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productivity factor.
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Introduction

When we wish to dispense with the assumption of representative agents
and deal directly with a (large) collection of heterogeneous agents, we face
a number of modeling difficulties, especially when the interactions are
dynamic or nonlinear.1 When characteristics of agents are not identical
but parameteriied by a finite dimensional vector with a known distribution
or similar in some sense, there is some hope to characterize the dynamic
behavior of the collection of such agents in macroscopic or global way.z
This paper presents one such illustration in a way that appears not to be
discussed in the litefature. This paper goes further than earlier
attempts3 by adopting a class of models in which explicit aggregation of
micro relations into macro ones are possible. This is accomplished by
introducing a key notion of "field" effects and "field" variables, which
summarize for micro agents aggregate (macroeconomic) effects of actions by
all the microeconomic units. This notion originates in statistical mechan-
ics and has recently been borrowed successfully in the neural network
literature.4 Stated in the language of economics the notion of field
effects is very natural: Interactions among economic agents are mediated
through field variables. It is assumed that there is no direct interaction
among economic agents, that economic agents are subject to or affected by

the same macroeconomic (field) effects, and that the macroeconomic effects

1Some progress has been made in neural network literature in nonlinear
dynamic interactions. Characteristics of individual units are, however,
extremely simple.

2An earlier example is Kelejian (1980).
3See Aoki (1976, 1979a,b, 1980), and Miyahara (1990).

4See Peterson and Anderson (1987), Hertz et al. (1991) or Dawson
(1983), for example. See Example 1 in Aoki (1979b) for an economic example.
For somewhat related works, see Lippi (1988).



are, in turn, determined by the aggregate actions of microeconomic agents
(in previous time epoch). In discrete time formulation we adopt in this
paper, the key assumption is that the current values of the field effects
which are functions of macroeconomic variables are functions of the micro-
economic (state) variables in the previous period. (Or, several lags can be
easily introduced.) More specifically in the model we construct firms face
three types of uncertainty: productivity shock; number of workers respond-
ing to announced wage rates, or labor supply schedule; and demand conditions
for the good. We focus on the latter two effects. There are thus two field
variables, At and Bt' one to express the good market condition and the
second to express the labor market conditions. They are in general
stochastic processes and reduce to constants or "invariants" in the
jdealized case of stable deterministic representative agent model. These
two "invariants" or field (effect) variables give rise to two co-integrating
relations among underlying macroeconomic variables and two associated unit
roots when we relax the representative agent assumption and introduce
heterogeneity of agent characteristics or the diversity of stochastic
environments facing individual agents. Autoregressive technical progress
factors are additional sources of unit roots in the outputs, and are not

needed for that purpose in our model.

Micro-model

We construct a model of economy consisting of n firms somewhat along
the line discussed in Iwai (1981). We suppose that firm i produces a
perishable good i with one period production lag

q (t+1) = §,(©) ni(cﬂ, 0<y<1l (1)

where ni(t) is the number of workers employed by firm i during period ¢



and ji(t) is possibly firm i specific productivity parameter relevant to
period t.
Labor supply is assumed to respond to real wage rate which we take to

be wi(t) deflated by ﬁi(t+1)
2, (¢) = bi(c)[wi(c)/ﬁi(cn)]‘, 0< e (2)

where ﬁi(t+1) is the price firm i uses in planning period t + 1
production defined later in (6), and bi(t) is a random variable
unobservable at the beginning of period t which represents "tightness" of
labor market. Changes in bi(t) shift the labor supply schedule. Firm

i's estimate of it at the beginning of period t 1is denoted by Si(t).

Firm i employs workers up to the estimated labor supply, assuming that

firms can always fulfill their labor demands,
>~ € ,- €
n, (£) = b, ()w, (6) /B, (e+1)°. (3)
Demand for good i is postulated to be
- -n
d, (t) = a; (%) p (v) n>1 (4)

where pi(t) is the good price prevailing in the market at end of period
t, and the random variable ai(t), not observable at the beginning of
period t, is an indicator of how active demand conditions are for good 1.
The demand schedule shifts as ai(t) changes. Its estimate by firm i is
denoted by éi(t).

Firm 1 maximizes one-period expected profit
where defining &i(t) by (4) with éi(t) instead of ai(t), and

si(t) - min(di(t),qi(t))-

Since wi(t-l)ni(t-l) is fixed at the beginning of period ¢, firm 1



plans production by maximizing the first term, i.e., by setting price to

achieve

&i<c) - q,(t)

B, (0) = [3,(0)/q; (0)1™/". (6)

This is the price firm i wuses in planning period ¢t production. From

(6), (1), and (3), the estimated price is rewritten as
5o (6) = [a,(6)/3, (£-1)b, (&) (e-1) T /(170

Substituting this into (5) with si(t) equal to qi(t), ii(t) becomes a
function of wi(t-l) only. Firm i chooses it to maximize ii(t).

The necessary condition of maximizing expected one-period profit 0 =
d&i(t+1)/dwi(t) produces

Wi(t) - n(l'e‘Y/")/c éi(t_._l)l/" ji(t)("-l"e)/cﬂ Bi(t)-(l-‘y&)/cﬂ (7)
with
c =14+ €e(l-v), Kk = ey6/(u+te), 6§ =1 - 1/n.

Substitute (7) into (3) to obtain the number of labor firm i hires

n (&) = ¢/ 3,0/ B () (8)

Note that ni(t) is independent of éi(t). From (1) and (8), good i is

produced in the amount of
q;(®) = n"’/"ji(c-1)(l+‘)/° Bi(c-1)7/°. 9)

By the assumed perishability of goods, the market clearing price of good i

is obtained by equating the actual demand to qi(t)

-n
4;(t) = a,(6) p ()" = q (V).



or from (9)

p,(O) = n"7/°”ji(c-1)'(l+‘)/°” WO b, (e-1) /N, (10)

This is the market clearing price of good i at the end of period t.

We next describe the expectation formation by firms. Consider first a
model where all firms are identical, no random changes in demand or supply
schedules occur, and perfect information prevails. Thus, qi(t) is the
same as the (average) output 6(t) in macroeconomy and pi(t) is the same
as the price P(t) which is the price (level) in macroeconomy. Thus, when
there is no uncertainty, the parameter that fixes the demand schedule is
given from (4) by ai(t) - at-l PZ-I' (We choose t - 1 since they are

known at the beginning of period t.) We therefore introduce a field

variable by

A, - Q

n
-1 P (11)

t-1 "t-1’
to fix a "reference" demand condition, and we measure relative shifts from

it by defining ai(t)
ai(t) - ai(t) AL - (12)

Variable At represents the macroeconomic demand condition in the goods
market and plays an important role in the evolution of the economy. Under
the same set of assumptions, the parameter that fixes the labor supply

schedule, i.e., the labor market condition is expressible from (2) by bi(t)

b —€ €

Nt-l wt—l Pt’ where Nt is the average number of workers per firm, and
wt-l is the wage rate in a macromodel. Introduce a second field variable
by

B, . =N —¢. P (13)

£-1 = Neo1 Ver P

and measure relative shifts in the labor supply schedule from this reference



by defining
b,(€) = B;(t) B_ ;. (14)

In the steady state, the demand and the labor market conditions remain
the same and hence At and Bt will be constants, i.e., At and Bt are
the invariants in this idealized situation. Firms are not actually
identical, and they face different demand and labor market conditions so we
treat ai(t) and ﬂi(t) as random variables. In other words, we measure
the random variables ai(t) and bi(t) normalized by At-l and Bt-l'

To reflect that information of firms is incomplete, we posit that firm

i estimate ai(t) by

a,(t) = a(t-1) A,

and
bi(t) - ﬁi(t-l) Bt—l'

For example, if ai(t) is a martingale, then ai(t-l) is its rational

expectation. Note that a;, bi' a;

random variables. With these assumptions, (7) - (10) completely describes

and ﬂi are all positive valued

the microeconomic model.

Ex post profit of firm i 1is given by

n (£) = q.(t) p;(t) - ny(t-1) w, (t-1)

- ney&/c ji(t_l)(1+e)6/c Bi(t-l)76/c Ai(t)

where

A (1) ai(c)l/’7 - xéi(t)l/n

A e (& - ka (e-1)MT).

If E(ai(t)|£t_1) - ai(t-l) as in the case of martingale, where zt_l is



the information set of firm i at time ¢t - 1,
1/n, 13 1/n
E(ay (t) Izt_l) S @, (t-1)

by the conditional expectation version of the Jensen's inequality since n >
1. Here « < 1. Thus the sign of E(Ai(t)lzt_l) is ambiguous. There may
or may not be a set of parameters for which the conditional expected ex post
profit is zero. (When n =1 and for n large, the expected profit is

positive.) A positive expected profit may be used by firm i to invest in
capital stock by modifying the production function to include capital stock

explicitly.5 Alternatively éi(t) can be redefined by

i, Y < le@o Yz )

to ensure zero profit condition.

Macro-model

We now produce the macroeconomic model by aggregating the microeconomic
units. Assume that the industry classification is such that all outputs of
the firms are simply summed to produce the total output and the average
output per firm is defined by
ain) - % Zia1 9(0)
where n is the number of firms. Similarly, the average number of workers

per firm is defined by
§m _ 1 g0

t 7 Zie1 Mi(0)
To preserve the accounting identity we define the macroeconomic price level
(n)
Pt by
o) o(n) _ 1 ¢n
W e 7 Zp-1 90 Py(©)
and Wén) by

5This would also cure the defect of the model that the marginal product
of labor goes to zero as the number of workers increase indefinitely.



=(n) ,(n) 1 n
Nt Wt - = 21-1 wi(t) ni(t).

To simplify the resulting expression assume that the productivity random
variables are the same for all firms, i.e., ji(t) - jt for all 1i. This
assumption is easily dropped and the consequences are briefly discussed at

the end of this paper. Then, using (9) the average output is

=(n) _ (n) L€1/¢ (1+€)/c ov/c
Q. el " Jea1 B2 (15
with the random constant
cm) 1 gn _gyv/¢c
Cl,e-1 " 7 Zg-1 A (8D

From (9) and (10), the price level is

p(™ _ c(m) Ev/en j-(1+e)/cn 1/n g=v/cn
t 2 t-1 Aclq Be2

(16)
with

(n) (n) _ 140 _9y¥8/¢c 1/9

Cp -1 %2,e-1 = 7 Zpmp A&7 @ (0300
Proceeding analogously, we derive from (8) the average number of workers to

be

J(n) _ ~(n) _e/c e/c ,1/c
N = o™ 0 ¢ B (17

with
c(m _ 1 ¢n /e
C3,¢ = 7 Zgm1 P81
and from (7), (8) and (17) the aggregate wage rate to be

with
(n) () _ 1 gn 1/n ¥ /¢
€3¢ Che ™ 7 Zgmp (07 Ayle-D) T

We note from (15) and (17) that the aggregate production function is

o _ o(m) (n) -7 §(Wy71
Q = ¢,e10%3,0)  dea®e ) (19



This corresponds to (1) which is the micro-production function. We later

show that angP) —‘phxﬁgf) and another expression given in (24) are co-

integrated in the sense of Granger (1983). We note here that Cini, i=
1,...,4 are weakly stationary if ai(t) is.
Macrodynamics

The time evolutions of the field variables are implicit in (15)-(18).
To make them explicit note (11). Then (suppressing superscript (n)) from

(15) and (16), we derive

- n
Ar = € ¢-1(Cy ea1?) A

Denoting the logarithm by ~, this becomes

Ap = A1 0 e Y% e (20)
i.e., (At) is a random walk unless (the expected value of) 61 e-1 +
"62 e-1 is 0. Similarly, from the definition in (13), Bt evolves with

time according to

-€

€
B, - C3,t(C4,t) Coe Beov
or taking logarithms
Bt - Bt-l + C3,t - eCa,t + eCz’t (21)

is another random walk, unless the rest of terms sum to zero in expected
values. Equation (20) and (21) show that 1n At and 1n Bt are no longer
invariants in the face of changing demand and labor market conditions. They
are, however, still nearly so in a stochastic sense if the additive
disturbance are "small".

In Appendix we show that when ai(t) and ﬂi(t) are lognormal random
variables At - At—l is likely to hold if conditions in the labor market is

less volatile than in the goods market, while Bt - it-l holds only when
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the labor market condition is non random.

The relations of these field variables to the macro-variables become

clear when we take logarithms of (15)-(18) and collect them as

:(n)-
Qe
p(n) -
Pt t-1 - (n)
) = Hg|. + HJR + Hpjeop + acl (22)
S(n
Nt"l t-2
q(n)
["e-1]
where
0 v/c
1/n -v/cn
Ho =
0 1/c
L/n  -(1-v6)/c]
' 7
c(n)
C1 ) e-1
€Y (1+¢)
/ (1+e)/ €M
-€ - €
H-l 1’7,1{2-.}. n,andu(?])_-
1 C Je C Je t é( )
3,t-
I (6n-€)/n
G (n)
4,t-1
The null subspace of H6 is two dimensional and is spanned, for
example, by [1 0 - v 0]’ and [1,1,-1,-1]’. It means that there are two
co-integrating relations. For example, Qt - 7Nt-1 and Qt - Nt—l + Pt -
ﬁt-l are co-integrated if jt is stationary. The former is the macro-
production relation, and the latter shows that per capita output is
proportional to the real wage rate in stochastic sense.
Note that the demand field variable A's affects only the price
variables P's and W's. If B’'s produce stochastic trends, then the ét

and ﬁt tends to infinity. In this model the labor population is also

tending to infinity which drives the field variable B’s.
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The average profit is defined by

e - Ne ¥eor

Q1

1'[t -
which is obtained from aggregating ni(t) to be

- -0
Moo= (6 1% ¢-1 ~ #C3,¢1%, 11

where
=0 ev6/c ;s (L+ve)s/c ,1/n ov8/c
o = &7 /¢ e Aty Beoy -
Using the notation <e> to express arithmetic average over firms, the

expression in the square bracket 156

<B(e-2)7%a(6)} > - x<p(e-2)"8/Ca(e-1) /">

Microdynamics

With these macro-dynamics spelled out, we can now describe micro-

-

dynamics and co-integrating behavior of some microvariables. Taking

logarithms of (9)-(10) and noting (11l) and (12), we have

Qi(t) ]
pi(t) t-1 i -
=H H Hoje-
G (E-1) 0| + Hix + Haje-1
) t£-2
tvi(t-l)
ay (t-1) 1
+ Hy | + (1-8) [ [laj(e) - aj(t-1)]. (25)
1(t-2)

At the micro-level ﬁi(t) is the only variable which exhibits serial

correlation if a’'s, B's and h's are serially uncorrelated. In the limit

6If all firms form the same expectation and if a's and B's are
independent, the expressions in braces is proportional to 1 - x. Then the
expected profit rate is positive. This expected positive profit may be
invested or taxed away or capital cost can be introduced in the profit
equation so that the expected profit becomes zero. To treat them explicitly

the model needs be expanded suitably.
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of n - o, cov(ﬁi(t),ﬁi(t-l)) is positive if {jt} is uncorrelated. The
contemporaneous correlation between Gi(t) and ﬁi(t) is positive, so is

the correlation between &i(t) and ﬁi(t-l).

Correlation Relations
From (22) we can derive expressions for the differenced macroeconomic

variables such as Aét and Aﬁt- (dropping the superscript (n) from

1
(22)). For example

l+e

-, ) .
Q. = < S * Ay + 80

where from (21)

. Comg = BB g = ACy (g - €8C, 5+ €80y o
Similarly,
5 - 1 .7 . le+e p
APy n $e-2 cn -2 cn Aley * ACz,t:-l’

where from (20)

+ qAé

$e-2 = 8C) 3, t-1"

1 € 3 ~
ANep = g fe-2* g Aie-l +4cy oy,

and

Mi_ = leep -G o B4

=17 3 e Se-2 8C, e-1-

We note that var Aﬁt 2 var Aét according to ai/Var Aﬁt 2 n2 -1 if var

AC1 = var ACZ'

Assuming that Et-2’ 5:—2’ Ajt-l’ ACi’ , 1=1~4 are all
stationary, let
2
o, = var §t_2,
2
aB - var(t_z,
2 -~
oy = varAjt_l,
and
2 .
si - varACi,f, i=1-~4,
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On the assumption that si are must smaller than the other variances
and that si/a? is negligible, the correlation coefficients of the
(differenced) macroeconomic variables are simpler to state.

The correlation of output with wage is approximately given by

L ~y(1-76) o3 + (1+e)¢§a§
Corr(AQt,AWt_

) = —
1 =2 ~
[ of « ve)2 6D \l(1-96)2 of + 82 0]
Empirically corrA(ét,Aﬁt_l) is negative. This indicates that (since §

and § = 1) b
2 2
(1+e)aj < 1(1-7)03. (26)
If wvar AC3 = var ACA’ then var Aﬁt-l zkvar Aét according to (1-12)052 2
(1+2¢)o§. Thus, if (26) holds, then Aﬁt-l is likely to have greater
variance than Aét. When 9aB is neglected, we have
g 2 V-1/2
( v )2 %A
T+e :%
CorrA(Qt,APt) = -1 + 02 -1 <0.
¥ 2 B
L () =
%

As 7202 gets smaller than 7202 + (1+e)20§, this latter correlation

approaches minus one. Correlation coefficients with the productivity shock

are
p - (l+e) o
Corr(j,_,Q.) = __...__—j_.._z >0,
\"12 (43 + (1"’6)2 aj
and
Corr(j 93 >0.

N ) o= e
t-1""t-1
«a% + (65)2 a§

On the assumption that a:/ag is smaller than ag/aﬁ the model implies

7If 5t is uncorrelated with 5 then Cov(jt,ét) and

t-1’
cov(jt,Nt_l) are both zero.
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that the correlation coefficients satisfy the following inequalities:

-COrr(Aét,Aﬁt) z -Corr(AQt,Aﬁ =z Corr(Aﬁt,Aﬁt_l) >0

-1’

where Corr(ét,ﬁt) and Corr(ft,ﬁt_l) are negative. These inequalities
follow since
( 2 /2
RY: %A
- - T’ 2
Corr(AQt,AWt_l) : b 'Uj <- 1'
Corr(APt,AWt_l) 2 2
1+(41)* 3B
T+’ T2
3
which approaches -1 as ai approaches zero, and
r 2 \L’
Y A
2 T+e¢ -2
- (1-y8) %B| | . 73
(1+e)s 2 ol
I EET
- - +e
Corr(AQt,AWt_l) -~ Uj

Corr(AQ¢,AP¢) o2 2
v 2 "B -vé B
Ve 7 i5s ]:f

<1 for ai/a2 small.

]

The signs of these correlations and relative magnitude change as we
change the assumptions on the relative magnitudes of ai, ag, 948 and
a?. These expressions are given as possible illustrations.

Limiting Behavior

As the number of firms increase, the Cin) i=1~4 converges to
numbers by the strong law of large numbers, under suitable technical

conditions described in the Appendix. Thus
Cin) - Ci i=1~4 a.e. as n -+ o,

Instead of random walks we have deterministic time trends.
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The only random vector affecting the macrodynamics is Hth-l in (22).
The covariance of ét and ét are negative in this limiting case.

Appendix contains technical discussions on the convergence.

ome tensjo

We can treat j(t) as a random variable, or more generally let ji(t)
to be jc(t)gi(t) where jc(t) is a random variable common to all firms
and §i(c) is firm i specific random effects with no substantial change
in the limiting process. We can also relax the "i.i.d" assumption under
which the micro and macro model convergence behavior has been proved. The
random variables a's and pB’'s can also be decomposed into common parts
and idiosyncratic parts. These generalizations are useful since the
macrodynamics are no longer deterministic but become random. For example,
we can assume some or all of random variables indexed by i as exchangeable
processes. This generalization is an attractive way to allow for positive
correlations of shocks among firms to embody an idea of firm

complementarity.

Concluding Remarks

By adopting a form for microeconomic units that is suited to
incorporate macroeconomic effects as "mean field effects”, we showed how the
corresponding model for macroeconomic dynamics can be derived. .The macro-
dynamics naturally possess the co-integration effects without having them
exogenously grafted by technical progress, for example. Alternative
assumptions on stochastic processes such as exchangeability are yet to be
examined but expected to present no serious technical difficulties.

As the number of micro units goes to infinity, macrodynamics become
deterministic, if jt is deterministic. Otherwise macrodynamics generate

‘stochastic processes.
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APPENDIX

We make the following assumptions on the stochastic processes:

1) ai(t), ﬂi(t), qi(O), pi(O), ni(O), wi(O) are all positive random
variables.

2) (ai(t), ﬁi(t), t=-1,0,1,...), i =1,2,... are i.i.d. with respect to
i.

3) ai(t) and ﬂi(t) possess all the moments E(|ai(t)|a), -0 < § < o,

4) The sequence (qi(O), pi(O), ni(O), wi(O); i=1,2,...) 1is given and
i.1.d. with respect to i. These random variables have all the moments.

On the assumption that the sequence of microvariables start with the same

initial conditions

a{™(0) = q,(®
p{™(0) = p, (0)
a{™(0) = n,(0)
W™ () = w (), n=-1.2,...

the stochastic process x?(t) - (qin)(t), pgn)(t), nin)(t), win)(t))' is

uniquely specified.

Claim 1: For each t, there exists limiting microvariables x{(t) such

that x{™ (o) P xp(e), 1-1.2,....
Claim 2: As n - =,
™ (t) B @x(e) = E(a(e)),
P (e) B px(e) = E(pE(D)ax()/Q7(D),

8™ (e) B Nx(e) - E(ag(e)),
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W(n)(t) R Wk(t) = E[w?(t)n{(t)]/ﬁ*(t)

Claim 3: The limiting sequence (x;(t)) i =1,2,... is i.i.d. and

satisfies the set of equations analogous to (25) with A*(t) =

€

Qr(e)P*(e) /M, and B(t) = Ne(t) Wk(£) € Pr(r)°.

Claim 4: The limiting macrovariables satisfy the same set of equations as

(20), (21) and (22) with the exception that an% is replaced by Ci(t).

Using < > to denote expectation, they are
- _oy1/¢
cl(t-l) < By(t 2) >
C,(t-1) = < ai(:)l's pi(c-2)76/° >/C, (t)
1/c
C3(t) = < ﬁi(t-l) >
and
C,(t) = < ai(t)l/" ﬂi(c-1)75/° >/ C4(£).

Note that these Ci(t)'s are non-random. Now if we add a reasonable
assumption:
5) (ai(t)) and (ﬂi(t)) are independent for each i and t.

Then dropping subscript i, since they are identically distributed by

assumption
¢, () = < ae-"¢ >,
¢ (&) = < a(el ™ < pe-)"/ >/ ¢ (0,
Cy(t) = < pe-1C >

and

C,(8) = < a(t) " >< ﬂ(c-l)’s/c >/ C4(t).
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Condition for C1 + ”62 =0

Suppose that a ~ N(O,ai) and ﬁ - N(O,ag), i.e., a(t) and B(t)
have lognormal distributions.

Recall the relation

- 2,2
an - EeOa - ealﬁ /2.
Then
2 2 2
C1 = exp(y 02/2c )
and
2 2 2.2 2 2
CICZ - exp(al/Zq + v 8 02/2c ),
and

= 2 2.2
C1 + n02 - 01/2q -

602/2c2.

Hence the condition 61 + "62 = 0 becomes

2 2 2 2
(2 - 2y%6(1-6)102/m = 160,
or
2,2 2,2
62/01 =c /v (n-1).
This condition is likely to be satisfied by a variety of parameter
values.

Condition for C3 - eCa + eC2 = 0

Under the same set of assumptions, we obtain

C, = exp 1 [a§/2c2]

3 2
and
2,2 2.22,2
C3C4 = exp .% [al/q + 76 az/c ]
- ~ ~ 2, 2,2
and C3 - eCa + eC2 = (l+e - €7 )02/2c .
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This condition is met if and only if g, = 0 since vy < 1.

Only when g, =0, = 0, both conditions are simultaneously met with

lognormal a and 2.
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