (ry,....,r;) of elaboration &,
the payoffs to player ¢ are as follows:
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(i) i r; € S;, then player 1 is assigned the payofis described above that make r; a strictly

- dominant strategy.

(i) i r; = 0 and, for some j # ¢, r; € S;, then player ¢ is assigned jmyoﬁs that make

playing o; a strictly dominant strategy.

(iii) ¥ r; = 0 and, moreover, r; = 0 for all j, then player ¢ is assigned utility equal
to u(i, ) — m;(-,0.)/k, where u is the originally specified utility function and m; is the

number-of-deviations function sketched above.

The prior distribution on these many versions is set as follows. Vex;;ion (ray...,rr) of
elaboration & has prior probability [T, mi(r;), where pi(r;) =1/(k-#8;) if r; € S; and
pi(r:) = (k= 1)/k if r; = 0. Finally, for his initial information concerning the version
selected, at version (ry,....,rr), player ¢ is told the value of r;.

This construction may seem quite complex, but it has a simple interpretation. Each
player ¢ is either “crazy” or “sane”, and there are as many different ways for i to be
crazy as i has pure strategies. The overall chance that { is crazy in elaboration k is 1/k,
divided equally among the many different forms of craziness. A player is told whether he is
crazy or sane and, if crazy, the form that his craziness takes. Players’ “types” are selected
independently. (The reader should be careful here - payofis of one player will depend on
the type of the other, so payoff perturbations are not independent.) If a player is crazy
according to a certain pure strategy, then the player has payoffs that cause him to play that
strategy at every available opportunity. If a player is sane and some other player is crazy
(of any type), then the sane player wants to follow the fixed Nash equilibrium strategy o;
at every available opportunity. Finally, if all players are sane, then payoffs are as in the

original game, with a small “kick” in favor of the fixed Nash equilibrium strategies o; . 4

It should be evident that this sequence of elaborations converges to the originally
given game, according to the criterion we have given. We claim, moreover, that in each
elaboration, the following strategies &; are strict in the reduced normal form: Player ¢
follows o; if his initial information is r; = 0, and he follows r; if his initial information is

some r; € S;. Once this claim is established, we will have the proposition.

4 This sort of construction, in which every strategy is played with positive probability, is
used by Fudenberg and Maskin (1986) to obtain a robust folk theorem for repeated games
with long but finite horizons and small levels of incomplete information.
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Suppose that some (pure) strategy ; is one of ’s best responses to the strategies
{6,} of his opponents (in some elaboration k). We wish to establish that &; is precisely
&; except possibly at information sets that s ’s own actions preclude. By the assumption of
perfect recall, the information sets of ¢+ are ordered by precedence. Take any information
set h for ¢ that is earliest in terms of precedence among all of s ’s information sets in which
; is different from &; and in which ¢ ’s previous actions (which would be the same under
#; and &; because this is an earliest information set) do not themselves preclude A. If no
information sets of i satisfy these conditions, we are done. There are three possibilities to

consider:

(i) The information set h belongs to a crazy variety of <. Because s himself doesn’t
preclude h, and because every strategy profile of his opponents is possible under their
strategies in & (conditional on whatever type is 1), the information set A has positive
prior probability. And at that information set, any action other than that prescribed by a;
does strictly worse than #; (from then on). Hence there is a strategy for ¢ strictly better

than &;, which contradicts the assumed optimality of 6;.

(i) The information set h belongs to the sane variety of ¢, and it corresponds to an
information set that is hit with positive probability under ¢ in the original game and
equilibrium. Then under & it is hit with positive probability in one of two ways: Either
-we are in the version in which everyone is sane, in which case following &; is a strict best
response for ¢ (recall the “kicker” in defining utilities for this the all-sane version), or we
are in a version in which someone else is crazy and 1 is sane, in which case following o;
is a strict best response for the rest of the game. In either case, there is a strategy for &
strictly better than &;, and again we have a contradiction.

(The kicker perturbation to utility in the all-sane version would be unnecessary as long
as there is more than one player, since then we would have that following &; is at least
weakly best in the all-sane version, strictly best in every someone-crazy version, and the
latter would have strictly positive probability. For one player games, however, the latter

has gero probability.)

(iii) The information set h belongs to the sane variety of 1, it corresp onds to an information
set that is off the equilibrium path in the original game under the strategy o, and player
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i does not, by his actions, preclude h. Since there is positive prior probability of every
other strategy combination by i’s opponents, there is positive prior probability that A
will be reached. Moreover, Bayes’ rule forces ¢ to conciude that some one or more of his
opponents must be crazy at this point, at least insofar as they all follow their parts of & .
Hence it is strictly better for ¢ to follow &; at this point and henceforth, and we have the

same contradiction as in the previous two steps.
Q.E.D.

8. Independent Elaborations

In terms of our outside analyst story, section 4 says that unless one is certain that
players will not draw unmodelled inferences about their own payoffs from the deviations
of their opponents, one should not reject any (pure) Nash equilibrium. Suppose, though,
that our outside analyst is prepared to assert that the model as written captures all of the
information that players have about each other; he entertains (only) the possibility that
each player may have unmodelled private information about his own payoffs. In this case
the class of small perturbations that the analyst would consider is smaller than in 4.2, and
the set of locally strict equilibria that result might be smaller as well.

Consider, for example, the game in figure 3.1 and the Nash equilibrium (L,D). We
made this equilibrium locally strict by formulating, in figure 4.1, a game in which player
1 received information that was pertinent to player 2’s payofis. Hence, in this elaboration,
player 1, by choosing R, was communicating to 2 that 2’s best choice lay with D. (This,
of course, supposes that 1 chooses L in the top version of the game.) But if we supposed
that player 1 could not be given information about 2’s payoffs superior to the information
that 2 receives, this would be impossible: 2, moving in the information set that contains
the node from the high probability version, would know that U is dominant for him.

This is not to say that “independent elaborations” (to be defined formally below)
will not render locally strict some equilibria that are not themselves strict. Consider the
~games in figures 5.1 and 5.2." In figure 5.1, we have an equilibrium (Lu,D) which is
subgame imperfect. In figure 5.2 we have an elaboration of this game in which there is
some uncertainty as to the payoffs to player 1 only. Moreover, player 1 is informed about
his payoffs. In this game, (L;Rauidz, D) is sequential and a further elaboration (see
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below) will make it strict, which renders (Lu, D) locally strict. The intuition is that in the
alternative, bottom version of the game, player 1 plays R, with positive probability and
will continue with d; , because in the bottom version, Rzd; is dominant. Player 2, then,
given the move, assesses probability one (g.t the L; action equilibrium) that the bottom
version is being played. As 1 will therefore continue with d; given the chance, 2 chooses
D.

With this example to provide motivation, we turn to a formal development. First, we
must modify the definition of an allowable elaboration. The elaboration is said to be an

independent elaboration if:

(i) for each player i there is an integer N; such that the number of versions in the

elaboration is []; N;;

(ii) writing (31,-.,97) as the index of one of these elaborations, where 3 € {1,..,N;},
there is for each i a piobability distribution g; on {1,...,N;} such that u((s1,..-.,51)) =
l'I.- I‘-(J-) H

(iii) there is for each ¢ and j € {1,..., N;} a payoff function u’(4,z) such that ¢’s payoffs

in version (j1,...,3r) is given by u%(i,z); and

(iv) the information given to ¢ if the true version is (j1,...,J7) concerning which version

prevails is simply ;.

The same convergence criterion as in section 4.2 is used, although we now restrict to

independent elaborations for perturbations.

Definition. A strategy o for an extensive game E is locally strict under independent elab-
orations if there is a sequence of independent elaborations of E, {E"‘} , that converges to
E in the sense of the convergence criterion, and a sequence of strict (in the reduced normal
form) equilibria {6*} for the respective elaborations, such that the behavior prescribed by
the &* at nodes (t,1) converges to behavior at node t prescribed by o.

-

To give our result, we need a final definition.

Definition. A (pure strategy) equilibrium o of a normal form game 7 is strictly perfect

k

in the normal form if there is a sequence of totally mixed strategies o* — o such that,
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for each player ¢ and index k, o; is a strict best response to the other players’ strategies

prescribed by ot .

Remark. The reader can easily show that (Ld, D) is strictly perfect in the normal form of
the game in figure 5.1.

Proposition 4. For a given extensive form E, every equilibrium o that is strictly perfect

in the normal form is locally strict under independent elaborations.

Proof. Fix a sequence of totally mixed strategies of — o such that each o; is a strict best
response to each o* . In the kth elaboration, N; is set equal to #S;, the number of pure
strategies of player i. Payoffs for ¢ in versions corresponding to s; are as in the original
game if 8; = 0;, and they make s; dominant otherwise. The marginal probability that
type 8; for i is chosen is exactly that assigned to &; in o* . Hence these independent
elaborations do converge in the sense of the convergence criterion to the originally specified
game.
By construction, it is a strict Nash equilibrium in E* for each player s, if sane, to
play o:, and to play s; when crazy of type s;. This gives the result.
Q.E.D.
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